51
|
Guerrero-Rubio MA, Hernández-García S, Escribano J, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Gandía-Herrero F. Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors. Food Chem 2020; 330:127228. [DOI: 10.1016/j.foodchem.2020.127228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023]
|
52
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
53
|
Matencio A, Guerrero-Rubio MA, Caldera F, Cecone C, Trotta F, García-Carmona F, López-Nicolás JM. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int J Pharm 2020; 589:119862. [PMID: 32916214 DOI: 10.1016/j.ijpharm.2020.119862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
In this work, the increase of the Caenorhabditis elegans (C. elegans) lifespan extension using hyper-branched cyclodextrin-based nanosponges (CD-NS) complexing oxyresveratrol (OXY), and the possible inhibition of C. elegans phosphodiesterase type 4 (PDE4) were evaluated. The titration displacement of fluorescein was used to calculate the apparent complexation constant (KF) between CD-NS and OXY. Moreover, PDE4 was expressed in E. coli, purified and refolded in presence of cyclodextrins (CDs) to study its possible inhibition as pharmacological target of OXY. The apparent activity was characterized and the inhibitory effect of OXY on PDE4 displayed a competitive in vitro inhibition corroborated in silico. A maximum increase of the in vivo life expectancy of about 9.6% of using OXY/CD-NS complexes in comparison with the control was obtained, in contrast to the 6.5% obtained with free OXY. No effect on lifespan or toxicity with CD-NS alone was found. These results as a whole represent new opportunities to use OXY and CD-NS in lifespan products.
Collapse
Affiliation(s)
- Adrián Matencio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| | - M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fabrizio Caldera
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Claudio Cecone
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chemica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
54
|
Smita SS, Trivedi S, Pandey T, Trivedi M, Pandey R. A Bioactive compound Shatavarin IV-mediated longevity as revealed by dietary restriction-induced autophagy in Caenorhabditis elegans. Biogerontology 2020; 21:827-844. [PMID: 32888154 DOI: 10.1007/s10522-020-09897-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Plant-based dietary supplements that delay aging are of significant interest now a days because these naturally occurring bioactive molecules effectively provide pharmaceuticals/neutraceuticals to deal with diseases related to the advanced life expectancy. In this paper, we aimed to investigate the effect of Shatavarin IV (SIV), a steroidal saponin isolated from Asparagus racemosus Willd. on dietary restriction (DR) induced longevity in Caenorhabditis elegans. SIV significantly increased the lifespan to 18% which is independent of antimicrobial activity and reduced the aging by-product, lipofuscin along with increased locomotion, and chemotaxis behavior in wild type worms. The longevity effect has been dependent on eat-2, which was further validated via reduced pharyngeal pumping rate that established the effect similar to DR induced longevity. Moreover, like eat-2 mutant worms, SIV reduces the total progeny number of wild type worm along with a significant alleviation of stored fat, which reconfirms the involvement of eat-2 mediated longevity. Further, it was also observed that DR induced longevity mechanism by SIV requires mTOR which works in PHA-4/FOXA dependent manner. In addition to this, the role of autophagy mechanism concerning SIV mediated DR was confirmed via bec-1, unc-51, and lgg-1. The longevity effect achieved by SIV was also dependent on SKN-1/NRF-2 and partially dependent on DAF-16/FOXO. Furthermore, the DR-induced longevity by SIV was found to be independent of hsf-1 exhibiting non-significant alteration in the mRNA expression of downstream target genes hsp-16.2 and hsp-70. Altogether, this study provides first-hand information on the pro-longevity effect of SIV in worms that have been mediated by the DR-regulating gene induced autophagy.
Collapse
Affiliation(s)
- Shachi Shuchi Smita
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Shalini Trivedi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Taruna Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Mashu Trivedi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
55
|
Wati SM, Matsumaru D, Motohashi H. NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biol 2020; 36:101603. [PMID: 32590331 PMCID: PMC7322188 DOI: 10.1016/j.redox.2020.101603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Saliva plays an essential role in the maintenance of oral health. The oral cavity environment changes during aging mainly due to alterations in the secretion and composition of saliva. In particular, unstimulated basal salivary flow decreases with age. The functional decline of the salivary glands impairs chewing and swallowing abilities and often becomes one of the predispositions for aging-related disorders, including aspiration pneumonia. The KEAP1-NRF2 system plays a central role in the regulation of the oxidative stress response. NRF2 is a transcription factor that coordinately regulates cytoprotective genes, and KEAP1 is a negative regulator of NRF2. Although NRF2 activation has been suggested to be advantageous for the prevention of aging-related diseases, its role in the course of physiological aging is not well understood. To investigate the impact of NRF2 activation on salivary gland aging, we compared the submandibular glands of Keap1-knockdown (KD) (Keap1FA/FA) mice in which NRF2 is activated with those of wild-type mice. Young mice did not show any apparent differences between the two genotypes, whereas in old mice, clear differences were observed. Aged wild-type submandibular glands exhibited iron and collagen depositions, immune cell infiltration and increased DNA damage and apoptosis accompanied by elevated oxidative stress, which were all markedly attenuated in Keap1-KD mice, suggesting that NRF2 activation has antiaging effects on salivary glands. We propose that appropriate activation of NRF2 is effective for the maintenance of healthy salivary gland conditions and for the prevention of hyposalivation in the elderly.
Collapse
Affiliation(s)
- Sisca Meida Wati
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Japan.
| |
Collapse
|
56
|
Jones LM, Chen Y, van Oosten-Hawle P. Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health. Biol Chem 2020; 401:1005-1018. [DOI: 10.1515/hsz-2019-0385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
AbstractEukaryotic organisms have evolved complex and robust cellular stress response pathways to ensure maintenance of proteostasis and survival during fluctuating environmental conditions. Highly conserved stress response pathways can be triggered and coordinated at the cell-autonomous and cell-nonautonomous level by proteostasis transcription factors, including HSF1, SKN-1/NRF2, HIF1, and DAF-16/FOXO that combat proteotoxic stress caused by environmental challenges. While these transcription factors are often associated with a specific stress condition, they also direct “noncanonical” transcriptional programs that serve to integrate a multitude of physiological responses required for development, metabolism, and defense responses to pathogen infections. In this review, we outline the established function of these key proteostasis transcription factors at the cell-autonomous and cell-nonautonomous level and discuss a newly emerging stress responsive transcription factor, PQM-1, within the proteostasis network. We look beyond the canonical stress response roles of proteostasis transcription factors and highlight their function in integrating different physiological stimuli to maintain cytosolic organismal proteostasis.
Collapse
Affiliation(s)
- Laura M. Jones
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yannic Chen
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
57
|
Hu C, Hou J, Zhu Y, Lin D. Multigenerational exposure to TiO 2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114376. [PMID: 32203849 DOI: 10.1016/j.envpol.2020.114376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO2 NPs (nTiO2) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO2, and the toxicities of three nTiO2 forms were largely comparable. The nTiO2 exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO2 exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO2, and add new knowledge on the long-term impact of soil nTiO2 contamination.
Collapse
Affiliation(s)
- Chao Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
58
|
Lu M, Tan L, Zhou XG, Yang ZL, Zhu Q, Chen JN, Luo HR, Wu GS. Tectochrysin increases stress resistance and extends the lifespan of Caenorhabditis elegans via FOXO/DAF-16. Biogerontology 2020; 21:669-682. [PMID: 32506187 DOI: 10.1007/s10522-020-09884-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Tectochrysin is a flavonoid compound and rich in a traditional Chinese Medicine Alpinia oxyphylla Miq., which has antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, anti-diarrhea, hepatoprotective, and neuro-protective effects. Therefore, we tested if tectochrysin had an effect on aging in Caenorhabditis elegans (C. elegans). Our results showed that tectochrysin could extend the lifespan of C. elegans by up to 21.0%, delay the age-related decline of body movement, improve high temperature-stress resistance and anti-infection capacity, and protected worms against Aβ1-42-induced toxicity. Tectochrysin could not extend the lifespan of the mutants from genes daf-2, daf-16, eat-2, aak-2, skn-1, and hsf-1. Tectochrysin could increase the expression of DAF-16 regulated genes. The extension of lifespan by tectochrysin requires FOXO/DAF-16 and HSF-1. Overall, our findings suggest that tectochrysin may have a potential effect on extending lifespan and age-related diseases.
