51
|
Bell LE, Kroeker KJ. Standing Crop, Turnover, and Production Dynamics of Macrocystis pyrifera and Understory Species Hedophyllum nigripes and Neoagarum fimbriatum in High Latitude Giant Kelp Forests. JOURNAL OF PHYCOLOGY 2022; 58:773-788. [PMID: 36302142 PMCID: PMC10100489 DOI: 10.1111/jpy.13291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Production rates reported for canopy-forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelp Macrocystis pyrifera are based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity of M. pyrifera and co-occurring understory kelps Hedophyllum nigripes and Neoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m-2 · year-1 from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitude M. pyrifera dwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration of M. pyrifera forest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment.
Collapse
Affiliation(s)
- Lauren E. Bell
- Ecology and Evolutionary BiologyUniversity of California Santa Cruz130 McAllister WaySanta CruzCalifornia95060USA
| | - Kristy J. Kroeker
- Ecology and Evolutionary BiologyUniversity of California Santa Cruz130 McAllister WaySanta CruzCalifornia95060USA
| |
Collapse
|
52
|
Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C. Global seaweed farming and processing in the past 20 years. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00103-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractSeaweed has emerged as one of the most promising resources due to its remarkable adaptability, short development period, and resource sustainability. It is an effective breakthrough to alleviate future resource crises. Algal resources have reached a high stage of growth in the past years due to the increased output and demand for seaweed worldwide. Several aspects global seaweed farming production and processing over the last 20 years are reviewed, such as the latest situation and approaches of seaweed farming. Research progress and production trend of various seaweed application are discussed. Besides, the challenges faced by seaweed farming and processing are also analyzed, and the related countermeasures are proposed, which can provide advice for seaweed farming and processing. The primary products, extraction and application, or waste utilization of seaweed would bring greater benefits with the continuous development and improvement of applications in various fields.
Graphical Abstract
Collapse
|
53
|
Sultana F, Wahab MA, Nahiduzzaman M, Mohiuddin M, Iqbal MZ, Shakil A, Mamun AA, Khan MSR, Wong L, Asaduzzaman M. Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
54
|
Treatment of Tanning Effluent Using Seaweeds and Reduction of Environmental Contamination. J CHEM-NY 2022. [DOI: 10.1155/2022/7836671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the main sources of dangerous chemicals that are dumped untreated into land and water bodies and have a negative influence on the ecosystem are industrial effluents. Seaweeds are currently used for treating industrial effluent effectively. The technology is at a maturing stage. This paper reviews the characterization and cultivation of seaweeds for wastewater treatment. In this present study, different extracts of four seaweeds such as Gracilaria edulis, Sargassum wightii, Turbinaria ornata, and Kappaphycus alvarezii, from the Mandapam coastal regions were analyzed. The seaweeds are used to treat the leather industry effluents collected from EKM leather processing company, Erode, Tamil Nadu, India. Among all, extracts of Gracilaria edulis survived at different concentrations of TDS: 15,000, 25000, and 35000 mg/l. Out of these different ranges, TDS of about 25000 mg/l seaweed named Gracilaria edulis reduced more amounts of chemicals present in the effluent like TDS (93.90%), phosphates (72.71%), nitrate (75.08%), nitrite (76.92%), and turbidity (99.01%) content. Additionally, we produce the quality and strength of agar gel from the cultivation of Gracilaria edulis by the Nikansui method. Finally, we got the extraction procedure to obtain a higher yield of about 10.26% and a maximum gel strength of 92.06 g·cm−2 while maintaining the melting point at 78°C.
Collapse
|
55
|
Spiecker BJ, Menge BA. Coastal upwelling may strengthen the controls of herbivory and light over the population dynamics of
Hedophyllum sessile
in the Oregon rocky intertidal. Ecol Evol 2022. [DOI: 10.1002/ece3.9218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Barbara J. Spiecker
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| |
Collapse
|
56
|
Rendina F, Buonocore E, di Montanara AC, Russo G. The scientific research on rhodolith beds: A review through bibliometric network analysis. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
57
|
Fica-Rojas E, Catalán AM, Broitman BR, Pérez-Matus A, Valdivia N. Independent Effects of Species Removal and Asynchrony on Invariability of an Intertidal Rocky Shore Community. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological stability depends on interactions between different levels of biological organization. The insurance effects occur when increasing species diversity leads to more temporally invariable (i.e., more stable) community-level properties, due in part to asynchronous population-level fluctuations. While the study of insurance effects has received considerable attention, the role of dominant species that contribute with particular functional traits across different level of organizations is less understood. Using a field-based manipulative experiment, we investigated how species richness and different types of parameters at the population level, such as the invariability of dominants, population invariability, and population asynchrony, influence the community invariability. The experiment involved the repetitive removal of the canopy forming alga Mazzaella laminarioides (hereafter “Mazzaella”) during 32 months in two rocky intertidal sites of northern-central Chile. We predicted that the invariability of dominants enhances community invariability, that the effect of multispecies population-level parameters on community invariability are dependent on species richness, and that subdominant algae are unable to fully compensate the loss of canopies of the dominant species. Biomass of algae and mobile invertebrates was quantified over time. We observed independent effects of Mazzaella removal and community-wide asynchrony on community invariability. While canopy removal reduced community invariability, population asynchrony boosted community invariability regardless of the presence of canopies. In addition, filamentous and foliose algae were unable to compensate the loss of biomass triggered by the experimental removal of Mazzaella. Canopy removal led to a severe decrement in the biomass of macrograzers, while, at the same time, increased the biomass of mesograzers. Asynchrony stemmed from compensatory trophic responses of mesograzers to increased abundances of opportunistic algae. Thus, further work on consumer-resource interactions will improve our understanding of the links between population- and community-level aspects of stability.
Collapse
|
58
|
Seaweed-Derived Polysaccharides Attenuate Heat Stress-Induced Splenic Oxidative Stress and Inflammatory Response via Regulating Nrf2 and NF-κB Signaling Pathways. Mar Drugs 2022; 20:md20060358. [PMID: 35736162 PMCID: PMC9227903 DOI: 10.3390/md20060358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
With global warming, heat stress (HS) has become a worldwide concern in both humans and animals. The ameliorative effect of seaweed (Enteromorpha prolifera) derived polysaccharides (SDP) on HS-induced oxidative stress and the inflammatory response of an immune organ (spleen) was evaluated using an animal model (Gallus gallus domesticus). In total, 144 animals were used in this 4-week trial and randomly assigned to the following three groups: thermoneutral zone, HS, and HS group supplemented with 1000 mg/kg SDP. Dietary SDP improved the antioxidant capacity and reduced the malondialdehyde (MDA) of the spleen when exposed to HS, regulated via enhancing nuclear factor erythroid 2-related factor-2 (Nrf2) signaling. Furthermore, the inclusion of SDP reduced the levels of pro-inflammatory cytokines and alleviated HS-induced splenic inflammatory response by suppressing the nuclear factor-kappa B (NF-κB) p65 signaling. These findings suggest that the SDP from E. prolifera can be used as a functional food and/or feed supplement to attenuate HS-induced oxidative stress and inflammatory responses of the immune organs. Moreover, the results could contribute to the development of high-value marine products from seaweed for potential use in humans and animals, owing to their antioxidant and anti-inflammatory effects.
Collapse
|
59
|
Azzola A, Atzori F, Bianchi CN, Cadoni N, Frau F, Mora F, Morri C, Oprandi A, Orrù PE, Montefalcone M. Variability between observers does not hamper detecting change over time in a temperate reef. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105617. [PMID: 35452902 DOI: 10.1016/j.marenvres.2022.105617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Marine ecosystems are subject to global and local impacts, both contributing to dramatic changes in coastal communities. Assessing such changes requires time series or the revisitation of sites first surveyed in the past. In both cases, data are not necessarily collected by the same observers, which could lead to a bias in the results. In the Marine Protected Area (MPA) of Capo Carbonara (Sardinia, Italy), established in 1998, rocky reef communities were first assessed in 2000 by two diving scientists. Twenty years later, the same rocky reefs were resurveyed using the same method by two other diving scientists. In both surveys, semi-quantitative data on conspicuous species were collected at five sites in four depth zones, providing the possibility of assessing change over time. To explore the influence of climate and local pressures, existing data on sea surface temperature, resident population, tourism and diving activities were analysed. The reef communities of the Capo Carbonara MPA have distinctly changed over time, mostly under the effect of seawater warming, as highlighted by the occurrence of thermophilic species and by other climate-related indicators. On the other side, species vulnerable to local human pressures have increased over time, demonstrating the effectiveness of the protection measures undertaken by the MPA. Comparing data collected by four different observers in the two periods demonstrated that change over time was significantly greater than variability between the observers.
