51
|
Savinova T, Samchenko A, Bocharova Y, Mayansky N, Chebotar I. Computer Program for Detection and Analyzing the Porin-Mediated Antibiotic Resistance of Bacteria. Sovrem Tekhnologii Med 2021; 13:15-22. [PMID: 35265355 PMCID: PMC8858402 DOI: 10.17691/stm2021.13.6.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to develop a new software tool for identifying gene mutations that determine the porin-mediated resistance to antibiotics in gram-negative bacteria and to demonstrate the functionality of this program by detecting porin-mediated resistance to carbapenems in clinical isolates of Pseudomonas aeruginosa. Materials and Methods The proposed algorithm is based on searching for a correspondence between the reference and the studied genes. When the sought nucleotide sequence is found in the analyzed genome, it is compared with the reference one and analyzed. The genomic analysis is then verified by comparing between the amino acid sequences encoded by the reference and studied genes. The genes of the susceptible P. aeruginosa ATCC 27853 strain were used as the reference nucleotide sequences encoding for porins (OprD, OpdD, and OpdP) involved in the transport of carbapenems into the bacterial cell. The complete genomes of clinical P. aeruginosa isolates from the PATRIC database 3.6.9 and our own collection were used to test the functionality of the proposed program. The analyzed isolates were phenotypically characterized according to the CLSI standard. The search for carbapenemase genes in the studied genomes of P. aeruginosa was carried out using the ResFinder 4.1. Results The developed program for detecting the genetic determinants of non-plasmid antibiotic resistance made it possible to identify mutations of various types and significance in the porin genes of P. aeruginosa clinical isolates. These mutations led to modifications of the peptide structure of porin proteins. Single amino acid substitutions prevailed in the OpdD and OpdP porins of carbapenem-susceptible and carbapenem-resistant isolates. In the carbapenem-resistant strains, the gene encoding for OprD porin was found heavily modified, including insertions and/or deletions, which led to premature termination of porin synthesis. In several isolates resistant to meropenem, no mutations were detected in the gene encoding for OprD, which might be associated with alternative mechanisms of resistance to carbapenems. Conclusion The proposed software product can become an effective tool for deciphering the molecular genetic mechanisms of bacterial chromosomal resistance to antibiotics. Testing the program revealed differences between the occurrences of mutations significant for carbapenem resistance in the oprD, opdD, and opdP genes.
Collapse
Affiliation(s)
- T.A. Savinova
- Leading Researcher, Laboratory of Molecular Microbiology; Pirogov National Research Medical University, 1 Ostrovityanova St., Moscow, 117997, Russia
| | - A.A. Samchenko
- Researcher, Laboratory of Structure and Dynamics of Biomolecular Systems; Institute of Cell Biophysics of the Russian Academy of Sciences — Subdivision of the Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 3 Institutskaya St., Moscow Region, Pushchino, 142290, Russia
| | - Y.A. Bocharova
- Senior Researcher, Laboratory of Molecular Microbiology; Pirogov National Research Medical University, 1 Ostrovityanova St., Moscow, 117997, Russia
| | - N.A. Mayansky
- Professor of the Russian Academy of Sciences, Head of the Center for Laboratory Diagnostics, Russian Children’s Clinical Hospital; Pirogov National Research Medical University, 1 Ostrovityanova St., Moscow, 117997, Russia
| | - I.V. Chebotar
- Head of the Laboratory of Molecular Microbiology; Pirogov National Research Medical University, 1 Ostrovityanova St., Moscow, 117997, Russia
| |
Collapse
|
52
|
Cargo Genes of Tn 7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. mBio 2021; 12:e0293821. [PMID: 34872347 PMCID: PMC8649781 DOI: 10.1128/mbio.02938-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition.
Collapse
|
53
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
54
|
Zhou W, Zhang E, Zhou J, He Z, Zhou Y, Han J, Qu D. Characterization and Comparative Genomics Analysis of lncFII Multi-Resistance Plasmids Carrying bla CTX - M and Type1 Integrons From Escherichia coli. Front Microbiol 2021; 12:753979. [PMID: 34867876 PMCID: PMC8637017 DOI: 10.3389/fmicb.2021.753979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
This research aimed to investigate the presence and transferability of the extended-spectrum β-lactamase resistance genes to identify the genetic context of multi-drug resistant (MDR) loci in two Escherichia coli plasmids from livestock and poultry breeding environment. MICs were determined by broth microdilution. A total of 137 E. coli resistant to extended-spectrum β-lactam antibiotics were screened for the presence of the ESBL genes by PCR. Only two E. coli out of 206 strains produced carbapenemases, including strain 11011 that produced enzyme A, and strain 417957 that produced enzyme B. The genes were blaKPC and blaNDM, respectively. The plasmids containing blaCTX–M were conjugatable, and the plasmids containing carbapenem resistance gene were not conjugatable. Six extended-spectrum β-lactamase resistance genes were detected in this research, including blaTEM, blaCTX–M, blaSHV, blaOAX–1, blaKPC, and blaNDM, and the detection rates were 94.89% (130/137), 92.7% (127/137), 24.81% (34/137), 20.43% (28/137), 0.72% (1/137), and 0.72% (1/137), respectively. Two conjugative lncFII multi-resistance plasmids carrying blaCTX–M, p11011-fosA and p417957-CTXM, were sequenced and analyzed. Both conjugative plasmids were larger than 100 kb and contained three accessory modules, including MDR region. The MDR region of the two plasmids contained many antibiotic resistance genes, including blaCTX–M, mph (A), dfrA17, aadA5, sul1, etc. After transfer, both the transconjugants displayed elevated MICs of the respective antimicrobial agents. A large number of resistance genes clusters in specific regions may contribute to the MDR profile of the strains. The presence of mobile genetic elements at the boundaries can possibly facilitate transfer among Enterobacteriaceae through inter-replicon gene transfer. Our study provides beta-lactam resistance profile of bacteria, reveals the prevalence of β-lactamase resistance genes in livestock and poultry breeding environment in Zhejiang Province, and enriches the research on IncFII plasmids containing blaCTX–M.
