51
|
Bartheld JL, Gaitán‐Espitia JD, Artacho P, Salgado‐Luarte C, Gianoli E, Nespolo RF. Energy expenditure and body size are targets of natural selection across a wide geographic range, in a terrestrial invertebrate. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- José Luis Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | - Juan Diego Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | - Paulina Artacho
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
| | | | - Ernesto Gianoli
- Departamento de Biología Universidad de La Serena Casilla 554 La Serena Chile
- Departamento de Botánica Universidad de Concepción Casilla 160‐C Concepción Chile
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Campus Isla Teja Valdivia 5090000 Chile
- Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago 6513677 Chile
| |
Collapse
|
52
|
Auer SK, Salin K, Rudolf AM, Anderson GJ, Metcalfe NB. The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12396] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonya K. Auer
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Karine Salin
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Agata M. Rudolf
- Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 Krakow 30‐387 Poland
| | - Graeme J. Anderson
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Neil B. Metcalfe
- Institute of Biodiversity Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
53
|
White CR, Kearney MR. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr Physiol 2014; 4:231-56. [PMID: 24692144 DOI: 10.1002/cphy.c110049] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait.
Collapse
Affiliation(s)
- Craig R White
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | | |
Collapse
|
54
|
Zub K, Borowski Z, Szafrańska PA, Wieczorek M, Konarzewski M. Lower body mass and higher metabolic rate enhance winter survival in root voles,Microtus oeconomus. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karol Zub
- Mammal Research Institute PAS; Białowieża Poland
| | | | | | | | | |
Collapse
|
55
|
Fletcher QE, Speakman JR, Boutin S, Lane JE, McAdam AG, Gorrell JC, Coltman DW, Humphries MM. Daily energy expenditure during lactation is strongly selected in a free‐living mammal. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Quinn E. Fletcher
- Department of Natural Resource Sciences Macdonald Campus McGill University Ste‐Anne‐de‐Bellevue QuebecH9X 3V9 Canada
| | - John R. Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen AberdeenAB24 2TZ UK
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology 1 West Beichen RoadChaoyang Beijing 100080 China
| | - Stan Boutin
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - Jeffrey E. Lane
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - Andrew G. McAdam
- Department of Integrative Biology University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Jamieson C. Gorrell
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - David W. Coltman
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - Murray M. Humphries
- Department of Natural Resource Sciences Macdonald Campus McGill University Ste‐Anne‐de‐Bellevue QuebecH9X 3V9 Canada
| |
Collapse
|
56
|
Greenlee KJ, Montooth KL, Helm BR. Predicting performance and plasticity in the development of respiratory structures and metabolic systems. Integr Comp Biol 2014; 54:307-22. [PMID: 24812329 PMCID: PMC4097113 DOI: 10.1093/icb/icu018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.
Collapse
Affiliation(s)
- Kendra J Greenlee
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bryan R Helm
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
57
|
Careau V, Gifford ME, Biro PA. Individual (co)variation in thermal reaction norms of standard and maximal metabolic rates in wild-caught slimy salamanders. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vincent Careau
- Centre for Integrative Ecology; Deakin University; Waurn Ponds Victoria Australia
| | - Matthew E. Gifford
- Department of Biology; University of Arkansas at Little Rock; Little Rock Arkansas USA
| | - Peter A. Biro
- Centre for Integrative Ecology; Deakin University; Waurn Ponds Victoria Australia
| |
Collapse
|
58
|
Robertsen G, Armstrong JD, Nislow KH, Herfindal I, McKelvey S, Einum S. Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon. J Anim Ecol 2014; 83:791-9. [PMID: 24245740 DOI: 10.1111/1365-2656.12182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/13/2013] [Indexed: 11/29/2022]
Abstract
Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental heterogeneity in selection patterns, but for MR, this has rarely been tested in nature. Here, we experimentally test whether the relationship between MR and performance can vary spatially by assessing survival, growth rate and movement of Atlantic salmon (Salmo salar L.) juveniles from 10 family groups differing in MR (measured as egg metabolism) that were stocked in parallel across 10 tributaries of a single watershed. The relationship between MR and relative survival and growth rate varied significantly among tributaries. Specifically, the effect of MR ranged from negative to positive for relative survival, whereas it was negative for growth rate. The association between MR and movement was positive and did not vary significantly among tributaries. These results are consistent with a fitness cost of traits associated with behavioural dominance that varies across relatively small spatial scales (within a single watershed). More generally, our results support the hypothesis that spatial heterogeneity in environmental conditions contributes to maintain within-population variation in fitness-related traits, such as MR.
