51
|
Ogundele OM, Omoaghe AO, Ajonijebu DC, Ojo AA, Fabiyi TD, Olajide OJ, Falode DT, Adeniyi PA. Glia activation and its role in oxidative stress. Metab Brain Dis 2014; 29:483-93. [PMID: 24218104 DOI: 10.1007/s11011-013-9446-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
Glia activation and neuroinflamation are major factors implicated in the aetiology of most neurodegenerative diseases (NDDs). Several agents and toxins have been known to be capable of inducing glia activation an inflammatory response; most of which are active substances that can cause oxidative stress by inducing production of reactive oxygen species (ROS). Neurogenesis on the other hand involves metabolic and structural interaction between neurogenic and glia cells of the periventricular zone (PVZ); a region around the third ventricle. This study investigates glia activation (GFAP), cell proliferation (Ki-67) and neuronal metabolism (NSE) during neurogenesis and oxidative stress by comparing protein expression in the PVZ against that of the parietal cortex. Adult Wistar Rats were treated with normal saline and 20 mg/Kg KCN for 7 days. The tissue sections were processed for immunohistochemistry to demonstrate glia cells (anti Rat-GFAP), cell proliferation (anti Rat-Ki-67) and neuronal metabolism (anti Rat-NSE) using the antigen retrieval method. The sections from Rats treated with cyanide showed evidence of neurodegeneration both in the PVZ and cortex. The distribution of glia cells (GFAP), Neuron specific Enolase (NSE) and Ki-67 increased with cyanide treatment, although the increases were more pronounced in the neurogenic cell area (PVZ) when compared to the cortex. This suggests the close link between neuronal metabolism and glia activation both in neurogenesis and oxidative stress.
Collapse
Affiliation(s)
- Olalekan Michael Ogundele
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria,
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Lasarge CL, Danzer SC. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 2014; 7:18. [PMID: 24672426 PMCID: PMC3953715 DOI: 10.3389/fnmol.2014.00018] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023] Open
Abstract
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.
Collapse
Affiliation(s)
- Candi L Lasarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Department of Anesthesia, University of Cincinnati Cincinnati, OH, USA ; Department of Pediatrics, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|
53
|
Wex T, Grungreiff K, Schutte K, Stengritt M, Reinhold D. Expression analysis of zinc transporters in resting and stimulated human peripheral blood mononuclear cells. Biomed Rep 2014; 2:217-222. [PMID: 24649099 DOI: 10.3892/br.2014.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022] Open
Abstract
Intracellular zinc homeostasis is tightly regulated under physiological conditions; however, dysregulation of zinc levels has been reported in various chronic inflammatory and malignant diseases. In this study, we aimed to assess the expression pattern of the 24 currently known zinc transporters in resting and stimulated human peripheral blood mononuclear cells (PBMCs). The cells were isolated from healthy probands and subsequently stimulated with phytohaemagglutinin (PHA) for 3 days. The expression levels of zinc transporters [Zrt/IRT-like protein (ZIP) and cation diffusion facilitator/zinc transporter protein (CDF/ZnT) families] were analyzed by quantitative reverse transcription-polymerase chain reaction. Of the 24 genes encoding for zinc transporters, 19 were found to be ubiquitously expressed in PBMCs. ZIP5 and ZnT10 were not found in all 5 samples, whereas ZIP12, ZnT3 and ZIP2 were expressed in only 1-2 out of 5 PBMC samples. Of note, stimulation by PHA led to an overall downregulation of zinc transporters in the PBMCs of 4 out of the 5 subjects. Notably, the transcript levels of ZIP14 were consistently induced and those of ZIP3 and ZIP4 consistently downregulated in all 5 subjects, whereas the corresponding levels of the remaining 21 genes varied. Data from this study may facilitate a better understanding of the pathophysiological role of deregulated zinc transporters in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Thomas Wex
- Medical Laboratory for Clinical Chemistry, Microbiology and Infectious Diseases, Department of Molecular Genetics, Otto von Guericke University, D-39120 Magdeburg, Germany ; Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Kurt Grungreiff
- Practice of Hepatology, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Kerstin Schutte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Maren Stengritt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University, D-39120 Magdeburg, Germany
| |
Collapse
|
54
|
Bielefeld P, van Vliet EA, Gorter JA, Lucassen PJ, Fitzsimons CP. Different subsets of newborn granule cells: a possible role in epileptogenesis? Eur J Neurosci 2013; 39:1-11. [DOI: 10.1111/ejn.12387] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Pascal Bielefeld
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland SEIN); Heemstede The Netherlands
| | - Jan A. Gorter
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Paul J. Lucassen
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
55
|
Singh SP, He X, McNamara JO, Danzer SC. Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis. Hippocampus 2013; 23:1309-20. [PMID: 23893783 DOI: 10.1002/hipo.22169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2013] [Indexed: 11/10/2022]
Abstract
Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine's scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either 1 day or 1 month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident 1 day after the last seizure, the magnitude of which had diminished by 1 month. Further, there was an increase in the thickness of the granule cell layer 1 day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density, and axon proximal area, but do not produce striking rearrangements of granule cell structure.