Collapse
Affiliation(s)
- Min Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Lin Tan
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Xiao-Gang Zhou
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Zhong-Lin Yang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Qing Zhu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Jian-Ning Chen
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Huai-Rong Luo
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Gui-Sheng Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
59
|
Dixit A, Sandhu A, Modi S, Shashikanth M, Koushika SP, Watts JL, Singh V. Neuronal control of lipid metabolism by STR-2 G protein-coupled receptor promotes longevity in Caenorhabditis elegans. Aging Cell 2020; 19:e13160. [PMID: 32432390 PMCID: PMC7294788 DOI: 10.1111/acel.13160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
The G protein-coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR-2, expressed in AWC and ASI amphid sensory neurons. STR-2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR-2 regulates expression of delta-9 desaturases, fat-5, fat-6 and fat-7, and of diacylglycerol acyltransferase dgat-2. Rescue of the STR-2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat-5, dgat-2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild-type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR-2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
- Present address:
Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaIndia
| | - Anjali Sandhu
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Souvik Modi
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Meghana Shashikanth
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Jennifer L. Watts
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
60
|
Schiffer JA, Servello FA, Heath WR, Amrit FRG, Stumbur SV, Eder M, Martin OMF, Johnsen SB, Stanley JA, Tam H, Brennan SJ, McGowan NG, Vogelaar AL, Xu Y, Serkin WT, Ghazi A, Stroustrup N, Apfeld J. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife 2020; 9:e56186. [PMID: 32367802 PMCID: PMC7213980 DOI: 10.7554/elife.56186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFβ-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.
Collapse
Affiliation(s)
| | | | - William R Heath
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sean B Johnsen
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Hannah Tam
- Biology Department, Northeastern UniversityBostonUnited States
| | - Sarah J Brennan
- Biology Department, Northeastern UniversityBostonUnited States
| | | | | | - Yuyan Xu
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of MedicinePittsburghUnited States
- Departments of Developmental Biology and Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
61
|
Ijomone OM, Miah MR, Akingbade GT, Bucinca H, Aschner M. Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity. Neurotox Res 2020; 37:1018-1028. [DOI: 10.1007/s12640-020-00175-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
|
62
|
Wang J, Deng N, Wang H, Li T, Chen L, Zheng B, Liu RH. Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules 2020; 25:molecules25020351. [PMID: 31952185 PMCID: PMC7024185 DOI: 10.3390/molecules25020351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Orange, with various bioactive phytochemicals, exerts various beneficial health effects, including anti-cancer, antioxidant, and anti-inflammatory properties. However, its anti-aging effects remain unclear. In this study, the Caenorhabditis elegans (C. elegans) model was used to evaluate the effects of orange extracts on lifespan and stress resistance. The results indicated that orange extracts dose-dependently increased the mean lifespan of C. elegans by 10.5%, 18.0%, and 26.2% at the concentrations of 100, 200, and 400 mg/mL, respectively. Meanwhile, orange extracts promoted the healthspan by improving motility, and decreasing the accumulation of age pigment and intracellular reactive oxygen species (ROS) levels without damaging fertility. The survival rates of orange extract-fed worms were obviously higher than those of untreated worms against thermal and ultraviolet-B (UV-B) stress. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly enhanced while malondialdehyde (MDA) contents were diminished. Further investigation revealed that worms supplemented with orange extracts resulted in upregulated levels of genes, including daf-16, sod-3, gst-4, sek-1, and skn-1, and the downregulation of age-1 expression. These findings revealed that orange extracts have potential anti-aging effects through extending the lifespan, enhancing stress resistance, and promoting the healthspan.
Collapse
Affiliation(s)
- Jing Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
| | - Na Deng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
| | - Hong Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
- Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China;
- Correspondence: (H.W.); (R.H.L.)
| | - Tong Li
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA;
| | - Ling Chen
- Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China;
| | - Bisheng Zheng
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (J.W.); (N.D.); (B.Z.)
- Guangdong ERA Food & Life Health Research Institute, Guangzhou 510670, China
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: (H.W.); (R.H.L.)
| |
Collapse
|
63
|
Li SW, Huang CW, Liao VHC. Early-life long-term exposure to ZnO nanoparticles suppresses innate immunity regulated by SKN-1/Nrf and the p38 MAPK signaling pathway in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113382. [PMID: 31662252 DOI: 10.1016/j.envpol.2019.113382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO-NPs) has led to their release into the environment, and they thus represent a potential risk for both humans and ecosystems. However, the negative impact of ZnO-NPs on the immune system, especially in relation to host defense against pathogenic infection and its underlying regulatory mechanisms, remains largely unexplored. This study investigated the effects of early-life long-term ZnO-NPs exposure (from L1 larvae to adults) on innate immunity and its underlying mechanisms using a host-pathogen Caenorhabditis elegans model, and this was compared with the effect of ionic Zn. The results showed that the ZnO-NPs taken up by C. elegans primarily accumulated in the intestine and that early-life long-term ZnO-NPs exposure at environmentally relevant concentrations (50 and 500 μg/L) decreased the survival of wild-type C. elegans when faced with pathogenic Pseudomonas aeruginosa PA14 infection. Early-life long-term ZnO-NPs (500 μg/L) exposure significantly increased (by about 3-fold) the accumulation of live P. aeruginosa PA14 colonies in the intestine of C. elegans. In addition, ZnO-NPs (500 μg/L) inhibited the intestinal nuclear translocation of SKN-1 and also downregulated gcs-1 gene expression, which is an SKN-1 target gene. Further evidence revealed that early-life long-term exposure to ZnO-NPs (500 μg/L) did not increase susceptibility to mutation among the genes (pmk-1, sek-1, and nsy-1) encoding the p38 mitogen-activated protein kinase (MAPK) cascade in response to P. aeruginosa PA14 infection, though ZnO-NPs significantly decreased the mRNA levels of pmk-1, sek-1, and nsy-1. This study provides regulatory insight based on evidence that ZnO-NPs suppress the innate immunity of C. elegans and highlights the potential health risks of certain environmental nanomaterials, including ZnO-NPs, in terms of their immunotoxicity at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Shang-Wei Li
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
64
|
Zhang X, Li W, Tang Y, Lin C, Cao Y, Chen Y. Mechanism of Pentagalloyl Glucose in Alleviating Fat Accumulation in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14110-14120. [PMID: 31789033 DOI: 10.1021/acs.jafc.9b06167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pentagalloyl glucose (PGG) has been studied for its valuable biological activities. However, the functional role of PGG in lipid metabolism in vivo is unclear. Here, we investigated the effects of PGG on lipid metabolism and its underlying mechanism in Caenorhabditis elegans. PGG decreased the accumulation of reactive oxygen species at 800 μM and remarkably increased the activities of antioxidant enzymes. PGG decreased significantly fat accumulation in wild-type worms (39.7 ± 5.7% in the normal group and 19.9 ± 4.5% in the high-fat group by Oil red O; 21.2 ± 2.7% in the high-fat group by Nile red; p < 0.001), but fat reduction by PGG was eliminated in the skn-1 mutant. The amount and size of lipid droplets in the ZXW618 mutant were decreased by PGG. The proportions of unsaturated fatty acids in both conditions were increased by PGG. In addition, the expression levels of fat metabolism genes were significantly changed in both conditions by PGG, which include mdt-15, pod-2, elo-2, fat-6, and fat-7 genes modulated fat synthesis; aak-2 and nhr-49 genes participated in fat consumption; and tub-1 gene regulated fat storage. However, fat-5 and acs-2 were downregulated in high-fat worms only, and vit-2 and lipl-4 were downregulated in normal worms only. Our study provided new insights into the role of PGG in alleviating fat accumulation and its underlying mechanism of action in C. elegans.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , Guangdong , China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , Guangdong , China
| | - Yunzhou Tang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , Guangdong , China
| | - Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , Guangdong , China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , Guangdong , China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science , South China Agricultural University , Guangzhou 510642 , Guangdong , China
| |
Collapse
|
65
|
Wang X, Li H, Liu Y, Wu H, Wang H, Jin S, Lu Y, Chang S, Liu R, Peng Y, Guo Z, Wang X. Velvet antler methanol extracts (MEs) protects against oxidative stress in Caenorhabditis elegans by SKN-1. Biomed Pharmacother 2019; 121:109668. [PMID: 31766103 DOI: 10.1016/j.biopha.2019.109668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Velvet antler is one of the most important animal medicines or functional foods widely used in East Asia for many centuries, which has several biological activities including anti-ageing and health promotion. To date, the mechanism underlying these effects of velvet antler is widely studied by its protein or polypeptide components. Few studies have been reported for the function of the other components in velvet antler. Herein, C. elegans is used as the model animal to dissect how none protein components of velvet antler affect in vivo oxidative stress. Methanol extracts (MEs) from velvet antler which has few protein components extends the maximum lifespan of C. elegans compared to the control under oxidative stress, while water extracts (WEs) which is protein-rich component has no apparent function. The activity of MEs is mediated by clk-1 signaling pathway, but not via daf-2, eat-2 or glp-1 pathway. Further investigations show MEs decrease endogenous ROS by promoting SKN-1 nuclei translocation, subsequently up-regulating the expression of its target genes gst-4, gst-7 and gst-10 in C. elegans. In all, MEs, the none protein components of velvet antler, protects against oxidative stress in C. elegans, which indicates it might be a product with potential of being a curative medicine.