Collapse
Affiliation(s)
- Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Enbao Zhang
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jinzhi Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, China
| | - Ze He
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yuqiao Zhou
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Daofeng Qu
- Key Laboratory of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
55
|
Eggers S, Safdar N, Kates A, Sethi AK, Peppard PE, Kanarek MS, Malecki KMC. Urinary lead level and colonization by antibiotic resistant bacteria: Evidence from a population-based study. Environ Epidemiol 2021; 5:e175. [PMID: 34909555 PMCID: PMC8663876 DOI: 10.1097/ee9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infection by antibiotic resistant bacteria (ARB) is a global health crisis and asymptomatic colonization increases risk of infection. Nonhuman studies have linked heavy metal exposure to the selection of ARB; however, few epidemiologic studies have examined this relationship. This study analyzes the association between urinary lead level and colonization by ARB in a nonclinical human population. METHODS Data came from the Survey of the Health of Wisconsin 2016-2017, and its ancillary Wisconsin Microbiome Study. Urinary lead levels, adjusted for creatinine, were used to assess exposure. ARB included methicillin resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), fluoroquinolone resistant Gram-negative bacilli (RGNB), and Clostridium difficile (C. diff), from skin, nose, and mouth swabs, and saliva and stool samples. Logistic regression, adjusted for covariates, was used to evaluate associations between Pb and ARB. Secondary analysis investigated Pb resistance from ARB isolates. RESULTS Among 695 participants, 239 (34%) tested positive for ARB. Geometric mean urinary Pb (unadjusted) was 0.286 µg/L (95% confidence intervals [CI] = 0.263, 0.312) for ARB negative participants and 0.323 µg/L (95% CI = 0.287, 0.363) for ARB positive participants. Models adjusted for demographics, diet, and antibiotic use showed elevated odds of positive colonization for those in the 95th percentile (vs. below) of Pb exposure (odds ratio [OR] = 2.05, 95% CI = 0.95, 4.44), and associations were highest in urban residents (OR = 2.85, 95% CI = 1.07, 7.59). RGNB isolates were most resistant to Pb. DISCUSSION These novel results suggest that Pb exposure is associated with increased colonization by ARB, and that RGNB are particularly resistant to Pb.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- William S. Middleton Veterans Affairs Medical Center, Madison, WI
| | - Ashley Kates
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- William S. Middleton Veterans Affairs Medical Center, Madison, WI
| | - Ajay K. Sethi
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| | - Paul E. Peppard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| | - Marty S. Kanarek
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, WI
| | - Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| |
Collapse
|
56
|
Song R, Li H, Kang Z, Zhong R, Wang Y, Zhang Y, Qu G, Wang T. Surface plasma induced elimination of antibiotic-resistant Escherichia coli and resistance genes: Antibiotic resistance, horizontal gene transfer, and mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Pan Y, Zhang T, Yu L, Zong Z, Zhao S, Li R, Wang Q, Yuan L, Hu G, He D. IS 1294 Reorganizes Plasmids in a Multidrug-Resistant Escherichia coli Strain. Microbiol Spectr 2021; 9:e0050321. [PMID: 34612694 PMCID: PMC8510248 DOI: 10.1128/spectrum.00503-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
The aims of this study were to elucidate the role of IS1294 in plasmid reorganization and to analyze biological characteristics of cointegrates derived from different daughter plasmids. The genetic profiles of plasmids in Escherichia coli strain C21 and its transconjugants were characterized by conjugation, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern hybridization, whole-genome sequencing (WGS) analysis, and PCR. The traits of cointegrates were characterized by conjugation and stability assays. blaCTX-M-55-bearing IncI2 pC21-1 and nonresistant IncI1 pC21-3, as conjugative helper plasmids, were fused with nonconjugative rmtB-bearing IncN-X1 pC21-2, generating cointegrates pC21-F1 and pC21-F2. Similarly, pC21-1 and pC21-3 were fused with nonconjugative IncF33:A-:B- pHB37-2 from another E. coli strain to generate cointegrates pC21-F3 and pC21-F4 under experimental conditions. Four cointegrates were further conjugated into the E. coli strain J53 recipient at high conjugation frequencies, ranging from 2.8 × 10-3 to 3.2 × 10-2. The formation of pC21-F1 and pC21-F4 was the result of host- and IS1294-mediated reactions and occurred at high fusion frequencies of 9.9 × 10-4 and 2.1 × 10-4, respectively. Knockout of RecA resulted in a 100-fold decrease in the frequency of plasmid reorganization. The phenomenon of cointegrate pC21-F2 and its daughter plasmids coexisting in transconjugants was detected for the first time in plasmid stability experiments. IS26-orf-oqxAB was excised from cointegrate pC21-F2 through a circular intermediate at a very low frequency, which was experimentally observed. To the best of our knowledge, this is the first report of IS1294-mediated fusion between plasmids with different replicons. This study provides insight into the formation and evolution of cointegrate plasmids under different drug selection pressures, which can promote the dissemination of MDR plasmids. IMPORTANCE The increasing resistance to β-lactams and aminoglycoside antibiotics, mainly due to extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylase genes, is becoming a serious problem in Gram-negative bacteria. Plasmids, as the vehicles for resistance gene capture and horizontal gene transfer, serve a key role in terms of antibiotic resistance emergence and transmission. IS26, present in many antibiotic-resistant plasmids from Gram-negative bacteria, plays a critical role in the spread, clustering, and reorganization of resistance determinant-encoding plasmids and in plasmid reorganization through replicative transposition mechanisms and homologous recombination. However, the role of IS1294, present in many MDR plasmids, in the formation of cointegrates remains unclear. Here, we investigated experimentally the intermolecular recombination of IS1294, which occurred with high frequencies and led to the formation of conjugative MDR cointegrates and facilitated the cotransfer of blaCTX-M-55 and rmtB, and we further uncovered the significance of IS1294 in the formation of cointegrates and the common features of IS1294-driven cointegration of plasmids.