Collapse
Affiliation(s)
- Annalisa Azzola
- DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy.
| | - Fabrizio Atzori
- Capo Carbonara Marine Protected Area, Villasimius, Cagliari, Italy
| | - Carlo Nike Bianchi
- DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy
| | - Nicoletta Cadoni
- Capo Carbonara Marine Protected Area, Villasimius, Cagliari, Italy
| | - Francesca Frau
- Capo Carbonara Marine Protected Area, Villasimius, Cagliari, Italy
| | - Federico Mora
- DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy
| | - Carla Morri
- DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy
| | - Alice Oprandi
- DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy
| | - Paolo Emanuele Orrù
- DSCG, Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy
| | - Monica Montefalcone
- DiSTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
60
|
Pereira J, Monteiro C, Seabra R, Lima F. Fine-scale abundance of rocky shore macroalgae species with distribution limits in NW Iberia in 2020/2021. Biodivers Data J 2022; 10:e80798. [PMID: 35437402 PMCID: PMC9005454 DOI: 10.3897/bdj.10.e80798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background Climate change has been increasing at an unprecedented rate in the last decades. Global warming has been causing a variety of impacts in marine ecosystems, including shifts in the geographical ranges of species. The north-western Iberian Peninsula coast is particularly interesting to study distribution shifts as it features a strong latitude thermal gradient, establishing a biogeographical transitional region where several cold- and warm-adapted species have their equatorward or poleward distributions. In the early 2000s, it appeared that, while warm-water species were already responding to warming, cold-water species did not display a coherent response. It is now necessary to gather up-to-date data on the distribution of the same group of species to understand if current patterns of change confirm or deny those observed back then, which may give us important clues about the mechanisms setting species limits in the area. New information This study provides a fine-scale description of the occurrence of intertidal macroalgae species in the rocky shores of the north-western Iberian coast. Specifically, the spatial distribution and semi-quantitative abundance of 34 native and invasive species were assessed at 70 wave-exposed locations. This included 19 species of cold-water affinity, 10 species of warm-water affinity and five neutral species. When contrasted with historical observations, these new data can be used to quantify and map biodiversity change in the region, as well as help understanding the mechanisms constraining species distributions.
Collapse
|
61
|
Muguerza N, Arriaga O, Díez I, Becerro MA, Quintano E, Gorostiaga JM. A spatially-modelled snapshot of future marine macroalgal assemblages in southern Europe: Towards a broader Mediterranean region? MARINE ENVIRONMENTAL RESEARCH 2022; 176:105592. [PMID: 35272245 DOI: 10.1016/j.marenvres.2022.105592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The effect of climate change on species distribution has been the focus of much recent research, but the community-level approach remains poorly studied. Our investigation applies a present assemblage-environment relationship model for the first time to the predict changes in subtidal macroalgal assemblages in the northern Iberian Peninsula under the RCP 4.5 and RCP 8.5 climate scenarios by 2100. Water temperature is the most relevant factor in shaping assemblage distribution, whilst nutrient availability plays a secondary role. The results partially support our hypothesis that there may well be a potential meridionalisation of northern Iberian assemblages in the future. Under the most pessimistic scenario, the model projects that the north-western assemblages will remain distinct from the rest, whereas the central and eastern assemblages of the north coast of the Iberian Peninsula will come to resemble those of the Mediterranean region more closely than those of the northwest coast. This research may help predict how the biodiversity of the coastal ecosystem will respond to new environmental conditions. This is essential information for developing proper management and conservation policies.
Collapse
Affiliation(s)
- N Muguerza
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.
| | - O Arriaga
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - I Díez
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - M A Becerro
- The BITES Lab, Center for Advanced Studies of Blanes (CEAB-CSIC), Access Cala S Francesc 14, 17300, Blanes (Girona), Spain
| | - E Quintano
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - J M Gorostiaga
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| |
Collapse
|
62
|
Gouvêa LP, Horta PA, Fragkopoulou E, Gurgel CFD, Peres LMC, Bastos E, Ramlov F, Burle G, Koerich G, Martins CDL, Serrão EA, Assis J. Phenotypic Plasticity in Sargassum Forests May Not Counteract Projected Biomass Losses Along a Broad Latitudinal Gradient. Ecosystems 2022. [DOI: 10.1007/s10021-022-00738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
63
|
Spiecker BJ, Menge BA. El Niño and marine heatwaves: Ecological impacts on Oregon rocky intertidal kelp communities at local to regional scales. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis OR USA
| |
Collapse
|
64
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
65
|
Frontier N, Mulas M, Foggo A, Smale DA. The influence of light and temperature on detritus degradation rates for kelp species with contrasting thermal affinities. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105529. [PMID: 34800869 DOI: 10.1016/j.marenvres.2021.105529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 05/06/2023]
Abstract
Kelp detritus fuels coastal food webs and may play an important role as a source of organic matter for natural carbon sequestration. Here, we conducted ex situ and in situ manipulations to evaluate the role of temperature and light availability in the breakdown of detrital material. We examined degradation rates of two North Atlantic species with contrasting thermal affinities: the 'warm water' kelp Laminaria ochroleuca and the 'cool water' Laminaria hyperborea. Detrital fragments were exposed to different temperatures in controlled conditions and across an in situ gradient of depth, corresponding to light availability. Overall, degradation rates (i.e. changes in Fv/Fm and biomass) were faster under lower light conditions and at higher temperatures, although responses were highly variable between plants and fragments. Crucially, as L. ochroleuca degraded faster than L. hyperborea under some conditions, a climate-driven substitution of the 'cool' for the 'warm' kelp, which has been observed at some locations, will likely increase detritus turnover rates and alter detrital pathways in certain environments. More importantly, ocean warming combined with decreased coastal water quality will likely accelerate kelp detritus decomposition, with potential implications for coastal food webs and carbon cycles.
Collapse
Affiliation(s)
- Nadia Frontier
- Marine Biological Association of the United Kingdom, The laboratory, Citadel Hill, Plymouth, PL1 2PB, UK; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Martina Mulas
- Marine Biological Association of the United Kingdom, The laboratory, Citadel Hill, Plymouth, PL1 2PB, UK; Israel Oceanographic & Limnological Research, The National Institute of Oceanography, P.O.BOX 8030, 31080, Haifa, Israel; The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Andrew Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| |
Collapse
|
66
|
Lin Y, Huang Z, Wu L, Zhao P, Wang X, Ma X, Chen W, Bi R, Jia Y. Influence of phosphorus on the uptake and biotransformation of arsenic in Porphyra haitanensis at environmental relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149534. [PMID: 34392210 DOI: 10.1016/j.scitotenv.2021.149534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Edible seaweeds are rich in essential vitamins and minerals, which made them a popular food worldwide. Porphyra haitanensis is one of the most commonly consumed seaweeds with the known ability to accumulate a high level of total arsenic (As). A large number of articles have shown arsenic and phosphorus (P) interactions in microalgae due to the plant's inability to differentiate arsenate from phosphate. However, very limited information is available for edible seaweed at environmentally relevant concentrations. In this study, P. haitanensis was treated with arsenic as AsV (As1: 0.06 μM, As2: 0.4 μM, As3: 1.2 μM) and phosphorous (P1: 3.2 μM, P2: 13 μM) in a filtered seawater matrix under laboratory condition for six days. A better growth rate was found in seaweeds grown in P2 treatments. Moreover, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content measurements revealed that a higher P concentration prevent seaweeds from lipid peroxidation and oxidative stress. Transcriptome studies indicated the As replacement to P has the ability to target seaweed cell membrane composition, transmembrane transport, DNA and ATP binding. The inorganic As (iAs) had a concentration of 0.54 to 4.45 mg/kg in P. haitanensis on Day 6 with As1, As2, and As3 treatments under low P regime (P1), which exceeds the limits of iAs concentration (0.1-0.5 mg/kg) in National Food Safety Standard-Limits of Pollutants in Food (GB 2762-2017). High P regime (P2) not only reduced the total As but also iAs effectively, even in the highest As treatment (As3), the iAs concentration was less than 0.5 mg/kg on Day 6. These findings provide a good insight for seafood safety guarantees and are important for the management of coastal artificial seaweed farming.