Collapse
Affiliation(s)
- Xue Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ying Liu
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Hua Wu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Sha Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shuzhuo Chang
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Renjie Liu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China
| | - Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China.
| | - Zhijun Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China; College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
66
|
Zeng L, Yang Z, Yun T, Fan S, Pei Z, Chen Z, Sun C, Xu F. Antiaging effect of a Jianpi-yangwei formula in Caenorhabditis elegans. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:313. [PMID: 31730453 PMCID: PMC6858738 DOI: 10.1186/s12906-019-2704-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Background Jianpi-yangwei (JPYW), a traditional Chinese medicine (TCM), helps to nourish the stomach and spleen and is primarily used to treat functional declines related to aging. This study aimed to explore the antiaging effects and mechanism of JPYW by employing a Caenorhabditis elegans model. Methods Wild-type C. elegans N2 worms were cultured in growth medium with or without JPYW, and lifespan analysis, oxidative and heat stress resistance assays, and other aging-related assays were performed. The effects of JPYW on the levels of superoxide dismutase (SOD) and the expression of specific genes were examined to explore the underlying mechanism of JPYW. Results Compared to control worms, JPYW-treated wild-type worms showed increased survival times under both normal and stress conditions (P < 0.05). JPYW-treated worms also exhibited enhanced reproduction, movement and growth and decreased intestinal lipofuscin accumulation compared to controls (P < 0.05). Furthermore, increased activity of SOD, downregulated expression levels of the proaging gene clk-2 and upregulated expression levels of the antiaging genes daf-16, skn-1, and sir-2.1 were observed in the JPYW group compared to the control group. Conclusion Our findings suggest that JPYW extends the lifespan of C. elegans and exerts antiaging effects by increasing the activity of an antioxidant enzyme (SOD) and by regulating the expression of aging-related genes. This study not only indicates that this Chinese compound exerts antiaging effects by activating and repressing target genes but also provides a proven methodology for studying the biological mechanisms of TCMs.
Collapse
|
67
|
Ganesan S, Amirthalingam M, Arivalagan P, Govindan S, Palanisamy S, Lingassamy AP, Ponnusamy VK. Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:409-417. [PMID: 31163378 DOI: 10.1016/j.jenvman.2019.05.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical-based contaminants are the major reasons for morbidity and mortality in aquatic animals and lead to several side effects and diseases in human community. Availability of proper, efficient, and cost-effective treatment technologies is still scarce. In this study, an efficient combined treatment technique (electrochemical oxidation and adsorption processes) was developed for the complete detoxification of most commonly used antibiotic, ciprofloxacin in aqueous solution. Electrochemical degradation of ciprofloxacin was performed using titanium-based tri-metal oxide mesh type anode, and the effective oxidative potential, electrolysis time, and pH for the degradation of ciprofloxacin were thoroughly evaluated. Sulfate, fluoride ions and toxic byproducts generated during electrochemical oxidation of ciprofloxacin were subsequently removed through a simple adsorption treatment using activated charcoal for 90 min. Further, the toxicity of the treated water was assessed with the nematode Caenorhabditis elegans species at different time intervals by observing the expressions of important stress-responsive genes viz., sod-3, hsp-16.2, ctl-1,2,3 and gst-4. The results exhibited that the combined process of electrochemical oxidation and adsorption treatment is simple, low-cost as well as effective to eliminate ciprofloxacin and its toxic byproducts in aqueous solution.
Collapse
Affiliation(s)
- Sivarasan Ganesan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Environmental Ecology Laboratory, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mohankumar Amirthalingam
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Pugazhendhi Arivalagan
- Innovative Green Product Synthesis and Renewable Environment Research Group, Faculty of Environment and Labor Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Shanmugam Govindan
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Sundararaj Palanisamy
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Arul Pragasan Lingassamy
- Environmental Ecology Laboratory, Department of Environmental Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City-807, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
68
|
Scolaro G, Bridges K, Curry S, Jacobson S, LoPresti M, Pappas K, Ramirez N, Savigne L, Sherman S, Upshaw K, Walsh E, Choe K. Increased expression of pgph-1, T23F2.4, and cyp-14A5 in C. elegans dpy-7 mutants and by high salt. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550434 PMCID: PMC7252310 DOI: 10.17912/micropub.biology.000136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gabrielle Scolaro
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Kelsey Bridges
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Shayla Curry
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Stephanie Jacobson
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Marissa LoPresti
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Katina Pappas
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Nicolas Ramirez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Lindsay Savigne
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Sarah Sherman
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Katherine Upshaw
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Erin Walsh
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| | - Keith Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
69
|
Ganner A, Gerber J, Ziegler AK, Li Y, Kandzia J, Matulenski T, Kreis S, Breves G, Klein M, Walz G, Neumann-Haefelin E. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp Gerontol 2019; 126:110690. [PMID: 31419472 DOI: 10.1016/j.exger.2019.110690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/11/2019] [Indexed: 11/28/2022]
Abstract
SKN-1/Nrf transcription factors regulate diverse biological processes essentially stress defense, detoxification, and longevity. Studies in model organisms have identified a broad range of regulatory processes and mechanisms that profoundly influence SKN-1/Nrf functions. Defining the mechanisms how SKN-1 is regulated will provide insight how cells defend against diverse stressors contributing to aging and disease. In this study, we demonstrate a crucial role for the acetyltransferase CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300 in the activation of SKN-1. cbp-1 is essential for tolerance of oxidative stress and normal lifespan. CBP-1 directly interacts with SKN-1 and increases SKN-1 protein abundance. In particular CBP-1 modulates SKN-1 nuclear translocation under basal conditions and in response to stress and promotes SKN-1-dependent transcription of protective genes. Moreover, CBP-1 is required for SKN-1 nuclear recruitment, transcriptional activity, and longevity due to reduced insulin/IGF-1-like signaling, mTOR-, and GSK-3 signaling. Our findings establish the acetyltransferase CBP-1 as a critical activator of SKN-1 that directly modulates SKN-1 protein stability, nuclear localization, and function to ascertain normal stress response and lifespan.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Gerber
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna-Katharina Ziegler
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yujie Li
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jakob Kandzia
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tanja Matulenski
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Saskia Kreis
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
70
|
Garcia-Moreno JC, Porta de la Riva M, Martínez-Lara E, Siles E, Cañuelo A. Tyrosol, a simple phenol from EVOO, targets multiple pathogenic mechanisms of neurodegeneration in a C. elegans model of Parkinson's disease. Neurobiol Aging 2019; 82:60-68. [PMID: 31404721 DOI: 10.1016/j.neurobiolaging.2019.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/13/2019] [Accepted: 07/04/2019] [Indexed: 01/16/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder involving α-synuclein (α-syn) aggregation, oxidative stress, dysregulation of redox metal homeostasis, and neurotoxicity. Different phenolic compounds with known antioxidant or antichelating properties have been shown to also interfere with aggregation of amyloid proteins and modulate intracellular signaling pathways. The present study aims to investigate for the first time the effect of tyrosol (TYR), a simple phenol present in extra-virgin olive oil, on α-syn aggregation in a Caenorhabditis elegans model of PD and evaluate its potential to prevent α-syn toxicity, neurodegeneration, and oxidative stress in this model organism. Our results show that TYR is effective in reducing α-syn inclusions, resulting in a lower toxicity and extended life span of treated nematodes. Moreover, TYR delayed α-syn-dependent degeneration of dopaminergic neurons in vivo. TYR treatment also reduced reactive oxygen species level and promoted the expression of specific chaperones and antioxidant enzymes. Overall, our study puts into perspective TYR potential to be considered as nutraceutical that targets pivotal causal factors in PD.
