51
|
Santamaria ME, Arnaiz A, Rosa-Diaz I, González-Melendi P, Romero-Hernandez G, Ojeda-Martinez DA, Garcia A, Contreras E, Martinez M, Diaz I. Plant Defenses Against Tetranychus urticae: Mind the Gaps. PLANTS 2020; 9:plants9040464. [PMID: 32272602 PMCID: PMC7238223 DOI: 10.3390/plants9040464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/24/2023]
Abstract
The molecular interactions between a pest and its host plant are the consequence of an evolutionary arms race based on the perception of the phytophagous arthropod by the plant and the different strategies adopted by the pest to overcome plant triggered defenses. The complexity and the different levels of these interactions make it difficult to get a wide knowledge of the whole process. Extensive research in model species is an accurate way to progressively move forward in this direction. The two-spotted spider mite, Tetranychus urticae Koch has become a model species for phytophagous mites due to the development of a great number of genetic tools and a high-quality genome sequence. This review is an update of the current state of the art in the molecular interactions between the generalist pest T. urticae and its host plants. The knowledge of the physical and chemical constitutive defenses of the plant and the mechanisms involved in the induction of plant defenses are summarized. The molecular events produced from plant perception to the synthesis of defense compounds are detailed, with a special focus on the key steps that are little or totally uncovered by previous research.
Collapse
Affiliation(s)
- M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Dairon A. Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Estefania Contreras
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, UPM, 28223 Madrid, Spain; (M.E.S.); (A.A.); (I.R.-D.); (P.G.-M.); (G.R.-H.); (D.A.O.-M.); (A.G.); (E.C.); (M.M.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-910679180
| |
Collapse
|
52
|
Zélé F, Altıntaş M, Santos I, Cakmak I, Magalhães S. Inter- and intraspecific variation of spider mite susceptibility to fungal infections: Implications for the long-term success of biological control. Ecol Evol 2020; 10:3209-3221. [PMID: 32273982 PMCID: PMC7141011 DOI: 10.1002/ece3.5958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023] Open
Abstract
Spider mites are severe pests of several annual and perennial crops worldwide, often causing important economic damages. As rapid evolution of pesticide resistance in this group hampers the efficiency of chemical control, alternative control strategies, such as the use of entomopathogenic fungi, are being developed. However, while several studies have focused on the evaluation of the control potential of different fungal species and/or isolates as well as their compatibility with other control methods (e.g., predators or chemical pesticides), knowledge on the extent of inter- and intraspecific variation in spider mite susceptibility to fungal infection is as yet incipient. Here, we measured the mortality induced by two generalist fungi, Beauveria bassiana and Metarhizium brunneum, in 12 spider mite populations belonging to different Tetranychus species: T. evansi, T. ludeni, and T. urticae (green and red form), within a full factorial experiment. We found that spider mite species differed in their susceptibility to infection by both fungal species. Moreover, we also found important intraspecific variation for this trait. These results draw caution on the development of single strains as biocontrol agents. Indeed, the high level of intraspecific variation suggests that (a) the one-size-fits-all strategy may fail to control spider mite populations and (b) hosts resistance to infection may evolve at a rapid pace. Finally, we propose future directions to better understand this system and improve the long-term success of spider mite control strategies based on entomopathogenic fungi.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Mustafa Altıntaş
- Department of Plant ProtectionFaculty of AgricultureAdnan Menderes UniversityAydinTurkey
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Ibrahim Cakmak
- Department of Plant ProtectionFaculty of AgricultureAdnan Menderes UniversityAydinTurkey
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
53
|
Alzate A, Onstein RE, Etienne RS, Bonte D. The role of preadaptation, propagule pressure and competition in the colonization of new habitats. OIKOS 2020. [DOI: 10.1111/oik.06871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adriana Alzate
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen Groningen the Netherlands
- Terrestrial Ecology Unit, Ghent Univ. Ghent Belgium
| | - Renske E. Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Rampal S. Etienne
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen Groningen the Netherlands
| | - Dries Bonte
- Terrestrial Ecology Unit, Ghent Univ. Ghent Belgium
| |
Collapse
|
54
|
De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Ton J, Turlings TCJ. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. J Chem Ecol 2020; 46:344-360. [PMID: 32002720 DOI: 10.1007/s10886-020-01153-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023]
Abstract
The vast spectrum of inducible plant defenses can have direct negative effects on herbivores, or indirect effects, for instance in the form of herbivore-induced plant volatiles (HIPVs) that attract natural enemies. Various arthropods have evolved ways to suppress plant defenses. To test whether this is the case for caterpillar-induced HIPVs, we compared the volatile induction by Spodoptera frugiperda (Lepidoptera: Noctuidae), which is particularly well adapted to feed on maize (Zea mays), with the induction by three more generalist noctuid larvae. We tested the hypothesis that S. frugiperda suppresses HIPV emissions in maize, and thereby reduces attractiveness to natural enemies. HIPV emissions triggered by S. frugiperda when feeding on maize were indeed found to be significantly weaker than by Spodoptera littoralis, Spodoptera exigua, and Helicoverpa armigera. The suppression seems specific for maize, as we found no evidence for this when S. frugiperda caterpillars fed on cotton (Gossypium herbaceum). Artificially damaged maize plants treated with larval regurgitant revealed that HIPV suppression may be related to factors in the caterpillars' oral secretions. We also found evidence that differential physical damage that the caterpillars inflict on maize leaves may play a role. The suppressed induction of HIPVs had no apparent consequences for the attraction of a common parasitoid of S. frugiperda, Cotesia marginiventris (Hymenoptera: Braconidae). Nevertheless, the ability to manipulate the defenses of its main host plant may have contributed to the success of S. frugiperda as a major pest of maize, especially in Africa and Asia, which it has recently invaded.
Collapse
Affiliation(s)
- Elvira S De Lange
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Department of Entomology and Nematology, University of California Davis, 1 Shields Avenue, 367 Briggs Hall, Davis, CA, 95616, USA
| | - Diane Laplanche
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Huijuan Guo
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xu
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Michèle Vlimant
- Laboratory of Animal Physiology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Matthias Erb
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Jurriaan Ton
- Plant Production & Protection Institute of Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
55
|
Bacteria Affect Plant-Mite Interactions Via Altered Scent Emissions. J Chem Ecol 2020; 46:782-792. [DOI: 10.1007/s10886-020-01147-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/18/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
|
56
|
Shi X, Preisser EL, Liu B, Pan H, Xiang M, Xie W, Wang S, Wu Q, Li C, Liu Y, Zhou X, Zhang Y. Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. BMC PLANT BIOLOGY 2019; 19:556. [PMID: 31842757 PMCID: PMC6916021 DOI: 10.1186/s12870-019-2178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND While virus-vector-host interactions have been a major focus of both basic and applied ecological research, little is known about how different levels of plant defense interact with prior herbivory to affect these relationships. We used genetically-modified strains of tomato (Solanum lycopersicum) varying in the jasmonic acid (JA) plant defense pathways to explore how plant defense and prior herbivory affects a plant virus (tomato yellow leaf curl virus, 'TYLCV'), its vector (the whitefly Bemisia tabaci MED), and the host. RESULTS Virus-free MED preferred low-JA over high-JA plants and had lower fitness on high-JA plants. Viruliferous MED preferred low-JA plants but their survival was unaffected by JA levels. While virus-free MED did not lower plant JA levels, viruliferous MED decreased both JA levels and the expression of JA-related genes. Infestation by viruliferous MED reduced plant JA levels. In preference tests, neither virus-free nor viruliferous MED discriminated among JA-varying plants previously exposed to virus-free MED. However, both virus-free and viruliferous MED preferred low-JA plant genotypes when choosing between plants that had both been previously exposed to viruliferous MED. The enhanced preference for low-JA genotypes appears linked to the volatile compound neophytadiene, which was found only in whitefly-infested plants and at concentrations inversely related to plant JA levels. CONCLUSIONS Our findings illustrate how plant defense can interact with prior herbivory to affect both a plant virus and its whitefly vector, and confirm the induction of neophytadiene by MED. The apparent attraction of MED to neophytadiene may prove useful in pest detection and management.
Collapse
Affiliation(s)
- Xiaobin Shi
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410000, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Baiming Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huipeng Pan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Xiang
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyou Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410000, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
57
|
Abdala‐Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S, Sentis A, van Dam NM, Wimp G, Mooney K, Björkman C. Tri-trophic interactions: bridging species, communities and ecosystems. Ecol Lett 2019; 22:2151-2167. [PMID: 31631502 PMCID: PMC6899832 DOI: 10.1111/ele.13392] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom-up and top-down controls over the distribution of biomass across trophic levels and other ecosystem-level variables. Here, we propose pathways to bridge these two long-standing perspectives. We argue that an expanded theory of tri-trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri-trophic theory systematically across all levels of biological organisation.
