51
|
Holzinger A, Pichrtová M. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques. FRONTIERS IN PLANT SCIENCE 2016; 7:678. [PMID: 27242877 PMCID: PMC4873514 DOI: 10.3389/fpls.2016.00678] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth's history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an unbiased non-targeted view in an evolutionary context.
Collapse
Affiliation(s)
- Andreas Holzinger
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
- *Correspondence: Andreas Holzinger,
| | - Martina Pichrtová
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
| |
Collapse
|
52
|
Maccario L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Res Microbiol 2015; 166:782-95. [PMID: 26408452 DOI: 10.1016/j.resmic.2015.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laura Sanguino
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
53
|
Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. PROTOPLASMA 2015; 252:571-89. [PMID: 25269628 PMCID: PMC4335129 DOI: 10.1007/s00709-014-0703-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/12/2014] [Indexed: 05/20/2023]
Abstract
Two newly isolated strains of green algae from alpine regions were compared physiologically at different culture ages (1, 6, 9 and 15 months). The strains of Zygnema sp. were from different altitudes ('Saalach' (S), 440 m above sea level (a.s.l.), SAG 2419 and 'Elmau-Alm' (E-A), 1,500 m a.s.l., SAG 2418). Phylogenetic analysis of rbcL sequences grouped the strains into different major subclades of the genus. The mean diameters of the cells were 23.2 μm (Zygnema S) and 18.7 μm (Zygnema E-A) but were reduced significantly with culture age. The photophysiological response between the strains differed significantly; Zygnema S had a maximal relative electron transport rate (rETR max) of 103.4 μmol electrons m(-2) s(-1), Zygnema E-A only 61.7 μmol electrons m(-2) s(-1), and decreased significantly with culture age. Both strains showed a low-light adaption and the absence of strong photoinhibition up to 2,000 μmol photons m(-2) s(-1). Photosynthetic oxygen production showed similar results (P max Zygnema S, 527.2 μmol O2 h(-1) mg(-1) chlorophyll (chl.) a, Zygnema E-A, 390.7 μmol O2 h(-1) mg(-1) chl. a); the temperature optimum was at 35 °C for Zygnema S and 30 °C for Zygnema E-A. Increasing culture age moreover leads to the formation of pre-akinetes, which accumulate storage products as revealed by light and transmission electron microscopy. Desiccation at 84 % relative air humidity (RH) lead to a reduction of the effective quantum yield of photosystem II (PSII) (ΔFv/Fm') to zero between 90 to 120 min (Zygnema S) and between 30 to 60 min (Zygnema E-A), depending on the culture age. A partial recovery of ΔFv/Fm' was only observed in older cultures. We conclude that pre-akinetes are crucial for the aeroterrestrial lifestyle of Zygnema.
Collapse
Affiliation(s)
- K. Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - L. A. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043 USA
| | - A. Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
54
|
Uetake J, Tanaka S, Hara K, Tanabe Y, Samyn D, Motoyama H, Imura S, Kohshima S. Novel biogenic aggregation of moss gemmae on a disappearing African glacier. PLoS One 2014; 9:e112510. [PMID: 25401789 PMCID: PMC4234412 DOI: 10.1371/journal.pone.0112510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/18/2014] [Indexed: 11/18/2022] Open
Abstract
Tropical regions are not well represented in glacier biology, yet many tropical glaciers are under threat of disappearance due to climate change. Here we report a novel biogenic aggregation at the terminus of a glacier in the Rwenzori Mountains, Uganda. The material was formed by uniseriate protonemal moss gemmae and protonema. Molecular analysis of five genetic markers determined the taxon as Ceratodon purpureus, a cosmopolitan species that is widespread in tropical to polar region. Given optimal growing temperatures of isolate is 20-30 °C, the cold glacier surface might seem unsuitable for this species. However, the cluster of protonema growth reached approximately 10 °C in daytime, suggesting that diurnal increase in temperature may contribute to the moss's ability to inhabit the glacier surface. The aggregation is also a habitat for microorganisms, and the disappearance of this glacier will lead to the loss of this unique ecosystem.
