51
|
Javed S, Skoog EC, Solnick JV. Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Curr Top Microbiol Immunol 2019; 421:21-52. [PMID: 31123884 DOI: 10.1007/978-3-030-15138-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.
Collapse
Affiliation(s)
- Sundus Javed
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Emma C Skoog
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Jay V Solnick
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA. .,Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
52
|
Pereira-Marques J, Ferreira RM, Pinto-Ribeiro I, Figueiredo C. Helicobacter pylori Infection, the Gastric Microbiome and Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:195-210. [PMID: 31016631 DOI: 10.1007/5584_2019_366] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After a long period during which the stomach was considered as an organ where microorganisms could not thrive, Helicobacter pylori was isolated in vitro from gastric biopsies, revolutionising the fields of Microbiology and Gastroenterology. Since then, and with the introduction of high-throughput sequencing technologies that allowed deep characterization of microbial communities, a growing body of knowledge has shown that the stomach contains a diverse microbial community, which is different from that of the oral cavity and of the intestine. Gastric cancer is a heterogeneous disease that is the end result of a cascade of events arising in a small fraction of patients colonized with H. pylori. In addition to H. pylori infection and to multiple host and environmental factors that influence disease development, alterations to the composition and function of the normal gastric microbiome, also known as dysbiosis, may also contribute to malignancy. Chronic inflammation of the mucosa in response to H. pylori may alter the gastric environment, paving the way to the growth of a dysbiotic gastric bacterial community. This dysbiotic microbiome may promote the development of gastric cancer by sustaining inflammation and/or inducing genotoxicity. This chapter summarizes what is known about the gastric microbiome in the context of H. pylori-associated gastric cancer, introducing the emerging dimension of the microbiome into the pathogenesis of this highly incident and deadly disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
53
|
The Story of Helicobacter pylori: Depicting Human Migrations from the Phylogeography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:1-16. [PMID: 31016625 DOI: 10.1007/5584_2019_356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a spiral-shaped Gram-negative bacterium, which has infected more than half of the human population. Besides its colonisation capability, the genetic diversity of H. pylori is exceptionally well structured and belongs to several distinct genetic populations, depicting various prehistorical human migration events. The evolutionary relationship of H. pylori with its host had been started at least ~100,000 years ago. In addition, the discovery of the ancient H. pylori genome from a European Copper Age glacier mummy, "The Iceman", gave the idea that the second out of Africa migration resulted in the recombinant population of hpEurope at least about 5300 years ago. The advancement of next-generation genome sequencing discovered the prophage of H. pylori and could discriminate the big population of hpEurope into two different subpopulations. In addition, the implementation of the chromopainter/fineSTRUCTURE algorithm to the whole genome analysis of H. pylori provides a finer resolution population genetics of H. pylori; therefore it could also depict the recent migrations within the past 500 years after colonial expansion. This discovery shows that the genetic recombination of H. pylori strains is far more dynamic compared to its human host, but still maintains the similarity to its host, suggesting that H. pylori is a handy tool to reconstruct the human migration both in the past and the recent.
Collapse
|
54
|
Whitmire JM, Merrell DS. Helicobacter pylori Genetic Polymorphisms in Gastric Disease Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:173-194. [DOI: 10.1007/5584_2019_365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
55
|
Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S. Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA byHelicobacter pylori. Cell Microbiol 2018; 21:e12965. [DOI: 10.1111/cmi.12965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Verena Schmitt
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Bernhard B. Singer
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| |
Collapse
|
56
|
Evaluating the origin and virulence of a Helicobacter pylori cagA-positive strain isolated from a non-human primate. Sci Rep 2018; 8:15981. [PMID: 30374120 PMCID: PMC6206097 DOI: 10.1038/s41598-018-34425-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori cagA-positive strains are critically involved in the development of gastric cancer. Upon delivery into gastric epithelial cells via type IV secretion, the cagA-encoded CagA interacts with and thereby perturbs the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1b via the tyrosine-phosphorylated EPIYA-C/D segment and the CM sequence, respectively. Importantly, sequences spanning these binding regions exhibit variations among CagA proteins, which influence the pathobiological/oncogenic potential of individual CagA. Here we isolated an H. pylori strain (Hp_TH2099) naturally infecting the stomach of a housed macaque, indicating a zoonotic feature of H. pylori infection. Whole genome sequence analysis revealed that Hp_TH2099 belongs to the hpAsia2 cluster and possesses ABC-type Western CagA, which contains hitherto unreported variations in both EPIYA-C and CM sequences. The CM variations almost totally abolished PAR1b binding. Whereas pTyr + 5 variation in the EPIYA-C segment potentiated SHP2-binding affinity, pTyr-2 variation dampened CagA tyrosine phosphorylation and thus impeded CagA-SHP2 complex formation. As opposed to the H. pylori standard strain, infection of mouse ES cell-derived gastric organoids with Hp_TH2099 failed to elicit CagA-dependent epithelial destruction. Thus, the macaque-isolated H. pylori showed low virulence due to attenuated CagA activity through multiple substitutions in the sequences involved in binding with SHP2 and PAR1b.
Collapse
|
57
|
Structural Analysis of Variability and Interaction of the N-terminal of the Oncogenic Effector CagA of Helicobacter pylori with Phosphatidylserine. Int J Mol Sci 2018; 19:ijms19103273. [PMID: 30360352 PMCID: PMC6214045 DOI: 10.3390/ijms19103273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori cytotoxin-associated gene A protein (CagA) has been associated with the increase in virulence and risk of cancer. It has been demonstrated that CagA’s translocation is dependent on its interaction with phosphatidylserine. We evaluated the variability of the N-terminal CagA in 127 sequences reported in NCBI, by referring to molecular interaction forces with the phosphatidylserine and the docking of three mutations chosen from variations in specific positions. The major sites of conservation of the residues involved in CagA–Phosphatidylserine interaction were 617, 621 and 626 which had no amino acid variation. Position 636 had the lowest conservation score; mutations in this position were evaluated to observe the differences in intermolecular forces for the CagA–Phosphatidylserine complex. We evaluated the docking of three mutations: K636A, K636R and K636N. The crystal and mutation models presented a ΔG of −8.919907, −8.665261, −8.701923, −8.515097 Kcal/mol, respectively, while mutations K636A, K636R, K636N and the crystal structure presented 0, 3, 4 and 1 H-bonds, respectively. Likewise, the bulk effect of the ΔG and amount of H-bonds was estimated in all of the docking models. The type of mutation affected both the ΔG (χ2(1)=93.82, p-value <2.2×10−16) and the H-bonds (χ2(1)=91.93, p-value <2.2×10−16). Overall, 76.9% of the strains that exhibit the K636N mutation produced a severe pathology. The average H-bond count diminished when comparing the mutations with the crystal structure of all the docking models, which means that other molecular forces are involved in the CagA–Phosphatidylserine complex interaction.
Collapse
|
58
|
Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R. Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog 2018; 14:e1007359. [PMID: 30365569 PMCID: PMC6231679 DOI: 10.1371/journal.ppat.1007359] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (cag-T4SS) into host cells is a hallmark of infection with Hp and a major risk factor for severe gastric diseases, including gastric cancer. To mediate the injection of CagA, Hp uses a membrane-embedded syringe-like molecular apparatus extended by an external pilus-like rod structure that binds host cell surface integrin heterodimers. It is still largely unclear how the interaction of the cag-T4SS finally mediates translocation of the CagA protein into the cell cytoplasm. Recently certain carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), acting as receptor for the Hp outer membrane adhesin HopQ, have been identified to be involved in the process of CagA host cell injection. Here, we applied the CRISPR/Cas9-knockout technology to generate defined human gastric AGS and KatoIII integrin knockout cell lines. Although confocal laser scanning microscopy revealed a co-localization of Hp and β1 integrin heterodimers on gastric epithelial cells, Hp infection studies using the quantitative and highly sensitive Hp β-lactamase reporter system clearly show that neither β1 integrin heterodimers (α1β1, α2β1 or α5β1), nor any other αβ integrin heterodimers on the cell surface are essential for CagA translocation. In contrast, deletion of the HopQ adhesin in Hp, or the simultaneous knockout of the receptors CEACAM1, CEACAM5 and CEACAM6 in KatoIII cells abolished CagA injection nearly completely, although bacterial binding was only reduced to 50%. These data provide genetic evidence that the cag-T4SS-mediated interaction of Hp with cell surface integrins on human gastric epithelial cells is not essential for CagA translocation, but interaction of Hp with CEACAM receptors is facilitating CagA translocation by the cag-T4SS of this important microbe.
