51
|
Marden JH. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Mol Ecol 2013; 22:5743-64. [PMID: 24106889 DOI: 10.1111/mec.12534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
52
|
Dunning LT, Dennis AB, Thomson G, Sinclair BJ, Newcomb RD, Buckley TR. Positive selection in glycolysis among Australasian stick insects. BMC Evol Biol 2013; 13:215. [PMID: 24079656 PMCID: PMC3850572 DOI: 10.1186/1471-2148-13-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The glycolytic pathway is central to cellular energy production. Selection on individual enzymes within glycolysis, particularly phosphoglucose isomerase (Pgi), has been associated with metabolic performance in numerous organisms. Nonetheless, how whole energy-producing pathways evolve to allow organisms to thrive in different environments and adopt new lifestyles remains little explored. The Lanceocercata radiation of Australasian stick insects includes transitions from tropical to temperate climates, lowland to alpine habitats, and winged to wingless forms. This permits a broad investigation to determine which steps within glycolysis and what sites within enzymes are the targets of positive selection. To address these questions we obtained transcript sequences from seven core glycolysis enzymes, including two Pgi paralogues, from 29 Lanceocercata species. RESULTS Using maximum likelihood methods a signature of positive selection was inferred in two core glycolysis enzymes. Pgi and Glyceraldehyde 3-phosphate dehydrogenase (Gaphd) genes both encode enzymes linking glycolysis to the pentose phosphate pathway. Positive selection among Pgi paralogues and orthologues predominately targets amino acids with residues exposed to the protein's surface, where changes in physical properties may alter enzyme performance. CONCLUSION Our results suggest that, for Lancerocercata stick insects, adaptation to new stressful lifestyles requires a balance between maintaining cellular energy production, efficiently exploiting different energy storage pools and compensating for stress-induced oxidative damage.
Collapse
Affiliation(s)
- Luke T Dunning
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- Imperial College London, Silwood Park Campus, Buckhurst Road, SL5 7PY, Ascot, Berks, UK
| | - Alice B Dennis
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Geoffrey Thomson
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, ON, Canada N6G 1L3
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Thomas R Buckley
- Landcare Research, Private Bag 92170, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| |
Collapse
|
53
|
Cheviron ZA, Connaty AD, McClelland GB, Storz JF. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution 2013; 68:48-62. [PMID: 24102503 DOI: 10.1111/evo.12257] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/16/2013] [Indexed: 12/14/2022]
Abstract
In species that are distributed across steep environmental gradients, adaptive variation in physiological performance may be attributable to transcriptional plasticity in underlying regulatory networks. Here we report the results of common-garden experiments that were designed to elucidate the role of regulatory plasticity in evolutionary adaptation to hypoxic cold-stress in deer mice (Peromyscus maniculatus). We integrated genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance under hypoxia in highland (4350 m) and lowland (430 m) mice from three experimental groups: (1) wild-caught mice that were sampled at their native elevations; (2) wild-caught/lab-reared mice that were deacclimated to low-elevation conditions in a common-garden lab environment; and (3) the F(1) progeny of deacclimated mice that were maintained under the same low-elevation common-garden conditions. In each experimental group, highland mice exhibited greater thermogenic capacities than lowland mice, and this enhanced performance was associated with upregulation of transcriptional modules that influence several hierarchical steps in the O(2) cascade, including tissue O(2) diffusion (angiogenesis) and tissue O(2) utilization (metabolic fuel use and cellular oxidative capacity). Most of these performance-related transcriptomic changes occurred over physiological and developmental timescales, suggesting that regulatory plasticity makes important contributions to fitness-related physiological performance in highland deer mice.
Collapse
Affiliation(s)
- Zachary A Cheviron
- Department of Animal Biology, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Avenue, Urbana, Illinois, 61801.