Collapse
Affiliation(s)
| | - Montserrat Porta de la Riva
- Cancer and Human Molecular Genetics, C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Esther Martínez-Lara
- Biochemistry and Molecular Biology Section, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Eva Siles
- Biochemistry and Molecular Biology Section, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Ana Cañuelo
- Biochemistry and Molecular Biology Section, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| |
Collapse
|
71
|
Zhou L, Huang PP, Chen LL, Wang P. Panax Notoginseng Saponins Ameliorate A β-Mediated Neurotoxicity in C. elegans through Antioxidant Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:7621043. [PMID: 31275419 PMCID: PMC6582912 DOI: 10.1155/2019/7621043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022]
Abstract
The deposition of amyloid beta (Aβ) is the main hallmark of Alzheimer's disease (AD) and there is no effective drug to cure the progressive cognitive loss or memory deficits caused by the aggregative toxicity of Aβ protein. Oxidative stress has been hypothesized to play a role in progressive neurodegenerative diseases like AD. Panax notoginseng saponin (PNS) from the rhizome of "pseudo-ginseng" exhibits potent antioxidant effects on aging process in neuron cells and animals. By using C. elegans as an ideal model organism, the present study shows that PNS (0.5-4 mg/mL) can significantly inhibit AD-like symptoms of worm paralysis and enhance resistance to oxidative stress induced by paraquat and aging conditions. Additionally, PNS extends lifespan and maintains healthspan of C. elegans by improving the swimming prowess and fertility at old age. It markedly activates the expression of SKN-1 mRNA, which further supports SKN-1 signaling pathway which is involved in the therapeutic effect of PNS on AD C. elegans. Our results provide direct evidence on PNS for treating AD on gene level and theoretical foundation for reshaping medicinal products of PNS in the future.
Collapse
Affiliation(s)
- Ling Zhou
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Pan-Pan Huang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
72
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
73
|
Hamaguchi T, Sato K, Vicente CSL, Hasegawa K. Nematicidal actions of the marigold exudate α-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biol Open 2019; 8:bio038646. [PMID: 30926596 PMCID: PMC6504006 DOI: 10.1242/bio.038646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
α-terthienyl is an allelochemical derived from the roots of marigold (Tagetes spp.), which is used to suppress plant parasitic nematodes. We investigated the nematicidal activity of α-terthienyl against the model organism Caenorhabditis elegans and the root-knot nematode, Meloidogyne incognita. As reported previously, α-terthienyl action was much higher after photoactivation, but was still effective against C. elegans dauer larvae and M. incognita second stage juveniles, even without photoactivation. Expression induction of two major enzymes, glutathione S-transferase (GST) and superoxide dismutase (SOD), was restricted in C. elegans hypodermis following treatment with α-terthienyl. The susceptibility of nematodes to α-terthienyl changed when the expression of GST and SOD was induced or suppressed. From these results, under dark conditions (without photoactivation), α-terthienyl is an oxidative stress-inducing chemical that effectively penetrates the nematode hypodermis and exerts nematicidal activity, suggesting high potential for its use as a practicable nematode control agent in agriculture.
Collapse
Affiliation(s)
- Takahiro Hamaguchi
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Kazuki Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Cláudia S L Vicente
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
74
|
Sugawara T, Saraprug D, Sakamoto K. Soy sauce increased the oxidative stress tolerance of nematode via p38 MAPK pathway. Biosci Biotechnol Biochem 2019; 83:709-716. [PMID: 30626262 DOI: 10.1080/09168451.2018.1562873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/07/2018] [Indexed: 01/05/2023]
Abstract
Soy sauce - a fermented food made from soybeans and wheat - is considered a healthy seasoning, but little scientific evidence is available to support this. In this study, physiological effects of soy sauce were analyzed using Caenorhabditis elegans. When soy sauce was fed to C. elegans together with Escherichia coli OP50, fat accumulation decreased, and resistance to oxidative stress by H2O2 was greatly increased in the nematodes. qRT-PCR revealed that mRNA expression of oxidative stress tolerance genes, including sod, ctl, and gpx, was markedly increased in soy sauce-fed nematodes. Worms ingesting soy sauce showed high mitochondrial membrane potential and reactive oxygen species (ROS) and low intracellular ROS, suggesting that soy sauce induced mitohormesis and decreased cytoplasmic ROS. Therefore, soy sauce ingestion affects the mitochondria and may alter the fat metabolism in C. elegans. Furthermore, the increase in oxidative stress tolerance is mediated through p38 MAPK pathway.