Collapse
Affiliation(s)
- Shatrunjai P Singh
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio
| | | | | | | |
Collapse
|
56
|
Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J Neurosci 2013; 33:8926-36. [PMID: 23699504 DOI: 10.1523/jneurosci.5161-12.2013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of abnormally integrated, adult-born, hippocampal dentate granule cells (DGCs) is hypothesized to contribute to the development of temporal lobe epilepsy (TLE). DGCs have long been implicated in TLE, because they regulate excitatory signaling through the hippocampus and exhibit neuroplastic changes during epileptogenesis. Furthermore, DGCs are unusual in that they are continually generated throughout life, with aberrant integration of new cells underlying the majority of restructuring in the dentate during epileptogenesis. Although it is known that these abnormal networks promote abnormal neuronal firing and hyperexcitability, it has yet to be established whether they directly contribute to seizure generation. If abnormal DGCs do contribute, a reasonable prediction would be that the severity of epilepsy will be correlated with the number or load of abnormal DGCs. To test this prediction, we used a conditional, inducible transgenic mouse model to fate map adult-generated DGCs. Mossy cell loss, also implicated in epileptogenesis, was assessed as well. Transgenic mice rendered epileptic using the pilocarpine-status epilepticus model of epilepsy were monitored continuously by video/EEG for 4 weeks to determine seizure frequency and severity. Positive correlations were found between seizure frequency and (1) the percentage of hilar ectopic DGCs, (2) the amount of mossy fiber sprouting, and (3) the extent of mossy cell death. In addition, mossy fiber sprouting and mossy cell death were correlated with seizure severity. These studies provide correlative evidence in support of the hypothesis that abnormal DGCs contribute to the development of TLE and also support a role for mossy cell loss.
Collapse
|
57
|
Chai X, Münzner G, Zhao S, Tinnes S, Kowalski J, Häussler U, Young C, Haas CA, Frotscher M. Epilepsy-induced motility of differentiated neurons. ACTA ACUST UNITED AC 2013; 24:2130-40. [PMID: 23505288 DOI: 10.1093/cercor/bht067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gert Münzner
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shanting Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Janina Kowalski
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Young
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
58
|
Tejada J, Costa KM, Bertti P, Garcia-Cairasco N. The epilepsies: complex challenges needing complex solutions. Epilepsy Behav 2013; 26:212-28. [PMID: 23146364 DOI: 10.1016/j.yebeh.2012.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/19/2022]
Abstract
It is widely accepted that epilepsies are complex syndromes due to their multi-factorial origins and manifestations. Different mathematical and computational descriptions use appropriate methods to address nonlinear relationships, chaotic behaviors and emergent properties. These theoretical approaches can be divided into two major categories: descriptive, such as flowcharts, graphs and other statistical analyses, and explicative, which include both realistic and abstract models. Although these modeling tools have brought great advances, a common framework to guide their design, implementation and evaluation, with the goal of future integration, is still needed. In the current review, we discuss two examples of complexity analysis that can be performed with epilepsy data: behavioral sequences of temporal lobe seizures and alterations in an experimental cellular model. We also highlight the importance of the creation of model repositories for the epileptology field and encourage the development of mathematical descriptions of complex systems, together with more accurate simulation techniques.
Collapse
Affiliation(s)
- Julián Tejada
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
59
|
Pun RY, Rolle IJ, LaSarge CL, Hosford BE, Rosen JM, Uhl JD, Schmeltzer SN, Faulkner C, Bronson SL, Murphy BL, Richards DA, Holland KD, Danzer SC. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 2012; 75:1022-34. [PMID: 22998871 PMCID: PMC3474536 DOI: 10.1016/j.neuron.2012.08.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2012] [Indexed: 12/30/2022]
Abstract
The dentate gyrus is hypothesized to function as a "gate," limiting the flow of excitation through the hippocampus. During epileptogenesis, adult-generated granule cells (DGCs) form aberrant neuronal connections with neighboring DGCs, disrupting the dentate gate. Hyperactivation of the mTOR signaling pathway is implicated in driving this aberrant circuit formation. While the presence of abnormal DGCs in epilepsy has been known for decades, direct evidence linking abnormal DGCs to seizures has been lacking. Here, we isolate the effects of abnormal DGCs using a transgenic mouse model to selectively delete PTEN from postnatally generated DGCs. PTEN deletion led to hyperactivation of the mTOR pathway, producing abnormal DGCs morphologically similar to those in epilepsy. Strikingly, animals in which PTEN was deleted from ≥ 9% of the DGC population developed spontaneous seizures in about 4 weeks, confirming that abnormal DGCs, which are present in both animals and humans with epilepsy, are capable of causing the disease.
Collapse
Affiliation(s)
- Raymund Y.K. Pun
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Isaiah J. Rolle
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - Candi L. LaSarge
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Bethany E. Hosford
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - Jules M. Rosen
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Juli D. Uhl
- Division of Molecular and Developmental Biology, Cincinnati Children’s Hospital Medical Centre Research Foundation, Cincinnati, OH, 45229
| | | | - Christian Faulkner
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | | | - Brian L. Murphy
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - David A. Richards
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| | - Katherine D. Holland
- Department of Neurology, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH, 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, 45267
- Program in Neuroscience, University of Cincinnati, Cincinnati, OH, 45267
| |
Collapse
|