51
|
Shemesh M, Ostrov I. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2327-2336. [PMID: 31975392 DOI: 10.1002/jsfa.10285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Biofilm-forming Bacillus species are often involved in persistent contamination and spoilage of dairy products. They therefore present a major microbiological challenge in the field of dairy food quality and safety. Due to their substantial physiological versatility, Bacillus species can survive in various parts of dairy manufacturing plants, leading to a high risk of product spoilage and potential dissemination of foodborne diseases. Furthermore, biofilm and heat-resistant spore formation make these bacteria challenging to eliminate. Thus, some strategies have been employed to remove, prevent, or delay the formation of Bacillus biofilms in the dairy industry, but with limited success. Lack of understanding of the Bacillus biofilm structure and behavior in conditions relevant to dairy-associated environments could partially account for this situation. The current paper reviews dairy-associated biofilm formation by Bacillus species, with particular attention to the role of biofilm in Bacillus species adaptation and survival in a dairy processing environment. Relevant model systems are discussed for the development of novel antimicrobial approaches to improve the quality of dairy food. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
52
|
James Bound D, Murthy PS, Negi P, Srinivas P. Evaluation of anti-quorum sensing and antimutagenic activity of 2,3-unsaturated and 2,3-dideoxyglucosides of terpene phenols and alcohols. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
53
|
Gabriel AA, Panaligan DC. Heat and chlorine resistance of a soil Acanthamoeba sp. cysts in water. J Appl Microbiol 2020; 129:453-464. [PMID: 32012390 DOI: 10.1111/jam.14600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
AIMS The study established the inactivation kinetic parameters of an Acanthamoeba cyst isolate subjected to heating and chlorination. METHODS AND RESULTS A strain of Acanthamoeba was isolated and purified from an area surrounding a pilot food plant. Mature cysts (14 days) were subjected to heat inactivation studies at 71, 76, 81, 86 and 91°C; and chlorination at 100, 200, 300, 400 and 500 ppm. The decimal reduction times (D-values) at 71, 76, 81, 86 and 91°C were 18·31, 9·26, 7·35, 4·52 and 1·81 min respectively. The calculated thermal resistance constant (z-value) was 21·32°C (R2 = 0·96-0·97). The D-value in 100, 200, 300, 400 and 500 ppm chlorine-treated water were 47·17, 25·06, 24·51, 23·70 and 18·55 min respectively. The chlorine resistance constant (z-value) was 1179 ppm chlorine (R2 = 0·65-0·74). CONCLUSIONS Results demonstrated high resistance of the isolated Acanthamoeba cysts towards the common methods applied in ensuring food and food processing environment sanitation. SIGNIFICANCE AND IMPACT OF THE STUDY The resistance parameters of the test organisms established in this study may be used in the establishment of Sanitation Standard Operating Procedures (SSOPs), which are often based on inactivation of bacteria. These SSOPs could render better protection to food and food processing environments.
Collapse
Affiliation(s)
- A A Gabriel
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines, Quezon City, Philippines
| | - D C Panaligan
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines, Quezon City, Philippines
| |
Collapse
|
54
|
A Big World in Small Grain: A Review of Natural Milk Kefir Starters. Microorganisms 2020; 8:microorganisms8020192. [PMID: 32019167 PMCID: PMC7074874 DOI: 10.3390/microorganisms8020192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Milk kefir is a traditional fermented milk product whose consumption is becoming increasingly popular. The natural starter for kefir production is kefir grain, which consists of various bacterial and yeast species. At the industrial scale, however, kefir grains are rarely used due to their slow growth, complex application, bad reproducibility and high costs. Instead, mixtures of defined lactic acid bacteria and sometimes yeasts are applied, which alter sensory and functional properties compared to natural grain-based milk kefir. In order to be able to mimic natural starter cultures for authentic kefir production, it is a prerequisite to gain deep knowledge about the nature of kefir grains, its microbial composition, morphologic structure, composition of strains on grains and the impact of environmental parameters on kefir grain characteristics. In addition, it is very important to deeply investigate the numerous multi-dimensional interactions among different species, which play important roles on the formation and the functionality of grains.
Collapse
|
55
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
56
|
Zhang SJ, Du XP, Zhu JM, Meng CX, Zhou J, Zuo P. The complete genome sequence of the algicidal bacterium Bacillus subtilis strain JA and the use of quorum sensing to evaluate its antialgal ability. ACTA ACUST UNITED AC 2020; 25:e00421. [PMID: 31956522 PMCID: PMC6961068 DOI: 10.1016/j.btre.2020.e00421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022]
Abstract
B. subtilis strain JA exhibit strong algicidal effects on algae with the inhibition rate exceeding 80 % within 48 h. The algicidal activity is regulated by AI-2 type quorum sensing. The complete genome information is provided for developing novel chemical-ecological methods to control harmful algae.
We describe the isolation of Bacillus subtilis strain JA and demonstrate that this bacterium exhibited strong algicidal effects on the algae Alexandrium minutum with an inhibition rate exceeding 80 % within 48 h. B. subtilis JA significantly reduced the photosynthetic efficiency of A. minutum and caused extensive morphological damage to the algae. Genomic analysis of B. subtilis JA demonstrated that a putative AI-2 type quorum sensing (QS) gene (LuxS) is present in its genome cluster, which is regulate pheromone biosynthesis. Interestingly, the exogenous addition of a QS-oligopeptide (ComX-pheromone) improved the algicidal efficiency of B. subtilis JA, thus indicating that the algicidal activity of this bacterium is potentially regulated by QS. Collectively, our data describe a potential antialgal bacterium and speculated that its behavior can be modulated by QS signal. B. subtilis JA may therefore represent a valuable tool for the development of novel chemical-ecological methods with which to control harmful algae.