Collapse
Affiliation(s)
- Luis Abdala‐Roberts
- Departamento de Ecología TropicalCampus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánKm. 15.5 Carretera Mérida‐XmatkuilMX‐97000MéridaYucatánMéxico
| | - Adriana Puentes
- Department of EcologySwedish University of Agricultural SciencesBox 7044SE‐750 07UppsalaSweden
| | - Deborah L. Finke
- Division of Plant SciencesUniversity of Missouri1‐33 Agriculture BuildingUS‐65211ColumbiaMOUSA
| | - Robert J. Marquis
- Department of Biology and the Whitney R. Harris World Ecology CenterUniversity of Missouri–St. Louis1 University BoulevardUS‐63121St. LouisMOUSA
| | - Marta Montserrat
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Consejo Superior de Investigaciones CientíficasE‐29750Algarrobo‐Costa (Málaga)Spain
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityP.O. Box 166700 AAWageningenThe Netherlands
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11CH‐2000NeuchâtelSwitzerland
| | - Arnaud Sentis
- UMR RECOVERIRSTEAAix Marseille University3275 route Cézanne13182Aix‐en‐ProvenceFrance
| | - Nicole M. van Dam
- Molecular Interaction EcologyFriedrich‐Schiller‐University Jena & German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigDeutscher Platz 5eDE‐04103LeipzigGermany
| | - Gina Wimp
- Department of BiologyGeorgetown University406 Reiss Science BuildingUS‐20057WashingtonDCUSA
| | - Kailen Mooney
- Department of Ecology and Evolutionary BiologyUniversity of California Irvine321 Steinhaus HallUS‐92697IrvineCAUSA
| | - Christer Björkman
- Department of EcologySwedish University of Agricultural SciencesBox 7044SE‐750 07UppsalaSweden
| |
Collapse
|
58
|
Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
Su Q, Peng Z, Tong H, Xie W, Wang S, Wu Q, Zhang J, Li C, Zhang Y. A salivary ferritin in the whitefly suppresses plant defenses and facilitates host exploitation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3343-3355. [PMID: 30949671 PMCID: PMC6598096 DOI: 10.1093/jxb/erz152] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
The whitefly Bemisia tabaci is an important pest of worldwide agriculture. Previous work has shown that B. tabaci actively suppresses host plant defenses, but our knowledge of the specific mechanisms involved remains limited. Here we describe a B. tabaci salivary protein, the ferritin BtFer1, and its role in facilitating exploitation of host plants. We show that BtFer1 exhibits Fe2+ binding ability and ferroxidase activity, and that secretion of BtFer1 during B. tabaci feeding suppresses H2O2-generated oxidative signals in tomato (Solanum lycopersicum). Silencing BtFer1 enhanced the induction of the jasmonic acid (JA)-mediated defense signaling pathway in response to whitefly feeding, and led to increased callose deposition and the production of proteinase inhibitors that prevent whiteflies from continuously ingesting and digesting phloem sap. Consistent with these effects, silencing BtFer1 reduced whitefly survival on tomato but not on artificial diet. Using a JA-deficient spr2 mutant plant further showed that suppression of JA defenses by BtFer1 is sufficient to increase B. tabaci survival. Taken together, these results demonstrate that BtFer1 acts as an effector protein that mediates whitefly-tomato interactions. These findings represent an important step forward in understanding the molecular mechanisms by which whiteflies and other insect herbivores suppress host plant defenses.
Collapse
Affiliation(s)
- Qi Su
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Zhengke Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hong Tong
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianmin Zhang
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Chuanren Li
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
60
|
Lin D, Xu Y, Wu H, Liu X, Zhang L, Wang J, Rao Q. Plant Defense Responses Induced by Two Herbivores and Consequences for Whitefly Bemisia tabaci. Front Physiol 2019; 10:346. [PMID: 31019468 PMCID: PMC6458271 DOI: 10.3389/fphys.2019.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Diverse herbivores are known to induce various plant defenses. The plant defenses may detrimentally affect the performance and preference to subsequent herbivores on the same plant, such as affecting another insect’s feeding, settling, growth or oviposition. Here, we report two herbivores (mealybug Phenacoccus solenopsis and carmine spider mite Tetranychus cinnabarinus) which were used to pre-infest the cucumber to explore the impact on the plants and the later-colonizing species, whitefly Bemisia tabaci. The results showed that the whiteflies tended to select the treatments pre-infested by the mites, rather than the uninfected treatments. However, the result of treatments pre-infested by the mealybugs was opposite. Total number of eggs laid of whiteflies was related to their feeding preference. The results also showed that T. cinnabarinus were more likely to activate plant jasmonic acid (JA) regulated genes, while mealybugs were more likely to activate key genes regulated by salicylic acid (SA). The different plant defense activities on cucumbers may be one of the essential factors that affects the preference of B. tabaci. Moreover, the digestive enzymes and protective enzymes of the whitefly might play a substantial regulatory role in its settling and oviposition ability.
Collapse
Affiliation(s)
- Dan Lin
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yonghua Xu
- Zhejiang Branch of National Pesticide R&D South Center, Zhejiang Chemical Industry Research Institute, Hangzhou, China
| | - Huiming Wu
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Xunyue Liu
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Li Zhang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Jirui Wang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
61
|
Santamaría ME, Martínez M, Arnaiz A, Rioja C, Burow M, Grbic V, Díaz I. An Arabidopsis TIR-Lectin Two-Domain Protein Confers Defense Properties against Tetranychus urticae. PLANT PHYSIOLOGY 2019; 179:1298-1314. [PMID: 30765478 PMCID: PMC6446783 DOI: 10.1104/pp.18.00951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/04/2019] [Indexed: 05/13/2023]
Abstract
Plant immunity depends on fast and specific transcriptional reprogramming triggered by the perception of biotic stresses. Numerous studies have been conducted to better understand the response of plants to the generalist herbivore two-spotted spider mite (Tetranychus urticae). However, how plants perceive mites and how this perception is translated into changes in gene expression are largely unknown. In this work, we identified a gene induced in Arabidopsis (Arabidopsis thaliana) upon spider mite attack that encodes a two-domain protein containing predicted lectin and Toll/Interleukin-1 receptor domains. The gene, previously named PP2-A5, belongs to the Phloem Protein2 family. Biotic assays showed that PP2-A5 confers tolerance to T. urticae Overexpression or knockout of PP2-A5 leads to transcriptional reprogramming that alters the balance of hormone accumulation and corresponding signaling pathways. The nucleocytoplasmic location of this protein supports a direct interaction with regulators of gene transcription, suggesting that the combination of two putative signaling domains in a single protein may provide a novel mechanism for regulating gene expression. Together, our results suggest that PP2-A5 improves the ability to defend against T. urticae by participating in the tight regulation of hormonal cross talk upon mite feeding. Further research is needed to determine the mechanism by which this two-domain protein functions and to clarify its molecular role in signaling following a spider mite attack.
Collapse
Affiliation(s)
- M Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal-Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal-Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
| | - Cristina Rioja
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal-Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040 Madrid, Spain
| |
Collapse
|
62
|
Food decisions of an omnivorous thrips are independent from the indirect effects of jasmonate-inducible plant defences on prey quality. Sci Rep 2019; 9:1727. [PMID: 30741999 PMCID: PMC6370905 DOI: 10.1038/s41598-018-38463-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022] Open
Abstract
Plant defensive substances can affect the quality of herbivores as prey for predators either directly or indirectly. Directly when the prey has become toxic since it ingested toxic plant material and indirectly when these defences have affected the size and/or nutritional value (both quality parameters) of prey or their abundance. To disentangle direct and indirect effects of JA-defences on prey quality for predators, we used larvae of the omnivorous thrips Frankliniella occidentalis because these are not directly affected by the jasmonate-(JA)-regulated defences of tomato. We offered these thrips larvae the eggs of spider mites (Tetranychus urticae or T. evansi) that had been feeding from either normal tomato plants, JA-impaired plants, or plants treated with JA to artificially boost defences and assessed their performance. Thrips development and survival was reduced on the diet of T. evansi eggs relative to the diet of T. urticae eggs yet these effects were independent from the absence/presence of JA-defences. This indicates that the detrimental effects of tomato JA-defences on herbivores not necessarily also affects their quality as prey.