Collapse
Affiliation(s)
- Takaya Sugawara
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Danaporn Saraprug
- b The College of Biological Sciences , University of Tsukuba , Tsukuba , Japan
| | - Kazuichi Sakamoto
- a Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
75
|
Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M. Pro-oxidant and lifespan extension effects of caffeine and related methylxanthines in Caenorhabditis elegans. Food Chem X 2019; 1:100005. [PMID: 31432005 PMCID: PMC6694850 DOI: 10.1016/j.fochx.2019.100005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Caffeine and related purine alkaloids are common ingredients of many stimulating drinks. Studies have shown that lower concentrations of caffeine have a protective role in aging-related disorders. However, the associated mode of action of caffeine and its related methylxanthines is still not clear. In this study, we demonstrated that caffeine and theophylline promote longevity in Caenorhabditis elegans. Lifespan studies with the wild type, DAF-16 and SKN-1 mutant strains indicated that the methylxanthines-mediated lifespan extension in C. elegans was independent of DAF-16/FOXO and SKN-1. All the tested methylxanthines could protect C. elegans against acute oxidative stress. At early stages of life, an increase of ROS (reactive oxygen species) induced the translocation of DAF-16 and SKN-1, resulting in upregulation of several antioxidant genes, for example, sod-3p::GFP, gst-4p::GFP, gcs-1p::GFP; and downregulation of hsp-16.2p::GFP. RT-PCR corroborates the upregulation of gst-4 and skn-1 genes. The expression of DAF-16 decreased although its nuclear translocation was induced.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Shaoxiong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
76
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
77
|
Harris G, Wu T, Linfield G, Choi MK, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet 2019; 15:e1007706. [PMID: 30849079 PMCID: PMC6426271 DOI: 10.1371/journal.pgen.1007706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration. The present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple specific sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal the molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Gaia Linfield
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| |
Collapse
|
78
|
Ma H, Lenz KA, Gao X, Li S, Wallis LK. Comparative toxicity of a food additive TiO 2, a bulk TiO 2, and a nano-sized P25 to a model organism the nematode C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3556-3568. [PMID: 30523524 DOI: 10.1007/s11356-018-3810-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
To help fill the knowledge gap regarding the potential human health impacts of food pigment TiO2, a comparative toxicity study was performed on a food-grade TiO2 (f-TiO2), a bulk TiO2 (b-TiO2), and a nano-sized TiO2 (Degussa P25), and in the nematode Caenorhabditis elegans. Acute phototoxicity and chronic toxicity effects including reproduction, lifespan, and vulval integrity were evaluated. The f-TiO2, b-TiO2, and P25 had a primary particle size (size range) of 149 (53-308) nm, 129 (64-259) nm, and 26 (11-52) nm, respectively. P25 showed the greatest phototoxicity with a 24-h LC50 of 6.0 mg/L (95% CI 5.95, 6.3), followed by the f-TiO2 (LC50 = 6.55 mg/L (95% CI 6.35, 6.75)), and b-TiO2 was the least toxic. All three TiO2 (1-10 mg/L) induced concentration-dependent effects on the worm's reproduction, with a reduction in brood size by 8.5 to 34%. They all caused a reduction of worm lifespan, accompanied by an increased frequency of age-associated vulval integrity defects (Avid). The impact on lifespan and Avid phenotype was more notable for P25 than the f-TiO2 or b-TiO2. Ingestion and accumulation of TiO2 particles in the worm intestine was observed for all three materials by light microscopy. These findings demonstrate that the food pigment TiO2 induces toxicity effects in the worm and further studies are needed to elucidate the human health implication of such toxicities.
Collapse
Affiliation(s)
- Hongbo Ma
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Kade A Lenz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Xianfeng Gao
- Department of Materials Science & Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Shibin Li
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA
| | - Lindsay K Wallis
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA
| |
Collapse
|
79
|
Yue Y, Shen P, Xu Y, Park Y. p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1190-1197. [PMID: 30047165 DOI: 10.1002/jsfa.9288] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/14/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Stress-response pathways in Caenorhabditis elegans (C. elegans) were found to be closely related to human diseases and aging. Research on stress responses in C. elegans can therefore significantly facilitate understanding of related human diseases. p-Coumaric acid is present in peanuts, carrots, and garlic, and exerts many biological effects, however, its responses to various environmental stressors remain unknown. Thus, in the current study, we employed C. elegans as the in vivo animal model to examine the function of p-coumaric acid under various stressed conditions. RESULTS Treatment of C. elegans with p-coumaric acid resulted in a significant reduction in the intercellular reactive oxygen species levels, which suggests the in vivo antioxidant capacity of p-coumaric acid. Moreover, p-coumaric acid significantly increased the worms' survival under oxidative and osmosis stressed conditions but had no effect under normal or heat-stressed conditions. The increased oxidative resistance induced by p-coumaric acid was mediated by skn-1, an ortholog of the Nrf2 (nuclear factor erythroid 2-related factor 2) transcriptional factor. Downregulation of the osmosis regulatory gene, osr-1, might contribute to p-coumaric acids' effect on increased resistance to high osmolarity. CONCLUSION Taken together, our results suggest that p-coumaric acid, an antioxidant agent, ameliorated oxidative and osmosis stresses in C. elegans. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yuejia Xu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
80
|
Fletcher M, Tillman EJ, Butty VL, Levine SS, Kim DH. Global transcriptional regulation of innate immunity by ATF-7 in C. elegans. PLoS Genet 2019; 15:e1007830. [PMID: 30789901 PMCID: PMC6400416 DOI: 10.1371/journal.pgen.1007830] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as a genetically tractable animal host in which to study evolutionarily conserved mechanisms of innate immune signaling. We previously showed that the PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway regulates innate immunity of C. elegans through phosphorylation of the CREB/ATF bZIP transcription factor, ATF-7. Here, we have undertaken a genomic analysis of the transcriptional response of C. elegans to infection by Pseudomonas aeruginosa, combining genome-wide expression analysis by RNA-seq with ATF-7 chromatin immunoprecipitation followed by sequencing (ChIP-Seq). We observe that PMK-1-ATF-7 activity regulates a majority of all genes induced by pathogen infection, and observe ATF-7 occupancy in regulatory regions of pathogen-induced genes in a PMK-1-dependent manner. Moreover, functional analysis of a subset of these ATF-7-regulated pathogen-induced target genes supports a direct role for this transcriptional response in host defense. The genome-wide regulation through PMK-1- ATF-7 signaling reveals a striking level of control over the innate immune response to infection through a single transcriptional regulator.
Collapse
Affiliation(s)
- Marissa Fletcher
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Erik J. Tillman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart S. Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dennis H. Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
81
|
Clostridium butyricum MIYAIRI 588 Increases the Lifespan and Multiple-Stress Resistance of Caenorhabditis elegans. Nutrients 2018; 10:nu10121921. [PMID: 30563064 PMCID: PMC6316807 DOI: 10.3390/nu10121921] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/16/2022] Open
Abstract
Clostridium butyricum MIYAIRI 588 (CBM 588), one of the probiotic bacterial strains used for humans and domestic animals, has been reported to exert a variety of beneficial health effects. The effect of this probiotic on lifespan, however, is unknown. In the present study, we investigated the effect of CBM 588 on lifespan and multiple-stress resistance using Caenorhabditis elegans as a model animal. When adult C. elegans were fed a standard diet of Escherichia coli OP50 or CBM 588, the lifespan of the animals fed CBM 588 was significantly longer than that of animals fed OP50. In addition, the animals fed CBM588 exhibited higher locomotion at every age tested. Moreover, the worms fed CBM 588 were more resistant to certain stressors, including infections with pathogenic bacteria, UV irradiation, and the metal stressor Cu2+. CBM 588 failed to extend the lifespan of the daf-2/insulin-like receptor, daf-16/FOXO and skn-1/Nrf2 mutants. In conclusion, CBM 588 extends the lifespan of C. elegans probably through regulation of the insulin/IGF-1 signaling (IIS) pathway and the Nrf2 transcription factor, and CBM 588 improves resistance to several stressors in C. elegans.
Collapse
|
82
|
Kronberg MF, Clavijo A, Moya A, Rossen A, Calvo D, Pagano E, Munarriz E. Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2018; 214:1-8. [PMID: 30142450 DOI: 10.1016/j.cbpc.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/07/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
Glyphosate-based formulation is used as non-selective and post-emergent herbicides in urban and rural activities. In view of its recurring applications in agricultural producing countries, the increase of glyphosate concentration in the environment stresses the need to test the adverse effects on non-target organisms and assess the risk of its use. This paper analyzes the toxicological and oxidative stress and modulatory effects of a glyphosate commercial formulation (glyphosate F) on the nematode Caenorhabditis elegans. We detected ROS production and enhancement of oxidative stress response in glyphosate F-treated nematodes. Particularly, we found an increased ctl-1 catalase gene expression of a catalase specific activity. In addition, we showed that glyphosate F treatment activated the FOXO transcription factor DAF-16, a critical target of the insulin/IGF-1 signaling pathway, which modulates the transcription of a broad range of genes involved in stress resistance, reproductive development, dauer formation, and longevity. In summary, the exposure of glyphosate F induces an oxidative imbalance in C. elegans that leads to the DAF-16 activation and consequently to the expression of genes that boost the antioxidant defense system. In this regard, clt-1 gene and catalase activity proved to be excellent biomarkers to develop more sensitive protocols to assess the environmental risk of glyphosate use.