Collapse
Affiliation(s)
- Qing Zhao
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Luisa Fernanda Jiménez-Soto
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | | | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS-Université de Lyon, France
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|
59
|
Bagheri N, Salimzadeh L, Shirzad H. The role of T helper 1-cell response in Helicobacter pylori-infection. Microb Pathog 2018; 123:1-8. [PMID: 29936093 DOI: 10.1016/j.micpath.2018.06.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a human pathogen affecting over 50% of the world population. This pathogen is usually associated with chronic inflammation of the gastric mucosa that can lead to peptic ulcer disease (PUD) and gastric cancer (GC), especially in susceptible individuals. These outcomes have been attributed to the interaction of several factors, including host genetic susceptibility, local innate and adaptive immune responses, virulence factors of H. pylori, and environmental factors. T helper (Th) cell subsets and their signature cytokines especially IFN-γ, contribute to anti-bacterial response, but at the mean time sustaining chronic inflammatory responses in the site of infection. It has been acknowledged that H. pylori-infection results in a Th1-dominant response and that inflammation of the gastric mucosa depends mainly on Th1 cell responses. But, the mechanism of the role of Th1 cell responses in H. pylori-infection has not yet been clearly explained. In this review, we will focus on the role of Th1 involved in H. pylori-infection, its interaction with Th17/Treg cells and its association with the clinical consequences of the infection.
Collapse
Affiliation(s)
- Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Loghman Salimzadeh
- Department of Microbiology and Immunology Programme, National University of Singapore, Singapore
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
60
|
Matsunaga S, Nishiumi S, Tagawa R, Yoshida M. Alterations in metabolic pathways in gastric epithelial cells infected with Helicobacter pylori. Microb Pathog 2018; 124:122-129. [PMID: 30138760 DOI: 10.1016/j.micpath.2018.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/04/2023]
Abstract
Helicobacter pylori (H. pylori), which is a spiral-shaped Gram-negative microaerobic bacterium, is a causative pathogen. The entry of H. pylori into gastric epithelial cells involves various host signal transduction events, and its virulence factors can also cause a variety of biological responses. In this study, AGS human gastric carcinoma cells were infected with CagA-positive H. pylori strain ATCC43504, and then the metabolites in the AGS cells after the 2-, 6- and 12-h infections were analyzed by GC/MS-based metabolomic analysis. Among 67 metabolites detected, 11 metabolites were significantly altered by the H. pylori infection. The metabolite profiles of H. pylori-infected AGS cells were evaluated on the basis of metabolite pathways, and it was found that glycolysis, tricarboxylic acid (TCA) cycle, and amino acid metabolism displayed characteristic changes in the H. pylori-infected AGS cells. At 2 h post-infection, the levels of many metabolites related to TCA cycle and amino acid metabolism were lower in H. pylori-infected AGS cells than in the corresponding uninfected AGS cells. On the contrary, after 6-h and 12-h infections the levels of most of these metabolites were higher in the H. pylori-infected AGS cells than in the corresponding uninfected AGS cells. In addition, it was shown that the H. pylori infection might regulate the pathways related to isocitrate dehydrogenase and asparagine synthetase. These metabolite alterations in gastric epithelial cells might be involved in H. pylori-induced biological responses; thus, our findings are important for understanding H. pylori-related gastric diseases.
Collapse
Affiliation(s)
- Shinsuke Matsunaga
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Ryoma Tagawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan; AMED-CREST, AMED, Kobe, Japan.
| |
Collapse
|
61
|
Vaziri F, Tarashi S, Fateh A, Siadat SD. New insights of Helicobacter pylori host-pathogen interactions: The triangle of virulence factors, epigenetic modifications and non-coding RNAs. World J Clin Cases 2018; 6:64-73. [PMID: 29774218 PMCID: PMC5955730 DOI: 10.12998/wjcc.v6.i5.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, MicroRNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.
Collapse
Affiliation(s)
- Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
62
|
Backert S, Haas R, Gerhard M, Naumann M. The Helicobacter pylori Type IV Secretion System Encoded by the cag Pathogenicity Island: Architecture, Function, and Signaling. Curr Top Microbiol Immunol 2018. [DOI: 10.1007/978-3-319-75241-9_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Atrisco-Morales J, Martínez-Santos VI, Román-Román A, Alarcón-Millán J, De Sampedro-Reyes J, Cruz-Del Carmen I, Martínez-Carrillo DN, Fernández-Tilapa G. vacA s1m1 genotype and cagA EPIYA-ABC pattern are predominant among Helicobacter pylori strains isolated from Mexican patients with chronic gastritis. J Med Microbiol 2018; 67:314-324. [PMID: 29458667 PMCID: PMC5882077 DOI: 10.1099/jmm.0.000660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Virulent genotypes of Helicobacter pylori vacA s1m1/cagA+/babA2+ have been associated with severe gastric diseases. VacA, CagA and BabA are polymorphic proteins, and their association with the disease is allele-dependent. The aims of this work were: (i) to determine the prevalence of H. pylori by type of chronic gastritis; (ii) to describe the frequency of cagA, babA2 and vacA genotypes in strains from patients with different types of chronic gastritis; (iii) to characterize the variable region of cagA alleles. Methodology A total of 164 patients with chronic gastritis were studied. Altogether, 50 H. pylori strains were isolated, and the status of cagA, babA2 and vacA genotypes was examined by PCR. cagA EPIYA segment identification was performed using PCR and sequencing of cagA fragments of six randomly selected strains. Results/Key findings The overall prevalence of H. pylori was 30.5 %. Eighty percent of the isolated strains were vacA s1m1, and the cagA and babA2 genes were detected in 74 and 32 % of the strains, respectively. The most frequent genotypes were vacA s1m1/cagA+/babA2- and vacA s1m1/cagA+/babA2+, with 40 % (20/50) and 28 % (14/50), respectively. In cagA+, the most frequent EPIYA motif was -ABC (78.4 %), and EPIYA-ABCC and -ABCCC motifs were found in 10.8 % of the strains. A modified EPIYT-B motif was found in 66.6 % of the sequenced strains. Conclusion H. pylori strains carrying vacA s1m1, cagA+ and babA2- genotypes were the most prevalent in patients with chronic gastritis from the south of Mexico. In the cagA+ strains, the EPIYA-ABC motif was the most common.
Collapse
Affiliation(s)
- Josefina Atrisco-Morales
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur. Chilpancingo, Guerrero, C.P. 39090, Mexico
| | - Verónica I Martínez-Santos
- CONACYT Research Fellow- Universidad Autónoma de Guerrero, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Adolfo Román-Román
- Laboratorio de Investigación en Bacteriología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Judit Alarcón-Millán
- Laboratorio de Investigación en Bacteriología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | | | | - Dinorah N Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur. Chilpancingo, Guerrero, C.P. 39090, Mexico
| | - Gloria Fernández-Tilapa
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C.U. Sur. Chilpancingo, Guerrero, C.P. 39090, Mexico
| |
Collapse
|
64
|
Bridge DR, Blum FC, Jang S, Kim J, Cha JH, Merrell DS. Creation and Initial Characterization of Isogenic Helicobacter pylori CagA EPIYA Variants Reveals Differential Activation of Host Cell Signaling Pathways. Sci Rep 2017; 7:11057. [PMID: 28887533 PMCID: PMC5591203 DOI: 10.1038/s41598-017-11382-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
The polymorphic CagA toxin is associated with Helicobacter pylori-induced disease. Previous data generated using non-isogenic strains and transfection models suggest that variation surrounding the C-terminal Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs as well as the number of EPIYA motifs influence disease outcome. To investigate potential CagA-mediated effects on host cell signaling, we constructed and characterized a large panel of isogenic H. pylori strains that differ primarily in the CagA EPIYA region. The number of EPIYA-C motifs or the presence of an EPIYA-D motif impacted early changes in host cell elongation; however, the degree of elongation was comparable across all strains at later time points. In contrast, the strain carrying the EPIYA-D motif induced more IL-8 secretion than any other EPIYA type, and a single EPIYA-C motif induced comparable IL-8 secretion as isolates carrying multiple EPIYA-C alleles. Similar levels of ERK1/2 activation were induced by all strains carrying a functional CagA allele. Together, our data suggest that polymorphism in the CagA C-terminus is responsible for differential alterations in some, but not all, host cell signaling pathways. Notably, our results differ from non-isogenic strain studies, thus highlighting the importance of using isogenic strains to study the role of CagA toxin polymorphism in gastric cancer development.