Collapse
|
63
|
de Oliveira EF, Pallini A, Janssen A. Herbivore performance and plant defense after sequential attacks by inducing and suppressing herbivores. INSECT SCIENCE 2019. [PMID: 28636085 DOI: 10.1111/1744-7917.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well known that herbivore-induced plant defenses alter host plant quality and can affect the behavior and performance of later arriving herbivores. Effects of sequential attacks by herbivores that either suppress or induce plant defenses are less well studied. We sequentially infested leaves of tomato plants with a strain of the phytophagous spider mite Tetranychus urticae that induces plant defenses and the closely related Tetranychus evansi, which suppresses plant defenses. Plant quality was quantified through oviposition of both spider mite species and by measuring proteinase inhibitor activity using plant material that had been sequentially attacked by both herbivore species. Spider-mite oviposition data show that T. evansi could suppress an earlier induction of plant defenses by T. urticae, and T. urticae could induce defenses in plants previously attacked by T. evansi in 1 day. Longer attacks by the second species did not result in further changes in oviposition. Proteinase inhibitor activity levels showed that T. evansi suppressed the high activity levels induced by T. urticae to constitutive levels in 1 day, and further suppressed activity to levels similar to those in plants attacked by T. evansi alone. Attacks by T. urticae induced proteinase inhibitor activity in plants previously attacked by T. evansi, eventually to similar levels as induced by T. urticae alone. Hence, plant quality and plant defenses were significantly affected by sequential attacks and the order of attack does not affect subsequent performance, but does affect proteinase inhibitor activity levels. Based on our results, we discuss the evolution of suppression of plant defenses.
Collapse
Affiliation(s)
- Elisa Faria de Oliveira
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, Brazil
- Department of Entomology, Federal University of Lavras, Lavras, MG, Brazil
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Section Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
64
|
Godinho DP, Serrano HC, Da Silva AB, Branquinho C, Magalhães S. Effect of Cadmium Accumulation on the Performance of Plants and of Herbivores That Cope Differently With Organic Defenses. FRONTIERS IN PLANT SCIENCE 2018; 9:1723. [PMID: 30546373 PMCID: PMC6279943 DOI: 10.3389/fpls.2018.01723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 05/28/2023]
Abstract
Some plants are able to accumulate in their shoots metals at levels that are toxic to most other organisms. This ability may serve as a defence against herbivores. Therefore, both metal-based and organic defences may affect herbivores. However, how metal accumulation affects the interaction between herbivores and organic plant defences remains overlooked. To fill this gap, we studied the interactions between tomato (Solanum lycopersicum), a model plant that accumulates cadmium, and two spider-mite species, Tetranychus urticae and Tetranychus evansi that, respectively, induce and suppress organic plant defences, measurable via the activity of trypsin inhibitors. We exposed plants to different concentrations of cadmium and measured its effects on mites and plants. In the plant, despite clear evidence for cadmium accumulation, we did not detect any cadmium effects on traits that reflect the general response of the plant, such as biomass, water content, and carbon/nitrogen ratio. Still, we found effects of cadmium upon the quantity of soluble sugars and on leaf reflectance, where it may indicate structural modifications in the cells. These changes in plant traits affected the performance of spider mites feeding on those plants. Indeed, the oviposition of both spider mite species was higher on plants exposed to low concentrations of cadmium than on control plants, but decreased at concentrations above 0.5 mM. Therefore, herbivores with contrasting responses to organic defences showed a similar hormetic response to metal accumulation by the plants. Additionally, we show that the induction and suppression of plant defences by these spider-mite species was not affected by the amount of cadmium supplied to the plants. Furthermore, the effect of cadmium on the performance of spider mites was not altered by infestation with T. urticae or T. evansi. Together, our results suggest no interaction between cadmium-based and organic plant defences, in our system. This may be useful for plants living in heterogeneous environments, as they may use one or the other defence mechanism, depending on their relative performance in each environment.
Collapse
Affiliation(s)
- Diogo Prino Godinho
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Cristina Serrano
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | - Cristina Branquinho
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Magalhães
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
65
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
66
|
Ximénez-Embún MG, González-Guzmán M, Arbona V, Gómez-Cadenas A, Ortego F, Castañera P. Plant-Mediated Effects of Water Deficit on the Performance of Tetranychus evansi on Tomato Drought-Adapted Accessions. FRONTIERS IN PLANT SCIENCE 2018; 9:1490. [PMID: 30386357 PMCID: PMC6199365 DOI: 10.3389/fpls.2018.01490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/25/2018] [Indexed: 05/25/2023]
Abstract
Climate change is expected to increase drought periods and the performance and dispersal of some invasive species such as Tetranychus evansi, which has been reported to take advantage of the nutritional changes induced by water-shortage on the tomato cultivar Moneymaker (MM). We have examined the implications for mite's biology of four accessions of the drought-adapted tomatoes, "Tomàtiga de Ramellet" (TR), under moderate drought stress. Mite performance was enhanced by drought in two accessions (TR61 and TR154), but not in the other two accessions (TR58 and TR126). We selected one accession of each outcome (i.e., TR154 and TR126) to further analyze plant nutritional parameters. We found that free sugars and most essential amino acids for mites were induced by drought and/or mite infestation on MM and TR154 plants, whereas sugars were not altered and a reduced number of essential amino acids were induced by drought in TR126. Remarkably, mite performance was enhanced by leaf infiltration of free sugars, essential amino acids mixture, and L-proline on well-watered MM and by free sugars on drought-stressed TR126 plants. These results indicate a positive link between the induction of soluble carbohydrates and amino acids used by the plant for osmotic adjustment and mite performance. The effects of drought and/or mite infestation on the defense response of plants was analyzed at three levels: phytohormone accumulation, the transcript levels of marker genes linked to jasmonates (JAs), salicylic acid (SA), and abscisic acid (ABA) pathways, and the activity of defense proteins. The ability of T. evansi to downregulate the accumulation of defense-related phytohormones was noted on MM and the two TR accessions analyzed (TR126 and TR154), though differences in the induction of protein defense genes and activities by drought and/or mite infestation were observed among them. These results emphasize the importance of studying plant biotic and abiotic stress factors in combination and provides an experimental framework for screening drought-tolerant tomato accessions that will be also resistant to herbivore mites.
Collapse
Affiliation(s)
- Miguel G. Ximénez-Embún
- Laboratorio de Interacción Planta-Insecto, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Miguel González-Guzmán
- Laboratorio de Interacción Planta-Insecto, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Vicent Arbona
- Ecofisiologia i Biotecnologia, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecofisiologia i Biotecnologia, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Félix Ortego
- Laboratorio de Interacción Planta-Insecto, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Pedro Castañera
- Laboratorio de Interacción Planta-Insecto, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
67
|
Volatiles from Aquilaria sinensis damaged by Heortia vitessoides larvae deter the conspecific gravid adults and attract its predator Cantheconidea concinna. Sci Rep 2018; 8:15067. [PMID: 30305665 PMCID: PMC6180080 DOI: 10.1038/s41598-018-33404-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
The effects of induced plant responses on herbivores are categorised as direct, by reducing herbivore development, or indirect, by affecting the performance of natural enemies. Here, we investigated a tritrophic system, which included the herbivore Heortia vitessoides, its host plant Aquilaria sinensis, and its predator Cantheconidea concinna. Herbivore-damaged A. sinensis plants released significantly greater amounts of volatiles than undamaged and mechanically damaged plants, with an obvious temporal trend. One day after initial herbivore damage, A. sinensis plants released large amounts of volatile compounds. Volatile compounds release gradually decreased over the next 3 d. The composition and relative concentrations of the electroantennographic detection (EAD)-active compounds, emitted after herbivore damage, varied significantly over the 4-d measurement period. In wind tunnel bioassays, mated H. vitessoides females showed a preference for undamaged plants over herbivore and mechanically damaged A. sinensis plants. In Y-tube bioassays, C. concinna preferred odours from herbivore-damaged plants to those from undamaged plants, especially after the early stages of insect attack. Our results indicate that the herbivore-induced compounds produced in response to attack by H. vitessoides larvae on A. sinensis plants could be used by both the herbivores themselves and their natural enemies to locate suitable host plants and prey, respectively.
