51
|
Acosta C, McMullan S, Djouhri L, Gao L, Watkins R, Berry C, Dempsey K, Lawson SN. HCN1 and HCN2 in Rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. PLoS One 2012; 7:e50442. [PMID: 23236374 PMCID: PMC3517619 DOI: 10.1371/journal.pone.0050442] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022] Open
Abstract
Ih, which influences neuronal excitability, has recently been measured in vivo in sensory neuron subtypes in dorsal root ganglia (DRGs). However, expression levels of HCN (hyperpolarization-activated cyclic nucleotide-gated) channel proteins that underlie Ih were unknown. We therefore examined immunostaining of the most abundant isoforms in DRGs, HCN1 and HCN2 in these neuron subtypes. This immunostaining was cytoplasmic and membrane-associated (ring). Ring-staining for both isoforms was in neurofilament-rich A-fiber neurons, but not in small neurofilament-poor C-fiber neurons, although some C-neurons showed cytoplasmic HCN2 staining. We recorded intracellularly from DRG neurons in vivo, determined their sensory properties (nociceptive or low-threshold-mechanoreceptive, LTM) and conduction velocities (CVs). We then injected fluorescent dye enabling subsequent immunostaining. For each dye-injected neuron, ring- and cytoplasmic-immunointensities were determined relative to maximum ring-immunointensity. Both HCN1- and HCN2-ring-immunointensities were positively correlated with CV in both nociceptors and LTMs; they were high in Aβ-nociceptors and Aα/β-LTMs. High HCN1 and HCN2 levels in Aα/β-neurons may, via Ih, influence normal non-painful (e.g. touch and proprioceptive) sensations as well as nociception and pain. HCN2-, not HCN1-, ring-intensities were higher in muscle spindle afferents (MSAs) than in all other neurons. The previously reported very high Ih in MSAs may relate to their very high HCN2. In normal C-nociceptors, low HCN1 and HCN2 were consistent with their low/undetectable Ih. In some C-LTMs HCN2-intensities were higher than in C-nociceptors. Together, HCN1 and HCN2 expressions reflect previously reported Ih magnitudes and properties in neuronal subgroups, suggesting these isoforms underlie Ih in DRG neurons. Expression of both isoforms was NT3-dependent in cultured DRG neurons. HCN2-immunostaining in small neurons increased 1 day after cutaneous inflammation (CFA-induced) and recovered by 4 days. This could contribute to acute inflammatory pain. HCN2-immunostaining in large neurons decreased 4 days after CFA, when NT3 was decreased in the DRG. Thus HCN2-expression control differs between large and small neurons.
Collapse
Affiliation(s)
- Cristian Acosta
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Laiche Djouhri
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Al-Ahssa, Saudi Arabia
| | - Linlin Gao
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Roger Watkins
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Carol Berry
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Katherine Dempsey
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Sally N. Lawson
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J Neurosci 2012; 32:11854-63. [PMID: 22915126 DOI: 10.1523/jneurosci.2707-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Large projection neurons in lamina III of the rat spinal cord that express the neurokinin 1 receptor are densely innervated by peptidergic primary afferent nociceptors and more sparsely by low-threshold myelinated afferents. However, we know little about their input from other glutamatergic neurons. Here we show that these cells receive numerous contacts from nonprimary boutons that express the vesicular glutamate transporter 2 (VGLUT2), and form asymmetrical synapses on their dendrites and cell bodies. These synapses are significantly smaller than those formed by peptidergic afferents, but provide a substantial proportion of the glutamatergic synapses that the cells receive (over a third of those in laminae I-II and half of those in deeper laminae). Surprisingly, although the dynorphin precursor preprodynorphin (PPD) was only present in 4-7% of VGLUT2 boutons in laminae I-IV, it was found in 58% of the VGLUT2 boutons that contacted these cells. This indicates a highly selective targeting of the lamina III projection cells by glutamatergic neurons that express PPD, and these are likely to correspond to local neurons (interneurons and possibly projection cells). Since many PPD-expressing dorsal horn neurons respond to noxious stimulation, this suggests that the lamina III projection cells receive powerful monosynaptic and polysynaptic nociceptive input. Excitatory interneurons in the dorsal horn have been shown to possess I(A) currents, which limit their excitability and can underlie a form of activity-dependent intrinsic plasticity. It is therefore likely that polysynaptic inputs to the lamina III projection neurons are recruited during the development of chronic pain states.
Collapse
|
53
|
Gao LL, McMullan S, Djouhri L, Acosta C, Harper AA, Lawson SN. Expression and properties of hyperpolarization-activated current in rat dorsal root ganglion neurons with known sensory function. J Physiol 2012; 590:4691-705. [PMID: 22753545 PMCID: PMC3487031 DOI: 10.1113/jphysiol.2012.238485] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022] Open
Abstract
The hyperpolarization-activated current (I(h)) has been implicated in nociception/pain, but its expression levels in nociceptors remained unknown. We recorded I(h) magnitude and properties by voltage clamp from dorsal root ganglion (DRG) neurons in vivo, after classifying them as nociceptive or low-threshold-mechanoreceptors (LTMs) and as having C-, Aδ- or Aα/β-conduction velocities (CVs). For both nociceptors andLTMs, I(h) amplitude and I(h) density (at -100 mV) were significantly positively correlated with CV.Median I(h) magnitudes and I(h) density in neuronal subgroupswere respectively:muscle spindle afferents(MSAs):-4.6 nA,-33 pA pF(-1); cutaneous Aα/β LTMs: -2.2 nA, -20 pA pF(-1); Aβ-nociceptors: -2.6 nA, -21 pA pF(-1); both Aδ-LTMs and nociceptors: -1.3 nA, ∼-14 pA pF(-1); C-LTMs: -0.4 nA, -7.6 pA pF(-1); and C-nociceptors: -0.26 nA, -5 pApF(-1). I(h) activation slow time constants (slow τ values) were strongly correlated with fast τ values; both were shortest in MSAs. Most neurons had τ values consistent with HCN1-related I(h); others had τ values closer to HCN1+HCN2 channels, or HCN2 in the presence of cAMP. In contrast, median half-activation voltages (V(0.5)) of -80 to -86 mV for neuronal subgroups suggest contributions of HCN2 to I(h). τ values were unrelated to CV but were inversely correlated with I(h) and I(h) density for all non-MSA LTMs, and for Aδ-nociceptors. From activation curves ∼2-7% of I(h)would be activated at normal membrane potentials. The high I(h) may be important for excitability of A-nociceptors (responsible for sharp/pricking-type pain) and Aα/β-LTMs (tactile sensations and proprioception). Underlying HCN expression in these subgroups therefore needs to be determined. Altered high I(h) may be important for excitability of A-nociceptors (responsible for sharp/pricking-type pain) and Aα/β-LTMs (tactile sensations and proprioception). Underlying HCN expression in these subgroups therefore needs to be determined. Altered Ih expression and/or properties (e.g. in chronic/pathological pain states) may influence both nociceptor and LTM excitability.expression and/or properties (e.g. in chronic/pathological pain states) may influence both nociceptor and LTM excitability.