Collapse
Affiliation(s)
- Dacie R Bridge
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Bethesda, Maryland, 20814, USA
- University of Maryland School of Medicine, Center for Vaccine Development, Division of Geographic Medicine, Department of Medicine, Baltimore Maryland, 21201, USA
| | - Faith C Blum
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Bethesda, Maryland, 20814, USA
| | - Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jinmoon Kim
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Applied Life Science, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
- Microbiology & Molecular Biology, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - D Scott Merrell
- Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Microbiology and Immunology, Bethesda, Maryland, 20814, USA.
| |
Collapse
|
65
|
Aftab H, Miftahussurur M, Subsomwong P, Ahmed F, Khan AKA, Matsumoto T, Suzuki R, Yamaoka Y. Two populations of less-virulent Helicobacter pylori genotypes in Bangladesh. PLoS One 2017; 12:e0182947. [PMID: 28797101 PMCID: PMC5552282 DOI: 10.1371/journal.pone.0182947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2017] [Indexed: 12/23/2022] Open
Abstract
Bangladesh has a population with a low gastric cancer risk but high prevalence of Helicobacter pylori infection. Several studies have examined virulence genes in H. pylori from Bangladesh. We analyzed cagA and vacA subtypes and their association with severe histology phenotypes, and analyzed population types among Bangladeshi strains. We included patients who underwent endoscopy in Dhaka. Sequences of virulence genes and seven housekeeping genes were obtained by next generation sequencing and confirmed by Sanger sequencing. We isolated 56 H. pylori strains from 133 patients, of which 73.2% carried cagA, and all were considered Western-type. Patients infected with cagA-positive strains had more severe histological scores than patients infected with cagA-negative strains. Among vacA s1 and m1 genotypes, the s1a (97.8%, 43/44) and m1c (28/30, 93.3%) genotypes were predominant. All strains containing s1 and m1 (30/56, 53.6%) also had i1, d1, and c1. In contrast, all strains containing the less-virulent genotypes s2 and m2 (12/56, 21.4%) also possessed i2, d2, and c2. Multivariate analysis indicated that subjects infected with vacA m1-genotype strains only had a significantly higher risk of antrum atrophy than patients infected with m2-genotype strains. Of the two main H. pylori populations in this study, hpAsia2 strains were associated with higher activity and inflammation in the antrum compared to hpEurope strains; however, only vacA s1m1i1d1c1 strains, independent of population type, were significantly associated with inflammation in the antrum, unlike the s2m2i2d2c2 genotype. In conclusion, Bangladeshi strains were divided into two main populations of different genotypes. The low incidence of gastric cancer in Bangladesh might be attributable to the high proportion of less-virulent genotypes, which may be a better predictor of gastric cancer risk than the ancestral origin of the H. pylori strains. Finally, the vacA m region may be a better virulence marker than other regions.
Collapse
Affiliation(s)
- Hafeza Aftab
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | - Muhammad Miftahussurur
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital-Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, United States of America
| | - Phawinee Subsomwong
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Faruque Ahmed
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | - A. K. Azad Khan
- Department of Gastroenterology, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka, Bangladesh
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
66
|
Abstract
Answer questions and earn CME/CNE The human body harbors enormous numbers of microbiota that influence cancer susceptibility, in part through their prodigious metabolic capacity and their profound influence on immune cell function. Microbial pathogens drive tumorigenesis in 15% to 20% of cancer cases. Even larger numbers of malignancies are associated with an altered composition of commensal microbiota (dysbiosis) based on microbiome studies using metagenomic sequencing. Although association studies cannot distinguish whether changes in microbiota are causes or effects of cancer, a causative role is supported by rigorously controlled preclinical studies using gnotobiotic mouse models colonized with one or more specific bacteria. These studies demonstrate that microbiota can alter cancer susceptibility and progression by diverse mechanisms, such as modulating inflammation, inducing DNA damage, and producing metabolites involved in oncogenesis or tumor suppression. Evidence is emerging that microbiota can be manipulated for improving cancer treatment. By incorporating probiotics as adjuvants for checkpoint immunotherapy or by designing small molecules that target microbial enzymes, microbiota can be harnessed to improve cancer care. CA Cancer J Clin 2017;67:326-344. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Aadra P. Bhatt
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biochemistry & Biophysics, Microbiology & Immunology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
67
|
Lee DY, Jung DE, Yu SS, Lee YS, Choi BK, Lee YC. Regulation of SIRT3 signal related metabolic reprogramming in gastric cancer by Helicobacter pylori oncoprotein CagA. Oncotarget 2017; 8:78365-78378. [PMID: 29108235 PMCID: PMC5667968 DOI: 10.18632/oncotarget.18695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Injection of the Helicobacter pylori cytotoxin-associated gene A (CagA) is closely associated with the development of chronic gastritis and gastric cancer. Individuals infected with H. pylori possessing the CagA protein produce more reactive oxygen species (ROS) and show an increased risk of developing gastric cancer. Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and mitochondrial SIRT3 is known to be a tumor suppressor via its ability to suppress ROS and hypoxia inducible factor 1α (HIF-1α). However, it is unclear whether increased ROS production by H. pylori is regulated by SIRT3 followed by HIF-1α regulation and whether intracellular CagA acts as a regulator thereof. In this study, we investigated correlations among SIRT3, ROS, and HIF-1α in H. pylori-infected gastric epithelial cells. We observed that SIRT3-deficient AGS cells induce HIF-1α protein stabilization and augmented transcriptional activity under hypoxic conditions. In CagA+H. pylori infected cells, CagA protein localized to mitochondria where it subsequently suppressed SIRT3 proteins. CagA+H. pylori infection also increased HIF-1α activity through the ROS production induced by the downregulated SIRT3 activity, which is similar to the hypoxic condition in gastric epithelial cells. In contrast, overexpression of SIRT3 inhibited the HIF-1α protein stabilization and attenuated the increase in HIF-1α transcriptional activity under hypoxic conditions. Moreover, CagA+H. pylori attenuated HIF-1α stability and decreased transcriptional activity in SIRT3-overexpressing gastric epithelial cells. Taken together, these findings provide valuable insights into the potential role of SIRT3 in CagA+H. pylori-mediated gastric carcinogenesis and a possible target for cancer prevention via inhibition of HIF-1α.
Collapse
Affiliation(s)
- Do Yeon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Sook Yu
- Department of Biomedical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Beom Ku Choi
- Immune & Cell Therapy Branch, Division of Cancer Biology, National Cancer Center, Gyeonggi-do, Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
68
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
69
|
Structural Insights into Helicobacter pylori Cag Protein Interactions with Host Cell Factors. Curr Top Microbiol Immunol 2017; 400:129-147. [PMID: 28124152 DOI: 10.1007/978-3-319-50520-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The most virulent strains of Helicobacter pylori carry a genomic island (cagPAI) containing a set of 27-31 genes. The encoded proteins assemble a syringe-like apparatus to inject the cytotoxin-associated gene A (CagA) protein into gastric cells. This molecular device belongs to the type IV secretion system (T4SS) family albeit with unique characteristics. The cagPAI-encoded T4SS and its effector protein CagA have an intricate relationship with the host cell, with multiple interactions that only start to be deciphered from a structural point of view. On the one hand, the major roles of the interactions between CagL and CagA (and perhaps CagI and CagY) and host cell factors are to facilitate H. pylori adhesion and to mediate the injection of the CagA oncoprotein. On the other hand, CagA interactions with host cell partners interfere with cellular pathways to subvert cell defences and to promote H. pylori infection. Although a clear mechanism for CagA translocation is still lacking, the structural definition of CagA and CagL domains involved in interactions with signalling proteins are progressively coming to light. In this chapter, we will focus on the structural aspects of Cag protein interactions with host cell molecules, critical molecular events precluding H. pylori-mediated gastric cancer development.