Collapse
Affiliation(s)
- Sheng-Jie Zhang
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.,School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang Province, PR China
| | - Chen-Xu Meng
- Second Institute of Oceanography, Ministry of Natural Resources, Hanzhou, 310000, Zhejiang Province, PR China
| | - Jin Zhou
- The Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Ping Zuo
- The School of Geography and Ocean Science, Nanjing University, Nanjing, 210093, Jiangsu Province, PR China
| |
Collapse
|
57
|
Chen X, Yu F, Li Y, Lou Z, Toure SL, Wang H. The inhibitory activity of p-coumaric acid on quorum sensing and its enhancement effect on meat preservation. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2019.1701558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Dairy biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China
- College of Life Science and Environment, Hengyang Normal University, Hengyang, China
| | - Fuhao Yu
- State Key Laboratory of Dairy biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqin Li
- State Key Laboratory of Dairy biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China
| | - Zaixiang Lou
- State Key Laboratory of Dairy biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Samba Lamine Toure
- State Key Laboratory of Dairy biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongxin Wang
- State Key Laboratory of Dairy biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
58
|
Maheswari P, Ponnusamy S, Harish S, Ganesh M, Hayakawa Y. Hydrothermal synthesis of pure and bio modified TiO2: Characterization, evaluation of antibacterial activity against gram positive and gram negative bacteria and anticancer activity against KB Oral cancer cell line. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
59
|
Li T, Wang D, Ren L, Mei Y, Ding T, Li Q, Chen H, Li J. Involvement of Exogenous N-Acyl-Homoserine Lactones in Spoilage Potential of Pseudomonas fluorescens Isolated From Refrigerated Turbot. Front Microbiol 2019; 10:2716. [PMID: 31849873 PMCID: PMC6895499 DOI: 10.3389/fmicb.2019.02716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023] Open
Abstract
Some bacteria can modulate their spoilage potential by responding to environmental signaling molecules via the quorum sensing (QS) system. However, the ability of Pseudomonas fluorescens, the specific spoilage organism (SSO) of turbot, to response to environmental signaling molecules remains unclear. This study investigated the effects of six synthetic N-acyl homoserine lactones (AHLs) on typical behaviors mediated by QS in P. fluorescens, such as biofilm formation and extracellular protease activity. Total volatile basic nitrogen (TVB-N) was used as a spoilage indicator to evaluate quality changes in AHL-treated turbot filets during storage. The results confirm the enhancing effect of environmental AHLs on QS-dependent factors of P. fluorescens and quality deterioration of turbot filets, with C4-HSL and C14-HSL being the most effective. Moreover, the content decrease of exogenous AHLs was also validated by gas chromatography–mass spectrometry analysis. Further, changes in rhlR transcription levels in P. fluorescens suggest that this bacterium can sense environmental AHLs. Finally, molecular docking analysis demonstrates the potential interactions of RhlR protein with various exogenous AHLs. These findings strongly implicate environmental AHLs in turbot spoilage caused by P. fluorescens, suggesting preservation of turbot should not exclusively consider the elimination of SSO-secreted AHLs.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yongchao Mei
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Ting Ding
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
60
|
Rodríguez-López P, Barrenengoa AE, Pascual-Sáez S, Cabo ML. Efficacy of Synthetic Furanones on Listeria monocytogenes Biofilm Formation. Foods 2019; 8:E647. [PMID: 31817522 PMCID: PMC6963563 DOI: 10.3390/foods8120647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Furanones are analogues of acylated homoserine lactones with proven antifouling activity in both Gram-positive and Gram-negative bacteria though the interference of various quorum sensing pathways. In an attempt to find new strategies to prevent and control Listeria monocytogenes biofilm formation on stainless steel (SS) surfaces, different concentrations of six synthetic furanones were applied on biofilms formed by strains isolated from food, environmental, and clinical sources grown onto AISI 316 SS coupons. Among the furanones tested, (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone and 3,4-Dichloro-2(5H)-furanone significantly (p < 0.05) reduced the adhesion capacity (>1 log CFU cm-2) in 24 h treated biofilms. Moreover, individually conducted experiments demonstrated that (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone was able to not only significantly (p < 0.05) prevent L. monocytogenes adhesion but also to reduce the growth rate of planktonic cells up to 48 h in a dose-dependent manner. LIVE/DEAD staining followed by epifluorescence microscopy visualisation confirmed these results show an alteration of the structure of the biofilm in furanone-treated samples. Additionally, it was demonstrated that 20 µmol L-1 of 3,4-Dichloro-2(5H)-furanone dosed at 0, 24 and 96 h was able to maintain a lower level of adhered cells (>1 log CFU cm-2; p < 0.05). Since furanones do not pose a selective pressure on bacteria, these results represent an appealing novel strategy for the prevention of L. monocytogenes biofilm grown onto SS.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain; (P.R.-L.); (A.E.B.); (S.P.-S.)
- Department of Food and Drug, Università di Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Andrea Emparanza Barrenengoa
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain; (P.R.-L.); (A.E.B.); (S.P.-S.)
| | - Sergio Pascual-Sáez
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain; (P.R.-L.); (A.E.B.); (S.P.-S.)
| | - Marta López Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain; (P.R.-L.); (A.E.B.); (S.P.-S.)
| |
Collapse
|
61
|
Bakry AM, Chen YQ, Liang L. Developing a mint yogurt enriched with omega‐3 oil: Physiochemical, microbiological, rheological, and sensorial characteristics. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amr M. Bakry
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi P.R. China
- Department of Dairy Science Faculty of Agriculture Suez Canal University Ismailia Egypt
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi P.R. China
- School of Food Science and Technology Jiangnan University Wuxi P.R. China
| | - Li Liang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi P.R. China
- School of Food Science and Technology Jiangnan University Wuxi P.R. China
| |
Collapse
|
62
|
Inhibition of Pseudomonas aeruginosa Quorum Sensing by Curcuma xanthorrhiza Roxb. Extract. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
63
|
Quintieri L, Zühlke D, Fanelli F, Caputo L, Liuzzi VC, Logrieco AF, Hirschfeld C, Becher D, Riedel K. Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin. Food Microbiol 2019; 82:177-193. [DOI: 10.1016/j.fm.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022]
|
64
|
Pseudomonas fluorescens: a potential food spoiler and challenges and advances in its detection. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
65
|
Zhang Y, Kong J, Xie Y, Guo Y, Yu H, Cheng Y, Qian H, Shi R, Yao W. Quorum-sensing inhibition by hexanal in biofilms formed by Erwinia carotovora and Pseudomonas fluorescens. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
66
|
Zhu YL, Hou HM, Zhang GL, Wang YF, Hao HS. AHLs Regulate Biofilm Formation and Swimming Motility of Hafnia alvei H4. Front Microbiol 2019; 10:1330. [PMID: 31275267 PMCID: PMC6593095 DOI: 10.3389/fmicb.2019.01330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/28/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the role of N-acyl homoserine lactones (AHLs) in the regulation of swimming motility of Hafnia alvei H4 and its biofilm formation on 96-well plate, glass and stainless-steel surfaces. The luxI gene, which codes for an enzyme involved in AHL synthesis, was deleted to generate a luxI mutant (ΔluxI). The mutant produced no AHL, and the relative expression of the luxR gene was significantly (P < 0.05) decreased. In addition, qRT-PCR analysis showed that the relative expression of the luxR gene in ΔluxI was stimulated by the presence of exogenous AHLs (C4-HSL, C6-HSL, and 3-o-C8-HSL) added at concentrations ranging from of 50–250 μg/ml. Among the three AHLs, C6-HSL had the strongest effect. The ability of ΔluxI to form biofilm on 96-well plate, glass and stainless-steel surfaces was significantly reduced (P < 0.05) compared with the wild type (WT), but was increased when provided with 150 μg/ml C4-HSL, whereas C6-HSL and 3-o-C8-HSL had no effect. Scanning electron microscopy analysis of the biofilm revealed less bacteria adhering to the surface of stainless-steel and fewer filaments were found binding to the cells compared with the WT. Furthermore, ΔluxI also exhibited significant (P < 0.05) decrease in the expression of biofilm- and swimming motility-related genes, flgA, motA and cheA, consistent with the results observed for biofilm formation and swimming motility. Taken together, the results suggested that in H. alvei H4, C4-HSL may act as an important molecular signal through regulating the ability of the cells to form biofilm, as well as through regulating the swimming motility of the cell, and this could provide a new way to control these phenotypes of H. alvei in food processing.
