51
|
Nielsen C. Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evol Biol 2013; 13:171. [PMID: 23957497 PMCID: PMC3751718 DOI: 10.1186/1471-2148-13-171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. RESULTS Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. CONCLUSIONS All the available information is strongly in favor of multiple evolution of non-planktotrophic development, and only the terminal addition theory is in accordance with the Darwinian theory by explaining the evolution through continuous series of adaptational changes. This implies that the ancestor of the eumetazoans was a holopelagic, planktotrophic gastraea, and that the adult stages of cnidarians (sessile) and bilaterians (creeping) were later additions to the life cycle. It further implies that the various larval types are of considerable phylogenetic value.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
52
|
Ikuta T, Chen YC, Annunziata R, Ting HC, Tung CH, Koyanagi R, Tagawa K, Humphreys T, Fujiyama A, Saiga H, Satoh N, Yu JK, Arnone MI, Su YH. Identification of an intact ParaHox cluster with temporal colinearity but altered spatial colinearity in the hemichordate Ptychodera flava. BMC Evol Biol 2013; 13:129. [PMID: 23802544 PMCID: PMC3698058 DOI: 10.1186/1471-2148-13-129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. RESULTS We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. CONCLUSIONS Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Bishop CD, MacNeil KE, Patel D, Taylor VJ, Burke RD. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system. Dev Biol 2013; 377:236-44. [DOI: 10.1016/j.ydbio.2013.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
54
|
Dyachuk V, Odintsova N. Larval myogenesis in Echinodermata: conserved features and morphological diversity between class-specific larval forms of Echinoidae, Asteroidea, and Holothuroidea. Evol Dev 2013; 15:5-17. [DOI: 10.1111/ede.12010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vyacheslav Dyachuk
- A. V. Zhirmunsky Institute of Marine Biology; FEB RAS, Palchevsky 17; Vladivostok 17 Palchevsky Str. 690059 Vladivostok Russia
- Far Eastern Federal University; 8 Sukhanova Str. Vladivostok 690950 Russia
| | - Nelly Odintsova
- A. V. Zhirmunsky Institute of Marine Biology; FEB RAS, Palchevsky 17; Vladivostok 17 Palchevsky Str. 690059 Vladivostok Russia
- Far Eastern Federal University; 8 Sukhanova Str. Vladivostok 690950 Russia
| |
Collapse
|
55
|
Temereva E, Wanninger A. Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evol Biol 2012; 12:121. [PMID: 22827441 PMCID: PMC3441923 DOI: 10.1186/1471-2148-12-121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/06/2012] [Indexed: 11/10/2022] Open
Abstract
Background Inferences concerning the evolution of invertebrate nervous systems are often hampered by the lack of a solid data base for little known but phylogenetically crucial taxa. In order to contribute to the discussion concerning the ancestral neural pattern of the Lophotrochozoa (a major clade that includes a number of phyla that exhibit a ciliated larva in their life cycle), we investigated neurogenesis in Phoronopsis harmeri, a member of the poorly studied Phoronida, by using antibody staining against serotonin and FMRFamide in combination with confocal microscopy and 3D reconstruction software. Results The larva of Phoronopsis harmeri exhibits a highly complex nervous system, including an apical organ that consists of four different neural cell types, such as numerous serotonin-like immunoreactive flask-shaped cells. In addition, serotonin- and FMRFamide-like immunoreactive bi- or multipolar perikarya that give rise to a tentacular neurite bundle which innervates the postoral ciliated band are found. The preoral ciliated band is innervated by marginal serotonin-like as well as FMRFamide-like immunoreactive neurite bundles. The telotroch is innervated by two neurite bundles. The oral field is the most densely innervated area and contains ventral and ventro-lateral neurite bundles as well as several groups of perikarya. The digestive system is innervated by both serotonin- and FMRFamide-like immunoreactive