Collapse
|
70
|
Tegtmeyer N, Neddermann M, Asche CI, Backert S. Subversion of host kinases: a key network in cellular signaling hijacked byHelicobacter pyloriCagA. Mol Microbiol 2017; 105:358-372. [DOI: 10.1111/mmi.13707] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Matthias Neddermann
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Carmen Isabell Asche
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen-Nuremberg; Staudtstr. 5 Erlangen D-91058 Germany
| |
Collapse
|
71
|
John Von Freyend S, Kwok-Schuelein T, Netter HJ, Haqshenas G, Semblat JP, Doerig C. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens. Pathogens 2017; 6:pathogens6020017. [PMID: 28430160 PMCID: PMC5488651 DOI: 10.3390/pathogens6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Collapse
Affiliation(s)
- Simona John Von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Terry Kwok-Schuelein
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| | - Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
72
|
Nishikawa H, Hatakeyama M. Sequence Polymorphism and Intrinsic Structural Disorder as Related to Pathobiological Performance of the Helicobacter pylori CagA Oncoprotein. Toxins (Basel) 2017; 9:toxins9040136. [PMID: 28406453 PMCID: PMC5408210 DOI: 10.3390/toxins9040136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
CagA, an oncogenic virulence factor produced by Helicobacter pylori, is causally associated with the development of gastrointestinal diseases such as chronic gastritis, peptic ulcers, and gastric cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA interacts with a number of host proteins through the intrinsically disordered C-terminal tail, which contains two repeatable protein-binding motifs, the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif and the CagA multimerization (CM) motif. The EPIYA motif, upon phosphorylation by host kinases, binds and deregulates Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2), a bona fide oncoprotein, inducing pro-oncogenic mitogenic signaling and abnormal cell morphology. Through the CM motif, CagA inhibits the kinase activity of polarity regulator partitioning-defective 1b (PAR1b), causing junctional and polarity defects while inducing actin cytoskeletal rearrangements. The magnitude of the pathobiological action of individual CagA has been linked to the tandem repeat polymorphisms of these two binding motifs, yet the molecular mechanisms by which they affect disease outcome remain unclear. Recent studies using quantitative techniques have provided new insights into how the sequence polymorphisms in the structurally disordered C-terminal region determine the degree of pro-oncogenic action of CagA in the gastric epithelium.
Collapse
Affiliation(s)
- Hiroko Nishikawa
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| |
Collapse
|
73
|
Li Q, Liu J, Gong Y, Yuan Y. Association of CagA EPIYA-D or EPIYA-C phosphorylation sites with peptic ulcer and gastric cancer risks: A meta-analysis. Medicine (Baltimore) 2017; 96:e6620. [PMID: 28445260 PMCID: PMC5413225 DOI: 10.1097/md.0000000000006620] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increasingly, studies have focused on the relationship between Helicobacter pylori (H pylori) cytotoxin associated gene A protein (CagA) Glu-Pro-Ile-Tyr-Ala (EPIYA)-D motifs or multiple EPIYA-C phosphorylation sites and peptic ulcer disease (PUD) or gastric cancer (GC) risk. However, the conclusions have been inconsistent. The aim of this meta-analysis was to evaluate whether 1 CagA EPIYA-D motif or multiple EPIYA-C phosphorylation sites were associated with PUD or GC risk. MATERIALS AND METHODS A literature search was performed in PubMed, Web of Science, Wanfang Data, Excerpt Medica Database, and the Chinese National Knowledge Infrastructure database to identify eligible research. We analyzed the odds ratios (OR) and 95% confidence intervals (CI) to assess the strength of association. RESULTS Compared with 1 EPIYA-C motif in Asian populations, 1 EPIYA-D site was associated with an increased GC risk (OR=1.91, 95% CI=1.19-3.07, P = .008). However, 1 EPIYA-D motif was not significantly associated with PUD (OR = 0.90, 95% CI = 0.46-1.76, P = .764), gastric ulcer (GU) (OR = 0.85, 95% CI = 0.27-2.63, P = .771), or duodenal ulcer (DU) (OR = 0.89, 95% CI = 0.25-3.16, P = .859) risk. Compared with no more than 1 EPIYA-C motif, multiple motifs were associated with increased PUD (OR = 2.33, 95% CI = 1.29-4.20, P = .005) and DU (OR = 2.32, 95% CI = 1.08-5.00, P = .031) risk in Asia and GC risk in the United States and Europe (OR = 3.28, 95% CI = 2.32-4.64, P < .001). Multiple EPIYA-C sites were not associated with GU risk (OR = 4.54, 95% CI = 0.95-21.83, P = .059). There was no publication bias identified in these comparisons. CONCLUSIONS In Asia, 1 EPIYA-D motif was significantly associated with increased GC risk. Multiple EPIYA-C motifs were associated with increased PUD and DU risk, particularly in Asia. In the United States and Europe, multiple EPIYA-C motifs were associated with increased GC risk. Therefore, detection of polymorphic CagA EPIYA motifs may improve clinical prediction of disease risk.
Collapse
|
74
|
Backert S, Tegtmeyer N. Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors. Toxins (Basel) 2017; 9:E115. [PMID: 28338646 PMCID: PMC5408189 DOI: 10.3390/toxins9040115] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a highly successful human bacterium, which is exceptionally equipped to persistently inhabit the human stomach. Colonization by this pathogen is associated with gastric disorders ranging from chronic gastritis and peptic ulcers to cancer. Highly virulent H. pylori strains express the well-established adhesins BabA/B, SabA, AlpA/B, OipA, and HopQ, and a type IV secretion system (T4SS) encoded by the cag pathogenicity island (PAI). The adhesins ascertain intimate bacterial contact to gastric epithelial cells, while the T4SS represents an extracellular pilus-like structure for the translocation of the effector protein CagA. Numerous T4SS components including CagI, CagL, CagY, and CagA have been shown to target the integrin-β₁ receptor followed by translocation of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine and CagA-containing outer membrane vesicles may also play a role in the delivery process. Translocated CagA undergoes tyrosine phosphorylation in C-terminal EPIYA-repeat motifs by oncogenic Src and Abl kinases. CagA then interacts with an array of host signaling proteins followed by their activation or inactivation in phosphorylation-dependent and phosphorylation-independent fashions. We now count about 25 host cell binding partners of intracellular CagA, which represent the highest quantity of all currently known virulence-associated effector proteins in the microbial world. Here we review the research progress in characterizing interactions of CagA with multiple host cell receptors in the gastric epithelium, including integrin-β₁, EGFR, c-Met, CD44, E-cadherin, and gp130. The contribution of these interactions to H. pylori colonization, signal transduction, and gastric pathogenesis is discussed.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany.
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany.
| |
Collapse
|
75
|
Matsuo Y, Kido Y, Akada J, Shiota S, Binh TT, Trang TTH, Dung HDQ, Tung PH, Tri TD, Thuan NPM, Tam LQ, Nam BC, Khien VV, Yamaoka Y. Novel CagA ELISA exhibits enhanced sensitivity of Helicobacter pylori CagA antibody. World J Gastroenterol 2017; 23:48-59. [PMID: 28104980 PMCID: PMC5221286 DOI: 10.3748/wjg.v23.i1.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a novel Helicobacter pylori (H. pylori) CagA antibody enzyme-linked immunosorbent assay (ELISA) suitable for detecting serum anti-CagA antibodies with high sensitivity.