Collapse
Affiliation(s)
- Grethe Robertsen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491, Trondheim, Norway.,Norwegian Institute for Nature Research, Høgskoleringen 9, NO-7034, Trondheim, Norway
| | - John D Armstrong
- Marine Scotland Science Freshwater Laboratory, Faskally, Pitlochry, Perthshire, PH16 5LB, UK
| | - Keith H Nislow
- USDA Forest Service Northern Research Station, 201 Holdsworth NRC, 160 Holdsworth Way, Amherst, MA, 01003, USA
| | - Ivar Herfindal
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491, Trondheim, Norway
| | - Simon McKelvey
- Cromarty Firth District Salmon Fisheries Board c/o CKD Galbraith, 17 Old Edinburgh Road, Inverness, IV2 3HF, UK
| | - Sigurd Einum
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491, Trondheim, Norway
| |
Collapse
|
59
|
Nespolo RF, Bartheld JL, González A, Bruning A, Roff DA, Bacigalupe LD, Gaitán‐Espitia JD. The quantitative genetics of physiological and morphological traits in an invasive terrestrial snail: additive vs. non‐additive genetic variation. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - José L. Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Avia González
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Andrea Bruning
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Derek A. Roff
- Department of Biology University of California Riverside CaliforniaUSA
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Juan D. Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
60
|
Hoekstra LA, Siddiq MA, Montooth KL. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 2013; 195:1129-39. [PMID: 24026098 PMCID: PMC3813842 DOI: 10.1534/genetics.113.154914] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNA(Tyr). The incompatible mitochondrial-nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA, Mitochondrial/genetics
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/physiology
- Epistasis, Genetic
- Evolution, Molecular
- Female
- Fertility/genetics
- Fertility/physiology
- Genes, Insect
- Genetic Fitness
- Hot Temperature
- Larva/genetics
- Larva/growth & development
- Larva/metabolism
- Male
- Mitochondria/genetics
- Mitochondria/metabolism
- Mutation
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Selection, Genetic
- Species Specificity
- Tyrosine-tRNA Ligase/genetics
- Tyrosine-tRNA Ligase/metabolism
Collapse
Affiliation(s)
- Luke A. Hoekstra
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | |
Collapse
|
61
|
Bruning A, Gaitán-Espitia JD, González A, Bartheld JL, Nespolo RF. Metabolism, Growth, and the Energetic Definition of Fitness: A Quantitative Genetic Study in the Land Snail Cornu aspersum. Physiol Biochem Zool 2013; 86:538-46. [DOI: 10.1086/672092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Turbill C, Ruf T, Rothmann A, Arnold W. Social dominance is associated with individual differences in heart rate and energetic response to food restriction in female red deer. Physiol Biochem Zool 2013; 86:528-37. [PMID: 23995483 DOI: 10.1086/672372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Energy expenditure is a key mechanism underlying animal ecology, yet why individuals often differ in metabolic rate even under identical conditions remains largely unexplained. Individual variation in metabolism might be explained by correlations with other behavioral and physiological traits, with individual syndromes having environment- or state-dependent costs and benefits to fitness. We tested whether social rank within herds of female red deer is associated with individual differences in resting heart rate, an index of metabolic rate, and energetic response to monthly periods of food restriction during winter in a large outdoor enclosure near Vienna, Austria. Social rank had a strong positive effect on average daily heart rate, independent of the effects of food intake, air temperature, body temperature, and body mass. Subordinate individuals had lower heart rates than dominants, and consequently they suffered lower rates of body mass loss during periods of restricted pellet food supply. A greater capacity to minimize energy requirements might benefit the survival of subdominant female red deer during periods of negative energy balance in winter. Our study provides empirical support in a large mammal for linkages in behavior and metabolism within individuals that have environment-dependent consequences to the energy budget.