Collapse
Affiliation(s)
- Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tengli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zong
- West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Qianqian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
58
|
Strict relationship between class 1 integrons and resistance to sulfamethoxazole in Escherichia coli. Microb Pathog 2021; 161:105206. [PMID: 34619311 DOI: 10.1016/j.micpath.2021.105206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023]
Abstract
Antibiotic resistance is a health concern. Class 1 integrons (Int1) are genetic elements that contribute to the problem, as they carry different antibiotic resistance genes in their variable region, frequently dfrA (resistance to trimethoprim) and, in their conserved region, the sul1 gene (resistance to sulfonamides, e.g. sulfamethoxazole). These are synthetic antibiotics that work by blocking two enzymes in the folic acid synthesis pathway. In the clinic, the combination of trimethoprim (TMP) and sulfamethoxazole (SMX), called co-trimoxazole (SXT), is widely used. A collection of 230 uropathogenic Escherichia coli strains was studied with three objectives: i) to analyze their phenotype of susceptibility to antifolate antibiotics, ii) to determine the genetic basis of their resistance to SMX, and iii) to correlate the phenotypic and genotypic data with the presence of Int1. The prevalence of resistance to SMX, TMP, and SXT was 54%, 45%, and 41%, respectively. The mobile genes sul1, sul2 and sul3, which confer resistance to sulfonamides, were PCR-surveyed: all sulfa-resistant strains were found to contain at least one of these genes, with the exception of three strains. For these latter, the possibility of being target folP mutants could be ruled out, pointing to the existence of a still unknown mechanism of resistance to SMX in E. coli. All 50 strains previously cataloged as positive for Int1 (because they had an intI1 gene for the integrase) were resistant to SMX: most had sul1, alone or with sul2 or sul3, others only had sul2, and one lacked every sul gene. In addition, 16 sul1+intI1- strains were found to contain other typical integron sequences. That is, in no case was the sul1 gene detected independently of other Int1 sequences. Therefore, we propose that the sul1 gene would be a good marker for the presence of Int1, as well as the intI1 gene. Following this criterion, the prevalence of Int1 in our collection increased from 22% (50 intI1+) to 29% (66 intI1+ and/or sul1+). Of these 66 Int1+ strains, 63 were resistant to TMP. The main conclusion in this work is that the presence of a class 1 integron would always require a sulfamethoxazole resistant cellular context. In more general terms, these integrons appear to be closely related to resistance to antifolate compounds.
Collapse
|
59
|
He YZ, Kuang X, Long TF, Li G, Ren H, He B, Yan JR, Liao XP, Liu YH, Chen L, Sun J. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother 2021; 77:74-82. [PMID: 34613377 DOI: 10.1093/jac/dkab368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes.
Collapse
Affiliation(s)
- Yu-Zhang He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xu Kuang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Teng-Fei Long
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gong Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bing He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin-Ru Yan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Jian Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
60
|
Richter L, du Plessis EM, Duvenage S, Allam M, Ismail A, Korsten L. Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Front Microbiol 2021; 12:734649. [PMID: 34659162 PMCID: PMC8517129 DOI: 10.3389/fmicb.2021.734649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase- (AmpC) producing Enterobacterales in irrigation water and associated irrigated fresh produce represents risks related to the environment, food safety, and public health. In South Africa, information about the presence of ESBL/AmpC-producing Enterobacterales from non-clinical sources is limited, particularly in the water-plant-food interface. This study aimed to characterize 19 selected MDR ESBL/AmpC-producing Escherichia coli (n=3), Klebsiella pneumoniae (n=5), Serratia fonticola (n=10), and Salmonella enterica (n=1) isolates from spinach and associated irrigation water samples from two commercial spinach production systems within South Africa, using whole genome sequencing (WGS). Antibiotic resistance genes potentially encoding resistance to eight different classes were present, with bla CTX-M-15 being the dominant ESBL encoding gene and bla ACT-types being the dominant AmpC encoding gene detected. A greater number of resistance genes across more antibiotic classes were seen in all the K. pneumoniae strains, compared to the other genera tested. From one farm, bla CTX-M-15-positive K. pneumoniae strains of the same sequence type 985 (ST 985) were present in spinach at harvest and retail samples after processing, suggesting successful persistence of these MDR strains. In addition, ESBL-producing K. pneumoniae ST15, an emerging high-risk clone causing nosocomical outbreaks worldwide, was isolated from irrigation water. Known resistance plasmid replicon types of Enterobacterales including IncFIB, IncFIA, IncFII, IncB/O, and IncHI1B were observed in all strains following analysis with PlasmidFinder. However, bla CTX-M-15 was the only β-lactamase resistance gene associated with plasmids (IncFII and IncFIB) in K. pneumoniae (n=4) strains. In one E. coli and five K. pneumoniae strains, integron In191 was observed. Relevant similarities to human pathogens were predicted with PathogenFinder for all 19 strains, with a confidence of 0.635-0.721 in S. fonticola, 0.852-0.931 in E. coli, 0.796-0.899 in K. pneumoniae, and 0.939 in the S. enterica strain. The presence of MDR ESBL/AmpC-producing E. coli, K. pneumoniae, S. fonticola, and S. enterica with similarities to human pathogens in the agricultural production systems reflects environmental and food contamination mediated by anthropogenic activities, contributing to the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Erika M. du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| |
Collapse
|
61
|
Widyatama FS, Yagi N, Sarassari R, Shirakawa T, Le DT, Bui MHT, Kuntaman K, Hirai I. Analysis of the upstream genetic structures of the ISEcp1-bla CTX-M transposition units in Escherichia coli isolates carrying bla CTX-M obtained from the Indonesian and Vietnamese communities. Microbiol Immunol 2021; 65:542-550. [PMID: 34581451 DOI: 10.1111/1348-0421.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Extended spectrum β-lactamase (ESBL)-producing Escherichia coli have been found in healthy individuals in Indonesia and Vietnam. The ISEcp1-blaCTX-M transposition unit of ESBL-producing bacterial isolates has been considered responsible for the production of CTX-M type ESBL and it is important for the dissemination of blaCTX-M . This study aimed to characterize the upstream genetic structure (UGS) of E. coli isolates possessing blaCTX-M-1 group and/or blaCTX-M-9 group genes obtained from healthy individuals in Indonesia and Vietnam. A total of 501 CTX-M type ESBL-producing E. coli isolates possessing blaCTX-M-1 group and/or blaCTX-M-9 group genes were obtained from healthy individuals of the two countries in 2018. The UGSs of the ISEcp1-blaCTX-M transposition unit of the 501 ESBL-producing E. coli isolates were amplified by barcode-adaptor-ligation-mediated PCR and analyzed using the Nanopore sequencer. The obtained sequence information was used to classify the UGSs of the ISEcp1-blaCTX-M transposition unit. From the 501 ESBL-producing E. coli isolates, 502 UGSs were obtained, which were classified into 85 UGS types based on the sequence. ISEcp1 of 359 (71.5%) of the 502 UGSs was disrupted by gene insertion, and ISEcp1-blaCTX-M transposition unit of most (87.1%) of the determined UGSs was confirmed as plasmidic. Only 6 (7.1%) of the 85 UGS types were common to both countries. Our results indicated that many different UGSs of ISEcp1-blaCTX-M transposition units were detected in Indonesia and Vietnam; hence, we suggest that structurally different kinds of plasmids harboring blaCTX-M were separately distributed in the two countries.