METHODS Recombinant East Asian-type CagA protein was purified and immobilized for ELISA. Serum samples from 217 Vietnamese individuals (110 H. pylori-infected and 107 uninfected individuals) were applied. Conventional ELISA from Western-type CagA and our East Asian-type CagA ELISA were evaluated by comparing 38 subjects with the Western-type genotype and 72 subjects with the East Asian-type cagA genotype. Histological scores of the gastric mucosa were determined using the updated Sydney System to examine the relationship with anti-CagA antibody titers.
RESULTS Recombinant 70-100 kDa fragments were immobilized on the ELISA plate. In ROC analysis, the area under the curve of our East Asian-type CagA ELISA was comparable to that of conventional CagA ELISA. The sensitivity of the two ELISAs differed depending on the cagA genotype. The sensitivity of East Asian-type CagA ELISA was higher for subjects infected with East Asian-type cagA H. pylori (P < 0.001), and the sensitivity of the conventional CagA ELISA tended to be higher for subjects infected with Western cagA H. pylori (P = 0.056). The titer of anti-CagA antibody tended to correlate with monocyte infiltration scores (r = 0.25, P = 0.058) and was inversely correlated with H. pylori density (r = -0.26, P = 0.043).
CONCLUSION The novel ELISA is useful to detect anti-CagA antibodies in East Asian countries, and the titer may be a marker for predicting chronic gastritis.
Collapse
|
76
|
Kameoka S, Kameyama T, Hayashi T, Sato S, Ohnishi N, Hayashi T, Murata-Kamiya N, Higashi H, Hatakeyama M, Takaoka A. Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells. Biomed Res 2016; 37:21-7. [PMID: 26912137 DOI: 10.2220/biomedres.37.21] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than 50% of people in the world are infected with Helicobacter pylori (H. pylori), which induces various gastric diseases. Especially, epidemiological studies have shown that H. pylori infection is a major risk factor for gastric cancer. It has been reported that the levels of interleukin (IL)-1β are upregulated in gastric tissues of patients with H. pylori infection. In this study, we investigated the induction mechanism of IL-1β during H. pylori infection. We found that IL-1βmRNA and protein were induced in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells after H. pylori infection. This IL-1β production was inhibited by a caspase-1 inhibitor and a ROS inhibitor. Furthermore, K(+) efflux and Ca(2+) signaling were also involved in this process. These data suggest that NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) and its complex, known as NLRP3 inflammasome, are involved in IL-1β production during H. pylori infection because it is reported that NLRP3 inflammasome is activated by ROS, K(+) efflux and/or Ca(2+) signaling. These findings may provide therapeutic strategy for the control of gastric cancer in H. pylori-infected patients.
Collapse
Affiliation(s)
- Shoichiro Kameoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Wang H, Yao Y, Ni B, Shen Y, Wang X, Shen H, Shao S. Helicobacter pylori CagI is associated with the stability of CagA. Microb Pathog 2016; 99:130-134. [DOI: 10.1016/j.micpath.2016.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 01/25/2023]
|
78
|
Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol 2016; 16:201. [PMID: 27590005 PMCID: PMC5009636 DOI: 10.1186/s12866-016-0820-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways. Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies for each of the three sites in CagA are not forthcoming. RESULTS This study was designed to systematically analyze the detection preferences of each phosphorylated East Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with high specificity. However, the sequence recognition by the different antibodies was found to bear high variability. From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well. Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that none of the antibodies reacted with non-phospho-CagA peptides and in accordance were able to recognize phosphotyrosine proteins in human cells. CONCLUSIONS The results of this study disclose the various binding preferences of commercial anti-phosphotyrosine antibodies for phospho-EPIYA-motifs, and are valuable in the application for further characterization of CagA phosphorylation events during infection with H. pylori and risk prediction for gastric disease development.
Collapse
Affiliation(s)
- Judith Lind
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Rebecca Hoffmann
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nuremberg, Schuhstraße 19, D-91052, Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nuremberg, Schuhstraße 19, D-91052, Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Guillermo I Perez-Perez
- Department of Medicine and Microbiology, New York University, Langone Medical Centre, New York, USA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría del Instituto Mexicano del Seguro Social, Mexico City, México
| | - Heinrich Sticht
- Bioinformatics, Institute for Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, Fahrstrasse 17, D-91054, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany.
| |
Collapse
|
79
|
CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families. Infect Immun 2016; 84:2671-80. [PMID: 27382024 PMCID: PMC4995908 DOI: 10.1128/iai.00349-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/25/2016] [Indexed: 02/08/2023] Open
Abstract
CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori. CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori. We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma.
Collapse
|
80
|
Popa CM, Tabuchi M, Valls M. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol 2016; 6:73. [PMID: 27489796 PMCID: PMC4951486 DOI: 10.3389/fcimb.2016.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.
Collapse
Affiliation(s)
- Crina M Popa
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Kagawa, Japan
| | - Marc Valls
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
81
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
82
|
Lang BJ, Gorrell RJ, Tafreshi M, Hatakeyama M, Kwok T, Price JT. The Helicobacter pylori cytotoxin CagA is essential for suppressing host heat shock protein expression. Cell Stress Chaperones 2016; 21:523-33. [PMID: 26928021 PMCID: PMC4837183 DOI: 10.1007/s12192-016-0680-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/11/2016] [Accepted: 02/10/2016] [Indexed: 02/07/2023] Open
Abstract
Bacterial infections typically elicit a strong Heat Shock Response (HSR) in host cells. However, the gastric pathogen Helicobacter pylori has the unique ability to repress this response, the mechanism of which has yet to be elucidated. This study sought to characterize the underlying mechanisms by which H. pylori down-modulates host HSP expression upon infection. Examination of isogenic mutant strains of H. pylori defective in components of the type IV secretion system (T4SS), identified the secretion substrate, CagA, to be essential for down-modulation of the HSPs HSPH1 (HSP105), HSPA1A (HSP72), and HSPD1 (HSP60) upon infection of the AGS gastric adenocarcinoma cell line. Ectopic expression of CagA by transient transfection was insufficient to repress HSP expression in AGS or HEK293T cells, suggesting that additional H. pylori factors are required for HSP repression. RT-qPCR analysis of HSP gene expression in AGS cells infected with wild-type H. pylori or isogenic cagA-deletion mutant found no significant change to account for reduced HSP levels. In summary, this study identified CagA to be an essential bacterial factor for H. pylori-mediated suppression of host HSP expression. The novel finding that HSPH1 is down-modulated by H. pylori further highlights the unique ability of H. pylori to repress the HSR within host cells. Elucidation of the mechanism by which H. pylori achieves HSP repression may prove to be beneficial in the identification of novel mechanisms to inhibit the HSR pathway and provide further insight into the interactions between H. pylori and the host gastric epithelium.
Collapse
Affiliation(s)
- Ben J Lang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rebecca J Gorrell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
- Infection and Immunity, and Cancer Programs, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Mona Tafreshi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-0033, Japan
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia.
- Infection and Immunity, and Cancer Programs, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.
| | - John T Price
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia.
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, St Albans, Melbourne, VIC, Australia.
| |
Collapse
|
83
|
Tohidpour A. CagA-mediated pathogenesis of Helicobacter pylori. Microb Pathog 2016; 93:44-55. [DOI: 10.1016/j.micpath.2016.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
|
84
|
Jiménez-Soto LF, Haas R. The CagA toxin of Helicobacter pylori: abundant production but relatively low amount translocated. Sci Rep 2016; 6:23227. [PMID: 26983895 PMCID: PMC4794710 DOI: 10.1038/srep23227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
CagA is one of the most studied pathogenicity factors of the bacterial pathogen Helicobacter pylori. It is injected into host cells via the H. pylori cag-Type IV secretion system. Due to its association with gastric cancer, CagA is classified as oncogenic protein. At the same time CagA represents the 4th most abundant protein produced by H. pylori, suggesting that high amounts of toxin are required to cause the physiological changes or damage observed in cells. We were able to quantify the injection of CagA into gastric AGS epithelial cells in vitro by the adaptation of a novel protease-based approach to remove the tightly adherent extracellular bacteria. After one hour of infection only 1.5% of the total CagA available was injected by the adherent bacteria, whereas after 3 hours 7.5% was found within the host cell. Thus, our data show that only a surprisingly small amount of the CagA available in the infection is finally injected under in vitro infection conditions.