Collapse
Affiliation(s)
- L L Gao
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
54
|
Zhu YF, Wu Q, Henry JL. Changes in functional properties of A-type but not C-type sensory neurons in vivo in a rat model of peripheral neuropathy. J Pain Res 2012; 5:175-92. [PMID: 22792004 PMCID: PMC3392709 DOI: 10.2147/jpr.s26367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to compare primary sensory neurons in controls and in an animal neuropathic pain model in order to understand which types of neurons undergo changes associated with peripheral neuropathy. On the basis of intracellular recordings in vivo from somata, L4 sensory dorsal root ganglion neurons were categorized according to action potential configuration, conduction velocity, and receptive field properties to mechanical stimuli. Methods Intracellular recordings were made from functionally identified dorsal root ganglion neurons in vivo in the Mosconi and Kruger animal model of peripheral neuropathic pain. Results In this peripheral neuropathy model, a specific population of Aβ-fiber low threshold mechanoreceptor neurons, which respond normally to innocuous mechanical stimuli, exhibited differences in action potential configuration and conduction velocity when compared with control animals. No abnormal conduction velocity, action potential shapes, or tactile sensitivity of C-fiber neurons were encountered. Conclusion This study provides evidence for defining a potential role of Aβ-fiber low threshold mechanoreceptor neurons that might contribute to peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G DeGroote Institute for Pain Research and Care, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
55
|
Djouhri L, Fang X, Koutsikou S, Lawson SN. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 2012; 153:1824-1836. [PMID: 22721911 PMCID: PMC3425771 DOI: 10.1016/j.pain.2012.04.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/25/2012] [Accepted: 04/23/2012] [Indexed: 01/24/2023]
Abstract
Partial nerve injury leads to peripheral neuropathic pain. This injury results in conducting/uninterrupted (also called uninjured) sensory fibres, conducting through the damaged nerve alongside axotomised/degenerating fibres. In rats seven days after L5 spinal nerve axotomy (SNA) or modified-SNA (added loose-ligation of L4 spinal nerve with neuroinflammation-inducing chromic-gut), we investigated a) neuropathic pain behaviours and b) electrophysiological changes in conducting/uninterrupted L4 dorsal root ganglion (DRG) neurons with receptive fields (called: L4-receptive-field-neurons). Compared to pretreatment, modified-SNA rats showed highly significant increases in spontaneous-foot-lifting duration, mechanical-hypersensitivity/allodynia, and heat-hypersensitivity/hyperalgesia, that were significantly greater than after SNA, especially spontaneous-foot-lifting. We recorded intracellularly in vivo from normal L4/L5 DRG neurons and ipsilateral L4-receptive-field-neurons. After SNA or modified-SNA, L4-receptive-field-neurons showed the following: a) increased percentages of C-, Ad-, and Ab-nociceptors and cutaneous Aa/b-low-threshold mechanoreceptors with ongoing/spontaneous firing; b) spontaneous firing in C-nociceptors that originated peripherally; this was at a faster rate in modified-SNA than SNA; c) decreased electrical thresholds in A-nociceptors after SNA; d) hyperpolarised membrane potentials in A-nociceptors and Aa/b-low-threshold-mechanoreceptors after SNA, but not C-nociceptors; e) decreased somatic action potential rise times in C- and A-nociceptors, not Aa/b-low-threshold-mechanoreceptors. We suggest that these changes in subtypes of conducting/uninterrupted neurons after partial nerve injury contribute to the different aspects of neuropathic pain as follows: spontaneous firing in nociceptors to ongoing/spontaneous pain; spontaneous firing in Aa/b-low-threshold-mechanoreceptors to dysesthesias/paresthesias; and lowered A-nociceptor electrical thresholds to A-nociceptor sensitization, and greater evoked pain.
Collapse
Affiliation(s)
- Laiche Djouhri
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
56
|
Wu Q, Henry JL. Functional changes in muscle afferent neurones in an osteoarthritis model: implications for impaired proprioceptive performance. PLoS One 2012; 7:e36854. [PMID: 22606297 PMCID: PMC3351471 DOI: 10.1371/journal.pone.0036854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/14/2012] [Indexed: 01/02/2023] Open
Abstract
Background Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones. Methodology/Principal Findings Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb weight bearing in the incapacitance test. OA rats but not naïve control rats stood with less weight on the ipsilateral hind leg (P = 0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP) elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (P = 0.006), slower rise time (P = 0.001) and slower maximum rising rate (P = 0.03). Depolarizing intracellular current injection elicited more APs in models than in naïve muscle afferent neurones (P = 0.01) indicating greater excitability. Axonal conduction velocity in model animals was slower (P = 0.04). Conclusions/Significance The present study demonstrates changes in hind limb stance accompanied by changes in the functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people with OA.
Collapse
Affiliation(s)
- Qi Wu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - James L. Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
57
|
Alvillar BM, Boscan P, Mama KR, Ferreira TH, Congdon J, Twedt DC. Effect of epidural and intravenous use of the neurokinin-1 (NK-1) receptor antagonist maropitant on the sevoflurane minimum alveolar concentration (MAC) in dogs. Vet Anaesth Analg 2012; 39:201-5. [DOI: 10.1111/j.1467-2995.2011.00670.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy. BMC Neurosci 2012; 13:15. [PMID: 22289651 PMCID: PMC3292996 DOI: 10.1186/1471-2202-13-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 01/30/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Causes of neuropathic pain following nerve injury remain unclear, limiting the development of mechanism-based therapeutic approaches. Animal models have provided some directions, but little is known about the specific sensory neurons that undergo changes in such a way as to induce and maintain activation of sensory pain pathways. Our previous studies implicated changes in the Aβ, normally non-nociceptive neurons in activating spinal nociceptive neurons in a cuff-induced animal model of neuropathic pain and the present study was directed specifically at determining any change in excitability of these neurons. Thus, the present study aimed at recording intracellularly from Aβ-fiber dorsal root ganglion (DRG) neurons and determining excitability of the peripheral receptive field, of the cell body and of the dorsal roots. METHODS A peripheral neuropathy was induced in Sprague Dawley rats by inserting two thin polyethylene cuffs around the right sciatic nerve. All animals were confirmed to exhibit tactile hypersensitivity to von Frey filaments three weeks later, before the acute electrophysiological experiments. Under stable intracellular recording conditions neurons were classified functionally on the basis of their response to natural activation of their peripheral receptive field. In addition, conduction velocity of the dorsal roots, configuration of the action potential and rate of adaptation to stimulation were also criteria for classification. Excitability was measured as the threshold to activation of the peripheral receptive field, the response to intracellular injection of depolarizing current into the soma and the response to electrical stimulation of the dorsal roots. RESULTS In control animals mechanical thresholds of all neurons were within normal ranges. Aβ DRG neurons in neuropathic rats demonstrated a mean mechanical threshold to receptive field stimulation that were significantly lower than in control rats, a prolonged discharge following this stimulation, a decreased activation threshold and a greater response to depolarizing current injection into the soma, as well as a longer refractory interval and delayed response to paired pulse electrical stimulation of the dorsal roots. CONCLUSIONS The present study has demonstrated changes in functionally classified Aβ low threshold and high threshold DRG neurons in a nerve intact animal model of peripheral neuropathy that demonstrates nociceptive responses to normally innocuous cutaneous stimuli, much the same as is observed in humans with neuropathic pain. We demonstrate further that the peripheral receptive fields of these neurons are more excitable, as are the somata. However, the dorsal roots exhibit a decrease in excitability. Thus, if these neurons participate in neuropathic pain this differential change in excitability may have implications in the peripheral drive that induces central sensitization, at least in animal models of peripheral neuropathic pain, and Aβ sensory neurons may thus contribute to allodynia and spontaneous pain following peripheral nerve injury in humans.
Collapse
|
59
|
Wilkerson JL, Milligan ED. The Central Role of Glia in Pathological Pain and the Potential of Targeting the Cannabinoid 2 Receptor for Pain Relief. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22442754 DOI: 10.5402/2011/593894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Under normal conditions, acute pain processing consists of well-characterized neuronal signaling events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and their released factors participate in the mediation of pathological pain. The use of cannabinoid compounds for pain relief is currently an area of great interest for both basic scientists and physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB(1)R) or cannabinoid receptor subtype 2 (CB(2)R) and are able to modulate pain. Although cannabinoids were initially only thought to modulate pain via neuronal mechanisms within the central nervous system, strong evidence now supports that CB(2)R cannabinoid compounds are capable of modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body of evidence supports that CB(2)R agonist compounds may prove to be powerful novel therapeutic candidates for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, School of Medicine, University of New Mexico, HSC, MSC08-4740, Albuquerque, NM 87131, USA
| | | |
Collapse
|
60
|
Clarke JN, Anderson RL, Haberberger RV, Gibbins IL. Non-peptidergic small diameter primary afferents expressing VGluT2 project to lamina I of mouse spinal dorsal horn. Mol Pain 2011; 7:95. [PMID: 22152428 PMCID: PMC3264520 DOI: 10.1186/1744-8069-7-95] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Unmyelinated primary afferent nociceptors are commonly classified into two main functional types: those expressing neuropeptides, and non-peptidergic fibers that bind the lectin IB4. However, many small diameter primary afferent neurons neither contain any known neuropeptides nor bind IB4. Most express high levels of vesicular glutamate transporter 2 (VGluT2) and are assumed to be glutamatergic nociceptors but their terminations within the spinal cord are unknown. We used in vitro anterograde axonal tracing with Neurobiotin to identify the central projections of these putative glutamatergic nociceptors. We also quantitatively characterised the spatial arrangement of these terminals with respect to those that expressed the neuropeptide, calcitonin gene-related peptide (CGRP). RESULTS Neurobiotin-labeled VGluT2-immunoreactive (IR) terminals were restricted to lamina I, with a medial-to-lateral distribution similar to CGRP-IR terminals. Most VGluT2-IR terminals in lateral lamina I were not labeled by Neurobiotin implying that they arose mainly from central neurons. 38 ± 4% of Neurobiotin-labeled VGluT2-IR terminals contained CGRP-IR. Conversely, only 17 ± 4% of Neurobiotin-labeled CGRP-IR terminals expressed detectable VGluT2-IR. Neurobiotin-labeled VGluT2-IR or CGRP-IR terminals often aggregated into small clusters or microdomains partially surrounding intrinsic lamina I neurons. CONCLUSIONS The central terminals of primary afferents which express high levels of VGluT2-IR but not CGRP-IR terminate mainly in lamina I. The spatial arrangement of VGluT2-IR and CGRP-IR terminals suggest that lamina I neurons receive convergent inputs from presumptive nociceptors that are primarily glutamatergic or peptidergic. This reveals a previously unrecognized level of organization in lamina I consistent with the presence of multiple nociceptive processing pathways.