Collapse
Affiliation(s)
- Fikri S Widyatama
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Nobuyoshi Yagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Rosantia Sarassari
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiro Shirakawa
- Department of Organ Therapeutics, Division of Urology, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of International Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Danh Tuyen Le
- Department of Food Science and Food Safety, National Institute of Nutrition, Hanoi, Vietnam
| | - Mai Huong Thi Bui
- Department of Food Science and Food Safety, National Institute of Nutrition, Hanoi, Vietnam
| | - Kuntaman Kuntaman
- Department of Clinical Microbiology, Dr Soetomo Hospital - Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
62
|
Classifying mobile genetic elements and their interactions from sequence data: The importance of existing biological knowledge. Proc Natl Acad Sci U S A 2021; 118:2104685118. [PMID: 34453001 DOI: 10.1073/pnas.2104685118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
63
|
Distribution and Influence on the Microbial Ecological Relationship of Antibiotic Resistance Genes in Soil at a Watershed Scale. SUSTAINABILITY 2021. [DOI: 10.3390/su13179748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Antibiotic resistance genes (ARGs) are ubiquitous in the environment, with previous studies mainly focusing on the terrestrial ecosystem, which is prone to higher antibiotic application. However, the characteristics, distribution pattern, and driving factors of soil ARGs at the macro scale are still unclear. In this study, the soil ARGs, antibiotics, mobile genetic elements (MGEs), soil properties, toxic metals, polycyclic aromatic hydrocarbons (PAHs), and bacterial community in the Taipu River Basin were analyzed to investigate the distribution and dissemination of ARGs at a watershed scale. The results revealed that ARGs were widespread in the soils along the Taipu River, and that ARG profiles varied greatly with different types of land use, but showed regional similarities. The characteristics were mainly determined by antibiotic input and the ARG transmission mediated by MGEs. The order of the contribution of environmental factors to ARG distribution was toxic metals > PAHs > soil properties. Toxic metal pollution was coupled with ARGs through MGE mediation, while PAHs and soil properties were most likely to affect the ARG distribution by shifting the bacterial community. The microbial–ecological relationship changed significantly with the enrichment of ARGs, and its impact may extend to the watershed scale. Transposon IS1247 can be used as an indicator of the ARGs impact on the microbial ecological relationship in the soils of the Taipu River Basin.
Collapse
|
64
|
Locke RK, Greig DR, Jenkins C, Dallman TJ, Cowley LA. Acquisition and loss of CTX-M plasmids in Shigella species associated with MSM transmission in the UK. Microb Genom 2021; 7. [PMID: 34427554 PMCID: PMC8549364 DOI: 10.1099/mgen.0.000644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigellosis in men who have sex with men (MSM) is caused by multidrug resistant Shigellae, exhibiting resistance to antimicrobials including azithromycin, ciprofloxacin and more recently the third-generation cephalosporins. We sequenced four blaCTX-M-27-positive MSM Shigella isolates (2018–20) using Oxford Nanopore Technologies; three S. sonnei (identified as two MSM clade 2, one MSM clade 5) and one S. flexneri 3a, to explore AMR context. All S. sonnei isolates harboured Tn7/Int2 chromosomal integrons, whereas S. flexneri 3a contained the Shigella Resistance Locus. All strains harboured IncFII pKSR100-like plasmids (67-83kbp); where present blaCTX-M-27 was located on these plasmids flanked by IS26 and IS903B, however blaCTX-M-27 was lost in S. flexneri 3a during storage between Illumina and Nanopore sequencing. IncFII AMR regions were mosaic and likely reorganised by IS26; three of the four plasmids contained azithromycin-resistance genes erm(B) and mph(A) and one harboured the pKSR100 integron. Additionally, all S. sonnei isolates possessed a large IncB/O/K/Z plasmid, two of which carried aph(3’)-Ib/aph(6)-Id/sul2 and tet(A). Monitoring the transmission of mobile genetic elements with co-located AMR determinants is necessary to inform empirical treatment guidance and clinical management of MSM-associated shigellosis.