| | | | | | | |
Collapse
|
54
|
Toews DPL, Mandic M, Richards JG, Irwin DE. MIGRATION, MITOCHONDRIA, AND THE YELLOW-RUMPED WARBLER. Evolution 2013; 68:241-55. [DOI: 10.1111/evo.12260] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/15/2013] [Indexed: 01/05/2023]
Affiliation(s)
- David P. L. Toews
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
| | - Milica Mandic
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
| | - Jeffrey G. Richards
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
| | - Darren E. Irwin
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
55
|
Cutter AD, Jovelin R, Dey A. Molecular hyperdiversity and evolution in very large populations. Mol Ecol 2013; 22:2074-95. [PMID: 23506466 PMCID: PMC4065115 DOI: 10.1111/mec.12281] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
56
|
Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 2013; 30:1687-99. [PMID: 23543094 PMCID: PMC3684853 DOI: 10.1093/molbev/mst063] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adaptation to local environments often occurs through natural selection acting on a large number of loci, each having a weak phenotypic effect. One way to detect these loci is to identify genetic polymorphisms that exhibit high correlation with environmental variables used as proxies for ecological pressures. Here, we propose new algorithms based on population genetics, ecological modeling, and statistical learning techniques to screen genomes for signatures of local adaptation. Implemented in the computer program “latent factor mixed model” (LFMM), these algorithms employ an approach in which population structure is introduced using unobserved variables. These fast and computationally efficient algorithms detect correlations between environmental and genetic variation while simultaneously inferring background levels of population structure. Comparing these new algorithms with related methods provides evidence that LFMM can efficiently estimate random effects due to population history and isolation-by-distance patterns when computing gene-environment correlations, and decrease the number of false-positive associations in genome scans. We then apply these models to plant and human genetic data, identifying several genes with functions related to development that exhibit strong correlations with climatic gradients.
Collapse
Affiliation(s)
- Eric Frichot
- TIMC-IMAG UMR 5525, Université Joseph Fourier Grenoble, Centre National de la Recherche Scientifique, Grenoble, France
| | | | | | | |
Collapse
|
57
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
58
|
Watt WB, Hudson RR, Wang B, Wang E. A genetic polymorphism evolving in parallel in two cell compartments and in two clades. BMC Evol Biol 2013; 13:9. [PMID: 23311980 PMCID: PMC3556304 DOI: 10.1186/1471-2148-13-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The enzyme phosphoenolpyruvate carboxykinase, PEPCK, occurs in its guanosine-nucleotide-using form in animals and a few prokaryotes. We study its natural genetic variation in Colias (Lepidoptera, Pieridae). PEPCK offers a route, alternative to pyruvate kinase, for carbon skeletons to move between cytosolic glycolysis and mitochondrial Krebs cycle reactions. RESULTS PEPCK is expressed in both cytosol and mitochondrion, but differently in diverse animal clades. In vertebrates and independently in Drosophila, compartment-specific paralogous genes occur. In a contrasting expression strategy, compartment-specific PEPCKs of Colias and of the silkmoth, Bombyx, differ only in their first, 5', exons; these are alternatively spliced onto a common series of following exons. In two Colias species from distinct clades, PEPCK sequence is highly variable at nonsynonymous and synonymous sites, mainly in its common exons. Three major amino acid polymorphisms, Gly 335 ↔ Ser, Asp 503 ↔ Glu, and Ile 629 ↔ Val occur in both species, and in the first two cases are similar in frequency between species. Homology-based structural modelling shows that the variants can alter hydrogen bonding, salt bridging, or van der Waals interactions of amino acid side chains, locally or at one another's sites which are distant in PEPCK's structure, and thus may affect its enzyme function. We ask, using coalescent simulations, if these polymorphisms' cross-species similarities are compatible with neutral evolution by genetic drift, but find the probability of this null hypothesis is 0.001 ≤ P ≤ 0.006 under differing scenarios. CONCLUSION Our results make the null hypothesis of neutrality of these PEPCK polymorphisms quite unlikely, but support an alternative hypothesis that they are maintained by natural selection in parallel in the two species. This alternative can now be justifiably tested further via studies of PEPCK genotypes' effects on function, organismal performance, and fitness. This case emphasizes the importance, for evolutionary insight, of studying gene-specific mechanisms affected by natural genetic variation as an essential complement to surveys of such variation.