Collapse
Affiliation(s)
- Christopher Turbill
- Research Institute for Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
63
|
Crispin TS, White CR. Effect of Thermal Acclimation on Organ Mass, Tissue Respiration, and Allometry in Leichhardtian River PrawnsMacrobrachium tolmerum(Riek, 1951). Physiol Biochem Zool 2013; 86:470-81. [DOI: 10.1086/671329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
64
|
Predation selects for low resting metabolic rate and consistent individual differences in anti-predator behavior in a beetle. Acta Ethol 2013. [DOI: 10.1007/s10211-013-0147-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Castañeda LE, Nespolo RF. Phenotypic and genetic effects of contrasting ethanol environments on physiological and developmental traits in Drosophila melanogaster. PLoS One 2013; 8:e58920. [PMID: 23505567 PMCID: PMC3591359 DOI: 10.1371/journal.pone.0058920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/08/2013] [Indexed: 12/02/2022] Open
Abstract
A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster.
Collapse
Affiliation(s)
- Luis E Castañeda
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | | |
Collapse
|
66
|
Merritt L, Matthews PGD, White CR. Performance correlates of resting metabolic rate in garden skinks Lampropholis delicata. J Comp Physiol B 2013; 183:663-73. [DOI: 10.1007/s00360-012-0736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
67
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
68
|
Schimpf NG, Matthews PGD, White CR. Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea. Biol Open 2012; 1:1185-91. [PMID: 23259052 PMCID: PMC3522879 DOI: 10.1242/bio.20122683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/25/2022] Open
Abstract
Metabolic rate varies significantly between individuals, and these differences persist even when the wide range of biotic and abiotic factors that influence metabolism are accounted for. It is important to understand the life history implications of variation in metabolic rate, but they remain poorly characterised despite a growing body of work examining relationships between metabolism and a range of traits. In the present study we used laboratory-bred families (one sire to three dams) of Nauphoeta cinerea (Olivier) (speckled cockroaches) to examine the relationship between standard metabolic rate (SMR) and reproductive performance (number of offspring and gestation duration). We show that SMR is negatively associated with female gestation duration. Age at mating is negatively associated with gestation duration for females, and mass is negatively associated with the average gestation duration of the females a male was mated with. In addition to the results in the current literature, the results from the present study suggest that the association between metabolism and life history is more complex than simple relationships between metabolism and various fitness traits. Future work should consider longitudinal, ontogenetic as well as selective and quantitative genetic breeding approaches to fully examine the associations between metabolism and fitness.
Collapse
Affiliation(s)
- Natalie G Schimpf
- School of Biological Sciences, The University of Queensland , St Lucia 4072 , Australia
| | | | | |
Collapse
|
69
|
Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 2012; 183:1-26. [DOI: 10.1007/s00360-012-0676-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 10/27/2022]
|
70
|
Nicolai A, Filser J, Lenz R, Valérie B, Charrier M. Composition of body storage compounds influences egg quality and reproductive investment in the land snail Cornu aspersum. CAN J ZOOL 2012. [DOI: 10.1139/z2012-081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In invertebrates, resources available for growth and reproduction might influence the composition of body stores and subsequently nutrient allocation to eggs, thereby adjusting energy investment in reproduction. We investigated in the land snail Cornu aspersum (Müller, 1774) the efficiency of growth and the main storage compounds in the body and in eggs with respect to lipid content in food (5.5% versus 2.5%). The high body dry mass density of snails fed on lipid-rich diet underlined the high storage capacity of neutral lipids acquired during growth (high growth efficiency) without changing energy content because of the prevailing carbohydrate storage compounds. Reproductive investment was lower in these snails, and maternal effects decreased clutch size. Triglyceride allocation to eggs might enhance survival probability of offspring and therefore compensate for smaller clutch size. Snails fed on lipid-poor diet maximized their investment in clutch size whatever the amount of body stores, and allocated a higher amount of cholesterol to eggs. Cholesterol could be essential for embryo growth, as it ensures membrane functioning. In conclusion, the availability of resources can differentially affect nutrient allocation and energy investment in reproduction. Thus, the investigation of physiological processes becomes essential to understand population dynamics in fluctuating or changing habitats.