Collapse
|
68
|
Eisenring M, Glauser G, Meissle M, Romeis J. Differential Impact of Herbivores from Three Feeding Guilds on Systemic Secondary Metabolite Induction, Phytohormone Levels and Plant-Mediated Herbivore Interactions. J Chem Ecol 2018; 44:1178-1189. [DOI: 10.1007/s10886-018-1015-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022]
|
69
|
Antoniou C, Fragkoudi I, Martinou A, Stavrinides MC, Fotopoulos V. Spatial response of Medicago truncatula plants to drought and spider mite attack. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:658-662. [PMID: 30139552 DOI: 10.1016/j.plaphy.2018.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Plant response to imposition of biotic and abiotic stresses by inducing their defense mechanisms, with the production of reactive oxygen species (ROS) representing a major defense response. The present work examined the simultaneous impact of two key stress factors, drought and spider mite attack (Tetranychus urticae) in Medicago truncatula plants. Hydrogen peroxide (H2O2), lipid peroxidation (MDA content) and proline content in well-watered and drought-stressed leaves infested by spider mites along with neighboring leaves were examined in order to investigate the local and systemic effect of the two stresses on the antioxidant and osmoprotective response. High levels of lipid peroxidation were recorded in plants under drought stress and plants under combined drought stress and spider mite feeding compared with control plants. Hydrogen peroxide biosynthesis was significantly induced in plants under drought and spider mite attack, with highest levels detected in the feeding leaf (local response). Proline was accumulated in drought stressed-plants, with the highest levels observed in plants exposed to a combination of drought stress and mite feeding. RT-qPCR expression analysis of key genes implicated in ROS metabolism (PAO, DAO, AOX, CuZnSOD, FeSOD, MnSOD) and proline biosynthesis (P5CR, P5CS) pointed to different patterns of regulation between abiotic and biotic stress, as well as their combination. Exposure of plants to both drought stress and attack by spider mites mainly affected the local antioxidant and osmoprotective response of Medicago truncatula, highlighting the relative significance of drought-induced phenomena in combined drought/mite infestation stress responses.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Ioanna Fragkoudi
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Angeliki Martinou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Menelaos C Stavrinides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, 3036, Limassol, Cyprus.
| |
Collapse
|
70
|
Arena GD, Ramos-González PL, Rogerio LA, Ribeiro-Alves M, Casteel CL, Freitas-Astúa J, Machado MA. Making a Better Home: Modulation of Plant Defensive Response by Brevipalpus Mites. FRONTIERS IN PLANT SCIENCE 2018; 9:1147. [PMID: 30158942 PMCID: PMC6104575 DOI: 10.3389/fpls.2018.01147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 05/20/2023]
Abstract
False-spider mites of the genus Brevipalpus are highly polyphagous pests that attack hundreds of plant species of distinct families worldwide. Besides causing direct damage, these mites may also act as vectors of many plant viruses that threaten high-value ornamental plants like orchids and economically important crops such as citrus and coffee. To better understand the molecular mechanisms behind plant-mite interaction we used an RNA-Seq approach to assess the global response of Arabidopsis thaliana (Arabidopsis) plants along the course of the infestation with Brevipalpus yothersi, the main vector species within the genus. Mite infestation triggered a drastic transcriptome reprogramming soon at the beginning of the interaction and throughout the time course, deregulating 1755, 3069 and 2680 genes at 6 hours after infestation (hai), 2 days after infestation (dai), and 6 dai, respectively. Gene set enrichment analysis revealed a clear modulation of processes related to the plant immune system. Co-expressed genes correlated with specific classes of transcription factors regulating defense pathways and developmental processes. Up-regulation of defensive responses correlated with the down-regulation of growth-related processes, suggesting the triggering of the growth-defense crosstalk to optimize plant fitness. Biological processes (BPs) enriched at all time points were markedly related to defense against herbivores and other biotic stresses involving the defense hormones salicylic acid (SA) and jasmonic acid (JA). Levels of both hormones were higher in plants challenged with mites than in the non-infested ones, supporting the simultaneous induction of genes from both pathways. To further clarify the functional relevance of the plant hormonal pathways on the interaction, we evaluated the mite performance on Arabidopsis mutants impaired in SA- or JA-mediated response. Mite oviposition was lower on mutants defective in SA biosynthesis (sid2) and signaling (npr1), showing a function for SA pathway in improving the mite reproduction, an unusual mechanism compared to closely-related spider mites. Here we provide the first report on the global and dynamic plant transcriptome triggered by Brevipalpus feeding, extending our knowledge on plant-mite interaction. Furthermore, our results suggest that Brevipalpus mites manipulate the plant defensive response to render the plant more susceptible to their colonization by inducing the SA-mediated pathway.
Collapse
Affiliation(s)
- Gabriella D. Arena
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, Brazil
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Luana A. Rogerio
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Juliana Freitas-Astúa
- Laboratório de Bioquímica Fitopatológica, Instituto Biológico, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| | - Marcos A. Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, Brazil
| |
Collapse
|
71
|
Blaazer CJH, Villacis-Perez EA, Chafi R, Van Leeuwen T, Kant MR, Schimmel BCJ. Why Do Herbivorous Mites Suppress Plant Defenses? FRONTIERS IN PLANT SCIENCE 2018; 9:1057. [PMID: 30105039 PMCID: PMC6077234 DOI: 10.3389/fpls.2018.01057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.
Collapse
Affiliation(s)
- C. Joséphine H. Blaazer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ernesto A. Villacis-Perez
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Van Leeuwen
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Bernardus C. J. Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
72
|
Zhang PJ, He YC, Zhao C, Ye ZH, Yu XP. Jasmonic Acid-Dependent Defenses Play a Key Role in Defending Tomato Against Bemisia tabaci Nymphs, but Not Adults. FRONTIERS IN PLANT SCIENCE 2018; 9:1065. [PMID: 30083179 PMCID: PMC6064940 DOI: 10.3389/fpls.2018.01065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/29/2018] [Indexed: 05/25/2023]
Abstract
The silverleaf whitefly Bemisia tabaci is an important and invasive crop pest in many countries. Previous laboratory studies with Arabidopsis demonstrated that B. tabaci can suppress jasmonic acid (JA) defenses and thereby enhance B. tabaci performance. Whether B. tabaci can suppress JA-regulated host plant defenses in field is unknown. In the present study, we found that, relative to wild-type (WT) tomato plants, transgenic tomato mutants that activated JA defenses (35s::prosys) or impaired JA defenses (spr-2 and def-1) did not affect the survival or reproduction of B. tabaci adults in growth chamber experiments. In contrast, tomato mutants that activated JA defenses slowed B. tabaci nymphal development, while mutants that impaired JA defenses accelerated nymphal development. These effects of JA defenses on nymphal development were also documented under semi-field conditions. Changes in the expression of defense genes and in the production of phytohormones indicated that B. tabaci adults can suppress JA-dependent defenses after infestation for >72 h. The suppression of JA was correlated with the induction of salicylic acid (SA) in B. tabaci-infested leaves under laboratory and under semi-field conditions. If SA signaling was blocked, JA accumulation increased in infested leaves and B. tabaci nymphal development was delayed. These results indicate that, although JA signaling helps in mediating tomato responses against B. tabaci nymphs, B. tabaci can inhibit JA biosynthesis and its action in an SA-dependent manner.
Collapse
|
73
|
Shi X, Chen G, Pan H, Xie W, Wu Q, Wang S, Liu Y, Zhou X, Zhang Y. Plants Pre-Infested With Viruliferous MED/Q Cryptic Species Promotes Subsequent Bemisia tabaci Infestation. Front Microbiol 2018; 9:1404. [PMID: 29997607 PMCID: PMC6030610 DOI: 10.3389/fmicb.2018.01404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022] Open
Abstract
The sweet potato whitefly, Bemisia tabaci, is one of the most invasive insect pests worldwide. The two most destructive whitefly cryptic species are MEAM1/B and MED/Q. Given that MED/Q has replaced MEAM1/B in China and the invasion of MED/Q has coincided with the outbreak of tomato yellow leaf curl virus (TYLCV), we hypothesize that pre-infestation with viruliferous B. tabaci will affect the subsequent host preferences. To test this hypothesis, we (1) conducted bioassays to compare the host preference of viruliferous and non-viruliferous MEAM1/B and MED/Q, respectively, on plants pre-infested with viruliferous and non-viruliferous MEAM1/B and MED/Q; (2) profiled plant volatiles using GC-MS; and (3) functionally characterized chemical cues could potentially modulate B. tabaci-TYLCV-tomato interactions, including ρ-cymene, thujene and neophytadiene, using a Y-tube olfactometer. As a result, plants pre-infested with MEAM1/B whiteflies carrying TYLCV or not, did not attract more or less B or Q whiteflies. Plants pre-infested with non-viruliferous MED/Q resisted MEAM1/B but did not affect MED/Q. However, plants pre-infested with viruliferous MED/Q attracted more whiteflies. Feeding of viruliferous MED/Q reduced the production of ρ-cymene, and induced thujene and neophytadiene. Functionally analyses of these plant volatiles show that ρ-cymene deters while neophytadiene recruits whiteflies. These combined results suggest that pre-infestation with viruliferous MED/Q promotes the subsequent whitefly infestation and induces plant volatile neophytadiene which recruits whiteflies.
Collapse
Affiliation(s)
- Xiaobin Shi
- Hunan Academy of Agricultural Sciences, Hunan Plant Protection Institute, Changsha, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Huipeng Pan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Hunan Plant Protection Institute, Changsha, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
74
|
Paulo JT, Godinho DP, Silva A, Branquinho C, Magalhães S. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants. Int J Mol Sci 2018; 19:E1783. [PMID: 29914126 PMCID: PMC6032058 DOI: 10.3390/ijms19061783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae), and bean plants (Fabales). First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.