Collapse
Affiliation(s)
- Jennifer N Clarke
- Anatomy and Histology, and Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | | | | | | |
Collapse
|
61
|
Boscan P, Monnet E, Mama K, Twedt DC, Congdon J, Steffey EP. Effect of maropitant, a neurokinin 1 receptor antagonist, on anesthetic requirements during noxious visceral stimulation of the ovary in dogs. Am J Vet Res 2011; 72:1576-9. [DOI: 10.2460/ajvr.72.12.1576] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
62
|
Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 2011; 194:302-8. [DOI: 10.1016/j.neuroscience.2011.07.066] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/22/2023]
|
63
|
Xie W, Strong JA, Mao J, Zhang JM. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse. Mol Pain 2011; 7:53. [PMID: 21794129 PMCID: PMC3152901 DOI: 10.1186/1744-8069-7-53] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/27/2011] [Indexed: 12/19/2022] Open
Abstract
Background Sprouting of sympathetic fibers into sensory ganglia occurs in many preclinical pain models, providing a possible anatomical substrate for sympathetically enhanced pain. However, the functional consequences of this sprouting have been controversial. We used a transgenic mouse in which sympathetic fibers expressed green fluorescent protein, observable in live tissue. Medium and large diameter lumbar sensory neurons with and without nearby sympathetic fibers were recorded in whole ganglion preparations using microelectrodes. Results After spinal nerve ligation, sympathetic sprouting was extensive by 3 days. Abnormal spontaneous activity increased to 15% and rheobase was reduced. Spontaneously active cells had Aαβ conduction velocities but were clustered near the medium/large cell boundary. Neurons with sympathetic basket formations had a dramatically higher incidence of spontaneous activity (71%) and had lower rheobase than cells with no sympathetic fibers nearby. Cells with lower density nearby fibers had intermediate phenotypes. Immunohistochemistry of sectioned ganglia showed that cells surrounded by sympathetic fibers were enriched in nociceptive markers TrkA, substance P, or CGRP. Spontaneous activity began before sympathetic sprouting was observed, but blocking sympathetic sprouting on day 3 by cutting the dorsal ramus in addition to the ventral ramus of the spinal nerve greatly reduced abnormal spontaneous activity. Conclusions The data suggest that early sympathetic sprouting into the sensory ganglia may have highly localized, excitatory effects. Quantitatively, neurons with sympathetic basket formations may account for more than half of the observed spontaneous activity, despite being relatively rare. Spontaneous activity in sensory neurons and sympathetic sprouting may be mutually re-enforcing.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | | | | | | |
Collapse
|
64
|
Polgár E, Sardella TCP, Watanabe M, Todd AJ. Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn. J Comp Neurol 2011; 519:1007-23. [PMID: 21344400 PMCID: PMC3258544 DOI: 10.1002/cne.22570] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Between 25-40% of neurons in laminae I-III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4-6% of neurons in laminae I-III were NPY-immunoreactive and based on the proportions of neurons that are GABAergic, we estimate that NPY is expressed by 18% of inhibitory interneurons in laminae I-II and 9% of those in lamina III. GABAergic boutons were identified by the presence of the vesicular GABA transporter (VGAT) and NPY was found in 13-15% of VGAT-immunoreactive boutons in laminae I-II, and 5% of those in lamina III. For both the lamina III NK1r-immunoreactive projection neurons and protein kinase Cγ (PKCγ)-immunoreactive interneurons in lamina II, we found that around one-third of the VGAT boutons that contacted them were NPY-immunoreactive. However, based on differences in the sizes of these boutons and the strength of their NPY-immunoreactivity, we conclude that these originate from different populations of interneurons. Only 6% of VGAT boutons presynaptic to large lamina I projection neurons that lacked NK1rs contained NPY. These results show that NPY-containing neurons make up a considerable proportion of the inhibitory interneurons in laminae I-III, and that their axons preferentially target certain classes of dorsal horn neuron.
Collapse
Affiliation(s)
- Erika Polgár
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QQ, UK
| | | | | | | |
Collapse
|
65
|
Inflammatory pain unmasks heterosynaptic facilitation in lamina I neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2011; 31:5158-68. [PMID: 21451051 DOI: 10.1523/jneurosci.6241-10.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Central sensitization in inflammatory pain conditions results in behavioral mechanical hypersensitivity. Specifically, C-fiber-driven spinal hyperexcitability enables A fibers to gain access to specific spinal circuitry, via heterosynaptic facilitatory mechanisms, to mediate mechanical hypersensitivity. However, the precise circuitry engaged is not known. Lamina I neurokinin 1 (NK1) receptor expressing (NK1R(+)) dorsal horn neurons, many of which are projection neurons, are required for the development of this hypersensitivity and are therefore likely to be a component of this circuitry. To investigate, whole-cell patch-clamp recordings were made from lamina I NK1R(+) neurons in the spinal cord slice preparation with attached dorsal root, obtained from rats with or without complete Freund's adjuvant (CFA) hindpaw inflammation. EPSCs were recorded in response to electrical stimulation of the dorsal root. Control neurons predominantly received monosynaptic C-fiber input (69%) with a smaller proportion receiving monosynaptic Aδ-fiber input (28%). In contrast, CFA inflammation significantly increased the incidence (by twofold) and magnitude (by 75% in a subset) of monosynaptic Aδ-fiber but not monosynaptic C-fiber-evoked responses. Aβ-fiber input to lamina I NK1R(+) neurons was minimal, polysynaptic in nature, and unaltered by CFA inflammation. Additional examination of control neurons revealed that a proportion received silent monosynaptic Aδ-fiber input, suggesting that these may provide the substrate for the novel Aδ inputs observed in CFA inflammation. This inflammation induced unmasking and strengthening of monosynaptic Aδ drive to lamina I NK1R(+) neurons may contribute to the heterosynaptic facilitatory mechanisms underlying mechanical hyperalgesia in inflammatory pain.
Collapse
|
66
|
The dipeptidyl peptidase IV (CD26, EC 3.4.14.5) inhibitor vildagliptin is a potent antihyperalgesic in rats by promoting endomorphin-2 generation in the spinal cord. Eur J Pharmacol 2011; 650:195-9. [DOI: 10.1016/j.ejphar.2010.09.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 12/17/2022]
|
67
|
Wu ZM, Chen YF, Qiu PN, Ling SC. Correlation between the distribution of SP and CGRP immunopositive neurons in dorsal root ganglia and the afferent sensation of preputial frenulum. Anat Rec (Hoboken) 2010; 294:479-86. [PMID: 21337713 DOI: 10.1002/ar.21327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 10/16/2010] [Accepted: 11/09/2010] [Indexed: 11/08/2022]
Abstract
The aim of this study was to explore the distribution of substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactive nerve terminals in the penis prepuce and the preputial frenulum. The possible correlation between SP- and CGRP-immunopositive neurons in dorsal root ganglia (DRG) and the afferent sensation of the penile preputial frenulum is also discussed. Immunohistochemistry showed SP- and CGRP-positive nerve terminals in the epidermal basal layer of the prepuce and frenulum in adult human males. The majority of the nerve terminals presented as bundles of different lengths and a few as enlarged nodosities. The density of SP- and CGRP-immunopositive nerve terminals in the preputial frenulum was significantly higher than those in the penis prepuce (P<0.01). Fluoro-Gold (FG) retrograde tracing method was used to trace the origin of nerve terminals in Sprague-Dawley rats. SP and CGRP immunofluorescence labeling was employed to detect the distribution of SP- and CGRP-immunoreactive neurons in DRG. FG retro-labeled neurons were localized in L(6) -DRG and S(1) -DRG. All the FG/SP and FG/CGRP double-labeled neurons were medium or small-sized. One-third of the FG-labeled neurons were SP-immunoreactive, and a half of them CGRP-immunoreactive in L(6) -DRG and S(1) -DRG, respectively. The FG/SP/CGRP-labeled neurons accounted for one fifth of the FG retro-labeled neurons. Taken together, these data suggest that the SP- and CGRP-immunopositive nerve fibers may participate in the transmission of afferent sensation in the preputial frenulum.