Collapse
Affiliation(s)
- Annegret Nicolai
- UMR CNRS 6553 EcoBio, Université de Rennes 1, bâtiment 14A, Campus de Beaulieu, 35042 Rennes CEDEX, France
- IAF, Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen, Schelmenwasen 4-8, 72622 Nürtingen, Deutschland
| | - Juliane Filser
- Universität Bremen, UFT, Abteilung für theoretische Ökologie, Leobener Straße, D-28359 Bremen
| | - Roman Lenz
- IAF, Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen, Schelmenwasen 4-8, 72622 Nürtingen, Deutschland
| | - Briand Valérie
- UMR CNRS 6553 EcoBio, Université de Rennes 1, bâtiment 14A, Campus de Beaulieu, 35042 Rennes CEDEX, France
| | - Maryvonne Charrier
- UMR CNRS 6553 EcoBio, Université de Rennes 1, bâtiment 14A, Campus de Beaulieu, 35042 Rennes CEDEX, France
| |
Collapse
|
71
|
Moiroux J, Giron D, Vernon P, van Baaren J, van Alphen JJM. Evolution of metabolic rate in a parasitic wasp: the role of limitation in intrinsic resources. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:979-984. [PMID: 22579566 DOI: 10.1016/j.jinsphys.2012.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/26/2012] [Accepted: 04/30/2012] [Indexed: 05/31/2023]
Abstract
Metabolic rate, a physiological trait closely related to fitness traits, is expected to evolve in response to two main environmental variables: (1) climate, low metabolic rates being found in dry and hot regions when comparing populations originating from different climates in a common garden experiment and (2) resource limitations, low metabolic rates being selected when resources are limited. The main goal of this study was to investigate if differences in intrinsic resource limitations may have disrupted the expected evolution of metabolic rate in response to climate in a parasitic wasp. We compared CO(2) production of females from 4 populations of a Drosophila parasitoid, Leptopilina boulardi, as an estimate of their metabolic rate. Two populations from a hot and dry area able to synthesise lipids de novo at adult stage were compared with two populations originating from a mild and humid climate where no lipid accumulation during adult life was observed. These last females are thus more limited in lipids than the first ones. We observed that a high metabolic rate has been selected in hot and dry environments, contrarily to the results of a great majority of studies. We suggest that lipogenesis occurring there may have allowed the selection of a higher metabolic rate, as females are less limited in energetic resources than females from the mild environment. A high metabolic rate may have been selected there as it partly compensates for the long distances that females have to cross to find laying opportunities in distant orchards. We suggest that intrinsic resources should be integrated when investigating geographical variations in metabolism as this factor may disrupt evolution in response to climate.
Collapse
Affiliation(s)
- Joffrey Moiroux
- UMR CNRS 6553, Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France.
| | | | | | | | | |
Collapse
|
72
|
Careau V, Bergeron P, Garant D, Réale D, Speakman JR, Humphries MM. The energetic and survival costs of growth in free-ranging chipmunks. Oecologia 2012; 171:11-23. [DOI: 10.1007/s00442-012-2385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
73
|
White CR, Alton LA, Frappell PB. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc Biol Sci 2012; 279:1740-7. [PMID: 22158960 PMCID: PMC3297453 DOI: 10.1098/rspb.2011.2060] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 11/14/2011] [Indexed: 01/24/2023] Open
Abstract
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.
Collapse
Affiliation(s)
- Craig R White
- School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia.
| | | | | |
Collapse
|
74
|
KETOLA TARMO, KOTIAHO JANNES. Inbreeding depression in the effects of body mass on energy use. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01790.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Schimpf NG, Matthews PGD, White CR. COCKROACHES THAT EXCHANGE RESPIRATORY GASES DISCONTINUOUSLY SURVIVE FOOD AND WATER RESTRICTION. Evolution 2011; 66:597-604. [DOI: 10.1111/j.1558-5646.2011.01456.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Burton T, Killen SS, Armstrong JD, Metcalfe NB. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc Biol Sci 2011; 278:3465-73. [PMID: 21957133 DOI: 10.1098/rspb.2011.1778] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Individual differences in the energy cost of self-maintenance (resting metabolic rate, RMR) are substantial and the focus of an emerging research area. These differences may influence fitness because self-maintenance is considered as a life-history component along with growth and reproduction. In this review, we ask why do some individuals have two to three times the 'maintenance costs' of conspecifics, and what are the fitness consequences? Using evidence from a range of species, we demonstrate that diverse factors, such as genotypes, maternal effects, early developmental conditions and personality differences contribute to variation in individual RMR. We review evidence that RMR is linked with fitness, showing correlations with traits such as growth and survival. However, these relationships are modulated by environmental conditions (e.g. food supply), suggesting that the fitness consequences of a given RMR may be context-dependent. Then, using empirical examples, we discuss broad-scale reasons why variation in RMR might persist in natural populations, including the role of both spatial and temporal variation in selection pressures and trans-generational effects. To conclude, we discuss experimental approaches that will enable more rigorous examination of the causes and consequences of individual variation in this key physiological trait.