Collapse
Affiliation(s)
- Jéssica T Paulo
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal.
| | - Diogo P Godinho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal.
| | - Anabela Silva
- BioISI, Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal.
| | - Cristina Branquinho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal.
| | - Sara Magalhães
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal.
| |
Collapse
|
75
|
Li P, Liu H, Li F, Liao X, Ali S, Hou M. A virus plays a role in partially suppressing plant defenses induced by the viruliferous vectors. Sci Rep 2018; 8:9027. [PMID: 29899498 PMCID: PMC5997988 DOI: 10.1038/s41598-018-27354-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022] Open
Abstract
Herbivorous attack induces plant defenses. There is evidence that some pests suppress these defenses by interfering with signaling pathways. We here report that infestation by the white-backed planthopper, Sogatella furcifera, induces defense responses in rice and infection of the southern rice black-streaked dwarf virus in the planthoppers partially suppresses the planthopper-induced plant defenses. Salicylic acid (SA) levels generally showed a temporal increase pattern while jasmonic acid (JA) levels generally exhibited a decrease pattern in the planthopper-infested plants, irrespective of virus infection status in the insects. The increase in SA was less while the decrease in JA was more in the viruliferous insect-infested plants than in the nonviruliferous insect-infested plants at both 48 and 72 h post infestation. The phytohormone levels corresponded to the patterns of relative expression levels of SA-marker genes (ICS1 and NPR1) and JA-marker gene (AOS2) in the plant treatments. Planthoppers performed better on the uninfested plants than on the previously infested plants and were of not significant increase in performance on the plants previously attacked by viruliferous planthoppers in comparison with the plants previously attacked by nonviruliferous insects. Our results indicate that the virus plays a role in partially suppressing the plant defenses induced by the planthopper. These findings provide a new perspective on plant-virus-vector interactions.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Shahbaz Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, 541399, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China.
| |
Collapse
|
76
|
Kamiya T, Mideo N, Alizon S. Coevolution of virulence and immunosuppression in multiple infections. J Evol Biol 2018; 31:995-1005. [DOI: 10.1111/jeb.13280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM); Montpellier France
| |
Collapse
|
77
|
Pinto-Zevallos DM, Bezerra RHS, Souza SR, Ambrogi BG. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 74:261-274. [PMID: 29478090 DOI: 10.1007/s10493-018-0231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/16/2018] [Indexed: 05/10/2023]
Abstract
Upon damage by herbivores, plants induce an array of volatile organic compounds (VOCs) that mediate ecological interactions involving communication with organisms of the second and third trophic levels. VOC-mediated tritrophic interactions have largely been studied in various systems, including cassava (Manihot esculenta), but little is known about the chemical nature of herbivore-induced VOCs in this crop and the response they evoke in natural enemies. Several tetranychid and predatory mites are associated with cassava. Here, VOC emissions from uninfested plants and plants infested with 200 or 400 Mononychellus tanajoa, a specialist herbivore on cassava, and the generalists Tetranychus urticae and T. gloveri were measured. Dual-choice experiments were also conducted to assess the preference of inexperienced (reared on prey-infested bean plants) and experienced (adapted on prey-infested cassava plants) predatory mites, Neoseiulus idaeus (Phytoseiidae), between odors of uninfested plants versus odors of plants infested with M. tanajoa, T. urticae or T. gloveri. Two hundred individuals significantly increased the emissions of (Z)-3-hexen-1-ol, (E)-β-ocimene, β-caryophyllene, alloaromadendrene and (E)-geranyl acetone in T. urticae-infested plants, and (E)-β-ocimene and methyl salicylate (MeSA) in T. gloveri-infested plants. Four hundred individuals significantly increased the emissions of (Z)-3-hexen-1-ol, MeSA, α-pinene and D-limonene in M. tanajoa-infested plants. In addition, T. urticae at this density induced (E)-β-ocimene, D-limonene, (E)-geranyl acetone and six compounds that were not detected in other treatments. Tetranychus gloveri-infested plants induced the emissions of (E)-2-hexenal and D-limonene. Regardless of the infesting species, inexperienced N. idaeus did not discriminate between uninfested or infested plants. Upon experience, they discriminated between the odors of uninfested and T. urticae-damaged plants. Our findings reveal that mite infestations in cassava result in density-dependent and species-specific emission of VOCs, and that N. idaeus relies on associative learning to forage for its prey.
Collapse
Affiliation(s)
- Delia M Pinto-Zevallos
- Laboratório de Ecologia Química, Departamento de Ecologia, Universidade Federal de Sergipe, Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, CEP 49100-000, Brazil
| | - Ranna H S Bezerra
- Laboratório de Ecologia Química, Departamento de Ecologia, Universidade Federal de Sergipe, Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, CEP 49100-000, Brazil
| | - Silvia R Souza
- Instituto de Botânica, Centro de Pesquisa em Ecologia e Fisiologia, Av. Miguel Estefano Água Funda, São Paulo, SP, CEP 09560-500, Brazil
| | - Bianca G Ambrogi
- Laboratório de Ecologia Química, Departamento de Ecologia, Universidade Federal de Sergipe, Marechal Rondon, s/n - Jardim Rosa Elze, São Cristóvão, SE, CEP 49100-000, Brazil.
| |
Collapse
|
78
|
Agut B, Pastor V, Jaques JA, Flors V. Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae? Int J Mol Sci 2018; 19:ijms19020614. [PMID: 29466295 PMCID: PMC5855836 DOI: 10.3390/ijms19020614] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/02/2018] [Accepted: 02/18/2018] [Indexed: 11/16/2022] Open
Abstract
Tetranychus urticae (T. urticae) Koch is a cosmopolitan, polyphagous mite which causes economic losses in both agricultural and ornamental plants. Some traits of T. urticae hamper its management, including a short life cycle, arrhenotokous parthenogenesis, its haplodiploid sex determination system, and its extraordinary ability to adapt to different hosts and environmental conditions. Currently, the use of chemical and biological control are the major control methods used against this mite. In recent years, some studies have focused on plant defence mechanisms against herbivores. Various families of plant compounds (such as flavonoids, glucosinolates, or acyl sugars) have been shown to behave as acaricides. Plants can be induced upon appropriate stimuli to increase their resistance against spider mites. This knowledge, together with the understanding of mechanisms by which T. urticae detoxifies and adapts to pesticides, may complement the control of this pest. Herein, we describe plant volatile compounds (VOCs) with repellent activity, and new findings about defence priming against spider mites, which interfere with the T. urticae performance. The use of VOCs and defence priming can be integrated into current management practices and reduce the damage caused by T. urticae in the field by implementing new, more sustainable crop management tools.
Collapse
Affiliation(s)
- Blas Agut
- Departament de Ciències Agràries i del Medi Natural. Campus del Riu Sec, Metabolic Integration and Cell Signalling Group, Universitat Jaume I (UJI), E-12071-Castelló de la Plana, Spain.
- Departament de Ciències Agràries i del Medi Natural, Unitat Associada d'Entomologia IVIA-UJI, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain.
| | - Victoria Pastor
- Departament de Ciències Agràries i del Medi Natural. Campus del Riu Sec, Metabolic Integration and Cell Signalling Group, Universitat Jaume I (UJI), E-12071-Castelló de la Plana, Spain.
| | - Josep A Jaques
- Departament de Ciències Agràries i del Medi Natural, Unitat Associada d'Entomologia IVIA-UJI, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain.
| | - Victor Flors
- Departament de Ciències Agràries i del Medi Natural. Campus del Riu Sec, Metabolic Integration and Cell Signalling Group, Universitat Jaume I (UJI), E-12071-Castelló de la Plana, Spain.
| |
Collapse
|
79
|
Su Q, Chen G, Mescher MC, Peng Z, Xie W, Wang S, Wu Q, Liu J, Li C, Wang W, Zhang Y. Whitefly aggregation on tomato is mediated by feeding‐induced changes in plant metabolites that influence the behaviour and performance of conspecifics. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Su
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Gong Chen
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
- College of Plant ProtectionHunan Agricultural University Changsha Hunan China
| | - Mark C. Mescher
- Department of Environmental Systems ScienceETH Zürich Zürich Switzerland
| | - Zhengke Peng
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Shaoli Wang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Qingjun Wu
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| | - Jie Liu
- National Agro‐Technical, Extension and Service Centre Beijing China
| | - Chuanren Li
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
| | - Wenkai Wang
- Institute of Insect SciencesCollege of AgricultureYangtze University Jingzhou Hubei China
| | - Youjun Zhang
- Institute of Vegetables and FlowersChinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
80
|
Turlings TCJ, Erb M. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:433-452. [PMID: 29324043 DOI: 10.1146/annurev-ento-020117-043507] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.