neurites and perikarya. Importantly, older larvae of P. harmeri show a paired ventral neurite bundle with serial commissures and perikarya. Conclusions Serotonin-like flask-shaped cells such as the ones described herein for Phoronopsis harmeri are found in the majority of lophotrochozoan larvae and therefore most likely belong to the ground pattern of the last common lophotrochozoan ancestor. The finding of a transitory paired ventral neurite bundle with serially repeated commissures that disappears during metamorphosis suggests that such a structure was part of the “ur-phoronid” nervous system, but was lost in the adult stage, probably due to its acquired sessile benthic lifestyle.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological faculty, Moscow State University, Moscow 119991, Russia
| | | |
Collapse
|
56
|
Barbaglio A, Turchi C, Melone G, Di Benedetto C, Martinello T, Patruno M, Biggiogero M, Wilkie IC, Carnevali MDC. Larval development in the feather starAntedon mediterranea. INVERTEBR REPROD DEV 2012. [DOI: 10.1080/07924259.2011.578154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
57
|
Santagata S, Resh C, Hejnol A, Martindale MQ, Passamaneck YJ. Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. EvoDevo 2012; 3:3. [PMID: 22273002 PMCID: PMC3314550 DOI: 10.1186/2041-9139-3-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/24/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Larval features such as the apical organ, apical ciliary tuft, and ciliated bands often complicate the evaluation of hypotheses regarding the origin of the adult bilaterian nervous system. Understanding how neurogenic domains form within the bilaterian head and larval apical organ requires expression data from animals that exhibit aspects of both centralized and diffuse nervous systems at different life history stages. Here, we describe the expression of eight neural-related genes during the larval development of the brachiopod, Terebratalia transversa. RESULTS Radially symmetric gastrulae broadly express Tt-Six3/6 and Tt-hbn in the animal cap ectoderm. Tt-NK2.1 and Tt-otp are restricted to a central subset of these cells, and Tt-fez and Tt-FoxQ2 expression domains are already asymmetric at this stage. As gastrulation proceeds, the spatial expression of these genes is split between two anterior ectodermal domains, a more dorsal region comprised of Tt-Six3/6, Tt-fez, Tt-FoxQ2, and Tt-otp expression domains, and an anterior ventral domain demarcated by Tt-hbn and Tt-NK2.1 expression. More posteriorly, the latter domains are bordered by Tt-FoxG expression in the region of the transverse ciliated band. Tt-synaptotagmin 1 is expressed throughout the anterior neural ectoderm. All genes are expressed late into larval development. The basiepithelial larval nervous system includes three neurogenic domains comprised of the more dorsal apical organ and a ventral cell cluster in the apical lobe as well as a mid-ventral band of neurons in the mantle lobe. Tt-otp is the only gene expressed in numerous flask-shaped cells of the apical organ and in a subset of neurons in the mantle lobe. CONCLUSIONS Our expression data for Tt-Six3/6, Tt-FoxQ2, and Tt-otp confirm some aspects of bilaterian-wide conservation of spatial partitioning within anterior neurogenic domains and also suggest a common origin for central otp-positive cell types within the larval apical organs of spiralians. However, the field of sensory neurons within the larval apical organ of Terebratalia is broader and composed of more cells relative to those of other spiralian larvae. These cellular differences are mirrored in the broader spatial and temporal expression patterns of Tt-FoxQ2 and Tt-otp. Corresponding differences in the expression of Tt-hbn, Tt-NK2.1, and Tt-FoxG are also observed relative to their respective domains within the cerebral ganglia of spiralians. Based on these data we argue that the anterior region of the bilaterian stem species included Six3/6, NK2.1, otp, hbn, fez, and FoxQ2 expression domains that were subsequently modified within larval and adult neural tissues of protostome and deuterostome animals.