Collapse
Affiliation(s)
- Ward B Watt
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Richard R Hudson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Baiqing Wang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Eddie Wang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
- Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 0213, USA
| |
Collapse
|
59
|
Miller SR, McGuirl MA, Carvey D. The Evolution of RuBisCO Stability at the Thermal Limit of Photoautotrophy. Mol Biol Evol 2013; 30:752-60. [DOI: 10.1093/molbev/mss327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
60
|
Gosset CC, Bierne N. Differential introgression from a sister species explains high F
ST
outlier loci within a mussel species. J Evol Biol 2012. [DOI: 10.1111/jeb.12046] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- C. C. Gosset
- Université Montpellier 2; Montpellier Cedex France
- CNRS; Institut des Sciences de l'Evolution - ISEM UMR 5554; Station Méditerranéenne de l'Environnement Littoral; Sete France
| | - N. Bierne
- Université Montpellier 2; Montpellier Cedex France
- CNRS; Institut des Sciences de l'Evolution - ISEM UMR 5554; Station Méditerranéenne de l'Environnement Littoral; Sete France
| |
Collapse
|
61
|
Cheviron ZA, Bachman GC, Storz JF. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice. ACTA ACUST UNITED AC 2012. [PMID: 23197099 DOI: 10.1242/jeb.075598] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small mammals face especially severe thermoregulatory challenges at high altitude because the reduced O2 availability constrains the capacity for aerobic thermogenesis. Adaptive enhancement of thermogenic performance under hypoxic conditions may be achieved via physiological adjustments that occur within the lifetime of individuals (phenotypic plasticity) and/or genetically based changes that occur across generations, but their relative contributions to performance differences between highland and lowland natives are unclear. Here, we examined potentially evolved differences in thermogenic performance between populations of deer mice (Peromyscus maniculatus) that are native to different altitudes. The purpose of the study was to assess the contribution of phenotypic plasticity to population differences in thermogenic performance under hypoxia. We used a common-garden deacclimation experiment to demonstrate that highland deer mice have enhanced thermogenic capacities under hypoxia, and that performance differences between highland and lowland mice persist when individuals are born and reared under common-garden conditions, suggesting that differences in thermogenic capacity have a genetic basis. Conversely, population differences in thermogenic endurance appear to be entirely attributable to physiological plasticity during adulthood. These combined results reveal distinct sources of phenotypic plasticity for different aspects of thermogenic performance, and suggest that thermogenic capacity and endurance may have different mechanistic underpinnings.
Collapse
Affiliation(s)
- Zachary A Cheviron
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
62
|
Chaoui L, Gagnaire PA, Guinand B, Quignard JP, Tsigenopoulos C, Kara MH, Bonhomme F. Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. Mol Ecol 2012; 21:5497-511. [PMID: 23061421 DOI: 10.1111/mec.12062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022]
Abstract
The genetic basis and evolutionary implications of local adaptation in high gene flow marine organisms are still poorly understood. In several Mediterranean fish species, alternative migration patterns exist between individuals entering coastal lagoons that offer favourable conditions for growth and those staying in the sea where environmental conditions are less subject to rapid and stressful change. Whether these coexisting strategies are phenotypically plastic or include a role for local adaptation through differential survival needs to be determined. Here, we explore the genetic basis of alternate habitat use in western Mediterranean populations of the gilthead sea bream (Sparus aurata). Samples from lagoonal and open-sea habitats were typed for three candidate gene microsatellite loci, seven anonymous microsatellites and 44 amplified fragment length polymorphism markers to test for genotype-environment associations. While anonymous markers globally indicated high levels of gene flow across geographic locations and habitats, non-neutral differentiation patterns correlated with habitat type were found at two candidate microsatellite loci located in the promoter region of the growth hormone and prolactin genes. Further analysis of these two genes revealed that a mechanism based on habitat choice alone could not explain the distribution of genotype frequencies at a regional scale, thus implying a role for differential survival between habitats. We also found an association between allele size and habitat type, which, in the light of previous studies, suggests that polymorphisms in the proximal promoter region could influence gene expression by modulating transcription factor binding, thus providing a potential explanatory link between genotype and growth phenotype in nature.
Collapse
Affiliation(s)
- Lamya Chaoui
- Institut des Sciences de l'Evolution, Université Montpellier II, SMEL, 2 rue des chantiers, 34200 Sète, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Via S, Conte G, Mason-Foley C, Mills K. Localizing F(ST) outliers on a QTL map reveals evidence for large genomic regions of reduced gene exchange during speciation-with-gene-flow. Mol Ecol 2012; 21:5546-60. [PMID: 23057835 DOI: 10.1111/mec.12021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 06/24/2012] [Accepted: 07/11/2012] [Indexed: 12/15/2022]
Abstract
Populations that maintain phenotypic divergence in sympatry typically show a mosaic pattern of genomic divergence, requiring a corresponding mosaic of genomic isolation (reduced gene flow). However, mechanisms that could produce the genomic isolation required for divergence-with-gene-flow have barely been explored, apart from the traditional localized effects of selection and reduced recombination near centromeres or inversions. By localizing F(ST) outliers from a genome scan of wild pea aphid host races on a Quantitative Trait Locus (QTL) map of key traits, we test the hypothesis that between-population recombination and gene exchange are reduced over large 'divergence hitchhiking' (DH) regions. As expected under divergence hitchhiking, our map confirms that QTL and divergent markers cluster together in multiple large genomic regions. Under divergence hitchhiking, the nonoutlier markers within these regions should show signs of reduced gene exchange relative to nonoutlier markers in genomic regions where ongoing gene flow is expected. We use this predicted difference among nonoutliers to perform a critical test of divergence hitchhiking. Results show that nonoutlier markers within clusters of F(ST) outliers and QTL resolve the genetic population structure of the two host races nearly as well as the outliers themselves, while nonoutliers outside DH regions reveal no population structure, as expected if they experience more gene flow. These results provide clear evidence for divergence hitchhiking, a mechanism that may dramatically facilitate the process of speciation-with-gene-flow. They also show the power of integrating genome scans with genetic analyses of the phenotypic traits involved in local adaptation and population divergence.