Collapse
Affiliation(s)
- Zhong-Min Wu
- Department of Anatomy, School of Medicine of Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
68
|
Adams MA, Stefanakis M, Dolan P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 2010; 25:961-71. [PMID: 20739107 DOI: 10.1016/j.clinbiomech.2010.07.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Much is known about intervertebral disc degeneration, but little effort has been made to relate this information to the clinical problem of discogenic back pain, and how it might be treated. METHODS We re-interpret the scientific literature in order to provide a rationale for physical therapy treatments for discogenic back pain. INTERPRETATION Intervertebral discs deteriorate over many years, from the nucleus outwards, to an extent that is influenced by genetic inheritance and metabolite transport. Age-related deterioration can be accelerated by physical disruption, which leads to disc "degeneration" or prolapse. Degeneration most often affects the lower lumbar discs, which are loaded most severely, and it is often painful because nerves in the peripheral anulus or vertebral endplate can be sensitised by inflammatory-like changes arising from contact with blood or displaced nucleus pulposus. Surgically-removed human discs show an active inflammatory process proceeding from the outside-in, and animal studies confirm that effective healing occurs only in the outer anulus and endplate, where cell density and metabolite transport are greatest. Healing of the disc periphery has the potential to relieve discogenic pain, by re-establishing a physical barrier between nucleus pulposus and nerves, and reducing inflammation. CONCLUSION Physical therapies should aim to promote healing in the disc periphery, by stimulating cells, boosting metabolite transport, and preventing adhesions and re-injury. Such an approach has the potential to accelerate pain relief in the disc periphery, even if it fails to reverse age-related degenerative changes in the nucleus.
Collapse
Affiliation(s)
- Michael A Adams
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
69
|
Abstract
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
70
|
Parekh A, Campbell AJM, Djouhri L, Fang X, McMullan S, Berry C, Acosta C, Lawson SN. Immunostaining for the α3 isoform of the Na+/K+-ATPase is selective for functionally identified muscle spindle afferents in vivo. J Physiol 2010; 588:4131-43. [PMID: 20807787 PMCID: PMC3002446 DOI: 10.1113/jphysiol.2010.196386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscle spindle afferent (MSA) neurons can show rapid and sustained firing. Immunostaining for the α3 isoform of the Na+/K+-ATPase (α3) in some large dorsal root ganglion (DRG) neurons and large intrafusal fibres suggested α3 expression in MSAs (Dobretsov et al. 2003), but not whether α3-immunoreactive DRG neuronal somata were exclusively MSAs. We found that neuronal somata with high α3 immunointensity were neurofilament-rich, suggesting they have A-fibres; we therefore focussed on A-fibre neurons to determine the sensory properties of α3-immunoreactive neurons. We examined α3 immunointensity in 78 dye-injected DRG neurons whose conduction velocities and hindlimb sensory receptive fields were determined in vivo. A dense perimeter or ring of staining in a subpopulation of neurons was clearly overlying the soma membrane and not within satellite cells. Neurons with clear α3 rings (n = 23) were all MSAs (types I and II); all MSAs had darkly stained α3 rings, that tended to be darker in MSA1 than MSA2 units. Of 52 non-MSA A-fibre neurons including nociceptive and cutaneous low-threshold mechanoreceptive (LTM) neurons, 50 had no discernable ring, while 2 (Aα/β cutaneous LTMs) had weakly stained rings. Three of three C-nociceptors had no rings. MSAs with strong ring immunostaining also showed the strongest cytoplasmic staining. These findings suggest that α3 ring staining is a selective marker for MSAs. The α3 isoform of the Na+/K+-ATPase has previously been shown to be activated by higher Na+ levels and to have greater affinity for ATP than the α1 isoform (in all DRG neurons). The high α3 levels in MSAs may enable the greater dynamic firing range in MSAs.
Collapse
Affiliation(s)
- A Parekh
- Department of Physiology and Pharmacology, Medical School, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Wu Q, Henry JL. Changes in Abeta non-nociceptive primary sensory neurons in a rat model of osteoarthritis pain. Mol Pain 2010; 6:37. [PMID: 20594346 PMCID: PMC2908067 DOI: 10.1186/1744-8069-6-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pain is a major debilitating factor in osteoarthritis (OA), yet few mechanism-based therapies are available. To address the need to understand underlying mechanisms the aim of the present study was to determine changes in sensory neurons in an animal model of OA pain. Results The model displayed typical osteoarthritis pathology characterized by cartilage degeneration in the knee joint and also manifested knee pathophysiology (edema and increased vasculature permeability of the joint) and altered nociception of the affected limb (hind paw tenderness and knee articulation-evoked reduction in the tail flick latency). Neurons included in this report innervated regions throughout the entire hind limb. Aβ-fiber low threshold mechanoreceptors exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and slower maximum rising rate, and muscle spindle neurons were the most affected subgroup. Only minor AP configuration changes were observed in either C- or Aδ-fiber nociceptors. Conclusion Thus, at one month after induction of the OA model Aβ-fiber low threshold mechanoreceptors but not C- or Aδ-fiber nociceptors had undergone changes in electrophysiological properties. If these changes reflect a change in functional role of these neurons in primary afferent sensory processing, then Aβ-fiber non-nociceptive primary sensory neurons may be involved in the pathogenesis of OA pain. Further, it is important to point out that the patterns of the changes we observed are consistent with observations in models of peripheral neuropathy but not models of peripheral inflammation.
Collapse
Affiliation(s)
- Qi Wu
- Psychiatry and Behavioral Neurosciences, McMaster University, HSC 4N35, Hamilton, Ontario, Canada
| | | |
Collapse
|
72
|
Joseph DJ, Choudhury P, MacDermott AB. An in vitro assay system for studying synapse formation between nociceptive dorsal root ganglion and dorsal horn neurons. J Neurosci Methods 2010; 189:197-204. [PMID: 20385165 PMCID: PMC2880384 DOI: 10.1016/j.jneumeth.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 01/23/2023]
Abstract
Synapses between nociceptive dorsal root ganglion (DRG) neurons and spinal cord dorsal horn neurons represent the first loci for transmission of painful stimuli. Our knowledge of the molecular organization and development of these synapses is sparse due, partly, to a lack of a reliable model system that reconstitutes synaptogenesis between these two neuronal populations. To address this issue, we have established an in vitro assay system consisting of separately purified DRG neurons and dorsal horn neurons on astrocyte microislands. Using immunocytochemistry, we have found that 97%, 93%, 98%, 96%, and 94% of DRG neurons on these microislands express markers often associated with nociceptive neurons including Substance P, TRPV1, calcitonin-gene related peptide (CGRP), TrKA, and peripherin, respectively. Triple labeling with these nociceptive-like markers, synaptic vesicle marker Vglut2 and using MAP2 as a dendritic marker revealed the presence of nociceptive-like markers at synaptic terminals. Using this immunocytochemical approach, we counted contact points as overlapping MAP2/Vglut2 puncta and showed that they increased with time in culture. Single and dual patch-clamp recordings showed that overlapping Vglut2/MAP2 puncta observed after a few days in culture are likely to be functional synapses between DRG and dorsal horn neurons in our in vitro assay system. Taken together, these data suggest our co-culture microisland model system consists of mostly nociceptive-like DRG neurons that express presynaptic markers and form functional synapses with their dorsal horn partners. Thus, this model system may have direct application for studies on factors regulating development of nociceptive DRG/dorsal horn synapses.