Collapse
Affiliation(s)
- Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, 2000 Neuchâtel, Switzerland;
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| |
Collapse
|
81
|
Schausberger P. Herbivore-Associated Bacteria as Potential Mediators and Modifiers of Induced Plant Defense Against Spider Mites and Thrips. FRONTIERS IN PLANT SCIENCE 2018; 9:1107. [PMID: 30105044 PMCID: PMC6077224 DOI: 10.3389/fpls.2018.01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 05/13/2023]
Abstract
Induced plant defense, comprising contact with exogenous stimuli, production of endogenous signals alerting the plant, associated biochemical cascades, and local and/or systemic expression of the defense mechanisms, critically depends on the nature of the inducing agents. At large, bio-trophic pathogenic microorganisms and viruses usually trigger the salicylate (SA)-mediated pathway, whereas necro-trophic pathogens and herbivores usually trigger the jasmonate (JA)-mediated pathway in plants. The SA- and JA-mediated pathways do not operate independently but commonly interfere with each other. Several recent studies revealed abnormal plant responses upon herbivore attack in diverse plant-herbivore systems. Observed abnormalities range from suppression of the common JA-pathway, induction of the SA-pathway to no response, yet the underlying proximate causes and ultimate consequences of these variations are elusive. Strikingly, some studies provide compelling evidence that anti-herbivore plant responses may decisively depend on bacteria associated with the herbivore attacking the plant (HAB for herbivore-associated bacteria). HAB may influence herbivore recognition by the plant and alter the biochemical cascades inside plants. Here, I report cases in point of HAB manipulating induced anti-herbivore plant responses, suggest spatial and temporal categorization of HAB, and point at proximate and ultimate aspects of plant defense manipulation by HAB. Following, I overview the diversity of HAB of spider mites and herbivorous thrips, argue that, considering recently reported phenomena of abnormal plant responses upon spider mite attack, some of these HAB could represent important, but hitherto largely neglected, mediators/modifiers of induced plant defense against spider mites and thrips, and conclude with suggestions for future research.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, Japan
- *Correspondence: Peter Schausberger,
| |
Collapse
|
82
|
Pappas ML, Liapoura M, Papantoniou D, Avramidou M, Kavroulakis N, Weinhold A, Broufas GD, Papadopoulou KK. The Beneficial Endophytic Fungus Fusarium solani Strain K Alters Tomato Responses Against Spider Mites to the Benefit of the Plant. FRONTIERS IN PLANT SCIENCE 2018; 9:1603. [PMID: 30459791 PMCID: PMC6232530 DOI: 10.3389/fpls.2018.01603] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 05/23/2023]
Abstract
Beneficial microorganisms are known to promote plant growth and confer resistance to biotic and abiotic stressors. Soil-borne beneficial microbes in particular have shown potential in protecting plants against pathogens and herbivores via the elicitation of plant responses. In this study, we evaluated the role of Fusarium solani strain K (FsK) in altering plant responses to the two spotted spider mite Tetranychus urticae in tomato. We found evidence that FsK, a beneficial endophytic fungal strain isolated from the roots of tomato plants grown on suppressive compost, affects both direct and indirect tomato defenses against spider mites. Defense-related genes were differentially expressed on FsK-colonized plants after spider mite infestation compared to clean or spider mite-infested un-colonized plants. In accordance, spider mite performance was negatively affected on FsK-colonized plants and feeding damage was lower on these compared to control plants. Notably, FsK-colonization led to increased plant biomass to both spider mite-infested and un-infested plants. FsK was shown to enhance indirect tomato defense as FsK-colonized plants attracted more predators than un-colonized plants. In accordance, headspace volatile analysis revealed significant differences between the volatiles emitted by FsK-colonized plants in response to attack by spider mites. Our results highlight the role of endophytic fungi in shaping plant-mite interactions and may offer the opportunity for the development of a novel tool for spider mite control.
Collapse
Affiliation(s)
- Maria L. Pappas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Maria L. Pappas,
| | - Maria Liapoura
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Dimitra Papantoniou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Marianna Avramidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nektarios Kavroulakis
- Laboratory of Phytopathology, Institute of Olive Tree, Subtropical Plants & Viticulture, Hellenic Agricultural Organization – DEMETER, Chania, Greece
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - George D. Broufas
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Kalliope K. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
83
|
Jonckheere W, Dermauw W, Khalighi M, Pavlidi N, Reubens W, Baggerman G, Tirry L, Menschaert G, Kant MR, Vanholme B, Van Leeuwen T. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:112-124. [PMID: 29094648 DOI: 10.1094/mpmi-06-17-0139-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.
Collapse
Affiliation(s)
- Wim Jonckheere
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wannes Dermauw
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Mousaalreza Khalighi
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Nena Pavlidi
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wim Reubens
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Geert Baggerman
- 3 Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- 4 Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Luc Tirry
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gerben Menschaert
- 5 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University
| | - Merijn R Kant
- 6 Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
| | - Bartel Vanholme
- 7 Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; and
- 8 Centre for Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | - Thomas Van Leeuwen
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
84
|
Clemente SH, Santos I, Ponce R, Rodrigues LR, Varela SAM, Magalhães S. Despite reproductive interference, the net outcome of reproductive interactions among spider mite species is not necessarily costly. Behav Ecol 2017. [DOI: 10.1093/beheco/arx161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Salomé H Clemente
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Inês Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rita Ponce
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- ESS/IPS – School of Health, Polytechnic Institute of Setubal, Setubal, Portugal
| | - Leonor R Rodrigues
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Susana A M Varela
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- IGC – Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sara Magalhães
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
85
|
Ximénez-Embún MG, Glas JJ, Ortego F, Alba JM, Castañera P, Kant MR. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:297-315. [PMID: 29188401 PMCID: PMC5727147 DOI: 10.1007/s10493-017-0200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.
Collapse
Affiliation(s)
- Miguel G Ximénez-Embún
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | - Joris J Glas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Juan M Alba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Merijn R Kant
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Rioja C, Zhurov V, Bruinsma K, Grbic M, Grbic V. Plant-Herbivore Interactions: A Case of an Extreme Generalist, the Two-Spotted Spider Mite Tetranychus urticae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:935-945. [PMID: 28857675 DOI: 10.1094/mpmi-07-17-0168-cr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-herbivore interactions evolved over long periods of time, resulting in an elaborate arms race between interacting species. While specialist herbivores evolved specific strategies to cope with the defenses of a limited number of hosts, our understanding of how generalist herbivores deal with the defenses of a plethora of diverse host plants is largely unknown. Understanding the interaction between a plant host and a generalist herbivore requires an understanding of the plant's mechanisms aimed at defending itself and the herbivore's mechanisms intended to counteract diverse defenses. In this review, we use the two-spotted spider mite (TSSM), Tetranychus urticae (Koch) as an example of a generalist herbivore, as this chelicerate pest has a staggering number of plant hosts. We first establish that the ability of TSSM to adapt to marginal hosts underlies its polyphagy and agricultural pest status. We then highlight our understanding of direct plant defenses against spider mite herbivory and review recent advances in uncovering mechanisms of spider mite adaptations to them. Finally, we discuss the adaptation process itself, as it allows TSSM to overcome initially effective plant defenses. A high-quality genome sequence and developing genetic tools, coupled with an ease of mite experimental selection to new hosts, make TSSM an outstanding system to study the evolution of host range, mechanisms of pest xenobiotic resistance and plant-herbivore interactions. In addition, knowledge of plant defense mechanisms that affect mite fitness are of practical importance, as it can lead to development of new control strategies against this important agricultural pest. In parallel, understanding mechanisms of mite counter adaptations to these defenses is required to maintain the efficacy of these control strategies in agricultural practices.
Collapse
Affiliation(s)
- Cristina Rioja
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Vladimir Zhurov
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Kristie Bruinsma
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Miodrag Grbic
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
- 2 University of La Rioja, Logrono, 26006, Spain
| | - Vojislava Grbic
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| |
Collapse
|
87
|
Schimmel BCJ, Ataide LMS, Kant MR. Spatiotemporal heterogeneity of tomato induced defense responses affects spider mite performance and behavior. PLANT SIGNALING & BEHAVIOR 2017; 12:e1370526. [PMID: 28857667 PMCID: PMC5647976 DOI: 10.1080/15592324.2017.1370526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
When feeding from tomato (Solanum lycopersicum), the generalist spider mite Tetranychus urticae induces jasmonate (JA)- and salicylate (SA)-regulated defense responses that hamper its performance. The related T. evansi, a Solanaceae-specialist, suppresses these defenses, thereby upholding a high performance. On a shared leaf, T. urticae can be facilitated by T. evansi, likely via suppression of defenses by the latter. Yet, when infesting the same plant, T. evansi outcompetes T. urticae. Recently, we found that T. evansi intensifies suppression of defenses locally, i.e., at its feeding site, after T. urticae mites were introduced onto adjacent leaf tissue. This hyper-suppression is paralleled by an increased oviposition rate of T. evansi, probably promoting its competitive population growth. Here we present additional data that not only provide insight into the spatiotemporal dynamics of defense induction and suppression by mites, but that also suggest T. evansi to manipulate more than JA and SA defenses alone.