Collapse
Affiliation(s)
- Yubing Lin
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhangxun Huang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lin Wu
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Puhui Zhao
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinjie Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xu Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Weizhou Chen
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ran Bi
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
67
|
Kruk M, Artiemjew P, Paturej E. The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
68
|
Blain CO, Hansen SC, Shears NT. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. GLOBAL CHANGE BIOLOGY 2021; 27:5547-5563. [PMID: 34382288 DOI: 10.1111/gcb.15837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 05/06/2023]
Abstract
Macroalgal-dominated habitats are rapidly gaining recognition as important contributors to marine carbon cycles and sequestration. Despite this recognition, relatively little is known about the production and fate of carbon originating from these highly productive ecosystems, or how anthropogenic- and climate-related stressors affect the role of macroalgae in marine carbon cycles. Here, we examine the impact of increasing turbidity on carbon storage, fixation and loss in southern hemisphere kelp forests. We quantified net primary production (NPP) and biomass accumulation (BA), and estimated carbon release via detritus and dissolved organic carbon (DOC) across a large-scale turbidity gradient. We show that increased turbidity, resulting in a 63% reduction in light, can result in a 95% reduction in kelp productivity. When averaged annually, estimates of NPP and BA per plant at high-light sites were nearly six and two times greater than those at low-light sites, respectively. Furthermore, the quantity of carbon fixed annually by kelp forests was up to 4.7 times greater than that stored as average annual standing stock. At low-light sites, the majority of C goes directly into tissue growth and is subsequently eroded. In contrast, excess production at high-light sites accounts for up to 39% of the total carbon fixed and is likely released as DOC. Turbidity is expected to increase in response to climate change and our results suggest this will have significant impacts on the capacity of kelp forests to contribute to carbon sequestration pathways. In addition to demonstrating that turbidity significantly reduces the quantity of carbon fixed by kelp forests, and subsequently released as detritus, our results highlight the negative impacts of turbidity on a large source of previously unaccounted for carbon.
Collapse
Affiliation(s)
- Caitlin O Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Sandra Christine Hansen
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Nick T Shears
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| |
Collapse
|
69
|
Lowman HE, Emery KA, Dugan JE, Miller RJ. Nutritional quality of giant kelp declines due to warming ocean temperatures. OIKOS 2021. [DOI: 10.1111/oik.08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Heili E. Lowman
- Dept of Ecology, Evolution and Marine Biology, Univ. of California Santa Barbara CA USA
| | - Kyle A. Emery
- Marine Science Inst., Univ. of California Santa Barbara CA USA
| | | | | |
Collapse
|
70
|
Umanzor S, Sandoval-Gil J, Sánchez-Barredo M, Ladah LB, Ramírez-García MM, Zertuche-González JA. Short-term stress responses and recovery of giant kelp (Macrocystis pyrifera, Laminariales, Phaeophyceae) juvenile sporophytes to a simulated marine heatwave and nitrate scarcity 1. JOURNAL OF PHYCOLOGY 2021; 57:1604-1618. [PMID: 34124800 DOI: 10.1111/jpy.13189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The frequency of marine heatwaves (MHWs) is increasing due to climate change. Although seaweeds are resilient to environmental changes, an increasing body of evidence shows that rising sea surface temperatures have deleterious effects on temperate kelp species. However, information on the vulnerability of juvenile kelp to these stressors and their population stability is limited. This study summarizes findings on the ability of juvenile sporophytes of Macrocystis pyrifera to survive and recover from simulated MHW conditions (22°C, 5 d) in combination with nitrate limitation (<1 µM) by evaluating photosynthetic capacity, nitrate uptake, tissue composition, bio-optical properties, and oxidative stress of single-blade juvenile sporophytes (<20 cm). Temperature, nitrate availability, and their interaction had significant effects on the physiological status of juvenile sporophytes after the exposure and recovery periods. Overall, as expected, the photosynthetic capacity of juvenile sporophytes decreased with increased temperature and lower nitrate availability. Short-term exposure to simulated MHWs resulted in oxidative damage and reduced growth. The termination of the experimental warming allowed partial recovery to control values, indicating high physiological resilience. However, the interaction of both high temperature and nitrate scarcity induced irreversible damage to their photosynthetic capacity, with an increase in compensation irradiance, highlighting potential limitations in the carbon balance of juvenile sporophytes.
Collapse
Affiliation(s)
- Schery Umanzor
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, 99801, USA
| | - José Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| | - Mariana Sánchez-Barredo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| | - Lydia B Ladah
- Department of Biological Oceanography, CICESE, Ensenada, Baja California, Mexico
| | - Mary-Mar Ramírez-García
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| | - José Antonio Zertuche-González
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| |
Collapse
|
71
|
Paine ER, Schmid M, Boyd PW, Diaz-Pulido G, Hurd CL. Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle. JOURNAL OF PHYCOLOGY 2021; 57:1375-1391. [PMID: 34287891 DOI: 10.1111/jpy.13198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic carbon (DOC) release by seaweeds (marine macroalgae) is a critical component of the coastal ocean biogeochemical carbon cycle but is an aspect of seaweed carbon physiology that we know relatively little about. Seaweed-derived DOC is found throughout coastal ecosystems and supports multiple food web linkages. Here, we discuss the mechanisms of DOC release by seaweeds and group them into passive (leakage, requires no energy) and active release (exudation, requires energy) with particular focus on the photosynthetic "overflow" hypothesis. The release of DOC from seaweeds was first studied in the 1960s, but subsequent studies use a range of units hindering evaluation: we convert published values to a common unit (μmol C · g DW-1 · h-1 ) allowing comparisons between seaweed phyla, functional groups, biogeographic region, and an assessment of the environmental regulation of DOC production. The range of DOC release rates by seaweeds from each phylum under ambient environmental conditions was 0-266.44 μmol C · g DW-1 · h-1 (Chlorophyta), 0-89.92 μmol C · g DW-1 · h-1 (Ochrophyta), and 0-41.28 μmol C · g DW-1 · h-1 (Rhodophyta). DOC release rates increased under environmental factors such as desiccation, high irradiance, non-optimal temperatures, altered salinity, and elevated dissolved carbon dioxide (CO2 ) concentrations. Importantly, DOC release was highest by seaweeds that were desiccated (<90 times greater DOC release compared to ambient). We discuss the impact of future ocean scenarios (ocean acidification, seawater warming, altered irradiance) on DOC release rates by seaweeds, the role of seaweed-derived DOC in carbon sequestration models, and how they inform future research directions.
Collapse
Affiliation(s)
- Ellie R Paine
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Matthias Schmid
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Guillermo Diaz-Pulido
- Griffith School of Environment, Australian Rivers Institute - Coast and Estuaries, Nathan Campus, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
72
|
Muth AF, Bonsell C, Dunton KH. Inherent tolerance of extreme seasonal variability in light and salinity in an Arctic endemic kelp (Laminaria solidungula). JOURNAL OF PHYCOLOGY 2021; 57:1554-1562. [PMID: 34013555 DOI: 10.1111/jpy.13187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The kelp Laminaria solidungula is an important foundation species in the circumpolar Arctic. One of the largest populations of L. solidungula in the Beaufort Sea occurs in Stefansson Sound, off the north coast of Alaska. We surveyed kelp populations in the Stefansson Sound Boulder Patch and found that inshore sites in close proximity (3.5 km) to river input and increased turbidity exhibited lower sporophyte densities (0.36 ± 0.44 · m-2 ) than more offshore sites (>7 km) to the west (0.72 ± 0.48 · m-2 ) and east (4.72 ± 1.51 · m-2 ). We performed culture experiments to examine the possible combined effects of salinity and light on microscopic sporophyte production. Gametophytes cultured in the low salinity treatment (10) were unable to produce sporophytes regardless of light level. The highest light level tested (40 µmol photons · m-2 · s-1 ) produced the greatest sporophyte densities (0.037 ± 0.08 · mm-2 ) at a salinity of 30. Subsequent experimental work on the effect of salinity on microscopic stages revealed that haploid stages were not capable of producing sporophytes at a salinity of 10, but 3-month-old microscopic sporophytes were able to persist in the lower (10 and 20) salinity treatments. Although L. solidungula sporophytes have apparently acclimated to extreme salinity (<5-33) and light variations, the vulnerability of haploid microscopic stages to reduced salinity has the potential to affect future populations as the timing and magnitude of freshwater input to the Arctic Ocean changes.