Collapse
Affiliation(s)
- Donald J. Joseph
- Program in Neurobiology and Behavior-Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Papiya Choudhury
- Department of Physiology and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Amy B. MacDermott
- Program in Neurobiology and Behavior-Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Physiology and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
73
|
Ma C, Donnelly DF, LaMotte RH. In vivo visualization and functional characterization of primary somatic neurons. J Neurosci Methods 2010; 191:60-5. [PMID: 20558205 DOI: 10.1016/j.jneumeth.2010.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 11/28/2022]
Abstract
In vivo electrophysiological recordings from cell bodies of primary sensory neurons are used to determine sensory function but are commonly performed blindly and without access to voltage- (patch-clamp) electrophysiology or optical imaging. We present a procedure to visualize and patch-clamp the neuronal cell body in the dorsal root ganglion, in vivo, manipulate its chemical environment, determine its receptive field properties, and remove it either to obtain subsequent molecular analyses or to gain access to deeper lying cells. This method allows the association of the peripheral transduction capacities of a sensory neuron with the biophysical and chemical characteristics of its cell body.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510, USA.
| | | | | |
Collapse
|
74
|
Zheng J, Lu Y, Perl ER. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J Physiol 2010; 588:2065-75. [PMID: 20403977 DOI: 10.1113/jphysiol.2010.188052] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The spinal substantia gelatinosa (SG; lamina II) is a major synaptic zone for unmyelinated (C) primary afferents. Whereas a substantial proportion of intrinsic SG neurones are GABAergic inhibitory, their relationship to afferent activity is unknown. In spinal cord slices from a transgenic mouse in which certain GABAergic lamina II neurones are labelled with green fluorescent protein (GFP), we compared primary afferent input with local efferent connections made by inhibitory SG neurones. Simultaneous whole-cell recordings from characterized neurones establish that inhibitory SG neurones receive monosynaptic input from a subset of unmyelinated primary afferents and connect to other lamina II cells that have input from a different set of afferents, permitting interactions between distinctive afferent messages. Certain lamina II inhibitory cells were found to connect to one another by reciprocal links. Inhibitory lamina II connections appear arranged to modulate activity from different sets of peripheral unmyelinated fibres through neural circuitry that includes disinhibition.
Collapse
Affiliation(s)
- Jihong Zheng
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, USA
| | | | | |
Collapse
|
75
|
Polgár E, Al Ghamdi K, Todd A. Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of excitatory synaptic input. Neuroscience 2010; 167:1192-204. [PMID: 20303396 PMCID: PMC3169794 DOI: 10.1016/j.neuroscience.2010.03.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/24/2022]
Abstract
Lamina I of the spinal cord contains many projection neurons that express the neurokinin 1 receptor (NK1r). It has been reported that these cells can undergo long-term potentiation (LTP), which may result from insertion of AMPA-type glutamate receptors (AMPArs) containing GluA1 or GluA4 subunits. We therefore investigated synaptic AMPAr expression on these cells with immunocytochemistry following antigen-retrieval. We also examined their density of glutamatergic input (by analysing AMPAr synaptic puncta and contacts from glutamatergic boutons), and phosphorylation of extracellular signal-regulated kinases (pERKs) following noxious stimulation. Our results indicate that there are two populations of NK1r-expressing projection neurons: large GluA4+/GluA1− cells with a high density of glutamatergic input and small GluA1+/GluA4− cells with a much lower input density. Results from pERK experiments suggested that the two groups may not differ in the types of noxious stimulus that activate them. Glutamatergic synapses on distal dendrites of the large cells were significantly longer than those on proximal dendrites, which presumably compensates for the greater attenuation of distally-generated excitatory postsynaptic currents (EPSCs). Both types of cell received contacts from peptidergic primary afferents, however, on the large cells these appeared to constitute over half of the glutamatergic synapses, and were often associated with elongated AMPAr puncta. This suggests that these afferents, which probably contain substance P, provide a powerful, secure synaptic input to large NK1r-expressing projection neurons. These results demonstrate the importance of GluA4-containing AMPArs in nociceptive transmission and raise the possibility that different forms of LTP in lamina I projection neurons may be related to differential expression of GluA1/GluA4.
Collapse
Affiliation(s)
| | | | - A.J. Todd
- Corresponding author. Tel: +44-141-330-5868; fax: +44-141-330-2868
| |
Collapse
|
76
|
Al Ghamdi KS, Polgár E, Todd AJ. Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn. Neuroscience 2009; 164:1794-804. [PMID: 19800942 PMCID: PMC2784948 DOI: 10.1016/j.neuroscience.2009.09.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 11/28/2022]
Abstract
Lamina I of the spinal dorsal horn contains neurons that project to various brain regions, and ∼80% of these projection cells express the neurokinin 1 receptor (NK1r), the main receptor for substance P. Two populations of NK1r-immunoreactive neurons have been identified in lamina I: small weakly immunoreactive cells and large cells with strong immunolabelling [Cheunsuang O and Morris R (2000) Neuroscience 97:335–345]. The main aim of this study was to test the hypothesis that the large cells are projection neurons and that the small cells are interneurons. Projection neurons were identified by injection of tracers into the caudal ventrolateral medulla and lateral parabrachial area, and this was combined with immunostaining for NK1r. We found a bimodal size distribution for NK1r-immunoreactive neurons. The small cells (with somatic cross-sectional areas <200 μm2) showed weak immunoreactivity, while immunostaining intensity was variable among the large cells. Virtually all (99%) of the immunoreactive cells with soma areas >200 μm2 were retrogradely labelled, while only 10% of retrogradely labelled cells were smaller than this. Soma sizes of retrogradely labelled neurons that lacked NK1r did not differ from those of NK1r-expressing projection neurons. It has been suggested that a population of small pyramidal projection neurons that lack NK1r may correspond to cells activated by innocuous cooling, and we therefore assessed the morphology of retrogradely labelled cells that were not NK1r-immunoreactive. Fifteen percent of these were pyramidal, but these did not differ in size from pyramidal NK1r-immunoreactive projection neurons. These results confirm that large NK1r-immunoreactive lamina I neurons are projection cells, and suggest that the small cells are interneurons. Since almost all of the NK1r-immunoreactive cells with soma size >200 μm2 were retrogradely labelled, cells of this type can be identified as projection cells in anatomical studies.
Collapse
Affiliation(s)
- K S Al Ghamdi
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, West Medical Building, University Avenue, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
77
|
Wu Q, Henry JL. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis. Mol Pain 2009; 5:57. [PMID: 19785765 PMCID: PMC2761878 DOI: 10.1186/1744-8069-5-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical data on osteoarthritis (OA) suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Adelta-fiber associated neurons and therefore the focus is on Abeta-fiber nociceptive neurons. RESULTS At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Abeta-fiber dorsal root ganglion (DRG) neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Abeta-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. CONCLUSION These data indicate that Abeta nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Abeta-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.
Collapse
Affiliation(s)
- Qi Wu
- Michael G DeGroote Institute for Pain Research and Care, McMaster University, 1200 Main Street West, HSC 4N35, Hamilton ON, L8N 3Z5, Canada.
| | | |
Collapse
|
78
|
Suckow SK, Caudle RM. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity. Mol Pain 2009. [PMID: 19772634 DOI: 10.1186/1744- 8069-5-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. RESULTS CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. CONCLUSION Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs contribute to visceral hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Shelby K Suckow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
79
|
Suckow SK, Caudle RM. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity. Mol Pain 2009; 5:54. [PMID: 19772634 PMCID: PMC2758842 DOI: 10.1186/1744-8069-5-54] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/22/2009] [Indexed: 01/02/2023] Open
Abstract
Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs contribute to visceral hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Shelby K Suckow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
80
|
Focal nerve inflammation induces neuronal signs consistent with symptoms of early complex regional pain syndromes. Exp Neurol 2009; 219:223-7. [DOI: 10.1016/j.expneurol.2009.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/25/2022]
|
81
|
Abstract
OBJECTIVE The aim of the study was to evaluate whether or not there exists nociceptive and non-nociceptive hypersensitivity at latent myofascial trigger points (MTrPs). METHODS Eleven healthy volunteers participated in this study, which consisted of 3 sessions of electromyography-guided intramuscular injection with a minimum of a week interval in between. In each session, a bolus of either hypertonic saline (6%, 0.1 mL, each), glutamate (0.1 mL, 0.5 M, each), or isotonic saline (0.9%, 0.1 mL, each) was randomly injected into a latent MTrP and a non-MTrP located in the right or left gastrocnemius medialis muscles. After each injection, participants were asked to rate the perceived pain intensity on an electronic visual analog scale (VAS) and to mark the pain areas on pain drawings. Maximal pain intensity (VAS(peak)), the area under the curve (VAS(auc)), and local and referred pain areas were extracted. RESULTS Injections of either hypertonic saline, glutamate, or isotonic saline into the latent MTrPs induced a higher VAS(peak) and larger VAS(auc) than the non-MTrPs (all, P<0.05). Furthermore, the MTrPs with referred pain after painful injections were found to show higher VAS(peak) and larger VAS(auc) than those without referred pain (both, P<0.001). CONCLUSIONS These results confirm the existence of nociceptive hypersensitivity at latent MTrPs and provide the first evidence that there exists non-nociceptive hypersensitivity (allodynia) at latent MTrPs. Finally, the occurrence of referred muscle pain is associated with higher pain sensitivity at latent MTrPs.