Collapse
Affiliation(s)
- Sara Via
- Department of Biology, University of Maryland, College Park, MD 21042, USA.
| | | | | | | |
Collapse
|
64
|
Zhang L, Thomas JC, Didelot X, Robinson DA. Molecular signatures identify a candidate target of balancing selection in an arcD-like gene of Staphylococcus epidermidis. J Mol Evol 2012; 75:43-54. [PMID: 23053194 DOI: 10.1007/s00239-012-9520-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 09/24/2012] [Indexed: 01/19/2023]
Abstract
A comparative population genetics study revealed high levels of nucleotide polymorphism and intermediate-frequency alleles in an arcC gene of Staphylococcus epidermidis, but not in a homologous gene of the more aggressive human pathogen, Staphylococcus aureus. Further investigation showed that the arcC genes used in the multilocus sequence typing schemes of these two species were paralogs. Phylogenetic analyses of arcC-containing loci, including the arginine catabolic mobile element, from both species, suggested that these loci had an eventful history involving gene duplications, rearrangements, deletions, and horizontal transfers. The peak signatures in the polymorphic S. epidermidis locus were traced to an arcD-like gene adjacent to arcC; these signatures consisted of unusually elevated Tajima's D and π/K ratios, which were robust to assumptions about recombination and species divergence time and among the most elevated in the S. epidermidis genome. Amino acid polymorphisms, including one that differed in polarity and hydropathy, were located in the peak signatures and defined two allelic lineages. Recombination events were detected between these allelic lineages and potential donors and recipients of S. epidermidis were identified in each case. By comparison, the orthologous gene of S. aureus showed no unusual signatures. The ArcD-like protein belonged to the unknown ion transporter 3 family and appeared to be unrelated to ArcD from the arginine deiminase pathway. These studies report the first comparative population genetics results for staphylococci and the first statistical evidence for a candidate target of balancing selection in S. epidermidis.
Collapse
Affiliation(s)
- Liangfen Zhang
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
65
|
Careau V, Garland T. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 2012; 85:543-71. [PMID: 23099454 DOI: 10.1086/666970] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The study of phenotypic evolution should be an integrative endeavor that combines different approaches and crosses disciplinary and phylogenetic boundaries to consider complex traits and organisms that historically have been studied in isolation from each other. Analyses of individual variation within populations can act to bridge studies focused at the levels of morphology, physiology, biochemistry, organismal performance, behavior, and life history. For example, the study of individual variation recently facilitated the integration of behavior into the concept of a pace-of-life syndrome and effectively linked the field of energetics with research on animal personality. Here, we illustrate how studies on the pace-of-life syndrome and the energetics of personality can be integrated within a physiology-performance-behavior-fitness paradigm that includes consideration of ecological context. We first introduce key concepts and definitions and then review the rapidly expanding literature on the links between energy metabolism and personality traits commonly studied in nonhuman animals (activity, exploration, boldness, aggressiveness, sociability). We highlight some empirical literature involving mammals and squamates that demonstrates how emerging fields can develop in rather disparate ways because of historical accidents and/or particularities of different kinds of organisms. We then briefly discuss potentially interesting avenues for future conceptual and empirical research in relation to motivation, intraindividual variation, and mechanisms underlying trait correlations. The integration of performance traits within the pace-of-life-syndrome concept has the potential to fill a logical gap between the context dependency of selection and how energetics and personality are expected to interrelate. Studies of how performance abilities and/or aspects of Darwinian fitness relate to both metabolic rate and personality traits are particularly lacking.