Collapse
Affiliation(s)
- Arley F Muth
- University of Texas Marine Science Institute, Port Aransas, Texas, USA
| | - Christina Bonsell
- University of Texas Marine Science Institute, Port Aransas, Texas, USA
| | - Kenneth H Dunton
- University of Texas Marine Science Institute, Port Aransas, Texas, USA
| |
Collapse
|
73
|
Vale CG, Arenas F, Barreiro R, Piñeiro‐Corbeira C. Understanding the local drivers of beta‐diversity patterns under climate change: The case of seaweed communities in Galicia, North West of the Iberian Peninsula. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Cândida Gomes Vale
- CIIMARCentro Interdisciplinar de Investigação Marinha e Ambiental Matosinhos Portugal
| | - Francisco Arenas
- CIIMARCentro Interdisciplinar de Investigação Marinha e Ambiental Matosinhos Portugal
| | - Rodolfo Barreiro
- BioCost Research Group Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA)Universidad de A Coruña A Coruña Spain
| | - Cristina Piñeiro‐Corbeira
- BioCost Research Group Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA)Universidad de A Coruña A Coruña Spain
| |
Collapse
|
74
|
Small SL, Edwards MS. Thermal Tolerance May Slow, But Not Prevent, the Spread of Sargassum horneri (Phaeophyceae) along the California, USA and Baja California, MEX Coastline. JOURNAL OF PHYCOLOGY 2021; 57:903-915. [PMID: 33587755 DOI: 10.1111/jpy.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/08/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Biological invasions have become increasingly prevalent in marine ecosystems, modifying biodiversity and altering the way ecosystems function. Understanding how variation in environmental factors influences the success of non-native species, especially their early life stages, can be a crucial step in identifying habitats that are under threat of invasion, and in predicting how rapidly and far these species may spread once they arrive in novel habitats. The invasive marine macroalga Sargassum horneri was first observed in Long Beach Harbor, CA, USA in 2003, and has since spread throughout the Southern California Bight and along the Baja California Peninsula, MEX where it now forms dense stands on subtidal rocky reefs and displaces native habitat-forming macroalgae. We examined how variation in temperature, nutrients, and irradiance affect survival, growth, and development in S. horneri early life stages over a three-week period. Our experimental treatments consisted of orthogonally crossed temperatures (10, 15, 20, and 25°C), nutrient concentrations (ambient and nutrient-enriched seawater), and irradiances (50 and 500 µmol photons · m-2 · s-1 ). Overall, temperature exerted the greatest influence on S. horneri's germling and juvenile life stages, with moderate temperatures facilitating their greatest survival, growth, and development. In contrast, fewer germlings developed fully under the lowest or highest temperatures, and juvenile survival and growth were reduced, especially when combined with low irradiances. Together, our data suggest that ocean temperatures of or below 10˚C and of or above 25°C may slow, but likely not stop, S. horneri's northward and southward expansion along the California and Baja California coasts.
Collapse
Affiliation(s)
- Sadie L Small
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, California, 92182, USA
| | - Matthew S Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, California, 92182, USA
| |
Collapse
|
75
|
Coleman MA, Veenhof RJ. Reproductive Versatility of Kelps in Changing Oceans. JOURNAL OF PHYCOLOGY 2021; 57:708-710. [PMID: 34008176 DOI: 10.1111/jpy.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Melinda A Coleman
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- School of Biological Sciences, UWA Oceans Institute, Crawley, Western Australia, Australia
| | - Reina J Veenhof
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
76
|
Rao NRH, Tamburic B, Doan YTT, Nguyen BD, Henderson RK. Algal biotechnology in Australia and Vietnam: Opportunities and challenges. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
77
|
Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G. Seagrasses in an era of ocean warming: a review. Biol Rev Camb Philos Soc 2021; 96:2009-2030. [PMID: 34014018 DOI: 10.1111/brv.12736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, 80121, Italy.,Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/Varadero, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | | |
Collapse
|
78
|
Kang EJ, Han AR, Kim JH, Kim IN, Lee S, Min JO, Nam BR, Choi YJ, Edwards MS, Diaz-Pulido G, Kim C. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144443. [PMID: 33493906 DOI: 10.1016/j.scitotenv.2020.144443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of green-tides, whose bloom potential may be increased by various human activities and biogeochemical process, results in enormous economic losses and ecosystem collapse. In this study, we investigated the ecophysiology of the subtropical green-tide forming alga, Ulva ohnoi complex (hereafter: U. ohnoi), under simulated future ocean conditions in order to predict its bloom potential using photosynthesis and growth measurements, and stable isotope analyses. Our mesocosm system included four experimental conditions that simulated the individual and combined effects of elevated CO2 and temperature, namely control (450 μatm CO2 & 20 °C), acidification (900 μatm CO2 & 20 °C), warming (450 μatm CO2 & 25 °C), and greenhouse (900 μatm CO2 & 25 °C). Photosynthetic electron transport rates (rETR) increased significantly under acidification conditions, but net photosynthesis and growth were not affected. In contrast, rETR, net photosynthesis, and growth all decreased significantly under elevated temperature conditions (i.e. both warming and greenhouse). These results represent the imbalance of energy metabolism between electron transport and O2 production that may be expected under ocean acidification conditions. This imbalance appears to be related to carbon and nitrogen assimilation by U. ohnoi. In particular, 13C and 15N discrimination data suggest U. ohnoi prefers CO2 and NH4+ over HCO3- and NO3- as sources of carbon and nitrogen, respectively, and this results in increased N content in the thallus under ocean acidification conditions. Together, our results suggest a trade-off in which the bloom potential of U. ohnoi could increase under ocean acidification due to greater N accumulation and through the saving of energy during carbon and nitrogen metabolism, but that elevated temperatures could decrease U. ohnoi's bloom potential through a decrease in photosynthesis and growth.
Collapse
Affiliation(s)
- Eun Ju Kang
- Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea
| | - A-Reum Han
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Republic of Korea; Jeolla High School, Jeollabukdo Office of Education, Jeonju 54863, Republic of Korea
| | - Ju-Hyoung Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea
| | - Sukyeon Lee
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun-Oh Min
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Bo-Ra Nam
- Department of Biology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Matthew S Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Guillermo Diaz-Pulido
- School of Environment and Science and Australian Rivers Institute-Coast & Estuaries, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Changsin Kim
- Fisheries Resource Management Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
79
|
Kobluk HM, Gladstone K, Reid M, Brown K, Krumhansl KA, Salomon AK. Indigenous knowledge of key ecological processes confers resilience to a small‐scale kelp fishery. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hannah M. Kobluk
- School of Resource and Environmental Management Simon Fraser University Burnaby BC Canada
| | | | - Mike Reid
- Heiltsuk Nation Bella Bella BC Canada
- Heiltsuk Integrated Resource Management Department Bella Bella BC Canada
| | - Kelly Brown
- Heiltsuk Nation Bella Bella BC Canada
- Heiltsuk Integrated Resource Management Department Bella Bella BC Canada
| | - Kira A. Krumhansl
- Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth Nova Scotia Canada
| | - Anne K. Salomon
- School of Resource and Environmental Management Simon Fraser University Burnaby BC Canada
| |
Collapse
|
80
|
Patwary ZP, Paul NA, Nishitsuji K, Campbell AH, Shoguchi E, Zhao M, Cummins SF. Application of omics research in seaweeds with a focus on red seaweeds. Brief Funct Genomics 2021; 20:148-161. [PMID: 33907795 DOI: 10.1093/bfgp/elab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Targeted 'omics' research for seaweeds, utilizing various computational and informatics frameworks, has the potential to rapidly develop our understanding of biological processes at the molecular level and contribute to solutions for the most pressing environmental and social issues of our time. Here, a systematic review into the current status of seaweed omics research was undertaken to evaluate the biological diversity of seaweed species investigated (red, green and brown phyla), the levels to which the work was undertaken (from full genome to transcripts, proteins or metabolites) and the field of research to which it has contributed. We report that from 1994 to 2021 the majority of seaweed omics research has been performed on the red seaweeds (45% of total studies), with more than half of these studies based upon two genera Pyropia and Gracilaria. A smaller number of studies examined brown seaweed (key genera Saccharina and Sargassum) and green seaweed (primarily Ulva). Overall, seaweed omics research is most highly associated with the field of evolution (46% of total studies), followed by the fields of ecology, natural products and their biosynthesis, omics methodology and seaweed-microbe interactions. Synthesis and specific outcomes derived from omics studies in the red seaweeds are provided. Together, these studies have provided a broad-scale interrogation of seaweeds, facilitating our ability to answer fundamental queries and develop applied outcomes. Crucial to the next steps will be establishing analytical tools and databases that can be more broadly utilized by practitioners and researchers across the globe because of their shared interest in the key seaweed genera.