Collapse
Affiliation(s)
| | - David R Greig
- Gastrointestinal Reference Services, Public Health England, London, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Claire Jenkins
- Gastrointestinal Reference Services, Public Health England, London, UK
| | - Tim J Dallman
- Gastrointestinal Reference Services, Public Health England, London, UK.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | | |
Collapse
|
65
|
Xu Y, Yang S, You G, Hou J. Attenuation effects of iron on dissemination of antibiotic resistance genes in anaerobic bioreactor: Evolution of quorum sensing, quorum quenching and dynamics of community composition. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126136. [PMID: 34492925 DOI: 10.1016/j.jhazmat.2021.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) coupled with bioreactors is arising as a promising technology for antibiotic resistance genes (ARGs) mitigation, whereas the succession and behaviors of microbes caused by ZVI in relieving ARGs propagation remain unclear. Herein, the effects of ZVI on microbial quorum sensing (QS), quorum quenching (QQ) system and community dynamics were examined in anaerobic bioreactor fed with oxytetracycline (tet), to illustrate the roles of evolutive microbial communication and community composition in ARGs attenuation. With the addition of 5 g/L ZVI, the total absolute abundance of tet ARGs was retarded by approximate 95% and 72% in sludge and effluent after 25 days operation. The abundance of mobile genetic elements and the heredity of antibiotic resistant bacteria revealed the declined horizontal and vertical transfer of ARGs, which directly led to the reduced ARGs propagation. Potential mechanisms are that the positive effects of ZVI on QQ activity via the functional bacteria enrichment inhibited QS system and thus ARGs transfer. Partial least--squares path modeling further demonstrated that ARGs abundance was strongly limited by the dynamics of bacterial composition and thereby less frequent microbial communication. These results provide new insights into the mechanisms of antibiotic resistome remission in anaerobic bioreactor modified by ZVI.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
66
|
Zemmour A, Dali-Yahia R, Maatallah M, Saidi-Ouahrani N, Rahmani B, Benhamouche N, Al-Farsi HM, Giske CG. High-risk clones of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from the University Hospital Establishment of Oran, Algeria (2011-2012). PLoS One 2021; 16:e0254805. [PMID: 34310625 PMCID: PMC8312963 DOI: 10.1371/journal.pone.0254805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
The purpose of the study was to characterize the resistome, virulome, mobilome and Clustered Regularly Interspaced Short Palindromic Repeats-associated (CRISPR-Cas) system of extended-spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) clinical isolates and to determine their phylogenetic relatedness. The isolates were from Algeria, isolated at the University Hospital Establishment of Oran, between 2011 and 2012. ESBL-KP isolates (n = 193) were screened for several antibiotic resistance genes (ARGs) using qPCR followed by Pulsed-Field Gel Electrophoresis (PFGE). Representative isolates were selected from PFGE clusters and subjected to whole-genome sequencing (WGS). Genomic characterization of the WGS data by studying prophages, CRISPR-Cas systems, Multi-Locus Sequence Typing (MLST), serotype, ARGs, virulence genes, plasmid replicons, and their pMLST. Phylogenetic and comparative genomic were done using core genome MLST and SNP-Based analysis. Generally, the ESBL-KP isolates were polyclonal. The whole genome sequences of nineteen isolates were taken of main PFGE clusters. Sixteen sequence types (ST) were found including high-risk clones ST14, ST23, ST37, and ST147. Serotypes K1 (n = 1), K2 (n = 2), K3 (n = 1), K31 (n = 1), K62 (n = 1), and K151 (n = 1) are associated with hyper-virulence. CRISPR-Cas system was found in 47.4%, typed I-E and I-E*. About ARGs, from 193 ESBL-KP, the majority of strains were multidrug-resistant, the CTX-M-1 enzyme was predominant (99%) and the prevalence of plasmid-mediated quinolone resistance (PMQR) genes was high with aac(6')-lb-cr (72.5%) and qnr's (65.8%). From 19 sequenced isolates we identified ESBL, AmpC, and carbapenemase genes: blaCTX-M-15 (n = 19), blaOXA-48 (n = 1), blaCMY-2 (n = 2), and blaCMY-16 (n = 2), as well as non-ESBL genes: qnrB1 (n = 12), qnrS1 (n = 1) and armA (n = 2). We found IncF, IncN, IncL/M, IncA/C2, and Col replicon types, at least once per isolate. This study is the first to report qnrS in ESBL-KP in Algeria. Our analysis shows the concerning co-existence of virulence and resistance genes and would support that genomic surveillance should be a high priority in the hospital environment.
Collapse
Affiliation(s)
- Assia Zemmour
- Faculté de Sciences de la Nature et la Vie, Département de Génétique Moléculaire Appliquée, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
- Laboratoire de Génétique Médicale Appliquée à l’Ophtalmologie, Université d’Oran 1, Oran, Algérie
| | - Radia Dali-Yahia
- Service de bactériologie, Etablissement Hospitalo-Universitaire 1er Novembre 1954, Oran, Algérie
- Faculté de médicine, Université d’Oran 1, Oran, Algérie
| | - Makaoui Maatallah
- Faculté de pharmacie de Monastir, Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits (LATVPEP: LR01ES16), Université de Monastir, Monastir, Tunisie
| | - Nadjia Saidi-Ouahrani
- Faculté de Sciences de la Nature et la Vie, Département de Génétique Moléculaire Appliquée, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Bouabdallah Rahmani
- Faculté de Génie Electrique, Département d’Electronique, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Nora Benhamouche
- Faculté de Sciences de la Nature et la Vie, Département de Génétique Moléculaire Appliquée, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Hissa M. Al-Farsi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Central Public Health Laboratories, Ministry of Health, Muscat, Sultanate of Oman
| | - Christian G. Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
67
|