Collapse
Affiliation(s)
- Bernardus C. J. Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Livia M. S. Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- CONTACT Merijn R. Kant Postbus 94240, 1090 GE, Amsterdam, the Netherlands
| |
Collapse
|
88
|
Grasso F, Coppola M, Carbone F, Baldoni L, Alagna F, Perrotta G, Pérez-Pulido AJ, Garonna A, Facella P, Daddiego L, Lopez L, Vitiello A, Rao R, Corrado G. The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS One 2017; 12:e0183050. [PMID: 28797083 PMCID: PMC5552259 DOI: 10.1371/journal.pone.0183050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/30/2017] [Indexed: 11/23/2022] Open
Abstract
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.
Collapse
Affiliation(s)
- Filomena Grasso
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Fabrizio Carbone
- Centro di Ricerca per l’Olivicoltura e l’Industria Olearia, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Rende (CS), Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources (IBBR), CNR, Perugia, Italy
| | - Fiammetta Alagna
- Institute of Biosciences and Bioresources (IBBR), CNR, Perugia, Italy
| | - Gaetano Perrotta
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Antonio J. Pérez-Pulido
- Departamento Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Garonna
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Paolo Facella
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Loretta Daddiego
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rotondella (MT), Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
- * E-mail: (RR); (CG)
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici (NA), Italy
- * E-mail: (RR); (CG)
| |
Collapse
|
89
|
Darshanee HLC, Ren H, Ahmed N, Zhang ZF, Liu YH, Liu TX. Volatile-Mediated Attraction of Greenhouse Whitefly Trialeurodes vaporariorum to Tomato and Eggplant. FRONTIERS IN PLANT SCIENCE 2017; 8:1285. [PMID: 28775733 PMCID: PMC5517405 DOI: 10.3389/fpls.2017.01285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 05/19/2023]
Abstract
The behavior of the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is known to be affected by plant volatile cues, but its attraction or repellent to specific volatile cues has not been deeply studied yet. Therefore, the aim of our study was to identify the most attractive plant among cultivars of tomato (Solanum lycopersicum) and eggplant (Solanum melongena) to evaluate the volatiles of plants to identify the chemical compound(s) that attract T. vaporariorum. We speculated that whitefly-host plant interaction primarily depends on plant volatile emissions and that once the plant is damaged, it might attract more whiteflies. Three intact (uninfested) tomato, four intact eggplant cultivars and whitefly infested plants of the most whitefly attractive tomato and eggplant cultivars were examined by behavioral assay experiments for attractiveness to T. vaporariorum and headspace volatile were determined by solid-phase microextraction (SPME) and gas chromatography-mass spectrometry. Whiteflies had the highest preference for the intact eggplant Kuai Yuan Qie (KYQ) among the eggplant and the tomato plant cultivars in bioassay experiments. Although both male and female whiteflies were significantly more attracted to infested KYQ plants than to intact plants, whitefly females did not select conspecific-infested YG plants. The volatile emissions among different plant cultivars in individual species and infested versus intact plants were significantly different. Among these volatiles, identified major green leaf volatiles [(Z)-3-hexen-1-ol] and terpenoids [α-pinene, (E)-β-caryophyllene, α-humulene, azulene] showed a constitutive relationship with the most whitefly preference plants. Our findings provide new insights into the chemical compounds that attract or repel whiteflies.
Collapse
Affiliation(s)
- Hewa L. C. Darshanee
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
- Department of Export AgricultureKandy, Sri Lanka
| | - Hui Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Nazeer Ahmed
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Yan-Hong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F UniversityYangling, China
| |
Collapse
|
90
|
Cui H, Guo L, Wang S, Xie W, Jiao X, Wu Q, Zhang Y. The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants. Ecol Evol 2017; 7:6141-6150. [PMID: 28861220 PMCID: PMC5574797 DOI: 10.1002/ece3.2921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Litao Guo
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Shaoli Wang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Xiaoguo Jiao
- College of Life Science Hubei University Wuhan China
| | - Qingjun Wu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Youjun Zhang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
91
|
Alzate A, Bisschop K, Etienne RS, Bonte D. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host. J Evol Biol 2017; 30:1966-1977. [DOI: 10.1111/jeb.13123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/04/2023]
Affiliation(s)
- A. Alzate
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Groningen The Netherlands
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| | - K. Bisschop
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Groningen The Netherlands
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| | - R. S. Etienne
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Groningen The Netherlands
| | - D. Bonte
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| |
Collapse
|
92
|
Schimmel BCJ, Ataide LMS, Chafi R, Villarroel CA, Alba JM, Schuurink RC, Kant MR. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition. THE NEW PHYTOLOGIST 2017; 214:1688-1701. [PMID: 28386959 PMCID: PMC5434804 DOI: 10.1111/nph.14543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato.
Collapse
Affiliation(s)
- Bernardus C. J. Schimmel
- Department of Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
| | - Livia M. S. Ataide
- Department of Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
- Department of EntomologyFederal University of ViçosaCEP 36570‐000ViçosaBrazil
| | - Rachid Chafi
- Department of Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
| | - Carlos A. Villarroel
- Department of Plant PhysiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Juan M. Alba
- Department of Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
| | - Robert C. Schuurink
- Department of Plant PhysiologySwammerdam Institute for Life SciencesUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Merijn R. Kant
- Department of Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 942401090 GEAmsterdamthe Netherlands
| |
Collapse
|
93
|
Ozawa R, Endo H, Iijima M, Sugimoto K, Takabayashi J, Gotoh T, Arimura GI. Intraspecific variation among Tetranychid mites for ability to detoxify and to induce plant defenses. Sci Rep 2017; 7:43200. [PMID: 28240222 PMCID: PMC5327432 DOI: 10.1038/srep43200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 02/04/2023] Open
Abstract
Two genotypes coexist among Kanzawa spider mites, one of which causes red scars and the other of which causes white scars on leaves, and they elicit different defense responses in host plants. Based on RNA-Seq analysis, we revealed here that the expression levels of genes involved in the detoxification system were higher in Red strains than White strains. The corresponding enzyme activities as well as performances for acaricide resistance and host adaptation toward Laminaceae were also higher in Red strains than White strains, indicating that Red strains were superior in trait(s) of the detox system. In subsequent generations of strains that had survived exposure to fenpyroximate, both strains showed similar resistance to this acaricide, as well as similar detoxification activities. The endogenous levels of salicylic acid and jasmonic acid were increased similarly in bean leaves damaged by original Red strains and their subsequent generations that inherited high detox activity. Jasmonic acid levels were increased in leaves damaged by original White strains, but not by their subsequent generations that inherited high detox activity. Together, these data suggest the existence of intraspecific variation - at least within White strains - with respect to their capacity to withstand acaricides and host plant defenses.
Collapse
Affiliation(s)
- Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Hiroki Endo
- Department of Biological Science &Technology, Faculty of Industrial Science &Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Mei Iijima
- Department of Biological Science &Technology, Faculty of Industrial Science &Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Koichi Sugimoto
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Tetsuo Gotoh
- Laboratory of Applied Entomology and Zoology, Faculty of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science &Technology, Faculty of Industrial Science &Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
94
|
Nematode Root Herbivory in Tomato Increases Leaf Defenses and Reduces Leaf Miner Oviposition and Performance. J Chem Ecol 2017; 43:120-128. [DOI: 10.1007/s10886-016-0810-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
95
|
Liu J, Legarrea S, Kant MR. Tomato Reproductive Success Is Equally Affected by Herbivores That Induce or That Suppress Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:2128. [PMID: 29326739 PMCID: PMC5733352 DOI: 10.3389/fpls.2017.02128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/30/2017] [Indexed: 05/08/2023]
Abstract
Herbivory induces plant defenses. These responses are often costly, yet enable plants under attack to reach a higher fitness than they would have reached without these defenses. Spider mites (Tetranychus ssp.) are polyphagous plant-pests. While most strains of the species Tetranychus urticae induce defenses at the expense of their performance, the species Tetranychus evansi suppresses plant defenses and thereby maintains a high performance. Most data indicate that suppression is a mite-adaptive trait. Suppression is characterized by a massive down-regulation of plant gene-expression compared to plants infested with defense-inducing mites as well as compared to control plants, albeit to a lesser extent. Therefore, we hypothesized that suppression may also benefit a plant since the resources saved during down-regulation could be used to increase reproduction. To test this hypothesis, we compared fruit and viable seed production of uninfested tomato plants with that of plants infested with defense-inducing or defense-suppressing mites. Mite-infested plants produced fruits faster than control plants albeit in lower total amounts. The T. evansi-infested plants produced the lowest number of fruits. However, the number of viable seeds was equal across treatments at the end of the experiment. Nonetheless, at this stage control plants were still alive and productive and therefore reach a higher lifetime fitness than mite-infested plants. Our results indicate that plants have plastic control over reproduction and can speed up fruit- and seed production when conditions are unfavorable. Moreover, we showed that although suppressed plants are less productive in terms of fruit production than induced plants, their lifetime fitness was equal under laboratory conditions. However, under natural conditions the fitness of plants such as tomato will also depend on the efficiency of seed dispersal by animals. Hence, we argue that the fitness of induced plants in the field may be promoted more by their higher fruit production relative to that of their suppressed counterparts.