Collapse
Affiliation(s)
| | | | - Koki Nishitsuji
- marine genomics unit in the Okinawa Institute of Science and Technology Graduate University
| | | | - Eiichi Shoguchi
- marine genomics unit in the Okinawa Institute of Science and Technology Graduate University
| | - Min Zhao
- University of the Sunshine Coast
| | | |
Collapse
|
81
|
Schlenger AJ, Beas-Luna R, Ambrose RF. Forecasting ocean acidification impacts on kelp forest ecosystems. PLoS One 2021; 16:e0236218. [PMID: 33886569 PMCID: PMC8061940 DOI: 10.1371/journal.pone.0236218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem wide responses are still poorly understood. This study integrates field and experimental data into a mass balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5 pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both individual and population levels, ecosystem-level effects can vary and display nonlinear patterns. Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a decrease in commercial biomass below initial values over time, while ecosystem biomass remains high. Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different community structure characterized by lower biodiversity and relatively greater dominance by lower trophic level organisms.
Collapse
Affiliation(s)
- Adam J. Schlenger
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rodrigo Beas-Luna
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada B.C. Mexico
| | - Richard F. Ambrose
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
82
|
Rising pCO2 interacts with algal density to reversely alter physiological responses of Gracilaria lemaneiformis and Ulva conglobata. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
83
|
Acclimation potential and biochemical response of four temperate macroalgae to light and future seasonal temperature scenarios. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
84
|
Zuñiga-Rios D, Vásquez-Elizondo RM, Caamal E, Robledo D. Photosynthetic responses of Halimeda scabra (Chlorophyta, Bryopsidales) to interactive effects of temperature, pH, and nutrients and its carbon pathways. PeerJ 2021; 9:e10958. [PMID: 33717694 PMCID: PMC7938779 DOI: 10.7717/peerj.10958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we evaluated the interactive effects of temperature, pH, and nutrients on photosynthetic performance in the calcareous tropical macroalga Halimeda scabra. A significant interaction among these factors on gross photosynthesis (Pgross) was found. The highest values of Pgross were reached at the highest temperature, pH, and nutrient enrichment tested and similarly in the control treatment (no added nutrients) at 33 °C at the lowest pH. The Q10Pgross values confirmed the effect of temperature only under nutrient enrichment scenarios. Besides the above, bicarbonate (HCO3−) absorption was assessed by the content of carbon stable isotope (δ13C) in algae tissue and by its incorporation into photosynthetic products, as well as by carbonic anhydrase (CA) inhibitors (Acetazolamide, AZ and Ethoxyzolamide, EZ) assays. The labeling of δ13C revealed this species uses both, CO2 and HCO3− forms of Ci relying on a CO2 Concentration Mechanism (CCM). These results were validated by the EZ-AZ inhibition assays in which photosynthesis inhibition was observed, indicating the action of internal CA, whereas AZ inhibitor did not affect maximum photosynthesis (Pmax). The incorporation of 13C isotope into aspartate in light and dark treatments also confirmed photosynthetic and non-photosynthetic the HCO3−uptake.
Collapse
Affiliation(s)
| | | | - Edgar Caamal
- Department of Marine Resources, Cinvestav, Merida, Yucatan, Mexico
| | - Daniel Robledo
- Department of Marine Resources, Cinvestav, Merida, Yucatan, Mexico
| |
Collapse
|
85
|
Keshavmurthy S, Beals M, Hsieh HJ, Choi KS, Chen CA. Physiological plasticity of corals to temperature stress in marginal coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143628. [PMID: 33248756 DOI: 10.1016/j.scitotenv.2020.143628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Adaptation and/or acclimatization through various mechanisms have been suggested to help some tropical coral species to overcome temperature-induced bleaching that is intensifying with climate change; however, while much research has been done on the physiological responses of tropical and subtropical corals to stress, little is known about these responses in corals in marginal environments-e.g., high-latitude and non-reefal communities. In this study, we examined the thermal-tolerant physiology of the flowerpot coral, Alveopora japonica, endemic to the high-latitude Jeju Island (33.39°N), South Korea and Oulastrea crispata and Coelastrea aspera from the subtropical non-reefal coral community on the Penghu Islands (23.34°N), Taiwan. Analysis of physiological parameters; photochemical efficiency, Chlorophyll pigment, Symbiodiniaceae cell number and host soluble proteins - showed that A. japonica can survive through a wide range of temperature stresses (10-32 °C) over a period of 8 days without showing signs of bleaching. In addition, corals O. crispata and C. aspera withstood temperature stresses of up to 33 °C and repeated temperature fluctuations without bleaching. Our results indicate that, under large seasonal variations and asymmetrical daily fluctuations in temperature, corals currently living in marginal environments could have thermal plasticity, allowing them to survive in the future climate change scenarios. This study reiterates the importance of studying the eco-physiology of corals that are generally ignored because of their neutral or positive responses to stress.
Collapse
Affiliation(s)
| | - Morgan Beals
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu 880, Taiwan
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK 21 PLUS), Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Taiwan International Graduate Program-Biodiversity, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Sciences, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
86
|
Celis-Plá PSM, Kappes JL, Figueroa FL, Pereda SV, Villegas K, Altamirano R, Hernández-González MC, Buschmann AH. Solar Radiation as an Isolated Environmental Factor in an Experimental Mesocosm Approach for Studying Photosynthetic Acclimation of Macrocystis pyrifera (Ochrophyta). FRONTIERS IN PLANT SCIENCE 2021; 12:622150. [PMID: 34276713 PMCID: PMC8283697 DOI: 10.3389/fpls.2021.622150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/04/2021] [Indexed: 05/17/2023]
Abstract
Solar radiation effects on the ecophysiology and biochemical responses of the brown macroalga Macrocystis pyrifera (L.) C. Agardh were evaluated using a mesocosm approach in Southern Chile. Treatments with different radiation attenuations were simulated with three vertical attenuation coefficients: (1) total (Kd = 0.8 m-1), (2) attenuated (Kd = 1.2 m-1), and (3) low (Kd = 1.6 m-1) radiation levels. Nutrient concentration and temperature did not show differences under the three light conditions. Photosynthetic activity was estimated by in vivo chlorophyll a (Chla) fluorescence under the three light treatments as an isolated physical factor in both in situ solar radiation in the field. This was achieved using a pulse amplitude-modulated (PAM) fluorometera-Diving PAM (in situ). Photosynthetic activity and biochemical composition were measured in winter during two daily cycles (1DC and 2DC) in different parts of the thalli of the plant: (1) canopy zone, (2) middle zone, and (3) down zone, associated with different depths in the mesocosm system. Nevertheless, the in situ electron transport rate (ETR in situ ) was higher in the exposed thalli of the canopy zone, independent of the light treatment conditions. The concentration of phenolic compounds (PC) increases in the down zone in the first daily cycle, and it was higher in the middle zone in the second daily cycle. The Chla increased in the morning time under total and attenuated radiation in the first daily cycle. Solar radiation increasing at midday prompted the photoinhibition of photosynthesis in the canopy zone but also an increase in productivity and phenol content. Therefore, light attenuation in the water column drove key differences in the photo-physiological responses of M. pyrifera, with the highest productivity occurring in thalli positioned in the canopy zone when exposed to solar irradiance.