Zheng Z, Ye L, Li R, Chen S. Whole-genome sequencing of strains of Vibrio spp. from China reveals different genetic contexts of blaCTX-M-14 among diverse lineages. J Antimicrob Chemother 2021; 76:950-956. [PMID: 33394022 DOI: 10.1093/jac/dkaa545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the prevalence and genetic contexts of the blaCTX-M-14 gene harboured by foodborne isolates of Vibrio spp. in China. METHODS A total of 1856 Vibrio spp. isolates collected from raw meat and shrimp samples in Guangdong Province of China were screened for blaCTX-M-14 by PCR. The blaCTX-M-14-positive isolates were characterized by MIC, PFGE, MLST, conjugation, S1-PFGE and Southern blotting and WGS using Illumina and Nanopore platforms. RESULTS A total of 35 (1.9%) Vibrio isolates were positive for blaCTX-M-14, including 33 Vibrio parahaemolyticus strains and two Vibrio alginolyticus strains. MLST showed that most of the blaCTX-M-14-bearing isolates could be assigned into two major STs, with ST163 being more prevalent (n = 23), followed by ST180 (n = 6). Whole-genome analysis of these 35 isolates revealed that the blaCTX-M-14 gene was associated with ISEcp1 in the upstream region, of which 32 blaCTX-M-14 genes were located in the same loci of chromosome I, 1 blaCTX-M-14 gene was located in a novel chromosomal integrative conjugative element (ICE) belonging to the SXT/R391 family and 2 blaCTX-M-14 genes were located in the same type of plasmid, which belonged to the IncP-1 group. Conjugation experiments showed that only the plasmid-borne blaCTX-M-14 gene could be transferred to the recipient strain Escherichia coli J53. CONCLUSIONS The emergence of the novel ICE and IncP-1 plasmids has contributed to the variable genetic contexts of blaCTX-M-14 among strains of Vibrio spp. and facilitated the horizontal transfer of such genes between Vibrio spp. and other zoonotic pathogens, resulting in a rapid increase in the prevalence of blaCTX-M-14-bearing bacterial pathogens worldwide.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, P. R. China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
68
|
Li R, Lu X, Peng K, Liu Y, Xiao X, Wang Z. Reorganization of mcr-1-bearing large MDR plasmids resolved by nanopore sequencing. J Antimicrob Chemother 2021; 75:1645-1647. [PMID: 32068848 DOI: 10.1093/jac/dkaa046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiaoyu Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, P. R. China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| |
Collapse
|
69
|
van Hoek AHAM, Dierikx C, Bosch T, Schouls L, van Duijkeren E, Visser M. Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms. J Antimicrob Chemother 2021; 75:543-549. [PMID: 31800052 DOI: 10.1093/jac/dkz507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND ESBL and AmpC β-lactamases are an increasing concern for public health. Studies suggest that ESBL/pAmpC-producing Escherichia coli and their plasmids carrying antibiotic resistance genes can spread from broilers to humans working or living on broiler farms. These studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these isolates. METHODS Eleven suspected transmission events among broilers and humans living/working on eight broiler farms were investigated using whole-genome short-read (Illumina) and long-read sequencing (PacBio). Core genome MLST (cgMLST) was performed to investigate the occurrence of strain transmission. Horizontal plasmid and gene transfer were analysed using BLAST. RESULTS Of eight suspected strain transmission events, six were confirmed. The isolate pairs had identical ESBL/AmpC genes and fewer than eight allelic differences according to the cgMLST, and five had an almost identical plasmid composition. On one of the farms, cgMLST revealed that the isolate pairs belonging to ST10 from a broiler and a household member of the farmer had 475 different alleles, but that the plasmids were identical, indicating horizontal transfer of mobile elements rather than strain transfer. Of three suspected horizontal plasmid transmission events, one was confirmed. In addition, gene transfer between plasmids was found. CONCLUSIONS The present study confirms transmission of strains as well as horizontal plasmid and gene transfer between broilers and farmers and household members on the same farm. WGS is an important tool to confirm suspected zoonotic strain and resistance gene transmission.
Collapse
Affiliation(s)
- Angela H A M van Hoek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Cindy Dierikx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Leo Schouls
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Engeline van Duijkeren
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Michael Visser
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
70
|
Genomic Investigation of Carbapenem-Resistant Klebsiella pneumonia Colonization in an Intensive Care Unit in South Africa. Genes (Basel) 2021; 12:genes12070951. [PMID: 34206235 PMCID: PMC8308027 DOI: 10.3390/genes12070951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The study investigated carbapenemase-producing Klebsiella pneumoniae (CPKP) isolates of patients in an intensive care unit (ICU) in a public hospital in the KwaZulu-Natal province, South Africa using whole-genome sequencing (WGS). Ninety-seven rectal swabs, collected from all consenting adult patients (n = 31) on days 1, 3, and 7 and then weekly, were screened for carbapenemase-production using Chrome-ID selective media. Antibiotic susceptibility was determined for the fourteen positive CPKP isolates obtained using the VITEK 2 automated system. All isolates (100%) were resistant to ertapenem and meropenem, and 71.4% (n = 10) were resistant to imipenem. All CPKP isolates were subjected to ERIC/PCR, and a sub-sample of isolates was selected for WGS based on their antibiograms and clonality. All sequenced isolates harbored the blaOXA-181 carbapenemase (100%) and co-carried other β-lactamase genes such as blaOXA-1, blaCTX-M-15, blaTEM-1B, and blaSHV-1. IncF, IncX3, and Col plasmid replicons groups and class I integrons (ln191 and ln27) were detected. All isolates belonged to the same sequence type ST307 and capsular serotypes (K102, O2v2). All the isolates carried the same virulence repertoire, reflecting the epidemiological relationship between isolates. blaOXA-181 was located on a multi-replicon plasmid similar to that of E. coli p010_B-OXA181, and isolates were aligned with several South African and international clades, demonstrating horizontal and vertical transboundary distribution. The findings suggest that blaOXA-181 producing K. pneumoniae is endemic in this ICU, colonizing the patients. CRE screening and enhanced infection prevention and control measures are urgently required.
Collapse
|
71
|
Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci U S A 2021; 118:2008731118. [PMID: 33526659 DOI: 10.1073/pnas.2008731118] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that plasmids play an important role in the dissemination of antimicrobial resistance (AMR) genes; however, little is known about the role of the underlying interactions between different plasmid categories and other mobile genetic elements (MGEs) in shaping the promiscuous spread of AMR genes. Here, we developed a tool designed for plasmid classification, AMR gene annotation, and plasmid visualization and found that most plasmid-borne AMR genes, including those localized on class 1 integrons, are enriched in conjugative plasmids. Notably, we report the discovery and characterization of a massive insertion sequence (IS)-associated AMR gene transfer network (245 combinations covering 59 AMR gene subtypes and 53 ISs) linking conjugative plasmids and phylogenetically distant pathogens, suggesting a general evolutionary mechanism for the horizontal transfer of AMR genes mediated by the interaction between conjugative plasmids and ISs. Moreover, our experimental results confirmed the importance of the observed interactions in aiding the horizontal transfer and expanding the genetic range of AMR genes within complex microbial communities.