Collapse
Affiliation(s)
- Scott Santagata
- Long Island University-Post, 720 Northern Blvd., Brookville, NY 11709, USA
| | - Carlee Resh
- Long Island University-Post, 720 Northern Blvd., Brookville, NY 11709, USA
| | - Andreas Hejnol
- Sars International Center for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | - Yale J Passamaneck
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| |
Collapse
|
58
|
Altenburger A, Martinez P, Wanninger A. Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expr Patterns 2011; 11:427-36. [PMID: 21782038 DOI: 10.1016/j.gep.2011.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until completion of larval development, which is marked by a three-lobed body with larval setae. Expression starts at gastrulation in two areas lateral to the blastopore and subsequently extends over the animal pole of the gastrula. With elongation of the gastrula, expression at the animal pole narrows to a small band, whereas the areas lateral to the blastopore shift slightly towards the future anterior region of the larva. Upon formation of the three larval body lobes, TtrNot expressing cells are present only in the posterior part of the apical lobe. Expression ceases entirely at the onset of larval setae formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer (ectoderm) specification with co-opted functions in notochord formation in chordates and left/right determination in ambulacrarians and vertebrates. The caudal ortholog, TtrCdx, is first expressed in the ectoderm of the gastrulating embryo in the posterior region of the blastopore. Its expression stays stable in that domain until the blastopore is closed. Thereafter, the expression is confined to the ventral portion of the mantle lobe in the fully developed larva. No TtrCdx expression is detectable in the juvenile after metamorphosis. This expression of TtrCdx is congruent with findings in other metazoans, where genes belonging to the Cdx/caudal family are predominantly localized in posterior domains during gastrulation. Later in development this gene will play a fundamental role in the formation of posterior tissues.
Collapse
Affiliation(s)
- Andreas Altenburger
- University of Copenhagen, Natural History Museum of Denmark, Zoological Museum, Universitetsparken, Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
59
|
Ikuta T. Evolution of invertebrate deuterostomes and Hox/ParaHox genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:77-96. [PMID: 21802045 PMCID: PMC5054439 DOI: 10.1016/s1672-0229(11)60011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Uruma, Japan.
| |
Collapse
|
60
|
Jager M, Chiori R, Alié A, Dayraud C, Quéinnec E, Manuel M. New insights on ctenophore neural anatomy: Immunofluorescence study in Pleurobrachia pileus (Müller, 1776). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316B:171-87. [DOI: 10.1002/jez.b.21386] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 01/14/2023]
|
61
|
Yankura KA, Martik ML, Jennings CK, Hinman VF. Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol 2010; 8:143. [PMID: 21118544 PMCID: PMC3002323 DOI: 10.1186/1741-7007-8-143] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/30/2010] [Indexed: 01/27/2023] Open
Abstract
Background Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are microscopic, feeding within the plankton until they metamorphose into their adult forms. Results We describe here the localization of 14 transcription factors within the ectoderm during early embryogenesis in Patiria miniata, a sea star with an indirectly developing planktonic bipinnaria larva. We find that the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that we observe throughout the ectoderm generally corresponds to that of "head/anterior brain" patterning known for hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in retinal determination is absent from the ectoderm of these echinoderms and instead operates within the mesoderm. Conclusions Our findings therefore extend, for the first time, evidence of a conserved axial pattering to echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning from "retinal specification" in echinoderm blastulae might reflect modular changes to a developmental gene regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae.
Collapse
Affiliation(s)
- Kristen A Yankura
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
62
|
Mashanov VS, Zueva OR, Garcia-Arraras JE. Organization of glial cells in the adult sea cucumber central nervous system. Glia 2010; 58:1581-93. [PMID: 20578040 DOI: 10.1002/glia.21031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nervous system of echinoderms has long been considered too unique to be directly comparable to the nervous system of other Deuterostomia. Using two novel monoclonal antibodies in combination with epifluorescence, confocal, and electron microscopy, we demonstrate here that the central nervous system of the sea cucumber Holothuria glaberrima possesses a major non-neuronal cell type, which shares striking similarities with the radial glia of chordates. The basic features in common include (a) an elongated shape, (b) long radial processes, (c) short lateral protrusions branching off the main processes and penetrating into the surrounding neuropile, (d) prominent orderly oriented bundles of intermediate filaments, and (e) ability to produce Reissner's substance. Radial glia account for the majority of glia cells in echinoderms and constitutes more than half of the total cell population in the radial nerve cord and about 45% in the circumoral nerve ring. The difference in glia cell number between those regions is significant, suggesting structural specialization within the seemingly simple echinoderm nervous system. Both cell death and proliferation are seen under normal physiological conditions. Although both glia and neurons undergo apoptosis, most of the mitotic cells are identified as radial glia, indicating a key role of this cell type in cell turnover in the nervous system. A hypothesis is proposed that the radial glia could be an ancestral feature of the deuterostome nervous system, and the origin of this cell type might have predated the diversification of the Chordata and Ambulacraria lineages.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- Department of Biology, University of Puerto Rico, Rio Piedras, PR 00936-8377, Puerto Rico.