Collapse
|
82
|
Kozsurek M, Lukácsi E, Fekete C, Puskár Z. Nonselective innervation of lamina I projection neurons by cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive fibres in the rat spinal dorsal horn. Eur J Neurosci 2009; 29:2375-87. [PMID: 19490082 DOI: 10.1111/j.1460-9568.2009.06773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides have been implicated in spinal pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. We demonstrated previously that the majority of these fibres originate from nociceptive primary afferents. Using tract tracing, multiple immunofluorescent labelling and electronmicroscopy we determined the proportion of peptidergic primary afferents expressing CART, looked for evidence for coexistence of CART with galanin in these afferents in lamina I and examined their targets. Almost all (97.9%) randomly selected calcitonin gene-related peptide (CGRP)-immunoreactive terminals were substance P (SP)-positive (+) and CART was detected in approximately half (48.6%) of them. Most (81.4%) of the CGRP/SPergic boutons were galanin+ and approximately half (49.0%) of these contained CART. Many (72.9%) of the CARTergic boutons which expressed CGRP were also immunoreactive for galanin, while only 8.6% of the CARTergic terminals were galanin+ without CGRP. Electron microscopy showed that most of the CART terminals formed asymmetrical synapses, mainly with dendrites. All different morphological and neurochemical subtypes of spinoparabrachial projection neurons in the lamina I received contacts from CART-immunoreactive nociceptive afferents. The innervation density from these boutons did not differ significantly between either the different neurochemical or the morphological subclasses of these cells. This suggests a nonselective innervation of lamina I projection neurons from a subpopulation of CGRP/SP afferents containing CART peptide. These results provide anatomical evidence for involvement of CART peptide in spinal pain transmission.
Collapse
Affiliation(s)
- Márk Kozsurek
- Department of Anatomy, Histology and Embryology, János Szentágothai Laboratory, Semmelweis University, Tuzoltó u. 58, 1094-Budapest, Hungary
| | | | | | | |
Collapse
|
83
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
84
|
Todd AJ, Polgár E, Watt C, Bailey MES, Watanabe M. Neurokinin 1 receptor-expressing projection neurons in laminae III and IV of the rat spinal cord have synaptic AMPA receptors that contain GluR2, GluR3 and GluR4 subunits. Eur J Neurosci 2009; 29:718-26. [PMID: 19200070 PMCID: PMC2695158 DOI: 10.1111/j.1460-9568.2009.06633.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPArs), which mediate fast excitatory glutamatergic transmission, are tetramers made from four subunits (GluR1-4 or GluRA-D). Although synaptic AMPArs are not normally detected by immunocytochemistry in perfusion-fixed tissue, they can be revealed by using antigen retrieval with pepsin. All AMPAr-positive synapses in spinal cord are thought to contain GluR2, while the other subunits have specific laminar distributions. GluR4 can be alternatively spliced such that it has a long or short cytoplasmic tail. We have reported that <10% of AMPAr-containing synapses in lamina II have the long form of GluR4, and that these are often arranged in dorsoventrally orientated clusters. In this study, we test the hypothesis that GluR4-containing receptors are associated with dorsal dendrites of projection neurons in laminae III and IV that express the neurokinin 1 receptor (NK1r). Immunostaining for NK1r was carried out before antigen retrieval, and sections were then reacted to reveal GluR2 and either GluR4 (long form), GluR3 or GluR1. All NK1r-positive lamina III/IV neurons had numerous GluR2-immunoreactive puncta in their dendritic plasma membranes, and virtually all (97%) of the puncta tested were labelled (usually strongly) with the GluR4 antibody. Sizes of puncta varied, but many were elongated and they were significantly larger than nearby puncta that were not associated with the NK1r cells. None of the GluR2 puncta on these cells was positive for GluR1, while 85% were GluR3-immunoreactive. These results show that synaptic AMPArs on the dendrites of the lamina III/IV NK1r projection neurons contain GluR2, GluR3 and GluR4, but not GluR1 subunits.
Collapse
Affiliation(s)
- Andrew J Todd
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
85
|
Large projection neurons in lamina I of the rat spinal cord that lack the neurokinin 1 receptor are densely innervated by VGLUT2-containing axons and possess GluR4-containing AMPA receptors. J Neurosci 2009; 28:13150-60. [PMID: 19052206 DOI: 10.1523/jneurosci.4053-08.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although most projection neurons in lamina I express the neurokinin 1 receptor (NK1r), we have identified a population of large multipolar projection cells that lack the NK1r, are characterized by the high density of gephyrin puncta that coat their cell bodies and dendrites, and express the transcription factor Fos in response to noxious chemical stimulation. Here we show that these cells have a very high density of glutamatergic input from axons with strong immunoreactivity for vesicular glutamate transporter 2 that are likely to originate from excitatory interneurons. However, they receive few contacts from peptidergic primary afferents or transganglionically labeled Adelta nociceptors. Unlike most glutamatergic synapses in superficial laminas, those on the gephyrin-coated cells contain the GluR4 subunit of the AMPA receptor. A noxious heat stimulus caused Fos expression in 38% of the gephyrin-coated cells but in 85% of multipolar NK1r-immunoreactive cells. These findings are consistent with the suggestion that there is a correlation between function and morphology for lamina I neurons but indicate that there are at least two populations of multipolar neurons that differ in receptor expression, excitatory inputs, and responses to noxious stimulation. Although there are only approximately 10 gephyrin-coated cells on each side per segment in the lumbar enlargement, they constitute approximately 18% of the lamina I component of the spinothalamic tract at this level, which suggests that they play an important role in transmission of nociceptive information to the cerebral cortex. Our results also provide the first evidence that postsynaptic GluR4-containing AMPA receptors are involved in spinal nociceptive transmission.
Collapse
|
86
|
Al-Khater KM, Kerr R, Todd AJ. A quantitative study of spinothalamic neurons in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord. J Comp Neurol 2008; 511:1-18. [PMID: 18720412 PMCID: PMC2658017 DOI: 10.1002/cne.21811] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major ascending outputs from superficial spinal dorsal horn consist of projection neurons in lamina I, together with neurons in laminae III–IV that express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Some neurons in each of these populations belong to the spinothalamic tract, which conveys nociceptive information via the thalamus to cortical areas involved in pain. A projection from the cervical superficial dorsal horn to the posterior triangular nucleus (PoT) has recently been identified. PoT is at the caudal end of the thalamus and was not included in injection sites in many previous retrograde tracing studies. We have injected various tracers (cholera toxin B subunit, Fluoro-Gold, and fluorescent latex microspheres) into the thalamus to estimate the number of spinothalamic neurons in each of these two populations, and to investigate their projection targets. Most lamina I and lamina III/IV NK1r-immunoreactive spinothalamic neurons in cervical and lumbar segments could be labeled from injections centered on PoT. Our results suggest that there are 90 lamina I spinothalamic neurons per side in C7 and 15 in L4 and that some of those in C7 only project to PoT. We found that 85% of the lamina III/IV NK1r-immunoreactive neurons in C6 and 17% of those in L5 belong to the spinothalamic tract, and these apparently project exclusively to the caudal thalamus, including PoT. Because PoT projects to second somatosensory and insular cortices, our results suggest that these are major targets for information conveyed by both these populations of spinothalamic neurons.
Collapse
Affiliation(s)
- Khulood M Al-Khater
- Spinal Cord Group, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | |
Collapse
|
87
|
Willcockson H, Valtschanoff J. AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat. Cell Tissue Res 2008; 334:17-23. [PMID: 18679721 DOI: 10.1007/s00441-008-0662-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/06/2008] [Indexed: 12/19/2022]
Abstract
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X(3), respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X(3)- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.
Collapse
Affiliation(s)
- Helen Willcockson
- Department of Cell and Developmental Biology, University of North Carolina, CB# 7090, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
88
|
Stewart W, Maxwell DJ. Morphological evidence for selective modulation by serotonin of a subpopulation of dorsal horn cells which possess the neurokinin-1 receptor. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2000.01350.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Jiménez-Díaz L, Géranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, Sivasubramaniam AK, Sheasby A, Lumb BM, Hunt SP. Local translation in primary afferent fibers regulates nociception. PLoS One 2008; 3:e1961. [PMID: 18398477 PMCID: PMC2276314 DOI: 10.1371/journal.pone.0001961] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/28/2008] [Indexed: 12/03/2022] Open
Abstract
Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states.