Collapse
|
72
|
Assis RAB, Varani AM, Sagawa CHD, Patané JSL, Setubal JC, Uceda-Campos G, da Silva AM, Zaini PA, Almeida NF, Moreira LM, Dandekar AM. A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence. Genomics 2021; 113:2513-2525. [PMID: 34089784 DOI: 10.1016/j.ygeno.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/25/2023]
Abstract
Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease management uses copper-based pesticides which induce pathogen resistance. We examined the genetic repertoire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin, xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures resembling composite transposons.
Collapse
Affiliation(s)
- Renata A B Assis
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alessandro M Varani
- Faculty of Agricultural and Veterinary Sciences of Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), Department of Technology, Jaboticabal, SP, Brazil
| | - Cintia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - José S L Patané
- Cell Cycle Laboratory, Butantan Institute, Sao Paulo, SP, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Guillermo Uceda-Campos
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Maria da Silva
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, MS, Brazil
| | - Leandro Marcio Moreira
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Department of Biological Science, Institute of Exact and Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
73
|
Karlsson PA, Tano E, Jernberg C, Hickman RA, Guy L, Järhult JD, Wang H. Molecular Characterization of Multidrug-Resistant Yersinia enterocolitica From Foodborne Outbreaks in Sweden. Front Microbiol 2021; 12:664665. [PMID: 34054769 PMCID: PMC8155512 DOI: 10.3389/fmicb.2021.664665] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
The foodborne pathogen Yersinia enterocolitica causes gastrointestinal infections worldwide. In the spring of 2019, the Swedish Public Health Agency and Statens Serum Institut in Denmark independently identified an outbreak caused by Yersinia enterocolitica 4/O:3 that after sequence comparison turned out to be a cross-border outbreak. A trace-back investigation suggested shipments of fresh prewashed spinach from Italy as a common source for the outbreak. Here, we determined the genome sequences of five Y. enterocolitica clinical isolates during the Swedish outbreak using a combination of Illumina HiSeq short-read and Nanopore Technologies’ MinION long-read whole-genome sequencing. WGS results showed that all clinical strains have a fully assembled chromosome of approximately 4.6 Mbp in size and a 72-kbp virulence plasmid; one of the strains was carrying an additional 5.7-kbp plasmid, pYE-tet. All strains showed a high pathogen probability score (87.5%) with associated genes for virulence, all of which are closely related to an earlier clinical strain Y11 from Germany. In addition, we identified a chromosomally encoded multidrug-resistance cassette carrying resistance genes against chloramphenicol (catA1), streptomycin (aadA1), sulfonamides (sul1), and a mercury resistance module. This chromosomally encoded Tn2670 transposon has previously been reported associated with IncFII plasmids in Enterobacteriaceae: a Shigella flexneri clinical isolate from Japan in 1950s, a Klebsiella pneumoniae outbreak from Australia in 1997, and Salmonella enterica serovar Typhimurium. Interestingly, we identified an additional 5.7-kbp plasmid with tetB (encoding an ABC transporter), Rep, and its own ORI and ORIt sites, sharing high homology with small tetB-Rep plasmids from Pasteurellaceae. This is the first time that Tn2670 and Pasteurellaceae plasmids have been reported in Y. enterocolitica. Taken together, our study showed that the Swedish Y. enterocolitica outbreak strains acquired multi-antibiotic and metal-resistance genes through horizontal gene transfer, suggesting a potential reservoir of intraspecies dissemination of multidrug-resistance genes among foodborne pathogens. This study also highlights the concern of food-chain contamination of prewashed vegetables as a perpetual hazard against public health.
Collapse
Affiliation(s)
- Philip A Karlsson
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Eva Tano
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rachel A Hickman
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden.,Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
74
|
Harmer CJ, Hall RM. IS26 cannot move alone. J Antimicrob Chemother 2021; 76:1428-1432. [PMID: 33686401 DOI: 10.1093/jac/dkab055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND IS26 plays a major role in the dissemination of antibiotic resistance determinants in Gram-negative bacteria. OBJECTIVES To determine whether insertion sequence IS26 is able to move alone (simple transposition) or if it exclusively forms cointegrates. METHODS A two-step PCR using outward-facing primers was used to search for circular IS26 molecules. Gibson assembly was used to clone a synthetic IS26 containing a catA1 chloramphenicol resistance gene downstream of the tnp26 transposase gene into pUC19. IS activity in a recA-Escherichia coli containing the non-conjugative pUC19-derived IS26::catA1 construct and the conjugative plasmid R388 was detected using a standard mating-out assay. Transconjugants were screened for resistance. RESULTS Circular IS26 molecules that would form with a copy-out route were not detected by PCR. The synthetic IS26::catA1 construct formed CmRTpR transconjugants (where CmR and TpR stand for chloramphenicol resistant and trimethoprim resistant, respectively), representing an R388 derivative carrying the catA1 gene at a frequency of 5.6 × 10-7 CmRTpR transconjugants per TpR transconjugant, which is comparable to the copy-in activity of the unaltered IS26. To test for simple transposition of IS26::catA1 (without the plasmid backbone), 1200 CmRTpR colonies were screened and all were resistant to ampicillin, indicating that the pUC19 backbone was present. Hence, IS26::catA1 had only formed cointegrates. CONCLUSIONS IS26 is unable to move alone and cointegrates are the exclusive end products of the reactions mediated by the IS26 transposase Tnp26. Consequently, when describing the formation of complex resistance regions, simple 'transposition' of a single IS26 should not be invoked.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
75
|