Collapse
Affiliation(s)
- Yao lei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hong man Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
- *Correspondence: Hong man Hou,
| | - Gong liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Yi fang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hong shun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
67
|
Quecan BXV, Santos JTC, Rivera MLC, Hassimotto NMA, Almeida FA, Pinto UM. Effect of Quercetin Rich Onion Extracts on Bacterial Quorum Sensing. Front Microbiol 2019; 10:867. [PMID: 31105665 PMCID: PMC6492534 DOI: 10.3389/fmicb.2019.00867] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) regulates bacterial gene expression and studies suggest quercetin, a flavonol found in onion, as a QS inhibitor. There are no studies showing the anti-QS activity of plants containing quercetin in its native glycosylated forms. This study aimed to evaluate the antimicrobial and anti-QS potential of organic extracts of onion varieties and its representative phenolic compounds quercetin aglycone and quercetin 3-β-D-glucoside in the QS model bacteria Chromobacterium violaceum ATCC 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MG1. Three phenolic extracts were obtained: red onion extract in methanol acidified with 2.5% acetic acid (RO-1), white onion extract in methanol (WO-1) and white onion extract in methanol ammonium (WO-2). Quercetin 4-O-glucoside and quercetin 3,4-O-diglucoside were identified as the predominant compounds in both onion varieties using HPLC-DAD and LC-ESI-MS/MS. However, quercetin aglycone, cyanidin 3-O-glucoside and quercetin glycoside were identified only in RO-1. The three extracts showed minimum inhibitory concentration (MIC) values equal to or above 125 μg/ml of dried extract. Violacein production was significantly reduced by RO-1 and quercetin aglycone, but not by quercetin 3-β-D-glucoside. Motility in P. aeruginosa PAO1 was inhibited by RO-1, while WO-2 inhibited S. marcescens MG1 motility only in high concentration. Quercetin aglycone and quercetin 3-β-D-glucoside were effective at inhibiting motility in P. aeruginosa PAO1 and S. marcescens MG1. Surprisingly, biofilm formation was not affected by any extracts or the quercetins tested at sub-MIC concentrations. In silico studies suggested a better interaction and placement of quercetin aglycone in the structures of the CviR protein of C. violaceum ATCC 12472 than the glycosylated compound which corroborates the better inhibitory effect of the former over violacein production. On the other hand, the two quercetins were well placed in the AHLs binding pockets of the LasR protein of P. aeruginosa PAO1. Overall onion extracts and quercetin presented antimicrobial activity, and interference on QS regulated production of violacein and swarming motility.
Collapse
Affiliation(s)
- B. X. V. Quecan
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - J. T. C. Santos
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. L. C. Rivera
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - N. M. A. Hassimotto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F. A. Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - U. M. Pinto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
68
|
Zhang H, Lou Z, Chen X, Cui Y, Wang H, Kou X, Ma C. Effect of simultaneous ultrasonic and microwave assisted hydrodistillation on the yield, composition, antibacterial and antibiofilm activity of essential oils from Citrus medica L. var. sarcodactylis. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
69
|
Li T, Mei Y, He B, Sun X, Li J. Reducing Quorum Sensing-Mediated Virulence Factor Expression and Biofilm Formation in Hafnia alvei by Using the Potential Quorum Sensing Inhibitor L-Carvone. Front Microbiol 2019; 9:3324. [PMID: 30687295 PMCID: PMC6334668 DOI: 10.3389/fmicb.2018.03324] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing (QS), one of the most remarkable microbiological discoveries, is considered a global gene regulatory mechanism for various traits in bacteria, including virulence and spoilage. Hafnia alvei, an opportunistic pathogen and a dominant psychrophile, uses the lux-type QS system to regulate the production of virulence factors and biofilms, which are harmful to the food industry. Based on the QS interference approach, this study aimed to reveal the efficacy of L-carvone at sublethal concentrations on QS-regulated virulence factors and biofilm formation in H. alvei. QS inhibitory activity was demonstrated by the reduction in swinging motility (61.49%), swarming motility (74.94%), biofilm formation (52.41%) and acyl-homoserine lactone (AHL) production (0.5 μL/mL). Additionally, in silico analysis and RT-qPCR studies for AHL synthase HalI and QS transcriptional regulator HalR revealed a plausible molecular mechanism for QS inhibition by L-carvone. These findings suggest that L-carvone (a main component of spearmint essential oils) could be used as a novel quorum sensing inhibitor to control H. alvei in the food industry.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| | - Yongchao Mei
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Binbin He
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xiaojia Sun
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
70
|
Lau YY, How KY, Yin W, Chan K. Cloning and characterization of short-chain N-acyl homoserine lactone-producing Enterobacter asburiae strain L1 from lettuce leaves. Microbiologyopen 2018; 7:e00610. [PMID: 29982994 PMCID: PMC6291789 DOI: 10.1002/mbo3.610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/24/2023] Open
Abstract
In gram-negative bacteria, bacterial communication or quorum sensing (QS) is achieved using common signaling molecules known as N-acyl homoserine lactones (AHL). We have previously reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. In silico analysis of the strain L1 genome revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easIR. In this work, the 639 bp luxI homolog, encoding 212 amino acids, have been cloned and overexpressed in Escherichia coli BL21 (DE3)pLysS. The purified protein (~25 kDa) shares high similarity to several members of the LuxI family among different E asburiae strains. Our findings showed that the heterologously expressed EasI protein has activated violacein production by AHL biosensor Chromobacterium violaceum CV026 as the wild-type E. asburiae. The mass spectrometry analysis showed the production of N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone from induced E. coli harboring the recombinant EasI, suggesting that EasI is a functional AHL synthase. E. asburiae strain L1 was also shown to possess biofilm-forming characteristic activity using crystal violet binding assay. This is the first report on cloning and characterization of the luxI homolog from E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- Division of Genetics and Molecular BiologyInstitute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Kah Yan How
- Division of Genetics and Molecular BiologyInstitute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Wai‐Fong Yin
- Division of Genetics and Molecular BiologyInstitute of Biological SciencesFaculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Kok‐Gan Chan
- International Genome CentreJiangsu UniversityZhenjiangChina
- ISBFaculty of ScienceUniversity of MalayaKuala LumpuMalaysia
| |
Collapse
|
71
|
Jahid IK, Mizan MFR, Myoung J, Ha SD. Aeromonas hydrophila biofilm, exoprotease, and quorum sensing responses to co-cultivation with diverse foodborne pathogens and food spoilage bacteria on crab surfaces. BIOFOULING 2018; 34:1079-1092. [PMID: 30698028 DOI: 10.1080/08927014.2018.1519069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 06/09/2023]
Abstract
The effects of dual species interactions on biofilm formation by Aeromonas hydrophila in the presence of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pectobacterium carotovorum, Salmonella Typhimurium, and Listeria monocytogenes were examined. High-performance liquid chromatography and liquid-chromatography-mass spectrometry were performed to identify N-acyl homoserine lactone (AHL) molecules secreted by monocultures and dual cultures grown in crab broth. Field emission scanning electron microscopy was performed to observe attachment and biofilm formation. P. aeruginosa and P. fluorescens inhibited biofilm formation by A. hydrophila on the crab surface, without affecting their own biofilm-forming abilities. Dual biofilms of S. Typhimurium, L. monocytogenes, or P. carotovorum did not affect A. hydrophila biofilm formation. Exoprotease, AHL, and AI-2 levels were significantly reduced in dual cultures of P. aeruginosa and P. fluorescens with A. hydrophila, supporting the relationship between quorum sensing and biofilm formation. Dual-species biofilms were studied in their natural environment and in the laboratory.