Collapse
Affiliation(s)
- Luisa F Jiménez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, Pettenkoferstraße 9a, D-80336 München, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, Pettenkoferstraße 9a, D-80336 München, Germany.,German Center for Infection Research (DZIF), LMU Munich, Germany
| |
Collapse
|
85
|
Uno K, Iijima K, Shimosegawa T. Gastric cancer development after the successful eradication of Helicobacter pylori. World J Gastrointest Oncol 2016; 8:271-281. [PMID: 26989462 PMCID: PMC4789612 DOI: 10.4251/wjgo.v8.i3.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/11/2015] [Accepted: 12/15/2015] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) develops as a result of inflammation-associated carcinogenesis due to Helicobacter pylori (H. pylori) infection and subsequent defects in genetic/epigenetic events. Although the indication for eradication therapy has become widespread, clinical studies have revealed its limited effects in decreasing the incidence of GC. Moreover, research on biopsy specimens obtained by conventional endoscopy has demonstrated the feasibility of the restoration of some genetic/epigenetic alterations in the gastric mucosa. Practically, the number of sporadic cases of primary/metachronous GC that emerge after successful eradication has increased, while on-going guidelines recommend eradication therapy for patients with chronic gastritis and those with background mucosa after endoscopic resection for GC. Accordingly, regular surveillance of numerous individuals who have received eradication therapy is recommended despite the lack of biomarkers. Recently, the focus has been on functional reversibility after successful eradication as another cue to elucidate the mechanisms of restoration as well as those of carcinogenesis in the gastric mucosa after H. pylori eradication. We demonstrated that Congo-red chromoendoscopy enabled the identification of the multi-focal distribution of functionally irreversible mucosa compared with that of restored mucosa after successful eradication in individuals at extremely high risk for GC. Further research that uses functional imaging may provide new insights into the mechanisms of regeneration and carcinogenesis in the gastric mucosa post-eradication and may allow for the development of useful biomarkers.
Collapse
|
86
|
Keilberg D, Ottemann KM. HowHelicobacter pylorisenses, targets and interacts with the gastric epithelium. Environ Microbiol 2016; 18:791-806. [DOI: 10.1111/1462-2920.13222] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Daniela Keilberg
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| |
Collapse
|
87
|
The Gastric Mucosa from Patients Infected with CagA+ or VacA+ Helicobacter pylori Has a Lower Level of Dual Oxidase-2 Expression than Uninfected or Infected with CagA-/VacA- H. pylori. Dig Dis Sci 2016; 61:2328-2337. [PMID: 27048452 PMCID: PMC4943970 DOI: 10.1007/s10620-016-4144-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/22/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a well-recognized gastroduodenal pathogen and class I carcinogen. Dual oxidase-2 (DUOX2), a member of NADPH oxidase family, has several critical physiological functions, including thyroid hormone biosynthesis and host mucosal defense. AIM To investigate the effect of H. pylori infection on DUOX2 gene expression in human stomach. MATERIALS AND METHODS The biopsies were obtained from patients who underwent endoscopic diagnosis. The patient serum was assayed for two virulence factors of H. pylori, CagA IgG and VacA. The inflammation in gastric mucosa was analyzed with histology. Real-time quantitative PCR was used to detect the expression of three members of NADPH oxidase, NOX1, NOX2, and DUOX2, as well as lactoperoxidase (LPO) in the gastric mucosa. NOX2, DUOX2, and myeloperoxidase (MPO) protein levels were quantified by Western blots or immunohistochemistry. RESULTS The H. pylori-infected gastric mucosa had more severe inflammation than uninfected samples. However, the expression of DUOX2 mRNA and protein was lower in gastric mucosa of patients with H. pylori infection compared to the uninfected. Among the H. pylori-infected patients, those having CagA IgG or VacA in the serum had lower DUOX2 expression levels than those infected with H. pylori without either virulence factor. The NOX2 and MPO levels were higher in those patients infected with H. pylori irrespective of the virulence factors than those uninfected patients. NOX1 and LPO mRNA were undetectable in the gastric mucosa. CONCLUSION CagA+ or VacA+ H. pylori in the stomach of patients may suppress DUOX2 expression to promote its own survival. Increased NOX2 could not eliminate H. pylori infection.
Collapse
|
88
|
Kaur B, Kaur G. Amelioration of Helicobacter pylori-Induced PUD by Probiotic Lactic Acid Bacteria. PROBIOTICS, PREBIOTICS, AND SYNBIOTICS 2016:865-895. [DOI: 10.1016/b978-0-12-802189-7.00067-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
89
|
Valenzuela MA, Canales J, Corvalán AH, Quest AFG. Helicobacter pylori-induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol 2015; 21:12742-12756. [PMID: 26668499 PMCID: PMC4671030 DOI: 10.3748/wjg.v21.i45.12742] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The sequence of events associated with the development of gastric cancer has been described as “the gastric precancerous cascade”. This cascade is a dynamic process that includes lesions, such as atrophic gastritis, intestinal metaplasia and dysplasia. According to this model, Helicobacter pylori (H. pylori) infection targets the normal gastric mucosa causing non-atrophic gastritis, an initiating lesion that can be cured by clearing H. pylori with antibiotics or that may then linger in the case of chronic infection and progress to atrophic gastritis. The presence of virulence factors in the infecting H. pylori drives the carcinogenesis process. Independent epidemiological and animal studies have confirmed the sequential progression of these precancerous lesions. Particularly long-term follow-up studies estimated a risk of 0.1% for atrophic gastritis/intestinal metaplasia and 6% in case of dysplasia for the long-term development of gastric cancer. With this in mind, a better understanding of the genetic and epigenetic changes associated with progression of the cascade is critical in determining the risk of gastric cancer associated with H. pylori infection. In this review, we will summarize some of the most relevant mechanisms and focus predominantly but not exclusively on the discussion of gene promoter methylation and miRNAs in this context.
Collapse
|
90
|
Pajavand H, Alvandi A, Mohajeri P, Bakhtyari S, Bashiri H, Kalali B, Gerhard M, Najafi F, Abiri R. High Frequency of vacA s1m2 Genotypes Among Helicobacter pylori Isolates From Patients With Gastroduodenal Disorders in Kermanshah, Iran. Jundishapur J Microbiol 2015; 8:e25425. [PMID: 26862378 PMCID: PMC4740511 DOI: 10.5812/jjm.25425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/05/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Helicobacter pylori infection and related diseases outcome are mediated by a complex interplay between bacterial, host and environmental factors. Several distinct virulence factors of H. pylori have been shown to be associated with different clinical outcomes. Here we focused on vacA and cagA genotypes of H. pylori strains isolated from patients with gastric disorder. Objectives: The aim of this study was to determine the frequency of two toxins and genotypes of VacA toxin in patients referred to a central hospital in the west of Iran (Imam Reza hospital, Kermanshah) during 2011 - 2012. Patients and Methods: Samples were collected from patients infected with H. pylori. Gastric biopsy specimens from the stomach antrum and corpus were cultured. PCR analysis was performed for genotyping H. pylorivacA and cagA genes. Results: Helicobacter pylori was isolated from 48% (96/200) of patients with gastroduodenal disorders. In 81/96 (84%) cases, the cagA gene was present. Among different genotypes of vacA, two s1m2 and s2m2 genotypes were dominant with frequency of 39.5% and 50%, respectively. The frequency of the s1m1 genotype was 7.2% (7/96), which is much lower than elsewhere. H. pylori isolates with positive results for cagA gene and vacA s1m2 genotypes showed statistically significant correlation with peptic ulcer (s1m2 13/34 [38.2%] P = 0.003). However, isolates of H. pylori infection with cagA gene and vacAs2m2 genotypes were significantly associated with development of gastritis (s2m2 41/42 [97.6%] P = 0.000). Conclusions: About 90% of H. pylori strains potentially contained vacAs2m2 and s1m2 genotypes. Infection with H. pylori strain containing the cagA gene or the vacAs1m1 and s1m2 genotypes was associated with increased incidence of peptic ulcer disease (PUD).