| | | | | |
Collapse
|
63
|
Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 2010; 7:29. [PMID: 21062451 PMCID: PMC2996375 DOI: 10.1186/1742-9994-7-29] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. RESULTS We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. CONCLUSIONS The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.
Collapse
Affiliation(s)
- Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Rudi Loesel
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Günter Purschke
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Andreas Schmidt-Rhaesa
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Thomas Stach
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Lars Vogt
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Andreas Wanninger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Carmen Döring
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Simone Faller
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Martin Fritsch
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Peter Grobe
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Carsten M Heuer
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Sabrina Kaul
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Ole S Møller
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Carsten HG Müller
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Verena Rieger
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Birgen H Rothe
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Martin EJ Stegner
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Steffen Harzsch
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| |
Collapse
|
64
|
Nakano H, Nakajima Y, Amemiya S. Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev Genes Evol 2009; 219:565-76. [PMID: 20099068 DOI: 10.1007/s00427-010-0317-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/31/2009] [Indexed: 10/19/2022]
Abstract
Nervous system development in echinoderms has been well documented, especially for sea urchins and starfish. However, that of crinoids, the most basal group of extant echinoderms, has been poorly studied due to difficulties in obtaining their larvae. In this paper, we report nervous system development from two species of crinoids, from hatching to late doliolaria larvae in the sea lily Metacrinus rotundus and from hatching to cystidean stages after settlement in the feather star Oxycomanthus japonicus. The two species showed a similar larval nervous system pattern with an extensive anterior larval ganglion. The ganglion was similar to that in sea urchins which is generally regarded as derived. In contrast with other echinoderm and hemichordate larvae, synaptotagmin antibody 1E11 failed to reveal ciliary band nerve tracts. Basiepithelial nerve cells formed a net-like structure in the M. rotundus doliolaria larvae. In O. japonicus, the larval ganglion was still present 1 day after settlement when the adult nervous system began to appear inside the crown. Stalk nerves originated from the crown and extended down the stalk, but had no connections with the remaining larval ganglion at the base of the stalk. The larval nervous system was not incorporated into the adult nervous system, and the larval ganglion later disappeared. The aboral nerve center, the dominant nervous system in adult crinoids, was formed at the early cystidean stage, considerably earlier than previously suggested. Through comparisons with nervous system development in other ambulacraria, we suggest the possible nervous system development pattern of the echinoderm ancestor and provide new implications on the evolutionary history of echinoderm life cycles.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Department of Biology, Keio University, Yokohama, 223-8521, Japan
| | | | | |
Collapse
|
65
|
Minemura K, Yamaguchi M, Minokawa T. Evolutionary modification of T-brain (tbr) expression patterns in sand dollar. Gene Expr Patterns 2009; 9:468-74. [PMID: 19635588 DOI: 10.1016/j.gep.2009.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
The sand dollars are a group of irregular echinoids that diverged from other regular sea urchins approximately 200 million years ago. We isolated two orthologs of T-brain (tbr), Smtbr and Pjtbr, from the indirect developing sand dollar Scaphechinus mirabilis and the direct developing sand dollar Peronella japonica, respectively. The expression patterns of Smtbr and Pjtbr during early development were examined by whole mount in situ hybridization. The expression of Smtbr was first detected in micromere descendants in early blastula stage, similar to tbr expression in regular sea urchins. However, unlike in regular sea urchin, Smtbr expression in middle blastula stage was detected in micromere-descendent cells and a subset of macromere-descendant cells. At gastrula stage, expression of Smtbr was detected in part of the archenteron as well as primary mesenchyme cells. A similar pattern of tbr expression was observed in early Peronella embryos. A comparison of tbr expression patterns between sand dollars and other echinoderm species suggested that broader expression in the endomesoderm is an ancestral character of echinoderms. In addition to the endomesoderm, Pjtbr expression was detected in the apical organ, the animal-most part of the ectoderm.