Collapse
Affiliation(s)
- Iqbal Kabir Jahid
- a School of Food Science and Technology , Chung-Ang University , Daedeok-Myun , Anseong , Gyunggido , South Korea
- b Department of Microbiology , Jessore University of Science and Technology , Bangladesh
| | - Md Furkanur Rahaman Mizan
- a School of Food Science and Technology , Chung-Ang University , Daedeok-Myun , Anseong , Gyunggido , South Korea
| | - Jinjong Myoung
- c Korea Zoonosis Research Institute, Chonbuk National University , Deokjin-dong 1ga, Deokjin-gu , Jeonju-si , Jeollabuk-do , South Korea
| | - Sang-Do Ha
- a School of Food Science and Technology , Chung-Ang University , Daedeok-Myun , Anseong , Gyunggido , South Korea
| |
Collapse
|
72
|
Yuan L, Sadiq FA, Burmølle M, Liu T, He G. Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. J Food Prot 2018; 81:1651-1660. [PMID: 30207500 DOI: 10.4315/0362-028x.jfp-18-094] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Milk spoilage caused by psychrotrophic bacteria and their heat-stable enzymes is a serious challenge for the dairy industry. In many studies, spoilage has been explored based on the simplistic view of undesirable enzymes produced by planktonic cells. Recently, biofilms and quorum sensing (QS) have been suggested as important factors in the deterioration of milk, which opens new avenues for investigation of the processes and challenges. Production and heat stability of enzymes are enhanced in biofilms, mainly because of inherent differences in physiological states and protective shielding by extracellular polymeric substances. QS plays a key role in modulating expression of hydrolytic enzymes and biofilm formation. To date, few studies have been conducted to investigate the complex interplays of enzyme production, biofilm formation, and QS. This review provides novel insights into milk spoilage with particular emphasis on the roles of biofilms and QS and summarizes potential effective strategies for controlling the spoilage of milk.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Faizan A Sadiq
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Tongjie Liu
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| |
Collapse
|
73
|
Santhakumari S, Jayakumar R, Logalakshmi R, Prabhu NM, Abdul Nazar AK, Karutha Pandian S, Veera Ravi A. In vitro and in vivo effect of 2,6-Di-tert-butyl-4-methylphenol as an antibiofilm agent against quorum sensing mediated biofilm formation of Vibrio spp. Int J Food Microbiol 2018; 281:60-71. [DOI: 10.1016/j.ijfoodmicro.2018.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
|
74
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4014-4032. [PMID: 29424050 DOI: 10.1002/jsfa.8945] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
It takes several steps to bring food from the farm to the fork (dining table), and contamination with food-borne pathogens can occur at any point in the process. Campylobacter spp. and Salmonella spp. are the main microorganisms responsible for foodborne disease in the EU. These two pathogens are able to persist throughout the food supply chain thanks to their ability to form biofilms. Owing to the high prevalence of Salmonella and especially of Campylobacter in the food supply chain and the huge efforts of food authorities to reduce these levels, it is of great importance to fully understand their mechanisms of persistence. Diverse studies have evaluated the biofilm-forming capacity of foodborne pathogens isolated at different steps of food production. Nonetheless, the principal obstacle of these studies is to reproduce the real conditions that microorganisms encounter in the food supply chain. While there are a wide number of Salmonella biofilm studies, information on Campylobacter biofilms is still limited. A comparison between the two microorganisms could help to develop new research in the field of Campylobacter biofilms. Therefore, this review evaluates relevant work in the field of Salmonella and Campylobacter biofilms and the applicability of the data obtained from these studies to real working conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - José M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
75
|
Gui M, Liu L, Wu R, Hu J, Wang S, Li P. Detection of New Quorum Sensing N-Acyl Homoserine Lactones From Aeromonas veronii. Front Microbiol 2018; 9:1712. [PMID: 30108567 PMCID: PMC6079219 DOI: 10.3389/fmicb.2018.01712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Sturgeon is an important fresh water-culture fish in China. A problem with sturgeon is its high susceptibility to spoilage. Food spoilage is reported to be regulated by quorum sensing (QS). To identify the QS signals acetylated homoserine lactones (AHLs) in sturgeon and test whether QS plays a role in the spoilage of sturgeon, we investigated the specific spoilage organisms (SSOs) in vacuum packaged sturgeon stored at 4°C and the production of AHLs by sturgeon SSOs. 16S rDNA sequencing and spoilage capabilities analysis revealed that Aeromonas veronii LP-11, Citrobacter freundii LPJ-2, and Raoultella ornithinolytica LPC-3 were the SSOs in sturgeon. Among the three SSOs, only A. veronii LP-11 induced the QS biosensors Agrobacterium tumefaciens KYC55 and Chromobacterium violaceum CV026, suggesting that it produced AHLs. Analysis by thin layer chromatography, high-performance liquid chromatography-triple quadrupole tandem mass spectrometry, and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC/qTOF-MS) identified that the AHLs produced by A. veronii were C6-SHL, C8-HSL, 3-oxo-C8-HSL, and 3-OH-C8-HSL. Our study revealed that QS system was probably involved in the regulation of sturgeon spoilage and for the first time reported the production of C8-HSL and 3-OH-C8-HSL by genus Aeromonas. As only HPLC/qTOF-MS effectively and accurately identified all the four AHLs produced by A. veronii LP-11, this study also showed that HPLC/qTOF-MS was the most efficient method for rapid analysis of AHLs in complex microbial sample. The study provides new insight into the microbiology of sturgeon spoilage which may be helpful for better sturgeon preservation.