Collapse
Affiliation(s)
- Hamid Pajavand
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Amirhooshang Alvandi
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Parviz Mohajeri
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Somaye Bakhtyari
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Homayoon Bashiri
- Department of Internal Medicine, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Behnam Kalali
- Department of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Markus Gerhard
- Department of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Farid Najafi
- Department of Epidemiology, Epidemiology of Cancer, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
| | - Ramin Abiri
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
- Corresponding author: Ramin Abiri, Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, P. O. Box: 6714869914, Kermanshah, IR Iran. Tel: +98-9122773648, Fax: +98-8314274623, E-mail:
| |
Collapse
|
91
|
Rosadi F, Fiorentini C, Fabbri A. Bacterial protein toxins in human cancers. Pathog Dis 2015; 74:ftv105. [DOI: 10.1093/femspd/ftv105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
|
92
|
da Costa DM, Pereira EDS, Rabenhorst SHB. What exists beyond cagA and vacA? Helicobacter pylori genes in gastric diseases. World J Gastroenterol 2015; 21:10563-72. [PMID: 26457016 PMCID: PMC4588078 DOI: 10.3748/wjg.v21.i37.10563] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/13/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is present in more than half the world's population and has been associated with several gastric disorders, such as gastritis, peptic ulceration, and gastric adenocarcinoma. The clinical outcome of this infection depends on host and bacterial factors where H. pylori virulence genes seem to play a relevant role. Studies of cagA and vacA genes established that they were determining factors in gastric pathogenesis. However, there are gastric cancer cases that are cagA-negative. Several other virulence genes have been searched for, but these genes remain less well known that cagA and vacA. Thus, this review aimed to establish which genes have been suggested as potentially relevant virulence factors for H. pylori-associated gastrointestinal diseases. We focused on the cag-pathogenicity island, genes with adherence and motility functions, and iceA based on the relevance shown in several studies in the literature.
Collapse
|
93
|
Wang MY, Liu XF, Gao XZ. Helicobacter pylori virulence factors in development of gastric carcinoma. Future Microbiol 2015; 10:1505-16. [PMID: 26346770 DOI: 10.2217/fmb.15.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori plays a vital role in the pathogenesis of gastric carcinoma. However, only a relatively small proportion of individuals infected with H. pylori develop gastric carcinoma. Differences in the incidence of gastric carcinoma among infected individuals can be explained, at least partly, by the different genotypes of H. pylori virulence factors. Thus far, many virulence factors of H. pylori, such as Cag PAI, VacA, OMPs and DupA, have been reported to be involved in the development of gastric cancer. The risk of developing gastric cancer during H. pylori infection is affected by specific host-microbe interactions that are independent of H. pylori virulence factors. In this review, we discuss virulence factors of H. pylori and their role in the development of gastric carcinoma that will provide further understanding of the biological interactions of H. pylori with the host.
Collapse
Affiliation(s)
- Ming-Yi Wang
- Department of Clinical Lab, Weihai Municipal Hospital, Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Xiao-Fei Liu
- Department of Laboratory Medicine, General Hospital of Ji'nan Military Region of PLA, Ji'nan, Shandong Province, 250031, PR China
| | - Xiao-Zhong Gao
- Department of Gastroenterology, Weihai Municipal Hospital, Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
94
|
Analysis of the intactness of Helicobacter pylori cag pathogenicity island in Iranian strains by a new PCR-based strategy and its relationship with virulence genotypes and EPIYA motifs. INFECTION GENETICS AND EVOLUTION 2015. [PMID: 26205689 DOI: 10.1016/j.meegid.2015.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Variants of the Helicobacter pylori cag pathogenicity island (cagPAI) and certain virulence genotypes have been proposed to be associated with different gastric disorders. In the present study, we designed a new PCR-based strategy to investigate the intactness of cagPAI in Iranian patients using highly specific primer sets spanning the cagPAI region. The possible relationship between the cagPAI status of the strains and clinical outcomes was also determined. We also characterized virulence genotypes (cagL, cagA, vacA, babA2 and sabA) and variants of CagA EPIYA motifs in these strains. H. pylori was detected in 61 out of 126 patients with various gastroduodenal diseases. The cagL, cagA, vacA s1m1, vacA s1m2, vacA s2m2, babA2, and sabA genotypes were detected in 96.7%, 85.2%, 29.5%, 45.9%, 24.6%, 96.7%, and 83.6% of the strains, respectively. Among the 52 cagA-positive strains, EPIYA motifs ABC, ABCC, ABCCC, and mixed types were orderly detected in the 39, 7, 1, and 5 strains. The cagPAI positivity included both intact and partially deleted, with the overall frequencies of 70.5% and 26.2%, respectively. The majority of the strains from patients with PUD (87.5%), gastric erosion (83.3%) and cancer (80%) presented an intact cagPAI, while a lower frequency of cagPAI intactness was detected in gastritis patients (61.1%). However, no significant relationship was found between the possession of intact cagPAI and clinical outcomes. Furthermore, we found that cagA and vacA s1m1 genotypes were significantly correlated with intact cagPAI (P=0.015 and P=0.012). A significant correlation was also found between EPIYA-ABC and intact cagPAI (P=0.010). The proposed PCR-based scheme was found to be useful for determining the intactness of cagPAI. Our findings also indicate that the cagPAI appears to be intact and rather conserved in majority of Iranian strains. Finally, our study proposed that H. pylori strains with partially deleted cagPAI were less likely to cause severe diseases in comparison with those carrying intact cagPAI.
Collapse
|
95
|
Yong X, Tang B, Li BS, Xie R, Hu CJ, Luo G, Qin Y, Dong H, Yang SM. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun Signal 2015; 13:30. [PMID: 26160167 PMCID: PMC4702319 DOI: 10.1186/s12964-015-0111-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is strongly associated with the development of gastric diseases but also with several extragastric diseases. The clinical outcomes caused by H. pylori infection are considered to be associated with a complex combination of host susceptibility, environmental factors and bacterial isolates. Infections involving H. pylori strains that possess the virulence factor CagA have a worse clinical outcome than those involving CagA-negative strains. It is remarkable that CagA-positive H. pylori increase the risk for gastric cancer over the risk associated with H. pylori infection alone. CagA behaves as a bacterial oncoprotein playing a key role in H. pylori-induced gastric cancer. Activation of oncogenic signaling pathways and inactivation of tumor suppressor pathways are two crucial events in the development of gastric cancer. CagA shows the ability to affect the expression or function of vital protein in oncogenic or tumor suppressor signaling pathways via several molecular mechanisms, such as direct binding or interaction, phosphorylation of vital signaling proteins and methylation of tumor suppressor genes. As a result, CagA continuously dysregulates of these signaling pathways and promotes tumorigenesis. Recent research has enriched our understanding of how CagA effects on these signaling pathways. This review summarizes the results of the most relevant studies, discusses the complex molecular mechanism involved and attempts to delineate the entire signaling pathway.
Collapse
Affiliation(s)
- Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Bo-Sheng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Gang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China.
| |
Collapse
|
96
|
Vianna JS, Ramis IB, Halicki PCB, Gastal OL, Silva RA, Junior JS, Dos Santos DM, Chaves AL, Juliano CR, Jannke HA, da Silva LV, Von Groll A, da Silva PEA. Detection of Helicobacter pylori CagA EPIYA in gastric biopsy specimens and its relation to gastric diseases. Diagn Microbiol Infect Dis 2015; 83:89-92. [PMID: 26144892 DOI: 10.1016/j.diagmicrobio.2015.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
CagA of Helicobacter pylori undergoes tyrosine phosphorylation in a region containing differing numbers of repeat sequences (EPIYAs), which can result in a modulation of the inflammatory response. This study investigated whether the presence of CagA EPIYA variations in strains of H. pylori that are positive for this region contributes to differing degrees of disease severity in the gastric mucosa. In this study, 157 H. pylori-positive patients were included, and of those, 40.8% (64/157) were infected with cagA-positive strains, which were assayed for the presence of CagA EPIYA-ABC, EPIYA-ABCC, and EPIYA-ABCCC. Peptic ulcers were significantly more prevalent in patients infected with strains containing CagA EPIYA-ABCC/ABCCC than in those with CagA EPIYA ABC strains (P=0.044). This suggests that the number of repetitions of EPIYA-C influences the development of gastroduodenal lesions, highlighting the importance and usefulness of evaluating the cagA gene sequence when making therapeutic intervention decisions in patients infected with H. pylori.