Collapse
Affiliation(s)
- Vincent Careau
- Department of Biology, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
66
|
Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien S. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol 2012; 22:532-51. [DOI: 10.1111/mec.12003] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/17/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Vincent Bourret
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval; 1030 avenue de la Médecine; Québec; Canada; G1V 0A6
| | - Matthew P. Kent
- Department of Animal and Aquacultural Sciences; Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences; PO Box 5003; 1432; Aas; Norway
| | - Craig R. Primmer
- Division of Genetics and Physiology, Department of Biology; University of Turku; 20014; Turku; Finland
| | | | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA); 7485; Trondheim; Norway
| | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA); 7485; Trondheim; Norway
| | - Philip McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork; Cork; Ireland
| | - Eric Verspoor
- Rivers and Lochs Institute Inverness College, University of Highlands and Islands; Longman Building Inverness; Scotland IV1 1SA; UK
| | - Louis Bernatchez
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval; 1030 avenue de la Médecine; Québec; Canada; G1V 0A6
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences; Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences; PO Box 5003; 1432; Aas; Norway
| |
Collapse
|
67
|
Schoville SD, Flowers JM, Burton RS. Diversifying selection underlies the origin of allozyme polymorphism at the phosphoglucose isomerase locus in Tigriopus californicus. PLoS One 2012; 7:e40035. [PMID: 22768211 PMCID: PMC3386920 DOI: 10.1371/journal.pone.0040035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations.
Collapse
Affiliation(s)
- Sean D Schoville
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
68
|
Renaut S, Maillet N, Normandeau E, Sauvage C, Derome N, Rogers SM, Bernatchez L. Genome-wide patterns of divergence during speciation: the lake whitefish case study. Philos Trans R Soc Lond B Biol Sci 2012; 367:354-63. [PMID: 22201165 DOI: 10.1098/rstb.2011.0197] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nature, size and distribution of the genomic regions underlying divergence and promoting reproductive isolation remain largely unknown. Here, we summarize ongoing efforts using young (12 000 yr BP) species pairs of lake whitefish (Coregonus clupeaformis) to expand our understanding of the initial genomic patterns of divergence observed during speciation. Our results confirmed the predictions that: (i) on average, phenotypic quantitative trait loci (pQTL) show higher F(ST) values and are more likely to be outliers (and therefore candidates for being targets of divergent selection) than non-pQTL markers; (ii) large islands of divergence rather than small independent regions under selection characterize the early stages of adaptive divergence of lake whitefish; and (iii) there is a general trend towards an increase in terms of numbers and size of genomic regions of divergence from the least (East L.) to the most differentiated species pair (Cliff L.). This is consistent with previous estimates of reproductive isolation between these species pairs being driven by the same selective forces responsible for environment specialization. Altogether, dwarf and normal whitefish species pairs represent a continuum of both morphological and genomic differentiation contributing to ecological speciation. Admittedly, much progress is still required to more finely map and circumscribe genomic islands of speciation. This will be achieved through the use of next generation sequencing data but also through a better quantification of phenotypic traits moulded by selection as organisms adapt to new environmental conditions.
Collapse
Affiliation(s)
- S Renaut
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
69
|
Cheviron ZA, Brumfield RT. Genomic insights into adaptation to high-altitude environments. Heredity (Edinb) 2012; 108:354-61. [PMID: 21934702 PMCID: PMC3313048 DOI: 10.1038/hdy.2011.85] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022] Open
Abstract
Elucidating the molecular genetic basis of adaptive traits is a central goal of evolutionary genetics. The cold, hypoxic conditions of high-altitude habitats impose severe metabolic demands on endothermic vertebrates, and understanding how high-altitude endotherms cope with the combined effects of hypoxia and cold can provide important insights into the process of adaptive evolution. The physiological responses to high-altitude stress have been the subject of over a century of research, and recent advances in genomic technologies have opened up exciting opportunities to explore the molecular genetic basis of adaptive physiological traits. Here, we review recent literature on the use of genomic approaches to study adaptation to high-altitude hypoxia in terrestrial vertebrates, and explore opportunities provided by newly developed technologies to address unanswered questions in high-altitude adaptation at a genomic scale.