Collapse
Affiliation(s)
- T Burton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
77
|
White CR. Allometric estimation of metabolic rates in animals. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:346-57. [DOI: 10.1016/j.cbpa.2010.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
|
78
|
The challenge of measuring energy expenditure: Current field and laboratory methods. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:247-51. [DOI: 10.1016/j.cbpa.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
79
|
Alton LA, Wilson RS, Franklin CE. A small increase in UV-B increases the susceptibility of tadpoles to predation. Proc Biol Sci 2011; 278:2575-83. [PMID: 21270039 DOI: 10.1098/rspb.2010.2368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased ultraviolet-B (UV-B) radiation as a consequence of ozone depletion is one of the many potential drivers of ongoing global amphibian declines. Both alone and in combination with other environmental stressors, UV-B is known to have detrimental effects on the early life stages of amphibians, but our understanding of the fitness consequences of these effects remains superficial. We examined the independent and interactive effects of UV-B and predatory chemical cues (PCC) on a suite of traits of Limnodynastes peronii embryos and tadpoles, and assessed tadpole survival time in a predator environment to evaluate the potential fitness consequences. Exposure to a 3 to 6 per cent increase in UV-B, which is comparable to changes in terrestrial UV-B associated with ozone depletion, had no effect on any of the traits measured, except survival time in a predator environment, which was reduced by 22 to 28 per cent. Exposure to PCC caused tadpoles to hatch earlier, have reduced hatching success, have improved locomotor performance and survive for longer in a predator environment, but had no effect on tadpole survival, behaviour or morphology. Simultaneous exposure to UV-B and PCC resulted in no interactive effects. These findings demonstrate that increased UV-B has the potential to reduce tadpole fitness, while exposure to PCCs improves their fitness.
Collapse
Affiliation(s)
- Lesley A Alton
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
80
|
Piiroinen S, Ketola T, Lyytinen A, Lindström L. Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2010.01804.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
Boratyński Z, Koteja P. Sexual and natural selection on body mass and metabolic rates in free-living bank voles. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01764.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Marshall DJ, McQuaid CD. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proc Biol Sci 2010; 278:281-8. [PMID: 20685714 DOI: 10.1098/rspb.2010.1414] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.
Collapse
Affiliation(s)
- David J Marshall
- Biology Department, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam.
| | | |
Collapse
|
83
|
|
84
|
Strobbe F, McPeek MA, De Block M, Stoks R. Survival selection imposed by predation on a physiological trait underlying escape speed. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01752.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
85
|
Raichlen DA, Gordon AD, Muchlinski MN, Snodgrass JJ. Causes and significance of variation in mammalian basal metabolism. J Comp Physiol B 2010; 180:301-11. [PMID: 19730868 DOI: 10.1007/s00360-009-0399-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 08/10/2009] [Accepted: 08/16/2009] [Indexed: 11/25/2022]
Abstract
Mammalian basal metabolic rates (BMR) increase with body mass, whichs explains approximately 95% of the variation in BMR. However, at a given mass, there remains a large amount of variation in BMR. While many researchers suggest that the overall scaling of BMR with body mass is due to physiological constraints, variation at a given body mass may provide clues as to how selection acts on BMR. Here, we examine this variation in BMR in a broad sample of mammals and we test the hypothesis that, across mammals, body composition explains differences in BMR at a given body mass. Variation in BMR is strongly correlated with variation in muscle mass, and both of these variables are correlated with latitude and ambient temperature. These results suggest that selection alters BMR in response to thermoregulatory pressures, and that selection uses muscle mass as a means to generate this variation.
Collapse
Affiliation(s)
- David A Raichlen
- Department of Anthropology, University of Arizona, 1009 E. South Campus Drive, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
86
|
Larivée ML, Boutin S, Speakman JR, McAdam AG, Humphries MM. Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01680.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|