Collapse
Affiliation(s)
- María Florencia Kronberg
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Araceli Clavijo
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Aldana Moya
- Cátedra de Protección vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua, Pcia, Buenos Aires, Argentina
| | - Daniel Calvo
- Dirección de Servicios Hidrológicos, Instituto Nacional del Agua, Pcia, Buenos Aires, Argentina
| | - Eduardo Pagano
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Eliana Munarriz
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
83
|
Kim SH, Kim BK, Park SK. Selenocysteine mimics the effect of dietary restriction on lifespan via SKN‑1 and retards age‑associated pathophysiological changes in Caenorhabditis elegans. Mol Med Rep 2018; 18:5389-5398. [PMID: 30365103 PMCID: PMC6236260 DOI: 10.3892/mmr.2018.9590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Selenocysteine, a sulfur-containing amino acid, can modulate cellular oxidative stress defense systems by incorporating into anti-oxidant enzymes such as glutathione peroxidase and thioredoxin reductase. Selenocysteine can also prevent cancer, neurodegenerative diseases and cardiovascular diseases. A recent study revealed that dietary supplementation with selenocysteine can increase the resistance of Caenorhabditis elegans to environmental stressors and its lifespan. The objective of the present study was to identify the underlying mechanism involved in the lifespan-extending effect of selenocysteine and the effect of selenocysteine on age-associated pathophysiological changes. Lifespan assays with known long-lived mutants of age-1 (the ortholog of the phosphoinositide 3-kinase), clk-1 (the ortholog of demethoxyubiquinone hydroxylase) and eat-2 (a ligand-gated ion channel subunit) revealed that the effect of selenocysteine on lifespan specifically overlapped with that of the eat-2 mutation, a genetic model of dietary restriction (DR). Selenocysteine mimicked the effect of DR on the bacterial dilution method. It required SKN-1 (the ortholog of mammalian nuclear factor-erythroid-related factor) for lifespan extension. In addition, selenocysteine significantly delayed the paralysis induced by human amyloid-β gene, positively correlated with the incidence of Alzheimer's disease. The effect of selenocysteine on amyloid-β-induced toxicity was dependent on the nuclear localization of DAF-16. Reduced survival caused by high-glucose-diet was recovered by selenocysteine. Selenocysteine also reduced the cellular level of reactive oxygen species known to be increased by high-glucose-diet. The results of the present study suggested that selenocysteine can mimic the effect of DR on lifespan and age-associated pathophysiological alterations, providing scientific evidence for the development of DR mimetics using selenocysteine.
Collapse
Affiliation(s)
- So-Hyeon Kim
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Bo-Kyoung Kim
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
84
|
Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR, Ruvkun G, Riedel CG. DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun 2018; 9:4400. [PMID: 30353013 PMCID: PMC6199276 DOI: 10.1038/s41467-018-06624-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 08/24/2018] [Indexed: 01/07/2023] Open
Abstract
The ability to perceive and respond to harmful conditions is crucial for the survival of any organism. The transcription factor DAF-16/FOXO is central to these responses, relaying distress signals into the expression of stress resistance and longevity promoting genes. However, its sufficiency in fulfilling this complex task has remained unclear. Using C. elegans, we show that DAF-16 does not function alone but as part of a transcriptional regulatory module, together with the transcription factor HLH-30/TFEB. Under harmful conditions, both transcription factors translocate into the nucleus, where they often form a complex, co-occupy target promoters, and co-regulate many target genes. Interestingly though, their synergy is stimulus-dependent: They rely on each other, functioning in the same pathway, to promote longevity or resistance to oxidative stress, but they elicit heat stress responses independently, and they even oppose each other during dauer formation. We propose that this module of DAF-16 and HLH-30 acts by combinatorial gene regulation to relay distress signals into the expression of specific target gene sets, ensuring optimal survival under each given threat.
Collapse
Affiliation(s)
- Xin-Xuan Lin
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
- European Research Institute for the Biology of Ageing, University of Groningen, Antonius Deusinglaan, 1, 9713AV, Groningen, The Netherlands
| | - Ilke Sen
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
- European Research Institute for the Biology of Ageing, University of Groningen, Antonius Deusinglaan, 1, 9713AV, Groningen, The Netherlands
| | - Georges E Janssens
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
| | - Xin Zhou
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
| | - Bryan R Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Daniel Edgar
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/ Dr. Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), C/ Dr. Aiguader, 80, 08003, Barcelona, Spain
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Christian G Riedel
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157, Huddinge, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institute, Blickagången 16, 14157, Huddinge, Sweden.
- European Research Institute for the Biology of Ageing, University of Groningen, Antonius Deusinglaan, 1, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
85
|
Sphingosine Kinase Regulates Neuropeptide Secretion During the Oxidative Stress-Response Through Intertissue Signaling. J Neurosci 2018; 38:8160-8176. [PMID: 30082417 DOI: 10.1523/jneurosci.0536-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
The Nrf2 antioxidant transcription factor promotes redox homeostasis in part through reciprocal signaling between neurons and neighboring cells, but the signals involved in intertissue signaling in response to Nrf2 activation are not well defined. In Caenorhabditis elegans, activation of SKN-1/Nrf2 in the intestine negatively regulates neuropeptide secretion from motor neurons. Here, we show that sphingosine kinase (SPHK-1) functions downstream of SKN-1/Nrf2 in the intestine to regulate neuropeptide secretion from motor neurons during the oxidative stress response in C. elegans hermaphrodites. SPHK-1 localizes to mitochondria in the intestine and SPHK-1 mitochondrial localization and kinase activity are essential for its function in regulating motor neuron function. SPHK-1 is recruited to mitochondria from cytosolic pools and its mitochondrial abundance is negatively regulated by acute or chronic SKN-1 activation. Finally, the regulation of motor function by SKN-1 requires the activation of the p38 MAPK cascade in the intestine and occurs through controlling the biogenesis or maturation of dense core vesicles in motor neurons. These findings show that the inhibition of SPHK-1 in the intestine by SKN-1 negatively regulates neuropeptide secretion from motor neurons, revealing a new mechanism by which SPHK-1 signaling mediates its effects on neuronal function in response to oxidative stress.SIGNIFICANCE STATEMENT Neurons are highly susceptible to damage by oxidative stress, yet have limited capacity to activate the SKN-1/Nrf2 oxidative stress response, relying instead on astrocytes to provide redox homeostasis. In Caenorhabditis elegans, intertissue signaling from the intestine plays a key role in regulating neuronal function during the oxidative stress response. Here, through a combination of genetic, behavioral, and fluorescent imaging approaches, we found that sphingosine kinase functions in the SKN-1/Nrf2 pathway in the intestine to regulate neuropeptide biogenesis and secretion in motor neurons. These results implicate sphingolipid signaling as a new component of the oxidative stress response and suggest that C. elegans may be a genetically tractable model to study non-cell-autonomous oxidative stress signaling to neurons.