Collapse
Affiliation(s)
- Paula S. M. Celis-Plá
- Laboratory of Aquatic Environmental Research (LACER), Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile
- HUB Ambiental Universidad de Playa Ancha (UPLA), Vicerrectoría de Investigación Postgrado e Innovación, Universidad de Playa Ancha, Valparaíso, Chile
- Paula S. M. Celis-Plá
| | - José Luis Kappes
- Centro de Investigación y Desarrollo de Ambientes y Recursos Costeros (Centro i-mar) and Centro de Biotecnología y Bioingenería (CeBiB), Universidad de Los Lagos, Puerto Montt, Chile
| | - Félix L. Figueroa
- Department of Ecology and Geology, Faculty of Sciences, Institute of Biotechnology and Blue Development (IBYDA), University of Malaga, Malaga, Spain
| | - Sandra V. Pereda
- Centro de Investigación y Desarrollo de Ambientes y Recursos Costeros (Centro i-mar) and Centro de Biotecnología y Bioingenería (CeBiB), Universidad de Los Lagos, Puerto Montt, Chile
| | - Karina Villegas
- Centro de Investigación y Desarrollo de Ambientes y Recursos Costeros (Centro i-mar) and Centro de Biotecnología y Bioingenería (CeBiB), Universidad de Los Lagos, Puerto Montt, Chile
| | - Robinson Altamirano
- Centro de Investigación y Desarrollo de Ambientes y Recursos Costeros (Centro i-mar) and Centro de Biotecnología y Bioingenería (CeBiB), Universidad de Los Lagos, Puerto Montt, Chile
| | - María Carmen Hernández-González
- Centro de Investigación y Desarrollo de Ambientes y Recursos Costeros (Centro i-mar) and Centro de Biotecnología y Bioingenería (CeBiB), Universidad de Los Lagos, Puerto Montt, Chile
| | - Alejandro H. Buschmann
- Centro de Investigación y Desarrollo de Ambientes y Recursos Costeros (Centro i-mar) and Centro de Biotecnología y Bioingenería (CeBiB), Universidad de Los Lagos, Puerto Montt, Chile
- *Correspondence: Alejandro H. Buschmann
| |
Collapse
|
87
|
Kroeker KJ, Powell C, Donham EM. Windows of vulnerability: Seasonal mismatches in exposure and resource identity determine ocean acidification's effect on a primary consumer at high latitude. GLOBAL CHANGE BIOLOGY 2020; 27:1042-1051. [PMID: 33350027 DOI: 10.1111/gcb.15449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
It is well understood that differences in the cues used by consumers and their resources in fluctuating environments can give rise to trophic mismatches governing the emergent effects of global change. Trophic mismatches caused by changes in consumer energetics during periods of low resource availability have received far less attention, although this may be common for consumers during winter when primary producers are limited by light. Even less is understood about these dynamics in marine ecosystems, where consumers must cope with energetically costly changes in CO2 -driven carbonate chemistry that will be most pronounced in cold temperatures. This may be especially important for calcified marine herbivores, such as the pinto abalone (Haliotis kamschatkana). H. kamschatkana are of high management concern in the North Pacific due to the active recreational fishery and their importance among traditional cultures, and research suggests they may require more energy to maintain their calcified shells and acid/base balance with ocean acidification. Here we use field surveys to demonstrate seasonal mismatches in the exposure of marine consumers to low pH and algal resource identity during winter in a subpolar, marine ecosystem. We then use these data to test how the effects of exposure to seasonally relevant pH conditions on H. kamschatkana are mediated by seasonal resource identity. We find that exposure to projected future winter pH conditions decreases metabolism and growth, and this effect on growth is pronounced when their diet is limited to the algal species available during winter. Our results suggest that increases in the energetic demands of pinto abalone caused by ocean acidification during winter will be exacerbated by seasonal shifts in their resources. These findings have profound implications for other marine consumers and highlight the importance of considering fluctuations in exposure and resources when inferring the emergent effects of global change.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Cassandra Powell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Emily M Donham
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
88
|
Menaa F, Wijesinghe PAUI, Thiripuranathar G, Uzair B, Iqbal H, Khan BA, Menaa B. Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions. Mar Drugs 2020; 18:md18120641. [PMID: 33327517 PMCID: PMC7764995 DOI: 10.3390/md18120641] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)–microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA;
- Correspondence: or
| | - P. A. U. I. Wijesinghe
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya 10107, Sri Lanka; (P.A.U.I.W.); (G.T.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya 10107, Sri Lanka; (P.A.U.I.W.); (G.T.)
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan;
| | - Haroon Iqbal
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Bouzid Menaa
- Department of Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA;
| |
Collapse
|
89
|
Ji Y, Gao K. Effects of climate change factors on marine macroalgae: A review. ADVANCES IN MARINE BIOLOGY 2020; 88:91-136. [PMID: 34119047 DOI: 10.1016/bs.amb.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine macroalgae, the main primary producers in coastal waters, play important roles in the fishery industry and global carbon cycles. With progressive ocean global changes, however, they are increasingly exposed to enhanced levels of multiple environmental drivers, such as ocean acidification, warming, heatwaves, UV radiation and deoxygenation. While most macroalgae have developed physiological strategies against variations of these drivers, their eco-physiological responses to each or combinations of the drivers differ spatiotemporally and species-specifically. Many freshwater macroalgae are tolerant of pH drop and its diel fluctuations and capable of acclimating to changes in carbonate chemistry. However, calcifying species, such as coralline algae, are very sensitive to acidification of seawater, which reduces their calcification, and additionally, temperature rise and UV further decrease their physiological performance. Except for these calcifying species, both economically important and harmful macroalgae can benefit from elevated CO2 concentrations and moderate temperature rise, which might be responsible for increasing events of harmful macroalgal blooms including green macroalgal blooms caused by Ulva spp. and golden tides caused by Sargassum spp. Upper intertidal macroalgae, especially those tolerant of dehydration during low tide, increase their photosynthesis under elevated CO2 concentrations during the initial dehydration period, however, these species might be endangered by heatwaves, which can expose them to high temperature levels above their thermal windows' upper limit. On the other hand, since macroalgae are distributed in shallow waters, they are inevitably exposed to solar UV radiation. The effects of UV radiation, depending on weather conditions and species, can be harmful as well as beneficial to many species. Moderate levels of UV-A (315-400nm) can enhance photosynthesis of green, brown and red algae, while UV-B (280-315nm) mainly show inhibitory impacts. Although little has been documented on the combined effects of elevated CO2, temperature or heatwaves with UV radiation, exposures to heatwaves during midday under high levels of UV radiation can be detrimental to most species, especially to their microscopic stages which are less tolerant of climate change induced stress. In parallel, reduced availability of dissolved O2 in coastal water along with eutrophication might favour the macroalgae's carboxylation process by suppressing their oxygenation or photorespiration. In this review, we analyse effects of climate change-relevant drivers individually and/or jointly on different macroalgal groups and different life cycle stages based on the literatures surveyed, and provide perspectives for future studies.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
90
|
Supratya VP, Coleman LJM, Martone PT. Elevated Temperature Affects Phenotypic Plasticity in the Bull Kelp (Nereocystis luetkeana, Phaeophyceae). JOURNAL OF PHYCOLOGY 2020; 56:1534-1541. [PMID: 32666523 DOI: 10.1111/jpy.13049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The sensitivity of kelps to elevated temperatures has been linked to recent declines in some kelp populations, with cascading impacts on marine communities. However, it remains unclear how thermal stress affects the ability of kelps to respond to other environmental factors, which could influence their vulnerability to climate change. We investigated the effect of thermal stress on the ability of the bull kelp Nereocystis luetkeana to acclimate to its surrounding hydrodynamic environment through tension-regulated plasticity in blade morphology. We first determined optimal and stressful temperatures for N. luetkeana by measuring growth over nine temperatures from 5°C to 22°C. We then exposed N. luetkeana blades to a factorial combination of temperature (13°C and 20°C) and tension (0.5 N and 2.0 N) simulating different flow conditions, and measured changes in blade length and width after 7 days. The temperature at which N. luetkeana exhibited maximum growth was estimated to be ~11.9°C, though growth was high over a relatively wide temperature range. When thermally stressed, N. luetkeana maintained morphological responses to simulated high flow, but were inhibited from acclimating to low flow, indicated by an inability of blades to widen. Our results suggest that N. luetkeana in sheltered habitats may be particularly vulnerable to climate warming, where an inability to adjust blade morphology to local hydrodynamic conditions could drive declines at sublethal levels of warming. As ecologically important foundation species, declines in sheltered kelp populations could result in major biodiversity loss and disrupt ecosystem function.