Collapse
Affiliation(s)
- Júlia Silveira Vianna
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Pelotas (UFPel), Campus Universitário, Pelotas, Rio Grande do Sul, Brazil.
| | - Ivy Bastos Ramis
- Núcleo de Pesquisas em Microbiologia Médica, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | | | - Otávio Leite Gastal
- Hospital Universitário São Francisco de Paula (HUSFP), Universidade Católica de Pelotas, Rua Marechal Deodoro 1123, Pelotas, Rio Grande do Sul, Brazil
| | - Renato Azevedo Silva
- Hospital Universitário São Francisco de Paula (HUSFP), Universidade Católica de Pelotas, Rua Marechal Deodoro 1123, Pelotas, Rio Grande do Sul, Brazil
| | - José Salomão Junior
- Hospital Universitário Dr. Miguel Riet Côrrea Jr, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | - Deise Machado Dos Santos
- Hospital Universitário Dr. Miguel Riet Côrrea Jr, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana Lúcia Chaves
- Hospital Universitário Dr. Miguel Riet Côrrea Jr, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | - Carlos Renan Juliano
- Hospital Universitário Dr. Miguel Riet Côrrea Jr, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | - Heitor Alberto Jannke
- Hospital Universitário São Francisco de Paula (HUSFP), Universidade Católica de Pelotas, Rua Marechal Deodoro 1123, Pelotas, Rio Grande do Sul, Brazil
| | - Lande Vieira da Silva
- Núcleo de Pesquisas em Microbiologia Médica, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | - Andrea Von Groll
- Núcleo de Pesquisas em Microbiologia Médica, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| | - Pedro Eduardo Almeida da Silva
- Núcleo de Pesquisas em Microbiologia Médica, Universidade Federal do Rio Grande (FURG), Rua General Osório, S/N, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
97
|
So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN. Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 2015; 61:617-35. [PMID: 26059316 DOI: 10.1139/cjm-2015-0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.
Collapse
Affiliation(s)
- Ernest C So
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Corinna Mattheis
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Edward W Tate
- b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Gad Frankel
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| |
Collapse
|
98
|
Interplay of the Gastric Pathogen Helicobacter pylori with Toll-Like Receptors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:192420. [PMID: 25945326 PMCID: PMC4402485 DOI: 10.1155/2015/192420] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/29/2014] [Indexed: 12/18/2022]
Abstract
Toll-like receptors (TLRs) are crucial for pathogen recognition and downstream signaling to induce effective immunity. The gastric pathogen Helicobacter pylori is a paradigm of persistent bacterial infections and chronic inflammation in humans. The chronicity of inflammation during H. pylori infection is related to the manipulation of regulatory cytokines. In general, the early detection of H. pylori by TLRs and other pattern recognition receptors (PRRs) is believed to induce a regulatory cytokine or chemokine profile that eventually blocks the resolution of inflammation. H. pylori factors such as LPS, HSP-60, NapA, DNA, and RNA are reported in various studies to be recognized by specific TLRs. However, H. pylori flagellin evades the recognition of TLR5 by possessing a conserved N-terminal motif. Activation of TLRs and resulting signal transduction events lead to the production of pro- and anti-inflammatory mediators through activation of NF-κB, MAP kinases, and IRF signaling pathways. The genetic polymorphisms of these important PRRs are also implicated in the varied outcome and disease progression. Hence, the interplay of TLRs and bacterial factors highlight the complexity of innate immune recognition and immune evasion as well as regulated processes in the progression of associated pathologies. Here we will review this important aspect of H. pylori infection.
Collapse
|
99
|
Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015; 20:89-97. [PMID: 25660579 DOI: 10.1111/hel.12177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori possesses a broad spectrum of pathogenic factors that allow it to survive and colonize the gastric mucosa, and thus, the pathogenetic targets, which have the same diversity, require search for and the development of alternative, effective, and innocuous means for the eradication of H. pylori. In recent years, fucoidans have been extensively studied due to the numerous interesting biological activities, including the anti-adhesive, anti-oxidative, antitoxic, immunomodulatory, anticoagulant, and anti-infection effects. This review summarizes the data on the effects of extracts and sulfated polysaccharides of marine algae, mainly fucoidans, on pathogenic targets in Helicobacter infection. The pathogenetic targets for therapeutic agents after H. pylori infection, such as flagellas, urease, and other enzymes, including adhesins, cytotoxin A (VacA), phospholipase, and L-8, are characterized here. The main target for the sulfated polysaccharides of seaweed is cell receptors of the gastric mucosa. This review presents the published data about the pleiotropic anti-inflammatory effects of polysaccharides on the gastric mucosa. It is known that fucoidan and other sulfated polysaccharides from algae have anti-ulcer effects, prevent the adhesion of H. pylori to, and reduce the formation of biofilm. The authors speculate that the effect of sulfated polysaccharides on the infectious process caused by H. pylori is related to their action on innate and adaptive immunity cells, and also anti-oxidant and antitoxic potential. Presented in the review are materials indicated for the study of extracts and sulfated polysaccharides from seaweed during H. pylori infection, as these compounds are characterized by multimodality actions. Based on the analysis of literary materials in recent years, the authors concluded that fucoidan can be attributed to the generation of new candidates to create drugs intended for the inclusion in the scheme of eradication therapy of H. pylori infection.
Collapse
Affiliation(s)
- Natalya N Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Siberian Branch of the Russian Academy of Medical Sciences, Vladivostok, Russia
| | | | | | | |
Collapse
|
100
|
Vaziri F, Peerayeh SN, Alebouyeh M, Maghsoudi N, Azimzadeh P, Siadat SD, Zali MR. Novel effects of Helicobacter pylori CagA on key genes of gastric cancer signal transduction: a comparative transfection study. Pathog Dis 2015; 73:ftu021. [PMID: 25743471 DOI: 10.1093/femspd/ftu021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is now recognized as a worldwide problem. Helicobacter pylori CagA is the first bacterial oncoprotein to be identified in relation to human cancer. Helicobacter pylori CagA is noted for structural diversity in its C-terminal region (contains EPIYA motifs), with which CagA interacts with numerous host cell proteins. Deregulation of host signaling by translocated bacterial proteins provides a new aspect of microbial-host cell interaction. The aim of this study is to compare the cellular effects of two different CagA EPIYA motifs on identified signaling pathways involve in gastric carcinogenesis. To investigate the effects of CagA protein carboxyl region variations on the transcription of genes involved in gastric epithelial carcinogenesis pathways, the eukaryotic vector carrying the cagA gene (ABC and ABCCC types) was transfected into gastric cancer cell line. The 42 identified key genes of signal transduction involved in gastric cancer were analyzed at the transcription level by real-time PCR. The results of real-time PCR provide us important clue that the ABCCC oncoprotein variant can change the fate of the cell completely different from ABC type. In fact, these result proposed that the ABCCC type can induce the intestinal metaplasia, IL-8, perturbation of Crk adaptor proteins, anti-apoptotic effect and carcinogenic effect more significantly than ABC type. These data support our hypothesis of a complex interaction of host cell and these two different H. pylori effector variants that determines host cellular fate.
Collapse
Affiliation(s)
- Farzam Vaziri
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran Department of Bacteriology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran Department of Bacteriology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Shahin N Peerayeh
- Department of Bacteriology, School of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Masoud Alebouyeh
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center (NRC) and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Pedram Azimzadeh
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran
| | - Seyed D Siadat
- Department of Bacteriology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran
| | - Mohammad R Zali
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 19835-187, Tehran, Iran
| |
Collapse
|