Collapse
|
86
|
Pender CL, Horvitz HR. Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior via a nuclear receptor. eLife 2018; 7:e36828. [PMID: 30010540 PMCID: PMC6078495 DOI: 10.7554/elife.36828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
The HIF (hypoxia-inducible factor) transcription factor is the master regulator of the metazoan response to chronic hypoxia. In addition to promoting adaptations to low oxygen, HIF drives cytoprotective mechanisms in response to stresses and modulates neural circuit function. How most HIF targets act in the control of the diverse aspects of HIF-regulated biology remains unknown. We discovered that a HIF target, the C. elegans gene cyp-36A1, is required for numerous HIF-dependent processes, including modulation of gene expression, stress resistance, and behavior. cyp-36A1 encodes a cytochrome P450 enzyme that we show controls expression of more than a third of HIF-induced genes. CYP-36A1 acts cell non-autonomously by regulating the activity of the nuclear hormone receptor NHR-46, suggesting that CYP-36A1 functions as a biosynthetic enzyme for a hormone ligand of this receptor. We propose that regulation of HIF effectors through activation of cytochrome P450 enzyme/nuclear receptor signaling pathways could similarly occur in humans.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Biology, Howard Hughes Medical InstituteMassachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - H Robert Horvitz
- Department of Biology, Howard Hughes Medical InstituteMassachusetts Institute of TechnologyCambridgeUnited States
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
87
|
D'Amora DR, Hu Q, Pizzardi M, Kubiseski TJ. BRAP-2 promotes DNA damage induced germline apoptosis in C. elegans through the regulation of SKN-1 and AKT-1. Cell Death Differ 2018; 25:1276-1288. [PMID: 29358669 PMCID: PMC6030105 DOI: 10.1038/s41418-017-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
As part of the DNA damage response (DDR) network, the tumour suppressor Breast cancer susceptibility gene 1 (BRCA1) is activated to facilitate DNA repair, transcription and cell cycle control. BRC-1, the Caenorhabditis elegans ortholog of BRCA1, has conserved function in DNA double strand break repair, wherein a loss of brc-1 results in high levels of germline apoptosis. BRAP2/IMP was initially identified as a BRCA1 associated binding protein and previously we have shown that the C. elegans brap-2 deletion mutant experiences BRC-1 dependent larval arrest when exposed to low concentrations of paraquat. Since BRC-1 function in the germline is conserved, we wanted to determine the role of BRAP-2 in DNA damage induced germline apoptosis in C. elegans. We examined levels of germ cell death following DNA damage and found that brap-2(ok1492) mutants display reduced levels of germline apoptosis when compared to the wild type, and the loss of brap-2 significantly reduced germ cell death in brc-1 mutant animals. We also found increased mRNA levels of skn-1 following DNA damage in brap-2 mutants and that skn-1 RNAi knockdown in brap-2;brc-1 double mutants and a loss of pmk-1 mutation in brap-2 mutants increased apoptosis to wild type levels, indicating that brap-2 promotion of cell survival requires PMK-1 and SKN-1. Since mammalian BRAP2 has been shown to bind the AKT phosphatase PHLPP1/2, it suggests that BRAP2 could be involved in the Insulin/Insulin-like growth factor Signaling (IIS) pathway. We found that this interaction is conserved between the C. elegans homologs and that a loss of akt-1 in brap-2 mutants increased germline apoptosis. Thus in response to DNA damage, our findings suggest that BRAP-2 is required to attenuate the pro-cell survival signals of AKT-1 and PMK-1/SKN-1 to promote DNA damage induced germline apoptosis.
Collapse
Affiliation(s)
- Dayana R D'Amora
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Queenie Hu
- Department of Biology, York University, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Monica Pizzardi
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Terrance J Kubiseski
- Department of Biology, York University, Toronto, Ontario, Canada.
- Program in Neuroscience, York University, Toronto, Ontario, Canada.
| |
Collapse
|
88
|
García-Rodríguez FJ, Martínez-Fernández C, Brena D, Kukhtar D, Serrat X, Nadal E, Boxem M, Honnen S, Miranda-Vizuete A, Villanueva A, Cerón J. Genetic and cellular sensitivity of Caenorhabditis elegans to the chemotherapeutic agent cisplatin. Dis Model Mech 2018; 11:dmm.033506. [PMID: 29752286 PMCID: PMC6031354 DOI: 10.1242/dmm.033506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Cisplatin and derivatives are commonly used as chemotherapeutic agents. Although the cytotoxic action of cisplatin on cancer cells is very efficient, clinical oncologists need to deal with two major difficulties, namely the onset of resistance to the drug and the cytotoxic effect in patients. Here, we used Caenorhabditis elegans to investigate factors influencing the response to cisplatin in multicellular organisms. In this hermaphroditic model organism, we observed that sperm failure is a major cause of cisplatin-induced infertility. RNA sequencing data indicate that cisplatin triggers a systemic stress response, in which DAF-16/FOXO and SKN-1/NRF2, two conserved transcription factors, are key regulators. We determined that inhibition of the DNA damage-induced apoptotic pathway does not confer cisplatin protection to the animal. However, mutants for the pro-apoptotic BH3-only gene ced-13 are sensitive to cisplatin, suggesting a protective role of the intrinsic apoptotic pathway. Finally, we demonstrated that our system can also be used to identify mutations providing resistance to cisplatin and therefore potential biomarkers of innate cisplatin-refractory patients. We show that mutants for the redox regulator trxr-1, ortholog of the mammalian thioredoxin reductase 1 TRXR1, display cisplatin resistance. By CRISPR/Cas9, we determined that such resistance relies on the presence of the single selenocysteine residue in TRXR-1. This article has an associated First Person interview with the first author of the paper. Summary:Caenorhabditiselegans is a valuable model to identify genetic factors influencing the animal response to the widely used chemotherapeutic agent cisplatin.
Collapse
Affiliation(s)
- Francisco Javier García-Rodríguez
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Carmen Martínez-Fernández
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - David Brena
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Dmytro Kukhtar
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Xènia Serrat
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ernest Nadal
- Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sebastian Honnen
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, D-40225 Düsseldorf, Germany
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Alberto Villanueva
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans. Genes, Diseases and Therapies Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
89
|
Eckley DM, Coletta CE, Orlov NV, Wilson MA, Iser W, Bastian P, Lehrmann E, Zhang Y, Becker KG, Goldberg IG. Transcriptome States Reflect Imaging of Aging States. J Gerontol A Biol Sci Med Sci 2018; 73:893-901. [PMID: 29216338 DOI: 10.1093/gerona/glx236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.
Collapse
Affiliation(s)
- D Mark Eckley
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Christopher E Coletta
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Nikita V Orlov
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Mark A Wilson
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Wendy Iser
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Paul Bastian
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Yonqing Zhang
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Ilya G Goldberg
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland.,Mindshare Medical, Inc., Baltimore, Maryland
| |
Collapse
|
90
|
Fontaine P, Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:312-319. [PMID: 29793058 PMCID: PMC6039320 DOI: 10.1016/j.ijpddr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/29/2022]
Abstract
Parasitic nematodes infect over 1/4 th of the human population and are a major burden on livestock and crop production. Benzimidazole class anthelmintics are widely used to treat infections, but resistance is a widespread problem. Mutation of genes encoding the benzimidazole target β-tubulin is a well-established mechanism of resistance, but recent evidence suggests that metabolism of the drugs may also occur. Our objective was to investigate contributions of the detoxification-response transcription factor SKN-1 to anthelmintic drug resistance using C. elegans. We find that skn-1 mutations alter EC50 of the common benzimidazole albendazole in motility assays by 1.5–1.7 fold. We also identify ugt-22 as a detoxification gene associated with SKN-1 that influences albendazole efficacy. Mutation and overexpression of ugt-22 alter albendazole EC50 by 2.3–2.5-fold. The influence of a nematode UGT on albendazole efficacy is consistent with recent studies demonstrating glucose conjugation of benzimidazoles.
Collapse
Affiliation(s)
- Pauline Fontaine
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Keith Choe
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
91
|
Sarasija S, Norman KR. Measurement of ROS in Caenorhabditis elegans Using a Reduced Form of Fluorescein. Bio Protoc 2018; 8:e2800. [PMID: 29707606 PMCID: PMC5914523 DOI: 10.21769/bioprotoc.2800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 11/02/2022] Open
Abstract
Oxidative stress is implicated in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease. Oxidative stress is a result of a disruption of the equilibrium between antioxidants and oxidants, in favor of oxidants. Since mitochondria are major sites of production and reduction of reactive oxygen species (ROS), measurement of ROS levels can help us determine if mitochondrial functional integrity has been compromised. In this protocol, we describe a method to measure the level of ROS in the nematode Caenorhabditis elegans, using chloromethyl-2,7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA).