Collapse
Affiliation(s)
- Z A Cheviron
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
70
|
|
71
|
Godé C, Decombeix I, Kostecka A, Wasowicz P, Pauwels M, Courseaux A, Saumitou-Laprade P. Nuclear microsatellite loci for Arabidopsis halleri (Brassicaceae), a model species to study plant adaptation to heavy metals. AMERICAN JOURNAL OF BOTANY 2012; 99:e49-52. [PMID: 22268226 DOI: 10.3732/ajb.1100320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PREMISE OF THE STUDY Arabidopsis halleri is a model species to study the adaptation of plants to soils contaminated by zinc, cadmium, and lead. To provide a neutral genetic background with which adaptive genetic markers could be compared, we developed highly polymorphic neutral microsatellite markers. METHODS AND RESULTS Using a microsatellite-enriched library method, we identified 120 microsatellite loci for quantitative trait locus (QTL) mapping analysis, of which eight primer pairs were developed in a single multiplex for population genetic studies. Analyses were performed on 508 individuals from 26 populations. All loci were polymorphic with six to 23 alleles per locus. Genetic diversity varied between 0.56 and 0.76. CONCLUSIONS Our results demonstrated the value of these eight microsatellite markers to investigate neutral population genetic structure in A. halleri. To increase the resolution of population genetic analyses, we suggest adding them to the 11 markers previously developed independently.
Collapse
Affiliation(s)
- Cécile Godé
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université des Sciences et Technologies de Lille, Lille1, F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
72
|
Ometto L, Li M, Bresadola L, Varotto C. Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages. BMC Evol Biol 2012; 12:7. [PMID: 22257588 PMCID: PMC3398273 DOI: 10.1186/1471-2148-12-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/18/2012] [Indexed: 12/04/2022] Open
Abstract
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response.
Collapse
Affiliation(s)
- Lino Ometto
- Department of Biodiversity and Molecular Ecology, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E, Mach 1, 38010 San Michele all'Adige (TN), Italy
| | | | | | | |
Collapse
|
73
|
Experimental approaches to evaluate the contributions of candidate protein-coding mutations to phenotypic evolution. Methods Mol Biol 2012; 772:377-96. [PMID: 22065450 DOI: 10.1007/978-1-61779-228-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identifying mechanisms of molecular adaptation can provide important insights into the process of phenotypic evolution, but it can be exceedingly difficult to quantify the phenotypic effects of specific mutational changes. To verify the adaptive significance of genetically based changes in protein function, it is necessary to document functional differences between the products of derived and wild-type alleles and to demonstrate that such differences impinge on higher-level physiological processes (and ultimately, fitness). In the case of metabolic enzymes, this requires documenting in vivo differences in reaction rate that give rise to differences in flux through the pathway in which the enzymes function. These measured differences in pathway flux should then give rise to differences in cellular or systemic physiology that affect fitness-related variation in whole-organism performance. Efforts to establish these causal connections between genotype, phenotype, and fitness require experiments that carefully control for environmental variation and background genetic variation. Here, we discuss experimental approaches to evaluate the contributions of amino-acid mutations to adaptive phenotypic change. We discuss conceptual and methodological issues associated with in vitro and in vivo studies of protein function, and the evolutionary insights that can be gleaned from such studies. We also discuss the importance of isolating the effects of individual mutations to distinguish between positively selected substitutions that directly contribute to improvements in protein function versus positively selected, compensatory substitutions that mitigate negative pleiotropic effects of antecedent changes.
Collapse
|
74
|
Carnicer J, Brotons L, Stefanescu C, Peñuelas J. Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biol Rev Camb Philos Soc 2011; 87:457-79. [PMID: 22129434 DOI: 10.1111/j.1469-185x.2011.00210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter-specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.
Collapse
Affiliation(s)
- Jofre Carnicer
- Community and Conservation Ecology Group, Centre for Life Sciences, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
75
|
Altitudinal variation at duplicated β-globin genes in deer mice: effects of selection, recombination, and gene conversion. Genetics 2011; 190:203-16. [PMID: 22042573 DOI: 10.1534/genetics.111.134494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood-oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5' paralog and downstream of the 3' paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness.
Collapse
|
76
|
Barrett RDH, Hoekstra HE. Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 2011; 12:767-80. [PMID: 22005986 DOI: 10.1038/nrg3015] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although much progress has been made in identifying the genes (and, in rare cases, mutations) that contribute to phenotypic variation, less is known about the effects that these genes have on fitness. Nonetheless, genes are commonly labelled as 'adaptive' if an allele has been shown to affect a phenotype with known or suspected functional importance or if patterns of nucleotide variation at the locus are consistent with positive selection. In these cases, the 'adaptive' designation may be premature and may lead to incorrect conclusions about the relationships between gene function and fitness. Experiments to test targets and agents of natural selection within a genomic context are necessary for identifying the adaptive consequences of individual alleles.