Collapse
Affiliation(s)
- Meng Gui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Fisheries Research Institute, Beijing, China
| | - Lei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| | - Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jingrong Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shun Wang
- Beijing Fisheries Research Institute, Beijing, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
76
|
Fu L, Wang C, Liu N, Ma A, Wang Y. Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res Int 2018; 107:1-9. [DOI: 10.1016/j.foodres.2018.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
77
|
Al-Shabib NA, Husain FM, Khan RA, Khan MS, Alam MZ, Ansari FA, Laeeq S, Zubair M, Shahzad SA, Khan JM, Alsalme A, Ahmad I. Interference of phosphane copper (I) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: A first report. Saudi J Biol Sci 2018; 26:308-316. [PMID: 31485170 PMCID: PMC6717094 DOI: 10.1016/j.sjbs.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Foodborne pathogens are one of the major cause of food-related diseases and food poisoning. Bacterial biofilms and quorum sensing (QS) mechanism of cell–cell communication have also been found to be associated with several outbreaks of foodborne diseases and are great threat to food safety. Therefore, In the present study, we investigated the activity of three tetrahedrally coordinated copper(I) complexes against quorum sensing and biofilms of foodborne bacteria. All the three complexes demonstrated similar antimicrobial properties against the selected pathogens. Concentration below the MIC i.e. at sub-MICs all the three complexes interfered significantly with the quorum sensing regulated functions in C. violaceum (violacein), P. aeruginosa (elastase, pyocyanin and alginate production) and S. marcescens (prodigiosin). The complexes demonstrated potent broad-spectrum biofilm inhibition in Pseudomonas aeruginosa, E. coli, Chromobacterium violaceum, Serratia marcescens, Klebsiella pneumoniae and Listeria monocytogenes. Biofilm inhibition was visualized using SEM and CLSM images. Action of the copper(I) complexes on two key QS regulated functions contributing to biofilm formation i.e. EPS production and swarming motility was also studied and statistically significant reduction was recorded. These results could form the basis for development of safe anti-QS and anti-biofilm agents that can be utilized in the food industry as well as healthcare sector to prevent food-associated diseases.
Collapse
Affiliation(s)
- Nasser A Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Zubair Alam
- King Fahd Medical Research Centre, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Firoz Ahmad Ansari
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameen Laeeq
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, 71491, Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
78
|
Ravensdale JT, Coorey R, Dykes GA. Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality. Compr Rev Food Sci Food Saf 2018; 17:615-632. [PMID: 33350135 DOI: 10.1111/1541-4337.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/16/2023]
Abstract
Modern-day processing of meat products involves a series of complex procedures designed to ensure the quality and safety of the meat for consumers. As the size of abattoirs increases, the logistical problems associated with large-capacity animal processing can affect the sanitation of the facility and the meat products, potentially increasing transmission of infectious diseases. Additionally, spoilage of food from improper processing and storage increases the global economic and ecological burden of meat production. Advances in biomedical and materials science have allowed for the development of innovative new antibacterial technologies that have broad applications in the medical industry. Additionally, new approaches in tissue engineering and nondestructive cooling of biological specimens could significantly improve organ transplantation and tissue grafting. These same strategies may be even more effective in the preservation and protection of meat as animal carcasses are easier to manipulate and do not have the same stringent requirements of care as living patients. This review presents potential applications of emerging biomedical technologies in the food industry to improve meat safety and quality. Future research directions investigating these new technologies and their usefulness in the meat processing chain along with regulatory, logistical, and consumer perception issues will also be discussed.
Collapse
Affiliation(s)
- Joshua T Ravensdale
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Ranil Coorey
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| | - Gary A Dykes
- School of Public Health, Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia.,Curtin Health Innovation Research Inst., Curtin Univ., Kent Street, Perth, Western Australia, 6102, Australia
| |
Collapse
|
79
|
Zhang Y, Kong J, Huang F, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. Hexanal as a QS inhibitor of extracellular enzyme activity of Erwinia carotovora and Pseudomonas fluorescens and its application in vegetables. Food Chem 2018; 255:1-7. [PMID: 29571454 DOI: 10.1016/j.foodchem.2018.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 01/16/2023]
Abstract
To prevent the postharvest disease of Chinese cabbage and lettuce, hexanal was used as a control measure to inhibit N-acyl homoserine lactone (AHL) production and extracellular enzymes regulated by quorum-sensing (QS) in their main spoilage strains of Erwinia carotovora and Pseudomonas fluorescens. Firstly, the QS inhibition of hexanal was verified by significantly inhibiting violacein production (p < 0.05) in Chromobacterium violaceum CV026 at sub-MICs. β-Galactosidase activities which reflected AHL production, were significantly inhibited by hexanal, its inhibitory effect was concentration-dependent under minimal inhibitory concentration (MIC) (p < 0.05). The detected extracellular enzymes activities decreased with the increase of hexanal concentration (p < 0.05), including cellulase, xylanase, pectate lyase, polygalacturonase, and protease. Chinese cabbage soft rot and lettuce leaf scorch could be significantly inhibited by hexanal (p < 0.05) without any phytotoxicity effect, the 1/2 MIC of hexanal showed the best inhibitory effect. And all the above effects showed a dose-dependent. A novel preservation technique in reducing the loss of vegetables due to spoilage based on the QS inhibitor was developed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jie Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fei Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
80
|
Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol 2018; 102:2063-2073. [PMID: 29392389 PMCID: PMC5814477 DOI: 10.1007/s00253-018-8787-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
Antibiotic resistance is a growing threat worldwide, causing serious problems in the treatment of microbial infections. The discovery and development of new drugs is urgently needed to overcome this problem which has greatly undermined the clinical effectiveness of conventional antibiotics. An intricate cell-cell communication system termed quorum sensing (QS) and the coordinated multicellular behaviour of biofilm formation have both been identified as promising targets for the treatment and clinical management of microbial infections. QS systems allow bacteria to adapt rapidly to harsh conditions, and are known to promote the formation of antibiotic tolerant biofilm communities. It is well known that biofilm is a recalcitrant mode of growth and it also increases bacterial resistance to conventional antibiotics. The pharmacological properties of coumarins have been well described, and these have included several that possess antimicrobial properties. More recently, reports have highlighted the potential role of coumarins as alternative therapeutic strategies based on their ability to block the QS signalling systems and to inhibit the formation of biofilms in clinically relevant pathogens. In addition to human infections, coumarins have also been found to be effective in controlling plant pathogens, infections in aquaculture, food spoilage and in reducing biofouling caused by eukaryotic organisms. Thus, the coumarin class of small molecule natural product are emerging as a promising strategy to combat bacterial infections in the new era of antimicrobial resistance.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland.,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - José A Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - María L Parages
- Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Fergal O Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland. .,Human Microbiome Programme, School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
| |
Collapse
|
81
|
Zhao D, Lyu F, Liu S, Zhang J, Ding Y, Chen W, Zhou X. Involvement of bacterial quorum sensing signals in spoilage potential ofAeromonas veroniibv.veroniiisolated from fermented surimi. J Food Biochem 2017. [DOI: 10.1111/jfbc.12487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dandan Zhao
- Department of Food Science and Technology; Ocean College, Zhejiang University of Technology; Hangzhou 310014 China
- Food Science Institute; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 China
| | - Fei Lyu
- Department of Food Science and Technology; Ocean College, Zhejiang University of Technology; Hangzhou 310014 China
| | - Shulai Liu
- Department of Food Science and Technology; Ocean College, Zhejiang University of Technology; Hangzhou 310014 China
| | - Jianyou Zhang
- Department of Food Science and Technology; Ocean College, Zhejiang University of Technology; Hangzhou 310014 China
| | - Yuting Ding
- Department of Food Science and Technology; Ocean College, Zhejiang University of Technology; Hangzhou 310014 China
| | - Wenxuan Chen
- Food Science Institute; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 China
| | - Xuxia Zhou
- Department of Food Science and Technology; Ocean College, Zhejiang University of Technology; Hangzhou 310014 China
| |
Collapse
|
82
|
Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol 2017; 200:355-369. [PMID: 29026943 DOI: 10.1007/s00203-017-1437-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/02/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023]
Abstract
Endophytes are microbes which reside inside the plant tissues asymptomatically or causing pathogenicity to the host plant for a brief period. Owing to their presence in a specialized niche, endophytes are capable of synthesizing diverse types of bioactive molecules. Continuous development of resistance mechanism by pathogens to the currently available health treatments and pharmaceuticals has led researchers to explore new therapeutic agents. Quorum sensing has a role in the development of microbial pathogenic traits including biofilm formation. Utilization of quorum sensing (QS) inhibitors in antivirulence approach against pathogenesis is one of the innovative strategies. Endophytic microbes provide a plethora of such required bioactive molecules. This review summarizes the bioprospecting of endophytic microbes for production of novel QS inhibitors. At the outset, an overview is presented about the QS and QS inhibition followed by a summary on the endophytes as a treasure trove of bioactive metabolites, particularly the QS inhibitors. Next, we have outlined screening, purification, production, and application of QS inhibitors starting from the isolation of endophytic microbes. There is huge prospect for endophytes in the domain of human healthcare and food industry, provided that we develop a comprehensive understanding of the biology of endophyte and its ecosystem.
Collapse
|
83
|
Effects of quorum quenching by AHL lactonase on AHLs, protease, motility and proteome patterns in Aeromonas veronii LP-11. Int J Food Microbiol 2017; 252:61-68. [DOI: 10.1016/j.ijfoodmicro.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/07/2023]
|
84
|
Characteristics of N-Acylhomoserine Lactones Produced by Hafnia alvei H4 Isolated from Spoiled Instant Sea Cucumber. SENSORS 2017; 17:s17040772. [PMID: 28379194 PMCID: PMC5422045 DOI: 10.3390/s17040772] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/22/2017] [Accepted: 04/01/2017] [Indexed: 12/24/2022]
Abstract
This study aimed to identify N-acylhomoserine lactone (AHL) produced by Hafnia alvei H4, which was isolated from spoiled instant sea cucumber, and to investigate the effect of AHLs on biofilm formation. Two biosensor strains, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens KYC55, were used to detect the quorum sensing (QS) activity of H. alvei H4 and to confirm the existence of AHL-mediated QS system. Thin layer chromatography (TLC) and high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS) analysis of the AHLs extracted from the culture supernatant of H. alvei H4 revealed the existence of at least three AHLs: N-hexanoyl-l-homoserine lactone (C6-HSL), N-(3-oxo-octanoyl)-l-homoserine lactone (3-oxo-C8-HSL), and N-butyryl-l-homoserine lactone (C4-HSL). This is the first report of the production of C4-HSL by H. alvei. In order to determine the relationship between the production of AHL by H. alvei H4 and bacterial growth, the β-galactosidase assay was employed to monitor AHL activity during a 48-h growth phase. AHLs production reached a maximum level of 134.6 Miller unites at late log phase (after 18 h) and then decreased to a stable level of about 100 Miller unites. AHL production and bacterial growth displayed a similar trend, suggesting that growth of H. alvei H4 might be regulated by QS. The effect of AHLs on biofilm formation of H. alvei H4 was investigated by adding exogenous AHLs (C4-HSL, C6-HSL and 3-oxo-C8-HSL) to H. alvei H4 culture. Biofilm formation was significantly promoted (p < 0.05) by 5 and 10 µM C6-HSL, inhibited (p < 0.05) by C4-HSL (5 and 10 µM) and 5 µM 3-oxo-C8-HSL, suggesting that QS may have a regulatory role in the biofilm formation of H. alvei H4.
Collapse
|
85
|
Rahman MRT, Lou Z, Zhang J, Yu F, Timilsena YP, Zhang C, Zhang Y, Bakry AM. Star Anise (Illicium verum Hook. f.) as Quorum Sensing and Biofilm Formation Inhibitor on Foodborne Bacteria: Study in Milk. J Food Prot 2017; 80:645-653. [PMID: 28294685 DOI: 10.4315/0362-028x.jfp-16-294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacteria use quorum sensing (QS) systems to communicate with each other and regulate microbial group behavior, such as the secretion of virulence factors, including biofilm formation. In order to explore safe, edible agents, the potential of star anise (SA) as an anti-QS and antibiofilm agent and its possible application in milk safety were investigated. Staphylococcus aureus , Salmonella Typhimurium, Pseudomonas aeruginosa , and biosensor strain Chromobacterium violaceum were selected as test strains for QS, biofilm, and exopolysaccharide assays. The percent acidities and total plate counts were determined to evaluate the quality of biofilm-inoculated and noninoculated milk. The yield of SA extraction was 25.90% ± 0.2% (w/w). At sub-MIC, SA extract did not show any effect on bacterial growth. The production of violacein was inhibited by 89% by SA extract. The extract also inhibited the formation of biofilm by up to 87% in a dose-dependent manner. Inhibition rates of 70.45%, 42.82%, and 35.66% were found for exopolysaccharide production. The swarming motility of S. aureus was reduced by about 95.9% by SA extract. Confocal laser scanning microscopy analysis confirmed that the development of biofilm architecture was hampered. It was found that SA extract could delay the spoilage of milk. In the endeavor to avoid drug resistance, pathogenesis, and resistance to biocides while improving food safety and avoiding health hazard issues arising from synthetic chemicals, SA extract could be used as a potential QS and biofilm inhibitor.