Collapse
Affiliation(s)
- Shaarika Sarasija
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Kenneth R. Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
92
|
Shen P, Yue Y, Zheng J, Park Y. Caenorhabditis elegans: A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer's Disease. Annu Rev Food Sci Technol 2018; 9:1-22. [DOI: 10.1146/annurev-food-030117-012709] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
93
|
De Magalhaes Filho CD, Henriquez B, Seah NE, Evans RM, Lapierre LR, Dillin A. Visible light reduces C. elegans longevity. Nat Commun 2018; 9:927. [PMID: 29500338 PMCID: PMC5834526 DOI: 10.1038/s41467-018-02934-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.
Collapse
Affiliation(s)
- C Daniel De Magalhaes Filho
- The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley, Berkeley, CA, 94720, USA
- The Salk Institute for Biological Studies, Gene expression laboratory, The Howard Hughes Medical Institute, 10010 N.Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brian Henriquez
- The Salk Institute for Biological Studies, Gene expression laboratory, The Howard Hughes Medical Institute, 10010 N.Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicole E Seah
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Ronald M Evans
- The Salk Institute for Biological Studies, Gene expression laboratory, The Howard Hughes Medical Institute, 10010 N.Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Andrew Dillin
- The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
94
|
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans. Genetics 2018; 208:1467-1482. [PMID: 29487136 PMCID: PMC5887142 DOI: 10.1534/genetics.118.300827] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 12/24/2022] Open
Abstract
Although extracellular matrices function as protective barriers to many types of environmental insult, their role in sensing stress and regulating adaptive gene induction responses has not been studied carefully... Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.
Collapse
|
95
|
Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, Goodarzi M, Tu X, Robertson S, Lin R, Chudhuri A, Mirzaei H. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun 2017; 8:2223. [PMID: 29263362 PMCID: PMC5738364 DOI: 10.1038/s41467-017-02394-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 and its Caenorhabditis elegans ortholog, SKN-1, are transcription factors that have a pivotal role in the oxidative stress response, cellular homeostasis, and organismal lifespan. Similar to other defense systems, the NRF2-mediated stress response is compromised in aging and neurodegenerative diseases. Here, we report that the FDA approved drug hydralazine is a bona fide activator of the NRF2/SKN-1 signaling pathway. We demonstrate that hydralazine extends healthy lifespan (~25%) in wild type and tauopathy model C. elegans at least as effectively as other anti-aging compounds, such as curcumin and metformin. We show that hydralazine-mediated lifespan extension is SKN-1 dependent, with a mechanism most likely mimicking calorie restriction. Using both in vitro and in vivo models, we go on to demonstrate that hydralazine has neuroprotective properties against endogenous and exogenous stressors. Our data suggest that hydralazine may be a viable candidate for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Esmaeil Dehghan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, UT Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bahar Saremi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Amirmansoor Hakimi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maryam Dehghani
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mohammad Goodarzi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaoqin Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Scott Robertson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Asish Chudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
96
|
Hoffman TE, Barnett KJ, Wallis L, Hanneman WH. A multimethod computational simulation approach for investigating mitochondrial dynamics and dysfunction in degenerative aging. Aging Cell 2017; 16:1244-1255. [PMID: 28815872 PMCID: PMC5676065 DOI: 10.1111/acel.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2017] [Indexed: 12/15/2022] Open
Abstract
Research in biogerontology has largely focused on the complex relationship between mitochondrial dysfunction and biological aging. In particular, the mitochondrial free radical theory of aging (MFRTA) has been well accepted. However, this theory has been challenged by recent studies showing minimal increases in reactive oxygen species (ROS) as not entirely deleterious in nature, and even beneficial under the appropriate cellular circumstances. To assess these significant and nonintuitive observations in the context of a functional system, we have taken an in silico approach to expand the focus of the MFRTA by including other key mitochondrial stress response pathways, as they have been observed in the nematode Caenorhabditis elegans. These include the mitochondrial unfolded protein response (UPRmt), mitochondrial biogenesis and autophagy dynamics, the relevant DAF‐16 and SKN‐1 axes, and NAD+‐dependent deacetylase activities. To integrate these pathways, we have developed a multilevel hybrid‐modeling paradigm, containing agent‐based elements among stochastic system‐dynamics environments of logically derived ordinary differential equations, to simulate aging mitochondrial phenotypes within a population of energetically demanding cells. The simulation experiments resulted in accurate predictions of physiological parameters over time that accompany normal aging, such as the declines in both NAD+ and ATP and an increase in ROS. Additionally, the in silico system was virtually perturbed using a variety of pharmacological (e.g., rapamycin, pterostilbene, paraquat) and genetic (e.g., skn‐1, daf‐16, sod‐2) schemes to quantitate the temporal alterations of specific mechanistic targets, supporting insights into molecular determinants of aging as well as cytoprotective agents that may improve neurological or muscular healthspan.
Collapse
Affiliation(s)
- Timothy E. Hoffman
- Center for Environmental Medicine College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO 80523 USA
| | - Katherine J. Barnett
- Center for Environmental Medicine College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO 80523 USA
| | - Lyle Wallis
- Center for Environmental Medicine College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO 80523 USA
| | - William H. Hanneman
- Center for Environmental Medicine College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
97
|
Cai Y, Wei YH. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion. Oncotarget 2017; 7:10812-26. [PMID: 26934328 PMCID: PMC4905441 DOI: 10.18632/oncotarget.7769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yue-Hua Wei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
98
|
Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNA glycosylase deficient C. elegans. DNA Repair (Amst) 2017; 61:46-55. [PMID: 29202295 DOI: 10.1016/j.dnarep.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022]
Abstract
Oxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C. elegans nth-1 mutant, which lack the only DNA glycosylase dedicated to repair of oxidative DNA base damage, the NTH-1 DNA glycosylase. We show that nth-1 mutants have mitochondrial dysfunction characterised by lower mitochondrial DNA copy number, reduced mitochondrial membrane potential, and increased steady-state levels of reactive oxygen species. Consistently, nth-1 mutants express markers of chronic oxidative stress with high basal phosphorylation of MAP-kinases (MAPK) but further activation of MAPK in response to the superoxide generator paraquat is attenuated. Surprisingly, nth-1 mutants also failed to induce apoptosis in response to paraquat. The ability to induce apoptosis in response to paraquat was regained when basal MAPK activation was restored to wild type levels. In conclusion, the failure of nth-1 mutants to induce apoptosis in response to paraquat is not a direct effect of the DNA repair deficiency but an indirect consequence of the compensatory cellular stress response that includes MAPK activation.
Collapse
|
99
|
Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Res Rev 2017; 39:3-14. [PMID: 28007498 DOI: 10.1016/j.arr.2016.12.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Dietary restriction (DR) is the most robust environmental manipulation known to increase active and healthy lifespan in many species. Despite differences in the protocols and the way DR is carried out in different organisms, conserved relationships are emerging among multiple species. Elegant studies from numerous model organisms are further defining the importance of various nutrient-signaling pathways including mTOR (mechanistic target of rapamycin), insulin/IGF-1-like signaling and sirtuins in mediating the effects of DR. We here review current advances in our understanding of the molecular mechanisms altered by DR to promote lifespan in three major invertebrate models, the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster.
Collapse
|
100
|
Arndt DA, Oostveen EK, Triplett J, Butterfield DA, Tsyusko OV, Collin B, Starnes DL, Cai J, Klein JB, Nass R, Unrine JM. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:1-10. [PMID: 28888877 DOI: 10.1016/j.cbpc.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.
Collapse
Affiliation(s)
- Devrah A Arndt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Judy Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Blanche Collin
- CNRS, IRD, Coll. France, CEREGE, Aix Marseille Université, Aix-en-Provence, France
| | - Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jian Cai
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Jon B Klein
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|