Collapse
Affiliation(s)
- Varoon P Supratya
- Department of Botany and Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Liam J M Coleman
- Department of Botany and Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| | - Patrick T Martone
- Department of Botany and Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
| |
Collapse
|
91
|
Louime CJ, Vazquez-Sanchez F, Derilus D, Godoy-Vitorino F. Divergent Microbiota Dynamics along the Coastal Marine Ecosystem of Puerto Rico. MICROBIOLOGY RESEARCH 2020; 11:45-55. [PMID: 39175946 PMCID: PMC11340205 DOI: 10.3390/microbiolres11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Understanding the different factors shaping the spatial and temporal distribution of marine microorganisms is fundamental in predicting their responses to future environmental disturbances. There has been, however, little effort to characterize the microbial diversity including the microbiome dynamics among regions in the Caribbean Sea. Toward this end, this study was designed to gain some critical insights into microbial diversity within the coastal marine ecosystem off the coast of Puerto Rico. Using Illumina MiSeq, the V4 region of the 16S rRNA gene was sequenced with the goal of characterizing the microbial diversity representative of different coastal sites around the island of Puerto Rico. This study provided valuable insights in terms of the local bacterial taxonomic abundance, α and β diversity, and the environmental factors shaping microbial community composition and structure. The most dominant phyla across all 11 sampling sites were the Proteobacteria, Bacteroidetes, and Planctomycetes, while the least dominant taxonomic groups were the NKB19, Tenericutes, OP3, Lentisphaerae, and SAR406. The geographical area (Caribbean and Atlantic seas) and salinity gradients were the main drivers shaping the marine microbial community around the island. Despite stable physical and chemical features of the different sites, a highly dynamic microbiome was observed. This highlights Caribbean waters as one of the richest marine sources for a microbial biodiversity hotspot. The data presented here provide a basis for further temporal evaluations aiming at deciphering microbial taxonomic diversity around the island, while determining how microbes adapt to changes in the climate.
Collapse
Affiliation(s)
- Clifford Jaylen Louime
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Frances Vazquez-Sanchez
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - Dieunel Derilus
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| |
Collapse
|
92
|
How Far Can We Classify Macroalgae Remotely? An Example Using a New Spectral Library of Species from the South West Atlantic (Argentine Patagonia). REMOTE SENSING 2020. [DOI: 10.3390/rs12233870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macroalgae have attracted the interest of remote sensing as targets to study coastal marine ecosystems because of their key ecological role. The goal of this paper is to analyze a new spectral library, including 28 macroalgae from the South-West Atlantic coast, in order to assess its use in hyperspectral remote sensing. The library includes species collected in the Atlantic Patagonian coast (Argentina) with representatives of brown, red, and green algae, being 22 of the species included in a spectral library for the first time. The spectra of these main groups are described, and the intraspecific variability is also assessed, considering kelp differentiated tissues and depth range, discussing them from the point of view of their effects on spectral features. A classification and an independent component analysis using the spectral range and simulated bands of two state-of-the-art drone-borne hyperspectral sensors were performed. The results show spectral features and clusters identifying further algae taxonomic groups, showing the potential applications of this spectral library for drone-based mapping of this ecological and economical asset of our coastal marine ecosystems.
Collapse
|
93
|
Medrano A, Hereu B, Mariani S, Neiva J, Pagès-Escolà M, Paulino C, Rovira GL, Serrão EA, Linares C. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci Rep 2020; 10:19219. [PMID: 33154466 PMCID: PMC7644675 DOI: 10.1038/s41598-020-76066-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
The widespread decline of canopy-forming macroalgal assemblages has been documented in many regions during the last decades. This pattern is often followed by the replacement of structurally complex algal canopies by more simplified habitats (e.g., turfs or sea urchin barren grounds). Against all odds, the fucoid Treptacantha elegans, a large Mediterranean brown macroalga, broadened its depth range to deeper and exposed environments and displayed an unexpected range expansion along the northern coast of Catalonia over the last two decades. Here, we reconstruct the spread of T. elegans in time and space and unravel ecological and demographic traits such as population dynamics and genetic patterns to provide a comprehensive and integrated view of the current status and geographical expansion for this species. Fast-growing dynamics, early fertile maturity, and high turnover rate are the main competitive advantages that allow the exposed populations of T. elegans to colonize available substrata and maintain dense and patchy populations. We also provided evidence that the deeper and exposed populations of T. elegans constitute a single group across the Catalan coast, with little genetic differentiation among populations. This seems to support the hypothesis of a unique source of spread in the last decades from the Medes Islands No-Take Zone towards both southern and northern waters.
Collapse
Affiliation(s)
- Alba Medrano
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Bernat Hereu
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Simone Mariani
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Centre d'Estudis Avançats de Blanes - CSIC, Accés Cala Sant Francesc 14, Blanes, 17300, Girona, Spain
| | - João Neiva
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Marta Pagès-Escolà
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Cristina Paulino
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Graciel la Rovira
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Ester A Serrão
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cristina Linares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
94
|
Cappelatti L, Mauffrey ARL, Griffin JN. Functional diversity of habitat formers declines scale-dependently across an environmental stress gradient. Oecologia 2020; 194:135-149. [PMID: 32895733 PMCID: PMC7561580 DOI: 10.1007/s00442-020-04746-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Marine habitat formers such as seaweeds and corals are lynchpins of coastal ecosystems, but their functional diversity and how it varies with scale and context remains poorly studied. Here, we investigate the functional diversity of seaweed assemblages across the rocky intertidal stress gradient at large (zones) and small (quadrat) scales. We quantified complementary metrics of emergent group richness, functional richness (functional space occupied) and functional dispersion (trait complementarity of dominant species). With increasing shore height, under species loss and turnover, responses of functional diversity were scale- and metric-dependent. At the large scale, functional richness contracted while—notwithstanding a decline in redundancy—emergent group richness and functional dispersion were both invariant. At the small scale, all measures declined, with the strongest responses evident for functional and emergent group richness. Comparisons of observed versus expected values based on null models revealed that functional richness and dispersion were greater than expected in the low shore but converged with expected values higher on the shore. These results show that functional diversity of assemblages of marine habitat formers can be especially responsive to environmental stress gradients at small scales and for richness measures. Furthermore, niche-based processes at the small—neighbourhood—scale can favour co-occurrence of functionally distinctive species under low, but not high, stress, magnifying differences in functional diversity across environmental gradients. As assemblages of marine habitat formers face accelerating environmental change, further studies examining multiple aspects of functional diversity are needed to elucidate patterns, processes, and ecosystem consequences of community (dis-)assembly across diverse groups.
Collapse
Affiliation(s)
- Laura Cappelatti
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK.
| | - Alizée R L Mauffrey
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK
| | - John N Griffin
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
95
|
Gouvêa LP, Assis J, Gurgel CFD, Serrão EA, Silveira TCL, Santos R, Duarte CM, Peres LMC, Carvalho VF, Batista M, Bastos E, Sissini MN, Horta PA. Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138745. [PMID: 32498159 DOI: 10.1016/j.scitotenv.2020.138745] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Marine climate change mitigation initiatives have recently attracted a great deal of interest in the role of natural carbon sinks, particularly on coastal systems. Brown seaweeds of the genus Sargassum are the largest canopy-forming algae in tropical and subtropical environments, with a wide global distribution on rocky reefs and as floating stands. Because these algae present high amounts of biomass, we suggest their contribution is relevant for global carbon stocks and consequently for mitigating climate change as CO2 remover. We modelled global distributions and quantified carbon stocks as above-ground biomass (AGB) with machine learning algorithms and climate data. Sargassum AGB totaled 13.1 Pg C at the global scale, which is a significant amount of carbon, comparable to other key marine ecosystems, such as mangrove forests, salt marshes and seagrass meadows. However, specific techniques related to bloom production and management, or the utilization of biomass for biomaterials, should be fostered.
Collapse
Affiliation(s)
- Lidiane P Gouvêa
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| | - Jorge Assis
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Carlos F D Gurgel
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Ester A Serrão
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Thiago C L Silveira
- Department of Ecology and Zoology, Biological Sciences Center, Federal University of Santa Catarina, Trindade, Florianopolis, Santa Catarina, Brazil
| | - Rui Santos
- CCMAR - Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Leticia M C Peres
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Vanessa F Carvalho
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Manuela Batista
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Eduardo Bastos
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Marina N Sissini
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Paulo A Horta
- Phycology Laboratory, Department of Botany, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
96
|
Kim JH, Kim N, Moon H, Lee S, Jeong SY, Diaz-Pulido G, Edwards MS, Kang JH, Kang EJ, Oh HJ, Hwang JD, Kim IN. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. MARINE POLLUTION BULLETIN 2020; 157:111324. [PMID: 32658689 DOI: 10.1016/j.marpolbul.2020.111324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Dramatic increases in the release of anthropogenic CO2 and global temperatures have resulted in alterations to seawater carbonate chemistry and metabolisms of marine organisms. There has been recent interest in the effects of these stressors on crustose coralline algae (CCA) because photosynthesis and calcification are influenced by all components of carbonate chemistry. To examine this, a mesocosm experiment was conducted to evaluate photosynthesis, calcification and growth in the temperate CCA Chamberlainium sp. under acidification (doubled CO2), warming (+5 °C), and greenhouse (doubled CO2 and +5 °C) conditions compared to present-day conditions. After 47 days of acclimation to these conditions, productivity was lowest under acidification, although photochemical properties were improved, while respiration was highest under warming. Likewise, growth was lowest under acidification, but this negative response was offset by elevated temperature under greenhouse. Together, these results suggest that warming offsets the negative effects of acidification by creating more suitable conditions for photosynthesis and growth.