Collapse
Affiliation(s)
- Jun Uetake
- Transdisciplinary Research Integration Center, Minato-ku, Tokyo, Japan
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
- * E-mail:
| | - Sota Tanaka
- Faculty of Science, Chiba University, Chiba, Chiba, Japan
| | - Kosuke Hara
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yukiko Tanabe
- Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Denis Samyn
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Nigata, Japan
| | | | - Satoshi Imura
- Faculty of Science, Chiba University, Chiba, Chiba, Japan
| | - Shiro Kohshima
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
55
|
Stancheva R, Hall JD, Herburger K, Lewis LA, McCourt RM, Sheath RG, Holzinger A. Phylogenetic position of Zygogonium ericetorum (zygnematophyceae, charophyta) from a high alpine habitat and ultrastructural characterization of unusual aplanospores. JOURNAL OF PHYCOLOGY 2014; 50:790-803. [PMID: 25810560 PMCID: PMC4370237 DOI: 10.1111/jpy.12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Characeae (Charophyceae, Charophyta) contains two tribes with six genera: tribe Chareae with four genera and tribe Nitelleae, which includes Tolypella and Nitella. This paper uses molecular and morphological data to elucidate the phylogeny of Tolypella species in North America. In the most comprehensive taxonomic treatment of Characeae, 16 Tolypella species worldwide were subsumed into two species, T. intricata and T. nidifica, in two sections, Rothia and Tolypella respectively. It was further suggested that Tolypella might be a derived group within Nitella. In this investigation into species diversity and relationships in North American Tolypella, sequence data from the plastid genes atpB, psbC, and rbcL were assembled for a broad range of charophycean and land plant taxa. Molecular data were used in conjunction with morphology to test monophyly of the genus and species within it. Phylogenetic analyses of the sequence data showed that Characeae is monophyletic but that Nitelleae is paraphyletic with Tolypella sister to a monophyletic Nitella + Chareae. The results also supported the monophyly of Tolypella and the sections Rothia and Tolypella. Morphologically defined species were supported as clades with little or no DNA sequence differences. In addition, molecular data revealed several lineages and a new species (T. ramosissima sp. nov.), which suggests greater species diversity in Tolypella than previously recognized.
Collapse
Affiliation(s)
- Rosalina Stancheva
- Department of Biological Sciences, California State University San Marcos, San Marcos, California 92096, USA
| | - John D. Hall
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA, Department of Botany, Academy of Natural Sciences, Philadelphia, Pennsylvania 19103, USA
| | - Klaus Herburger
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| | - Louise A. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Richard M. McCourt
- Department of Botany, Academy of Natural Sciences, Philadelphia, Pennsylvania 19103, USA, Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Robert G. Sheath
- Department of Biological Sciences, California State University San Marcos, San Marcos, California 92096, USA
| | - Andreas Holzinger
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck A-6020, Austria
| |
Collapse
|
56
|
Lutz S, Anesio AM, Jorge Villar SE, Benning LG. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 2014; 89:402-14. [PMID: 24920320 DOI: 10.1111/1574-6941.12351] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 11/29/2022] Open
Abstract
We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.
Collapse
Affiliation(s)
- Stefanie Lutz
- School of Earth & Environment, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
57
|
Marija S, Dieter H. Sensitivity of photosynthesis to UV radiation in several Cosmarium strains (Zygnematophyceae, Streptophyta) is related to their geographical distribution. Photochem Photobiol Sci 2014; 13:1066-81. [DOI: 10.1039/c3pp50192b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of UV radiation in vitro on desmid strains collected from various climatic areas and long-term grown under identical laboratory conditions revealed their preference for specific climatic niches, as judged from their different photosynthetic behaviours.
Collapse
|
58
|
Aigner S, Remias D, Karsten U, Holzinger A. Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga zygogonium ericetorum (zygnematophyceae, streptophyta) from a high-alpine habitat. JOURNAL OF PHYCOLOGY 2013; 49:648-60. [PMID: 25810559 PMCID: PMC4370239 DOI: 10.1111/jpy.12075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/10/2013] [Indexed: 05/05/2023]
Abstract
The filamentous green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) was collected in a high-alpine rivulet in Tyrol, Austria. Two different morphotypes of this alga were found: a purple morph with a visible purple vacuolar content and a green morph lacking this coloration. These morphotypes were compared with respect to their secondary metabolites, ultrastructure, and ecophysiological properties. Colorimetric tests with aqueous extracts of the purple morph indicated the presence of soluble compounds such as phenolics and hydrolyzable tannins. High-performance liquid chromatography-screening showed that Z. ericetorum contained several large phenolic peaks with absorption maxima at ∼280 nm and sometimes with minor maxima at ∼380 nm. Such compounds are uncommon for freshwater green microalgae, and could contribute to protect the organism against increased UV and visible (VIS) irradiation. The purple Z. ericetorum contained larger amounts (per dry weight) of the putative phenolic substances than the green morph; exposure to irradiation may be a key factor for accumulation of these phenolic compounds. Transmission electron microscopy of the purple morph showed massive vacuolization with homogenous medium electron-dense content in the cell periphery, which possibly contains the secondary compounds. In contrast, the green morph had smaller, electron-translucent vacuoles. The ecophysiological data on photosynthesis and desiccation tolerance indicated that increasing photon fluence densities led to much higher relative electron transport rates (rETR) in the purple than in the green morph. These data suggest that the secondary metabolites in the purple morph are important for light acclimation in high-alpine habitats. However, the green morph recovered better after 4 d of rehydration following desiccation stress.