Collapse
Affiliation(s)
- Keiko Minemura
- Research Center for Marine Biology, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan
| | | | | |
Collapse
|
66
|
Elia L, Selvakumaraswamy P, Byrne M. Nervous system development in feeding and nonfeeding asteroid larvae and the early juvenile. THE BIOLOGICAL BULLETIN 2009; 216:322-334. [PMID: 19556597 DOI: 10.1086/bblv216n3p322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Larval and juvenile nervous systems (NS) of three asterinid sea stars with contrasting feeding and nonfeeding modes of development were characterized using the echinoderm-specific synaptotagmin antibody. In the feeding bipinnaria and brachiolaria larvae of Patiriella regularis, the species with ancestral-type development, an extensive NS was associated with the ciliary bands (CBs) and attachment complex. Lecithotrophic planktonic (Meridastra calcar) and benthic (Parvulastra exigua) brachiolariae lacked CBs and the associated NS, but had an extensive NS in the attachment complex. The similarity in the distribution and morphology of synaptotagmin immunoreactive neurons and the anatomy of the NS in the attachment complex of these closely related sea stars suggests conservation of neurogenesis in settlement-stage larvae regardless of larval feeding mode. Nerve cells were prominent on the brachia of all three species. In advanced brachiolariae the larval nervous system was localized to the adhesive disc as the larval body resorbed during metamorphosis. The structures and tissues that contained larval neurons degenerated during metamorphosis. There was no evidence that the larval NS persists through metamorphosis. In juvenile development, synaptotagmin IR was first evident in the NS of the tube feet. As the central nervous system developed, synaptotagmin IR reflected the histological organization of the adult NS. The juvenile NS formed de novo with a temporal lapse between histogenesis and synaptotagmin IR. We evaluated the ontogeny of NS organization in the change in body plan from the bilateral larva to the radial juvenile.
Collapse
Affiliation(s)
- Laura Elia
- Discipline of Anatomy and Histology, Bosch Institute, F13, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
67
|
Nielsen C. How did indirect development with planktotrophic larvae evolve? THE BIOLOGICAL BULLETIN 2009; 216:203-215. [PMID: 19556589 DOI: 10.1086/bblv216n3p203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The two main types of theories for the evolution of the biphasic life cycles in marine invertebrates are discussed. The "intercalation" theories propose that the larval stages (planktotrophic or lecithotrophic) have evolved as specializations from the ancestral, direct life cycle. The opposing "terminal addition" theories propose that the ancestor was holopelagic and that the adult stage was added to the life cycle with the pelagic stage retained as a planktotrophic larva. It is emphasized that theories based on hypothetical ancestors that were unable to feed must be rejected. This applies to planula theories based on a compact planula. Various arguments against the theories that consider the feeding larvae as ancestral in the major eumetazoan lineages and in particular against the trochaea theory are discussed and found untenable. It is suggested that the "Cambrian explosion" was actually a rapid Ediacaran radiation of the eubilaterians that was made possible by the evolution of a tubular gut with all the resulting possibilities for new body plans.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
68
|
Larval apical sensory organ in a neritimorph gastropod, an ancient gastropod lineage with feeding larvae. ZOOMORPHOLOGY 2009. [DOI: 10.1007/s00435-009-0093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Dupont S, Thorndyke W, Thorndyke MC, Burke RD. Neural development of the brittlestar Amphiura filiformis. Dev Genes Evol 2009; 219:159-66. [PMID: 19238430 DOI: 10.1007/s00427-009-0277-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
Comparative features of the development of the larval nervous system of ophiuroids have the potential for resolving aspects of echinoderm evolution. In Amphiura filiformis serotonergic neural progenitors appear in the animal plate of late gastrulae. The serotonergic progenitors increase in number and become displaced to the aboral ectoderm side of the developing ciliary band. The ciliary band neurons appear as irregularly spaced neural progenitors on the oral side of the ciliary band lateral to the mouth. These cells extend neurites along the axis of the ciliary band, which meet at the center of the ventral transverse ciliary band. The larval nervous system begins as a U-shaped tract of axons that surrounds the oral field and tracts of axons and neurons in the ciliary bands of the larval arms are added. In addition, the larval nervous system has an extensive pre-oral neuropil, rings of nerves surrounding the anus and pyloric sphincters, and a plexus of axons that surround the esophagus. The nervous system of the juvenile develops beneath the oral ectoderm. The components of the adult nervous system: five segments of radial nerve, commissures that form the nerve ring, and podial nerves all appear as the juvenile develops. The larval nervous system begins to fragment and degenerate as the juvenile grows. The complete description of neural development of an ophiuroid reveals that the four classes so far investigated are consistent with phylogenies based on adult features and comparisons of neural organization help rationalize conflicting hypotheses of the evolution of larval forms in echinoderms.