Collapse
Affiliation(s)
- Ju-Hyoung Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, South Korea.
| | - Nahyun Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, South Korea
| | - Hanbi Moon
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, South Korea
| | - Sukyeon Lee
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, South Korea
| | - So Young Jeong
- School of Environment and Science and Australian Rivers Institute-Coast & Estuaries, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Guillermo Diaz-Pulido
- School of Environment and Science and Australian Rivers Institute-Coast & Estuaries, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Matthew S Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, Physical Sciences 145, San Diego, CA 92182, USA
| | - Ju-Hyun Kang
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, South Korea; Korea Ocean & Fisheries Institute, Tongyeong 53005, South Korea
| | - Eun Ju Kang
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Hyun-Ju Oh
- Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Jae-Dong Hwang
- Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|
97
|
Détrée C, Navarro JM, Font A, Gonzalez M. Species vulnerability under climate change: Study of two sea urchins at their distribution margin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138850. [PMID: 32570334 DOI: 10.1016/j.scitotenv.2020.138850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In order to develop powerful predictions on the impact of climate change on marine organisms, it is critical to understand how abiotic drivers such as temperature can directly and indirectly affect marine organisms. Here, we evaluated and compared the physiological vulnerability of the leading-edge populations of two species of sea urchins Loxechinus albus and Pseudechinus magellanicus in response to predicted ocean warming and food limitation. After exposing sea urchins to a 60-day experimental period to contrasting temperature (1 °C, 7 °C and 14 °C corresponding respectively to the actual average summer temperature in Antarctica, the control treatment temperature and the predicted future temperature in the Strait of Magellan) and diet levels (ad libitum or food limitation), sea urchin stress tolerance was assessed. Sea urchins' physiology was measured at the organismal and sub-cellular level by studying the organisms energy balance (behavior, growth, gonad index, ingestion rate, O2 uptake, energy reserves) and the expression of genes associated with aerobic metabolism. Our results showed that at their distribution edge, and despite their distinct geographical repartition, both species might be resilient to ocean warming. However, the combination of ocean warming and food limitation reduced the stress tolerance of sea urchins. In a warming ocean, another strategy could be to migrate toward the pole to a cooler environment but incubation at 1 °C resulted in a diminution of both species' aerobic scope. Overall, if these engineer species are unable to acclimate to food limitation under future climate, population fitness could be affected with ecological and economic consequences.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Jorge M Navarro
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Font
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero Punta Arenas, Chile
| | - Marcelo Gonzalez
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero Punta Arenas, Chile
| |
Collapse
|
98
|
Li JJ, Liu ZY, Zhong ZH, Zhuang LC, Bi YX, Qin S. Limited Genetic Connectivity Among Sargassum horneri (Phaeophyceae) Populations in the Chinese Marginal Seas Despite Their high Dispersal Capacity. JOURNAL OF PHYCOLOGY 2020; 56:994-1005. [PMID: 32173868 DOI: 10.1111/jpy.12990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Sargassum horneri is a habitat-forming species in the Northwest Pacific and an important contributor to seaweed rafts. In this study, 131 benthic samples and 156 floating samples were collected in the Yellow Sea and East China Sea (ECS) to test the effects of seaweed rafts on population structure and connectivity. Our results revealed high levels of genetic diversity in both benthic and floating samples based on concatenated mitochondrial markers (rpl5-rps3, rnl-atp9, and cob-cox2). Phylogenetic analyses consistently supported the existence of two lineages (lineages I and II), with divergence dating to c. 0.692 Mya (95% HPD: 0.255-1.841 Mya), indicating that long-term isolation may have occurred during the mid-Pleistocene (0.126-0.781 Mya). Extended Bayesian skyline plots demonstrated a constant population size over time in lineage I and slight demographic expansion in lineage II. Both lineages were found in each marginal sea (including both benthic and floating samples), but PCoA, FST , and AMOVA analyses consistently revealed deep genetic variation between regions. Highly structured phylogeographic pattern supports limited genetic connectivity between regions. IMA analyses demonstrated that asymmetric gene flow between benthic populations in the North Yellow Sea (NYS) and ECS was extremely low (ECS→NYS, 2Nm = 0.6), implying that high dispersal capacity cannot be assumed to lead to widespread population connectivity, even without dispersal barriers. In addition, there were only a few shared haplotypes between benthic and floating samples, suggesting the existence of hidden donors for the floating masses in the Chinese marginal seas.
Collapse
Affiliation(s)
- Jing-Jing Li
- College of Oceanography, Institute of Marine Biology, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Zhi-Hai Zhong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Long-Chuan Zhuang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
99
|
Roy S. Seaweed diversity within intertidal zone of Olaikuda and Vadakkadu, Rameshwaram, southeast coast of India. Heliyon 2020; 6:e04585. [PMID: 32775733 PMCID: PMC7399126 DOI: 10.1016/j.heliyon.2020.e04585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Seasonal variation of seaweed diversity was studied in Olaikuda and Vadakkadu, the two unexplored coastal areas in Rameshwaram Island in south coast of India. An extensive survey on seasonal changes of seaweed diversity was made study and the data were analyzed for different diversity indices. In each location, 3 transects at 100 m gap were taken and in each transect 10 quadrates, a total of 30 quadrates were taken for seaweeds diversity. The diversity data were analyzed with statistical methods such as graphical and statistical analysis K-dominance curve with software PRIMER package, cluster analysis, multivariate methods, anosim and diversity indices such as Shannon Weaver diversity index, Simpson species richness index, Fisher alpha index, Pielou's evenness, and taxonomic species diversity (delta) index were analyzed by using the software R statistic version 3.1.4. Package (vegan). Totally 74 species including 28 species of Chlorophyceae, 18 species of Phaeophyceae and 28 species of Rhodophyceae were recorded. The study areas are flourishing with 49–59 seaweed species. It is inferred that the seaweeds are well diversified seasonally except summer. The baseline data generated in this work will help in conservation of the seaweeds in the areas.
Collapse
Affiliation(s)
- Suparna Roy
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Annamalai Nagar, Tamilnadu, India
| |
Collapse
|
100
|
Cattano C, Agostini S, Harvey BP, Wada S, Quattrocchi F, Turco G, Inaba K, Hall-Spencer JM, Milazzo M. Changes in fish communities due to benthic habitat shifts under ocean acidification conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138501. [PMID: 32298893 DOI: 10.1016/j.scitotenv.2020.138501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated fish and to selection of those fish species better adapted to simplified ecosystems dominated by algae. Our data suggest that near-future projected ocean acidification levels will oppose the ongoing range expansion of coral reef-associated fish due to global warming.
Collapse
Affiliation(s)
- Carlo Cattano
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 20-22, 90123 Palermo, Italy; CoNISMa (Interuniversity Consortium of Marine Sciences), Piazzale Flaminio 9, 00196 Rome, Italy.
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, 415-0025 Shizuoka, Japan
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, 415-0025 Shizuoka, Japan
| | - Shigeki Wada
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, 415-0025 Shizuoka, Japan
| | - Federico Quattrocchi
- IRBIM - Istituto per le Risorse Biologiche e le Biotecnologie Marine, CNR - National Research Council, Via Luigi Vaccara 61, 91026 Mazara del Vallo, TP, Italy
| | - Gabriele Turco
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 20-22, 90123 Palermo, Italy; CoNISMa (Interuniversity Consortium of Marine Sciences), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, 415-0025 Shizuoka, Japan
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, 415-0025 Shizuoka, Japan; Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 20-22, 90123 Palermo, Italy; CoNISMa (Interuniversity Consortium of Marine Sciences), Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|