Collapse
Affiliation(s)
- Rowan D H Barrett
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
77
|
O'Brien C, Bradshaw WE, Holzapfel CM. Testing for causality in covarying traits: genes and latitude in a molecular world. Mol Ecol 2011; 20:2471–6. [PMID: 21595769 DOI: 10.1111/j.1365-294x.2011.05133.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many traits are assumed to have a causal (necessary) relationship with one another because of their common covariation with a physiological, ecological or geographical factor. Herein, we demonstrate a straightforward test for inferring causality using residuals from regression of the traits with the common factor. We illustrate this test using the covariation with latitude of a proxy for the circadian clock and a proxy for the photoperiodic timer in Drosophila and salmon. A negative result of this test means that further discussion of the adaptive significance of a causal connection between the covarying traits is unwarranted. A positive result of this test provides a point of departure that can then be used as a platform from which to determine experimentally the underlying functional connections and only then to discuss their adaptive significance.
Collapse
Affiliation(s)
- Conor O'Brien
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA
| | | | | |
Collapse
|
78
|
Hahn ME. Mechanistic research in aquatic toxicology: perspectives and future directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:67-71. [PMID: 22099346 PMCID: PMC3220193 DOI: 10.1016/j.aquatox.2011.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 05/21/2023]
Abstract
On the 30th anniversary of the journal, I provide a perspective on some of the questions and opportunities for new understanding that will interest aquatic toxicologists during the next 30 years. I focus on mechanisms of toxicity involving transcription factors, signalling pathways, and gene networks involved in toxic and adaptive responses in aquatic animals. Prominent questions address the value of a toxicity pathways approach in aquatic systems, issues involving extrapolation among species, identification of susceptibility genes and useful biomarkers of adverse effect, new emerging contaminants, the importance of epigenetic mechanisms, effects of multiple stressors, evolutionary toxicology, and the relative roles of technical and conceptual limitations to our understanding of chemical effects on aquatic systems.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
| |
Collapse
|
79
|
Crease TJ, Floyd R, Cristescu ME, Innes D. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex. BMC Evol Biol 2011; 11:212. [PMID: 21767386 PMCID: PMC3231769 DOI: 10.1186/1471-2148-11-212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 07/18/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. RESULTS We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. CONCLUSIONS Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.
Collapse
Affiliation(s)
- Teresa J Crease
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robin Floyd
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol BS105NB, UK
| | - Melania E Cristescu
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - David Innes
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| |
Collapse
|
80
|
Kirk H, Freeland JR. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 2011; 12:3966-88. [PMID: 21747718 PMCID: PMC3131602 DOI: 10.3390/ijms12063966] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
Abstract
The field of molecular ecology has expanded enormously in the past two decades, largely because of the growing ease with which neutral molecular genetic data can be obtained from virtually any taxonomic group. However, there is also a growing awareness that neutral molecular data can provide only partial insight into parameters such as genetic diversity, local adaptation, evolutionary potential, effective population size, and taxonomic designations. Here we review some of the applications of neutral versus adaptive markers in molecular ecology, discuss some of the advantages that can be obtained by supplementing studies of molecular ecology with data from non-neutral molecular markers, and summarize new methods that are enabling researchers to generate data from genes that are under selection.
Collapse
Affiliation(s)
- Heather Kirk
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| | - Joanna R. Freeland
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| |
Collapse
|
81
|
Elmer KR, Meyer A. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol Evol 2011; 26:298-306. [PMID: 21459472 DOI: 10.1016/j.tree.2011.02.008] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/18/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022]
|
82
|
Bierne N, Welch J, Loire E, Bonhomme F, David P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol Ecol 2011; 20:2044-72. [PMID: 21476991 DOI: 10.1111/j.1365-294x.2011.05080.x] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicolas Bierne
- Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
83
|
Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci U S A 2011; 108:2831-6. [PMID: 21282627 DOI: 10.1073/pnas.1014971108] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elucidating the connection between genotype, phenotype, and adaptation in wild populations is fundamental to the study of evolutionary biology, yet it remains an elusive goal, particularly for microscopic taxa, which comprise the majority of life. Even for microbes that can be reliably found in the wild, defining the boundaries of their populations and discovering ecologically relevant phenotypes has proved extremely difficult. Here, we have circumvented these issues in the microbial eukaryote Neurospora crassa by using a "reverse-ecology" population genomic approach that is free of a priori assumptions about candidate adaptive alleles. We performed Illumina whole-transcriptome sequencing of 48 individuals to identify single nucleotide polymorphisms. From these data, we discovered two cryptic and recently diverged populations, one in the tropical Caribbean basin and the other endemic to subtropical Louisiana. We conducted high-resolution scans for chromosomal regions of extreme divergence between these populations and found two such genomic "islands." Through growth-rate assays, we found that the subtropical Louisiana population has a higher fitness at low temperature (10 °C) and that several of the genes within these distinct regions have functions related to the response to cold temperature. These results suggest the divergence islands may be the result of local adaptation to the 9 °C difference in average yearly minimum temperature between these two populations. Remarkably, another of the genes identified using this unbiased, whole-genome approach is the well-known circadian oscillator frequency, suggesting that the 2.4°-10.6° difference in latitude between the populations may be another important environmental parameter.