Collapse
|
96
|
Jonckheere W, Dermauw W, Zhurov V, Wybouw N, Van den Bulcke J, Villarroel CA, Greenhalgh R, Grbić M, Schuurink RC, Tirry L, Baggerman G, Clark RM, Kant MR, Vanholme B, Menschaert G, Van Leeuwen T. The Salivary Protein Repertoire of the Polyphagous Spider Mite Tetranychus urticae: A Quest for Effectors. Mol Cell Proteomics 2016; 15:3594-3613. [PMID: 27703040 PMCID: PMC5141274 DOI: 10.1074/mcp.m116.058081] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
The two-spotted spider mite Tetranychus urticae is an extremely polyphagous crop pest. Alongside an unparalleled detoxification potential for plant secondary metabolites, it has recently been shown that spider mites can attenuate or even suppress plant defenses. Salivary constituents, notably effectors, have been proposed to play an important role in manipulating plant defenses and might determine the outcome of plant-mite interactions. Here, the proteomic composition of saliva from T. urticae lines adapted to various host plants-bean, maize, soy, and tomato-was analyzed using a custom-developed feeding assay coupled with nano-LC tandem mass spectrometry. About 90 putative T. urticae salivary proteins were identified. Many are of unknown function, and in numerous cases belonging to multimembered gene families. RNAseq expression analysis revealed that many genes coding for these salivary proteins were highly expressed in the proterosoma, the mite body region that includes the salivary glands. A subset of genes encoding putative salivary proteins was selected for whole-mount in situ hybridization, and were found to be expressed in the anterior and dorsal podocephalic glands. Strikingly, host plant dependent expression was evident for putative salivary proteins, and was further studied in detail by micro-array based genome-wide expression profiling. This meta-analysis revealed for the first time the salivary protein repertoire of a phytophagous chelicerate. The availability of this salivary proteome will assist in unraveling the molecular interface between phytophagous mites and their host plants, and may ultimately facilitate the development of mite-resistant crops. Furthermore, the technique used in this study is a time- and resource-efficient method to examine the salivary protein composition of other small arthropods for which saliva or salivary glands cannot be isolated easily.
Collapse
Affiliation(s)
- Wim Jonckheere
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Wannes Dermauw
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
| | - Vladimir Zhurov
- ¶Department of Biology, The University of Western Ontario, London, ON, Canada N6A5B7
| | - Nicky Wybouw
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Jan Van den Bulcke
- ‖UGCT - Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Carlos A Villarroel
- **Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- ‡‡Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Robert Greenhalgh
- §§Department of Biology, University of Utah, Salt Lake City 257 South 1400 East Utah 84112
| | - Mike Grbić
- ¶Department of Biology, The University of Western Ontario, London, ON, Canada N6A5B7
- ¶¶Instituto de Ciencias de la Vid y el Vino, 26006 Logrono, Spain
| | - Rob C Schuurink
- **Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Luc Tirry
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Geert Baggerman
- ‖‖Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Richard M Clark
- §§Department of Biology, University of Utah, Salt Lake City 257 South 1400 East Utah 84112
- Center for Cell and Genome Science, University of Utah, Salt Lake City 257 South 1400 East Utah 84122
| | - Merijn R Kant
- ‡‡Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Gerben Menschaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Thomas Van Leeuwen
- From the ‡Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium;
- §Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
97
|
Clavijo McCormick A. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 2016; 6:8569-8582. [PMID: 28031808 PMCID: PMC5167045 DOI: 10.1002/ece3.2567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022] Open
Abstract
The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.
Collapse
|
98
|
Does Plant Cultivar Difference Modify the Bottom-Up Effects of Resource Limitation on Plant-Insect Herbivore Interactions? J Chem Ecol 2016; 42:1293-1303. [PMID: 27889865 DOI: 10.1007/s10886-016-0795-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Variation in resource input to plants triggers bottom-up effects on plant-insect herbivore interactions. However, variation in plant intrinsic traits in response to resource availability may modify the bottom-up effects. Furthermore, the consequences also may depend on the feeding strategy of insect herbivores belonging to different feeding guilds. We evaluated the performance of two insect herbivores from distinct feeding guilds, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci. We offered the insects two tomato cultivars growing under optimal nitrogen input vs. nitrogen limitation, or under optimal water input vs. water limitation. We found that: (i) the two cultivars differed in their responses to nitrogen and water limitation by regulating primary (leaf-gas exchange related parameters, leaf nitrogen content, and leaf C/N ratio) and secondary metabolism (main defensive compounds: glycoalkaloids); (ii) for both plant cultivars, nitrogen or water limitation significantly affected T. absoluta survival and development, while B. tabaci survival was affected only by nitrogen limitation; and surprisingly (iii) plant cultivar differences did not modify the negative bottom-up effects of resource limitation on the two insect herbivores. In conclusion, the negative effects of resource limitation cascaded up to insect herbivores even though plant cultivars exhibited various adaptive traits to resource limitation.
Collapse
|
99
|
Arena GD, Ramos-González PL, Nunes MA, Ribeiro-Alves M, Camargo LEA, Kitajima EW, Machado MA, Freitas-Astúa J. Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector. FRONTIERS IN PLANT SCIENCE 2016; 7:1757. [PMID: 27933078 PMCID: PMC5122717 DOI: 10.3389/fpls.2016.01757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
Leprosis is a serious disease of citrus caused by Citrus leprosis virus C (CiLV-C, genus Cilevirus) whose transmission is mediated by false spider mites of the genus Brevipalpus. CiLV-C infection does not systemically spread in any of its known host plants, thus remaining restricted to local lesions around the feeding sites of viruliferous mites. To get insight into this unusual pathosystem, we evaluated the expression profiles of genes involved in defense mechanisms of Arabidopsis thaliana and Citrus sinensis upon infestation with non-viruliferous and viruliferous mites by using reverse-transcription qPCR. These results were analyzed together with the production of reactive oxygen species (ROS) and the appearance of dead cells as assessed by histochemical assays. After interaction with non-viruliferous mites, plants locally accumulated ROS and triggered the salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathways. ERF branch of the JA/ET pathways was highly activated. In contrast, JA pathway genes were markedly suppressed upon the CiLV-C infection mediated by viruliferous mites. Viral infection also intensified the ROS burst and cell death, and enhanced the expression of genes involved in the RNA silencing mechanism and SA pathway. After 13 days of infestation of two sets of Arabidopsis plants with non-viruliferous and viruliferous mites, the number of mites in the CiLV-C infected Arabidopsis plants was significantly higher than in those infested with the non-viruliferous ones. Oviposition of the viruliferous mites occurred preferentially in the CiLV-C infected leaves. Based on these results, we postulated the first model of plant/Brevipalpus mite/cilevirus interaction in which cells surrounding the feeding sites of viruliferous mites typify the outcome of a hypersensitive-like response, whereas viral infection induces changes in the behavior of its vector.
Collapse
Affiliation(s)
- Gabriella D. Arena
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloSão Paulo, Brazil
- Universidade Estadual de CampinasSão Paulo, Brazil
| | - Pedro L. Ramos-González
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
- Laboratório de Bioquímica Fitopatológica, Instituto BiológicoSão Paulo, Brazil
| | - Maria A. Nunes
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
| | | | - Luis E. A. Camargo
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloSão Paulo, Brazil
| | - Elliot W. Kitajima
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloSão Paulo, Brazil
| | - Marcos A. Machado
- Laboratório de Biotecnologia de Citros, Centro APTA Citros Sylvio Moreira, Instituto Agronômico de CampinasSão Paulo, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Bioquímica Fitopatológica, Instituto BiológicoSão Paulo, Brazil
- Embrapa Mandioca e FruticulturaCruz das Almas, Brazil
| |
Collapse
|
100
|
Sato Y, Alba JM, Egas M, Sabelis MW. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:261-274. [PMID: 27506908 PMCID: PMC5061842 DOI: 10.1007/s10493-016-0079-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.
Collapse
Affiliation(s)
- Yukie Sato
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090GE, Amsterdam, Netherlands.
- Sugadaira Montane Research Center, University of Tsukuba, Ueda, Nagano, 386-2204, Japan.
| | - Juan M Alba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090GE, Amsterdam, Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090GE, Amsterdam, Netherlands
| | - Maurice W Sabelis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090GE, Amsterdam, Netherlands
| |
Collapse
|