Collapse
Affiliation(s)
- Md Ramim Tanver Rahman
- 1 State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai 200436, People's Republic of China.,2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.,3 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zaixiang Lou
- 1 State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai 200436, People's Republic of China.,2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.,4 Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | - Jun Zhang
- 2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Fuhao Yu
- 1 State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai 200436, People's Republic of China.,2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | - Caili Zhang
- 6 College of Food Science and Engineering, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yi Zhang
- 1 State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai 200436, People's Republic of China.,2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Amr M Bakry
- 2 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
86
|
Machado SG, Baglinière F, Marchand S, Van Coillie E, Vanetti MCD, De Block J, Heyndrickx M. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products. Front Microbiol 2017; 8:302. [PMID: 28298906 PMCID: PMC5331058 DOI: 10.3389/fmicb.2017.00302] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/14/2017] [Indexed: 12/28/2022] Open
Abstract
Raw bovine milk is highly nutritious as well as pH-neutral, providing the ideal conditions for microbial growth. The microbiota of raw milk is diverse and originates from several sources of contamination including the external udder surface, milking equipment, air, water, feed, grass, feces, and soil. Many bacterial and fungal species can be found in raw milk. The autochthonous microbiota of raw milk immediately after milking generally comprises lactic acid bacteria such as Lactococcus, Lactobacillus, Streptococcus, and Leuconostoc species, which are technologically important for the dairy industry, although they do occasionally cause spoilage of dairy products. Differences in milking practices and storage conditions on each continent, country and region result in variable microbial population structures in raw milk. Raw milk is usually stored at cold temperatures, e.g., about 4°C before processing to reduce the growth of most bacteria. However, psychrotrophic bacteria can proliferate and contribute to spoilage of ultra-high temperature (UHT) treated and sterilized milk and other dairy products with a long shelf life due to their ability to produce extracellular heat resistant enzymes such as peptidases and lipases. Worldwide, species of Pseudomonas, with the ability to produce these spoilage enzymes, are the most common contaminants isolated from cold raw milk although other genera such as Serratia are also reported as important milk spoilers, while for others more research is needed on the heat resistance of the spoilage enzymes produced. The residual activity of extracellular enzymes after high heat treatment may lead to technological problems (off flavors, physico-chemical instability) during the shelf life of milk and dairy products. This review covers the contamination patterns of cold raw milk in several parts of the world, the growth potential of psychrotrophic bacteria, their ability to produce extracellular heat-resistant enzymes and the consequences for dairy products with a long shelf life. This problem is of increasing importance because of the large worldwide trade in fluid milk and milk powder.
Collapse
Affiliation(s)
- Solimar G Machado
- Instituto Federal do Norte de Minas Gerais - Campus Salinas Salinas, Brazil
| | | | - Sophie Marchand
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO) Melle, Belgium
| | - Els Van Coillie
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO) Melle, Belgium
| | - Maria C D Vanetti
- Department of Microbiology, Universidade Federal de Viçosa Viçosa, Brazil
| | - Jan De Block
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO) Melle, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO)Melle, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Ghent UniversityMerelbeke, Belgium
| |
Collapse
|
87
|
Al-Shabib NA, Husain FM, Ahmad I, Baig MH. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1281761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
88
|
|
89
|
Lou Z, Wang H, Tang Y, Chen X. The effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa. J Appl Microbiol 2017; 122:615-624. [PMID: 27860087 DOI: 10.1111/jam.13348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to evaluate the effect of a fraction of burdock (Arctium lappa L.) leaf on the initial adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa. METHODS AND RESULTS Antibiofilm activity of the burdock leaf fraction was studied by the method of crystal violet staining. When the concentration of the burdock leaf fraction was 2·0 mg ml-1 , the inhibition rates on biofilm formation of P. aeruginosa were 100%. The burdock leaf fraction was found to inhibit the formation of biofilm by reducing bacterial surface hydrophobicity, decreasing bacterial aggregation ability and inhibiting swarming motility. Interestingly, the burdock leaf fraction inhibited the secretion of quorum-sensing (QS) signalling molecule 3-oxo-C12-HSL and interfered quorum sensing. Moreover, the QS-regulated pyocyanin and elastase were also inhibited. Chemical composition analysis by UPLC-MS showed 11 active compounds in the burdock leaf fraction. CONCLUSIONS The burdock leaf fraction significantly inhibited the formation of biofilm and quorum sensing, as well as significantly decreased the content of virulence factors. SIGNIFICANCE AND IMPACT OF THE STUDY This study introduces a natural and effective bacterial biofilm inhibitor, which could also significantly decrease the content of virulence factors and the drug resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Z Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,College of Life Science and Environment, Hengyang Normal University, Hengyang, China
| | - H Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Y Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - X Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,College of Life Science and Environment, Hengyang Normal University, Hengyang, China
| |
Collapse
|
90
|
Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Front Microbiol 2016; 7:1641. [PMID: 27803696 PMCID: PMC5067414 DOI: 10.3389/fmicb.2016.01641] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.
Collapse
Affiliation(s)
- Laura M. Coughlan
- Teagasc Food Research CentreCork, Ireland
- School of Microbiology, University College CorkCork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research CentreCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | | |
Collapse
|
92
|
Lamas A, Miranda JM, Vázquez B, Cepeda A, Franco CM. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Int J Food Microbiol 2016; 238:63-67. [PMID: 27592071 DOI: 10.1016/j.ijfoodmicro.2016.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (P<0.05) in aerobiosis than in microaerobiosis and anaerobiosis. Cellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.
Collapse
Affiliation(s)
- A Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - J M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - B Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - A Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - C M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
93
|
Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for N-Acyl-l-Homoserine Lactone Quorum-Quenching Enzymes. Appl Environ Microbiol 2016; 82:4145-54. [PMID: 27208131 DOI: 10.1128/aem.00830-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating N-acyl-l-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quorum-quenching acylases. However, identification, characterization, and optimization of these valuable biocatalysts are based on a very limited number of fundamentally different methods with their respective strengths and weaknesses. Here, a (bio)chemical activity assay is described, which perfectly complements the other methods in this field. It enables continuous and high-throughput activity measurements of purified and unpurified quorum-quenching enzymes within several minutes. For this, the reaction products released by quorum-quenching lactonases and quorum-quenching acylases are converted either by a secondary enzyme or by autohydrolysis to l-homoserine. In turn, l-homoserine is detected by the previously described calcein assay, which is sensitive to α-amino acids with free N and C termini. Besides its establishment, the method was applied to the characterization of three previously undescribed quorum-quenching lactonases and variants thereof and to the identification of quorum-quenching acylase-expressing Escherichia coli clones in an artificial library. Furthermore, this study indicates that porcine aminoacylase 1 is not active toward N-acyl-l-homoserine lactones as published previously but instead converts the autohydrolysis product N-acyl-l-homoserine. IMPORTANCE In this study, a novel method is presented for the identification, characterization, and optimization of quorum-quenching enzymes that are active toward N-acyl-l-homoserine lactones. These are the most common communication molecules among Gram-negative proteobacteria. The activity assay is a highly valuable complement to the available analytical tools in this field. It will facilitate studies on the environmental impact of quorum-quenching enzymes and contribute to the development of therapeutic and technical applications of this promising enzyme class.