Collapse
|
84
|
JEUKENS J, BOYLE B, KUKAVICA‐IBRULJ I, ST‐CYR J, LÉVESQUE RC, BERNATCHEZ L. BAC library construction, screening and clone sequencing of lake whitefish (
Coregonus clupeaformis
, Salmonidae) towards the elucidation of adaptive species divergence. Mol Ecol Resour 2011; 11:541-9. [DOI: 10.1111/j.1755-0998.2011.02982.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. JEUKENS
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Quebec‐Ocean, Department of biology, Université Laval, Québec City, Québec, Canada
| | - B. BOYLE
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Arborea, Center for Forest Research, Université Laval, Québec City, Québec, Canada
| | - I. KUKAVICA‐IBRULJ
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Department of microbiology‐infectiology and immunology, Université Laval, Québec City, Québec, Canada
| | - J. ST‐CYR
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - R. C. LÉVESQUE
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Department of microbiology‐infectiology and immunology, Université Laval, Québec City, Québec, Canada
| | - L. BERNATCHEZ
- Institut de biologie intégrative et des systèmes (IBIS), 1030 av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
- Quebec‐Ocean, Department of biology, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
85
|
Zera AJ. Microevolution of intermediary metabolism: evolutionary genetics meets metabolic biochemistry. J Exp Biol 2011; 214:179-90. [DOI: 10.1242/jeb.046912] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Summary
During the past decade, microevolution of intermediary metabolism has become an important new research focus at the interface between metabolic biochemistry and evolutionary genetics. Increasing recognition of the importance of integrative studies in evolutionary analysis, the rising interest in ‘evolutionary systems biology’, and the development of various ‘omics’ technologies have all contributed significantly to this developing interface. The present review primarily focuses on five prominent areas of recent research on pathway microevolution: lipid metabolism and life-history evolution; the electron transport system, hybrid breakdown and speciation; glycolysis, alcohol metabolism and population adaptation in Drosophila; chemostat selection in microorganisms; and anthocyanin pigment biosynthesis and flower color evolution. Some of these studies have provided a new perspective on important evolutionary topics that have not been investigated extensively from a biochemical perspective (hybrid breakdown, parallel evolution). Other studies have provided new data that augment previous biochemical information, resulting in a deeper understanding of evolutionary mechanisms (allozymes and biochemical adaptation to climate, life-history evolution, flower pigments and the genetics of adaptation). Finally, other studies have provided new insights into how the function or position of an enzyme in a pathway influences its evolutionary dynamics, in addition to providing powerful experimental models for investigations of network evolution. Microevolutionary studies of metabolic pathways will undoubtedly become increasingly important in the future because of the central importance of intermediary metabolism in organismal fitness, the wealth of biochemical data being provided by various omics technologies, and the increasing influence of integrative and systems perspectives in biology.
Collapse
Affiliation(s)
- Anthony J. Zera
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
86
|
Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 2010; 213:4125-36. [PMID: 21112992 PMCID: PMC2992463 DOI: 10.1242/jeb.048181] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 01/08/2023]
Abstract
High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
87
|
RENAUT SÉBASTIEN, NOLTE ARNEW, ROGERS SEANM, DEROME NICOLAS, BERNATCHEZ LOUIS. SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.). Mol Ecol 2010; 20:545-59. [DOI: 10.1111/j.1365-294x.2010.04952.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
88
|
Abstract
Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied.
Collapse
Affiliation(s)
- Scott A Pavey
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|