Collapse
Affiliation(s)
- Lydia Jiménez-Díaz
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
- Departmento Fisiología, Facultad Medicina, Instituto Neurociencias Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Sandrine M. Géranton
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | - Gayle M. Passmore
- Department of Pharmacology, University College London, London, United Kingdom
| | - J. Lianne Leith
- Department of Physiology, University of Bristol, Bristol, United Kingdom
| | - Amy S. Fisher
- Department of Pharmacology, University College London, London, United Kingdom
| | - Laura Berliocchi
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
- IRRCS C. Mondino, Center of Experimental Neurobiology Mondino-Tor Vergata, Rome, Italy
| | | | - Anne Sheasby
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | - Bridget M. Lumb
- Department of Physiology, University of Bristol, Bristol, United Kingdom
| | - Stephen P. Hunt
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
90
|
Identification and immunohistochemical characterization of colospinal afferent neurons in the rat. Neuroscience 2008; 153:803-13. [PMID: 18424003 DOI: 10.1016/j.neuroscience.2008.02.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 01/18/2023]
Abstract
The classification, morphology and function of enteric neurons have been extensively studied in the small and large intestine. However, little is known about enteric neurons that directly project to the CNS. Previous studies have identified these unique neurons in the rectum, rectospinal neurons, but little was done to characterize them. Therefore, the aim of this study was to identify and characterize enteric neurons in the rat colon that directly project to the CNS by using retrograde neuronal tracing and immunohistochemistry. By applying the retrograde tracers 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI) and Fluorogold (FG) to the L6/S1 segments of the spinal cord, we identified these neurons in both the myenteric and submucosal plexuses of the colon. These neurons were immunoreactive for neurofilament (NF) a marker for Adelta-fibers and isolectin-B4 (IB(4)) a marker for C-fibers. These neurons expressed the enzyme neuronal nitric oxide synthase (nNOS) as well as peptides associated with sensory neurons such as substance P (SP) and vasoactive intestinal polypeptide (VIP) but did not express calcitonin gene-related peptide (CGRP). The N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2D and proteinase-activated receptor-2 (PAR2) were also found in these neurons. However they did not express the transient receptor potential receptor V1 (TRPV1) or neurokinin 1 receptor (NK1). The expression of the peptides and receptors suggests that there are at least two separate populations of neurons projecting from the colon to the CNS. The data suggest that these colospinal afferent neurons (CANs) might be involved in nociception. Whether sensory information from CANs is perceived by the animal or is part of the parasympathetic reflex is currently not known.
Collapse
|
91
|
Shin DS, Kim EH, Song KY, Hong HJ, Kong MH, Hwang SJ. Neurochemical Characterization of the TRPV1-Positive Nociceptive Primary Afferents Innervating Skeletal Muscles in the Rats. J Korean Neurosurg Soc 2008; 43:97-104. [PMID: 19096612 DOI: 10.3340/jkns.2008.43.2.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/14/2008] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Transient receptor potential vanilloid subfamily type 1 (TRPV1), a most specific marker of the nociceptive primary afferent, is expressed in peptidergic and non-pepetidergic primary afferents innervating skin and viscera. However, its expression in sensory fibers to skeletal muscle is not well known. In this study, we studied the neurochemical characteristics of TRPV1-positive primary afferents to skeletal muscles. METHODS Sprague-Dawley rats were injected with total 20 microl of 1% fast blue (FB) into the gastrocnemius and erector spinae muscle and animals were perfused 4 days after injection. FB-positive cells were traced in the L4-L5 (for gastrocnemius muscle) and L2-L4 (for erector spinae muscle) dorsal root ganglia. The neurochemical characteristics of the muscle afferents were studied with multiple immunofluorescence with TRPV1, calcitonin gene-related peptide (CGRP) and P2X(3). To identify spinal neurons responding to noxious stimulus to the skeletal muscle, 10% acetic acids were injected into the gastrocnemius and erector spinae muscles and expression of phospho extracellular signal-regulated kinase (pERK) in spinal cords were identified with immunohistochemical method. RESULTS TRPV1 was expressed in about 49% of muscle afferents traced from gastrocnemius and 40% of erector spinae. Sixty-five to 60% of TRPV1-positive muscles afferents also expressed CGRP. In contrast, expression of P2X(3) immnoreaction in TRPV1-positive muscle afferents were about 20%. TRPV1-positive primary afferents were contacted with spinal neurons expressing pERK after injection of acetic acid into the muscles. CONCLUSION It is consequently suggested that nociception from skeletal muscles are mediated by TRPV1-positive primary afferents and majority of them are also peptidergic.
Collapse
Affiliation(s)
- Dong Su Shin
- Department of Neurosurgery , Seoul Medical Center, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
92
|
Multiple sites for generation of ectopic spontaneous activity in neurons of the chronically compressed dorsal root ganglion. J Neurosci 2008; 27:14059-68. [PMID: 18094245 DOI: 10.1523/jneurosci.3699-07.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In a chronically compressed dorsal root ganglion (CCD) in the rat, a model of foraminal stenosis and radicular pain in human, a subpopulation of neurons with functional axons exhibits spontaneous activity (SA) that originates within the ganglion. Intracellular electrophysiological recordings were obtained from the somata of neurons of the compressed ganglion both in vitro and in vivo. The SA was classified into two types according to the presence (type I) or absence (type II) of subthreshold membrane potential oscillation. Neurons with type I SA had significantly higher somal excitability than those with type II SA. In most cases, depolarization of the membrane potential by current injection increased the discharge rates of type I--but not type II SA. Both types occasionally coexisted in the same neuron. Several lines of evidence suggested that the origin of SA in the DRG was most likely the soma for type I SA and the axon for type II. Therefore CCD neurons have multiple sites for generation of action potentials other than the terminal endings. In vivo recordings revealed the same two types of SA in a subpopulation of neurons with functionally characterized peripheral receptive fields. Thus, SA might not only produce spurious sensory input to the afferent pathways but also add to or block impulse transmission generated by natural stimulation of peripheral receptors. SA originating in the compressed ganglion is likely to interfere with sensory transmission in nociceptive and non-nociceptive neurons, thereby contributing to radicular pain, paresthesias, hyperalgesia and allodynia.
Collapse
|
93
|
Polgár E, Thomson S, Maxwell DJ, Al-Khater K, Todd AJ. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. Eur J Neurosci 2007; 26:1587-98. [PMID: 17880393 PMCID: PMC2635481 DOI: 10.1111/j.1460-9568.2007.05793.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
94
|
Lin YW, Min MY, Lin CC, Chen WN, Wu WL, Yu HM, Chen CC. Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience 2007; 151:544-57. [PMID: 18082972 DOI: 10.1016/j.neuroscience.2007.10.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channel 3 (ASIC3) is the most sensitive acid sensor in sensory neurons that innervate into skin, muscle, heart, and visceral tissues. ASIC3 is involved in ischemia sensing, nociception, mechanosensation, and hearing, but how ASIC3-expressing neurons differ in their firing properties is still unknown. We hypothesized that ASIC3-expressing neurons have specialized firing properties, which, coupled with the heterogeneity of acid-sensing properties, accounts for various physiological roles. Here, we successfully identified ASIC3-expressing lumbar dorsal root ganglion (DRG) neurons whose transient proton-gated currents were blocked by salicylic acid (SA). The salicylic acid-sensitive (SAS) neurons did not exist in DRG neurons of mice lacking ASIC3. SAS neurons expressed distinct electrophysiological properties as compared with other DRG neurons. Especially, SAS neurons fired action potentials (APs) with large overshoot and long afterhyperpolarization duration, which suggests that they belong to nociceptors. SAS neurons also exhibited multiple nociceptor markers such as capsaicin response (38%), action potential (AP) with inflection (35%), or tetrodotoxin resistance (31%). Only in SAS neurons but not other DRG neurons was afterhyperpolarization duration correlated with resting membrane potential and AP duration. Our studies reveal a unique feature of ASIC3-expressing DRG neurons and a basis for their heterogeneous functions.
Collapse
Affiliation(s)
- Y-W Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
95
|
Kozsurek M, Lukácsi E, Fekete C, Wittmann G, Réthelyi M, Puskár Z. Cocaine- and amphetamine-regulated transcript peptide (CART) is present in peptidergic C primary afferents and axons of excitatory interneurons with a possible role in nociception in the superficial laminae of the rat spinal cord. Eur J Neurosci 2007; 26:1624-31. [PMID: 17880396 DOI: 10.1111/j.1460-9568.2007.05789.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptides (CART) have been implicated in the regulation of several physiological functions, including pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. In this study, we used antibody against CART peptide, together with markers for various types of primary afferents, interneurons and descending systems to determine the origin of the CART-immunoreactive axons in the superficial laminae of the rat spinal cord. Calcitonin gene-related peptide (CGRP), a marker for peptidergic primary afferents in the dorsal horn, was present in 72.6% and 34.8% of CART-immunoreactive axons in lamina I and II, respectively. The majority of these fibres also contained substance P (SP), while a few were somatostatin (SOM)-positive. The other subpopulation of CART-immunoreactive boutons in lamina I and II also expressed SP and/or SOM without CGRP, but contained vesicular glutamate transporter 2, which is present mainly in excitatory interneuronal terminals. Our data demonstrate that the majority of CART-immunoreactive axons in the spinal dorsal horn originate from peptidergic nociceptive primary afferents, while the rest arise from excitatory interneurons that contain SP or SOM. This strongly suggests that CART peptide can affect glutamatergic neurotransmission as well as the release and effects of SP and SOM in nociception and other sensory processes.