Collapse
Affiliation(s)
- Sam Dupont
- Sven Lovén Centre for Marine Sciences, Kristineberg, 450 34, Fiskebäckskil, Sweden
| | | | | | | |
Collapse
|
70
|
|
71
|
Katow H, Elia L, Byrne M. Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry. Dev Genes Evol 2009; 219:67-77. [PMID: 19031082 DOI: 10.1007/s00427-008-0266-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
The development of nervous system (NS) in the non-feeding vestibula larva of the sea urchin, Holopneustes purpurescens, and the feeding echinopluteus larva of Hemicentrotus pulcherrimus was examined by focusing on fate during metamorphosis. In H. purpurescens, the serotonergic NS (SerNS) appeared simultaneously and independently in larval tissue and adult rudiment, respectively, from 3-day post-fertilization. In 4-day vestibulae, an expansive aboral ganglion (450 x 100 mum) was present in the larval mid region that extended axons toward the oral ectoderm. These axons diverged near the base of the primary podia. An axonal bundle connected with the primary podia and the rim of vestopore on the oral side. Thus, the SerNS of the larva innervated the rudiment at early stage of development of the primary podia. This innervation was short-lived, and immediately before metamorphosis, it disappeared from the larval and adult tissue domains, whereas non-SerNS marked by synaptotagmin remained. The NS of 1-month post-fertilization plutei of H. pulcherrimus comprised an apical ganglion (50 x 17 mum) and axons that extended to the ciliary bands and the adult rudiment (AR). A major basal nerve of serotonergic and non-serotonergic axons and a minor non-serotonergic nerve comprised the ciliary band nerve. In 3-month plutei, axonal connection among the primary podia in the neural folds completed. The SerNS never developed in the AR. Thus, there was distinctive difference between feeding- and non-feeding larvae of the above sea urchins with respect to SerNS and the AR.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Japan.
| | | | | |
Collapse
|
72
|
Sato A, Bishop JDD, Holland PWH. Developmental biology of pterobranch hemichordates: history and perspectives. Genesis 2009; 46:587-91. [PMID: 18798243 DOI: 10.1002/dvg.20395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hemichordates, like echinoderms and chordates, are deuterostomes, and study of their developmental biology could shed light on chordate origins. To date, molecular developmental studies in hemichordates have been confined to the enteropneusts or acorn worms. Here, we introduce the developmental biology of the other group of hemichordate, the pterobranchs. Pterobranchs generally live in cold, deep waters; this has hampered studies of this group. However, about 40 years ago, the colonial pterobranchs Rhabdopleura compacta and R. normani were discovered from shallow water, which has facilitated their study. Using Rhabdopleura compacta from south-west England, we have initiated molecular developmental studies in pterobranchs. Here, we outline methods for collecting adults, larvae, and embryos and demonstrate culturing of larvae under laboratory conditions. Given that the larval and adult forms differ from enteropneusts, we suggest that molecular developmental studies of pterobranchs may offer new insights into chordate origins.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
73
|
|