Collapse
Affiliation(s)
- Siegfried Aigner
- Institute of Botany, University of InnsbruckSternwartestraße 15, Innsbruck, A-6020, Austria
| | - Daniel Remias
- Institute of Pharmacy, University of InnsbruckInnrain 80-82, Innsbruck, A-6020, Austria
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of RostockAlbert-Einstein-Straße 3, Rostock, D-18057, Germany
| | - Andreas Holzinger
- Institute of Botany, University of InnsbruckSternwartestraße 15, Innsbruck, A-6020, Austria
- Author for correspondence: e-mail
| |
Collapse
|
59
|
Pichrtová M, Remias D, Lewis LA, Holzinger A. Changes in phenolic compounds and cellular ultrastructure of arctic and antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. MICROBIAL ECOLOGY 2013; 65:68-83. [PMID: 22903087 PMCID: PMC3541927 DOI: 10.1007/s00248-012-0096-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/16/2012] [Indexed: 05/07/2023]
Abstract
Ultraviolet (UV) radiation has become an important stress factor in polar regions due to anthropogenically induced ozone depletion. Although extensive research has been conducted on adaptations of polar organisms to this stress factor, few studies have focused on semi-terrestrial algae so far, in spite of their apparent vulnerability. This study investigates the effect of UV on two semi-terrestrial arctic strains (B, G) and one Antarctic strain (E) of the green alga Zygnema, isolated from Arctic and Antarctic habitats. Isolates of Zygnema were exposed to experimentally enhanced UV A and B (predominant UV A) to photosynthetic active radiation (PAR) ratio. The pigment content, photosynthetic performance and ultrastructure were studied by means of high-performance liquid chromatography (HPLC), chlorophyll a fluorescence and transmission electron microscopy (TEM). In addition, phylogenetic relationships of the investigated strains were characterised using rbcL sequences, which determined that the Antarctic isolate (E) and one of the Arctic isolates (B) were closely related, while G is a distinct lineage. The production of protective phenolic compounds was confirmed in all of the tested strains by HPLC analysis for both controls and UV-exposed samples. Moreover, in strain E, the content of phenolics increased significantly (p = 0.001) after UV treatment. Simultaneously, the maximum quantum yield of photosystem II photochemistry significantly decreased in UV-exposed strains E and G (p < 0.001), showing a clear stress response. The phenolics were most probably stored at the cell periphery in vacuoles and cytoplasmic bodies that appear as electron-dense particles when observed by TEM after high-pressure freeze fixation. While two strains reacted moderately on UV exposure in their ultrastructure, in strain G, damage was found in chloroplasts and mitochondria. Plastidal pigments and xanthophyll cycle pigments were investigated by HPLC analysis; UV A- and UV B-exposed samples had a higher deepoxidation state as controls, particularly evident in strain B. The results indicate that phenolics are involved in UV protection of Zygnema and also revealed different responses to UV stress across the three strains, suggesting that other protection mechanisms may be involved in these organisms.
Collapse
Affiliation(s)
- Martina Pichrtová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 12801 Prague 2, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982 Třeboň, Czech Republic
| | - Daniel Remias
- Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Louise A. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043 USA
| | - Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria
| |
Collapse
|
60
|
Leya T. Snow Algae: Adaptation Strategies to Survive on Snow and Ice. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_17] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
61
|
Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME JOURNAL 2012; 6:2302-13. [PMID: 23018772 DOI: 10.1038/ismej.2012.107] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.
Collapse
|
62
|
Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol 2011. [DOI: 10.1007/s00300-011-1135-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|