Collapse
Affiliation(s)
- Márk Kozsurek
- Szentágothai Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
96
|
Zhang SH, Sun QX, Seltzer Z, Cao DY, Wang HS, Chen Z, Zhao Y. Paracrine-like excitation of low-threshold mechanoceptive C-fibers innervating rat hairy skin is mediated by substance P via NK-1 receptors. Brain Res Bull 2007; 75:138-45. [PMID: 18158108 DOI: 10.1016/j.brainresbull.2007.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/07/2007] [Accepted: 08/16/2007] [Indexed: 11/17/2022]
Abstract
We reported previously that C-fibers innervating rat skin can be excited by short trains of electrical shocks ('tetanus') applied to neighboring nerves. Since these nerves were disconnected from the CNS, the cross-talk is located peripherally. Here we tested if low-threshold mechanoceptive (LTM) C-fibers can be excited by this cross-talk and if this process is mediated by substance P (SP) via neurokinin-1 (NK-1) receptors. In urethane anesthetized rats we found that 80% (56/71) of LTM C-fibers, recorded in the lateral cutaneous branch of the dorsal ramus (CBDR) of T10 spinal nerve, were excited by a 10s, 20 Hz tetanus of the T9 CBDR. Compared to the spontaneous pre-tetanic firing frequency of 1.62+/-0.40 impulses/30s, the frequency significantly increased to 3.74+/-0.99, 3.17+/-0.69 and 2.92+/-0.63 impulses/30s, at 30, 60 and 90 s after the tetanus, respectively, and declined to the baseline frequency thereafter. When injected into their receptive fields, SP mimicked the tetanically induced increase of firing rate, whereas the NK-1 receptor antagonist WIN 51708 blocked the excitation in most fibers. The excitation was significantly diminished in adult rats that were neonatally treated with capsaicin, a treatment that destroys most SP-expressing afferent fibers. Thus, we conclude that peptidergic primary afferents are functionally linked with adjacent LTM C-fibers in a non-synaptic, paracrine-like signaling pathway via SP and NK-1 receptors, and perhaps also other agents as well. We propose that this cross-talk has evolved as a mechanism regulating the mechanoceptive characteristics of LTM C-fibers, presumably contributing to pain sensation elicited by tactile stimuli ('allodynia').
Collapse
Affiliation(s)
- Shi-Hong Zhang
- Faculty of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | | | | | | | | | | | | |
Collapse
|
97
|
Marasco PD, Tsuruda PR, Bautista DM, Catania KC. Fine structure of Eimer's organ in the coast mole (Scapanus orarius). Anat Rec (Hoboken) 2007; 290:437-48. [PMID: 17387732 DOI: 10.1002/ar.20511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Eimer's organ is a small, densely innervated sensory structure found on the glabrous rhinarium of most talpid moles. This structure consists of an epidermal papilla containing a central circular column of cells associated with intraepidermal free nerve endings, Merkel cell neurite complexes, and lamellated corpuscles. The free nerve endings within the central cell column form a ring invested in the margins of the column, surrounding 1-2 fibers that pass through the center of the column. A group of small-diameter nociceptive free nerve endings that are immunoreactive for substance P surrounds this central ring of larger-diameter free nerve endings. Transmission electron microscopy revealed a high concentration of tonofibrils in the epidermal cells of the central column, suggesting they are more rigid than the surrounding keratinocytes and may play a mechanical role in transducing stimuli to the different receptor terminals. The intraepidermal free nerve endings within the central column begin to degrade 15 microm from the base of the stratum corneum and do not appear to be active within the keratinized outer layer. The peripheral free nerve endings are structurally distinct from their counterparts in the central column and immunocytochemical double labeling with myelin basic protein and substance P indicates these afferents are unmyelinated. Merkel cell-neurite complexes and lamellated corpuscles are similar in morphology to those found in a range of other mammalian skin.
Collapse
Affiliation(s)
- Paul D Marasco
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
98
|
Lu Y, Perl ER. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J Physiol 2007; 582:127-36. [PMID: 17463043 PMCID: PMC2075283 DOI: 10.1113/jphysiol.2007.131565] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The superficial dorsal horn of the spinal cord (SDH; laminae I and II) receives strong input from thin primary afferent fibres and is involved in nociception, pain, temperature sensing and other experiences. The SDH also is the target of serotonergic and adrenergic projections from the brain stem. The interaction between descending pathways that utilize particular mediators and the neurone population of the SDH is poorly understood. To explore this issue, in rat spinal cord slices during whole-cell recordings from identified SDH neurones, noradrenaline (NA) or serotonin (5HT) were briefly applied in the superfusing artificial cerebrospinal fluid. The action of these agents proved specifically related to the type of SDH neurone and its dorsal-root afferent input. Vertical, radial and tonic central lamina II cells consistently expressed outward current to both NA and 5HT, but transient central and Substance P (SP)-insensitive lamina I cells were unaffected directly by either NA or 5HT. Extended islet cells responded with outward current to NA and inward current to 5HT. Lamina I SP-sensitive cells expressed an outward current regularly to NA. 5HT had inhibitory effects on Adelta and C fibre input to all types of SDH neurones. NA inhibited C fibre input to transient central neurones. The present results support the idea that descending systems may have multiple functions, including but not limited to nociceptive modulation.
Collapse
Affiliation(s)
- Yan Lu
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 5133 NRB - CB 7545, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
99
|
Polgár E, Campbell AD, MacIntyre LM, Watanabe M, Todd AJ. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation. Mol Pain 2007; 3:4. [PMID: 17309799 PMCID: PMC1803781 DOI: 10.1186/1744-8069-3-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 02/19/2007] [Indexed: 11/20/2022] Open
Abstract
Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r) and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive) primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs) in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching), thermal (immersion in water at 52°C) or chemical (injection of 2% formaldehyde). Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK) in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Annie D Campbell
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lynsey M MacIntyre
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
100
|
Rycroft BK, Vikman KS, Christie MJ. Inflammation reduces the contribution of N-type calcium channels to primary afferent synaptic transmission onto NK1 receptor-positive lamina I neurons in the rat dorsal horn. J Physiol 2007; 580:883-94. [PMID: 17303639 PMCID: PMC2075448 DOI: 10.1113/jphysiol.2006.125880] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-type calcium channels contribute to the release of glutamate from primary afferent terminals synapsing onto nocisponsive neurons in the dorsal horn of the spinal cord, but little is known of functional adaptations to these channels in persistent pain states. Subtype-selective conotoxins and other drugs were used to determine the role of different calcium channel types in a rat model of inflammatory pain. Electrically evoked primary afferent synapses onto lumber dorsal horn neurons were examined three days after induction of inflammation with intraplantar complete Freund's adjuvant. The maximal inhibitory effect of the N-type calcium channel blockers, omega-conotoxins CVID and MVIIA, were attenuated in NK1 receptor-positive lamina I neurons after inflammation, but the potency of CVID was unchanged. This was associated with reduced inhibition of the frequency of asynchronous-evoked synaptic events by CVID studied in the presence of extracellular strontium, suggesting reduced N-type channel contribution to primary afferent synapses after inflammation. After application of CVID, the relative contributions of P/Q and L channels to primary afferent transmission and the residual current were unchanged by inflammation, suggesting the adaptation was specific to N-type channels. Blocking T-type channels did not affect synaptic amplitude under control or inflamed conditions. Reduction of N-type channel contribution to primary afferent transmission was selective for NK1 receptor-positive neurons identified by post hoc immunohistochemistry and did not occur at synapses in laminae II(o) or II(i), or inhibitory synapses. These results suggest that inflammation selectively downregulates N-type channels in the terminals of primary afferents synapsing onto (presumed) nociceptive lamina I NK1 receptor-positive neurons.
Collapse
Affiliation(s)
- Beth K Rycroft
- Pain Management Research Institute, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards 2065, Australia
| | | | | |
Collapse
|