Collapse
|
94
|
Tiwari R, Karthik K, Rana R, Singh Mali Y, Dhama K, Joshi SK. Quorum Sensing Inhibitors/antagonists Countering Food Spoilage Bacteria-need Molecular and Pharmaceutical Intervention for Protecting Current Issues of Food Safety. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.262.271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
95
|
Park H, Shin H, Lee K, Holzapfel W. Autoinducer-2 properties of kimchi are associated with lactic acid bacteria involved in its fermentation. Int J Food Microbiol 2016; 225:38-42. [PMID: 26977818 DOI: 10.1016/j.ijfoodmicro.2016.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 11/17/2022]
Abstract
Bacteria use the cell density-dependent quorum signalling system to regulate particular gene expressions. In food microbiology, signalling is well known for its relation to (foodborne) pathogenicity, food spoilage, and biofilm formation. Quorum quenching and inhibition are thus being considered as a feasible approach in food preservation and safety. In the case of the luxS-mediated universal quorum sensing using autoinducer-2 (AI-2), however, it could be a different issue. Several studies have reported a luxS AI-2 synthase homologue in numerous bacteria, comprising both pathogens and beneficial strains. A recent study has shown the AI-2 signal to restore the balance of the major phyla of the gut microbiota in antibiotic-induced dysbiosis. We measured the AI-2 activity of the lactic fermented food, kimchi, and found different AI-2 signalling intensities. In order to trace the origin of the signal production, we obtained 229 lactic acid bacterial isolates from the kimchi samples, and detected the AI-2 properties of each isolate using a modified AI-2 bioluminescence assay. Our results showed isolates of dominant species of the genera Lactobacillus, Weissella and Leuconostoc which either produced or inhibited the AI-2 signal. No isolate of the dominant species Lactobacillus sakei (75 isolates) and Lactobacillus curvatus (28 isolates) showed AI-2 producing activity, while AI-2 inhibition could not be detected for any of the 31 Lactobacillus plantarum isolates. These results suggest the AI-2 activity of kimchi to result from the interaction of the associated microbial food cultures (MFCs) during fermentation. Thus far, only sparse information is available on AI-2 signalling interaction in fermented food, however, we suggest that fermented food may be a supplier of AI-2 signalling molecules via typical MFCs.
Collapse
Affiliation(s)
- Hyunjoon Park
- School of Life Sciences, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea; Graduate School of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyeongbuk 791-708, South Korea
| | - Heuynkil Shin
- School of Life Sciences, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea
| | - Kyuyeon Lee
- School of Life Sciences, Handong Global University, Pohang, Gyeongbuk 791-708, South Korea; Graduate School of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyeongbuk 791-708, South Korea
| | - Wilhelm Holzapfel
- Graduate School of Advanced Green Energy and Environment (AGEE), Handong Global University, Pohang, Gyeongbuk 791-708, South Korea.
| |
Collapse
|
96
|
Duanis-Assaf D, Steinberg D, Chai Y, Shemesh M. The LuxS Based Quorum Sensing Governs Lactose Induced Biofilm Formation by Bacillus subtilis. Front Microbiol 2016; 6:1517. [PMID: 26779171 PMCID: PMC4705240 DOI: 10.3389/fmicb.2015.01517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022] Open
Abstract
Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS) by Autoinducer-2 (AI-2). However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilm. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.
Collapse
Affiliation(s)
- Danielle Duanis-Assaf
- Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, The Volcani Center Bet-Dagan, Israel; Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University Hadassah Medical SchoolJerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University Hadassah Medical School Jerusalem, Israel
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston MA, USA
| | - Moshe Shemesh
- Department of Food Quality and Safety, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization, The Volcani Center Bet- Dagan, Israel
| |
Collapse
|
97
|
Zhang W, Li C. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications. Front Microbiol 2016; 6:1535. [PMID: 26779175 PMCID: PMC4705238 DOI: 10.3389/fmicb.2015.01535] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Aquaculture, School of Marine Sciences, Ningbo University Ningbo, China
| | - Chenghua Li
- Department of Aquaculture, School of Marine Sciences, Ningbo University Ningbo, China
| |
Collapse
|
98
|
Wang H, Dong Y, Wang G, Xu X, Zhou G. Effect of growth media on gene expression levels in Salmonella Typhimurium biofilm formed on stainless steel surface. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Gambino M, Cappitelli F. Mini-review: Biofilm responses to oxidative stress. BIOFOULING 2016; 32:167-178. [PMID: 26901587 DOI: 10.1080/08927014.2015.1134515] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.
Collapse
Affiliation(s)
- Michela Gambino
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| | - Francesca Cappitelli
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
100
|
Campos-Galvão MEM, Ribon AOB, Araújo EF, Vanetti MCD. Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. J Basic Microbiol 2015; 56:493-501. [PMID: 26662614 DOI: 10.1002/jobm.201500471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Quorum sensing is used by bacteria to coordinate gene expression in response to population density and involves the production, detection and response to extracellular signaling molecules known as autoinducers (AIs). Salmonella does not synthesize the AI-1, acyl homoserine lactone (AHL) common to gram-negative bacteria; however, it has a receptor for AI-1, the SdiA protein. The effect of SdiA in modulating phenotypes of Salmonella has not been elucidated. In this report, we provide evidence that the AIs-1 affect Salmonella enterica serovar Enteritidis behavior by enhancing the biofilm formation and expression of virulence genes under anaerobic conditions. Biofilm formation by Salmonella was detected by the crystal violet method and by scanning electron microscopy. The presence of AHLs, particularly C12-HSL, increased biofilm formation and promoted expression of biofilm formation genes (lpfA, fimF, fliF, glgC) and virulence genes (hilA, invA, invF). Our results demonstrated that AHLs produced by other organisms played an important role in virulence phenotypes of Salmonella Enteritidis.
Collapse
Affiliation(s)
| | | | - Elza Fernandes Araújo
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | | |
Collapse
|