Xu Y, Yang S, You G, Hou J. Antibiotic resistance genes attenuation in anaerobic microorganisms during iron uptake from zero valent iron: An iron-dependent form of homeostasis and roles as regulators. WATER RESEARCH 2021; 195:116979. [PMID: 33690012 DOI: 10.1016/j.watres.2021.116979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Zero valent iron (ZVI) has been previously documented to attenuate the propagation of antibiotic resistance genes (ARGs) in microbes, while how ZVI affects the evolution of ARGs remains unclear. Herein, we investigated the influences of ZVI on ARGs dissemination in anaerobic bioreactor treating oxytetracycline (tet) containing wastewater, by deciphering the roles of iron homeostasis and regulatory effects. A net reduction of tet gene targets ranging from 0.75 to 1.88 and 0.67 to 2.08 log unit in intracellular and extracellular DNA was achieved at the optimal dosage of 5 g/L ZVI, whereas 20 g/L ZVI made no effects on ARGs reduction. The reduced ARGs abundance by ZVI was directly related to the inhibited horizontal transfer of ARGs and decreased proliferation of resistant strains (mainly Paludibacter and WCHB1-32). The potential mechanisms included the increased antioxidant capacity, the depressed efflux pump system and the weakened energy driving force by Fur regulon in microbes (especially for Cloacibacterium and Dechloromonas). The negligible influence of 20 g/L ZVI on ARGs reduction was ascribed to the iron-catalyzed oxidative damage and reduced physiological activity. This study firstly illustrated the potential relationships among activation of iron uptake regulator leading to protection against oxidative stress, alternation of physiological metabolisms and reduction of ARGs dissemination. This work extents our understanding about the priority of ZVI in mitigating ARGs proliferation and sheds light on its potential application in wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing, 210098, PR China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shihong Yang
- College of Agricultural Engineering, Hohai University, Nanjing, 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| |
Collapse
|
76
|
Octavia S, Chew KL, Lin RTP, Teo JWP. Whole genome sequencing of Salmonella enterica serovar Saintpaul for elucidating the mechanisms of resistance to third generation cephalosporins. Pathology 2021; 53:768-772. [PMID: 33840533 DOI: 10.1016/j.pathol.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Abstract
An increase in the number of Salmonella enterica serovar Saintpaul observed in Singapore in 2015-2016 in humans was accompanied by increased resistance to third generation cephalosporins. We aimed to understand the genetic mechanisms contributing to this resistance. Whole genome sequencing using MiSeq was performed on 49 S. Saintpaul isolates collected between 2014-2016. Nanopore sequencing was also performed in an attempt to obtain a full genome of the plasmids. All but one S. Saintpaul isolates sequenced belonged to a single sequence type based on an in silico 7-gene multi-locus sequence typing scheme suggesting a clonal lineage. In total 27/49 were resistant to third generation cephalosporins as confirmed by the broth microdilution method; the resistance was due to the presence of either blaCTX-M-55 (n=23), blaCTX-M-27 (n=1) or blaCMY-2 (n=3) carried on a plasmid. Two isolates were also found to carry the mcr-1 gene on a different plasmid. Our study showed that all S. Saintpaul isolates resistant to third generation cephalosporins carried either blaCTX-M-55, blaCTX-M-27 or blaCMY-2 on a plasmid. Continuous monitoring of Salmonella serovars is warranted to track the potential spread of these plasmids.
Collapse
Affiliation(s)
- Sophie Octavia
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore.
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore
| | - Jeanette W P Teo
- Department of Laboratory Medicine, National University Hospital, Singapore
| |
Collapse
|
77
|
Identification of a novel genomic resistance island PmGRI1-STP3 and an SXT/R391 integrative conjugative element in Proteus mirabilis of swine origin in China. J Glob Antimicrob Resist 2021; 25:77-81. [PMID: 33667705 DOI: 10.1016/j.jgar.2021.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/27/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to determine the genetic environment of antimicrobial resistance genes in Proteus mirabilis strain STP3 isolated from a diarrhoeic pig on a swine farm in Sichuan Province, China. METHODS Strain STP3 was subjected to antimicrobial susceptibility testing. Illumina MiSeq (200× coverage) and Nanopore PromethION (100× coverage) platforms were used for genome sequencing. A conjugation experiment was performed to determine the transferability and stability of antimicrobial resistance genes in this strain. RESULTS The assembled circular genome of P. mirabilis STP3 was 4 115 975 bp with a GC content of 39.58%; no plasmid sequence was detected. A novel genomic resistance island (PmGRI1-STP3) and an SXT/R391 integrative conjugative element (ICE) variant (ICEPmiChnSTP3) were characterised in P. mirabilis STP3. PmGRI1-STP3 of 52.7 kb was located at the 3' end of tRNA-Sec and shared the greatest identity with PmGRI1-C55 (54% coverage, 99.99% identity). PmGRI1-STP3 carried 16 resistance genes, including the clinically important extended-spectrum β-lactamase (ESBL) gene blaCTX-M-3. ICEPmiChnSTP3 was inserted into the prfC gene. It carried 18 resistance genes, including the rRNA methyltransferase gene cfr and the fluoroquinolone resistance gene aac(6')-Ib-cr. A class 2 integron (dfrA1-sat2-aadA1) was also identified on transposon Tn7. Mobilisation experiments indicated that ICEPmiChnSTP3 was conjugally mobilised to Escherichia coli. However, PmGRI1-STP3 appeared to lose its mobilisation ability. CONCLUSION The identification of two genomic islands (GIs) in this study suggested that genetic elements might be key mediators for resistance gene acquisition in P. mirabilis and that IS26-mediated rearrangements promote the diversity of GIs.
Collapse
|
78
|
Darphorn TS, Bel K, Koenders-van Sint Anneland BB, Brul S, Ter Kuile BH. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci Rep 2021; 11:2136. [PMID: 33483623 PMCID: PMC7822866 DOI: 10.1038/s41598-021-81683-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Resistance plasmids play a crucial role in the transfer of antimicrobial resistance from the veterinary sector to human healthcare. In this study plasmids from foodborne Escherichia coli isolates with a known (ES)BL or tetracycline resistance were sequenced entirely with short- and long-read technologies to obtain insight into their composition and to identify driving factors for spreading. Resistant foodborne E. coli isolates often contained several plasmids coding for resistance to various antimicrobials. Most plasmids were large and contained multiple resistance genes in addition to the selected resistance gene. The majority of plasmids belonged to the IncI, IncF and IncX incompatibility groups. Conserved and variable regions could be distinguished in each of the plasmid groups. Clusters containing resistance genes were located in the variable regions. Tetracycline and (extended spectrum) beta-lactamase resistance genes were each situated in separate clusters, but sulphonamide, macrolide and aminoglycoside formed one cluster and lincosamide and aminoglycoside another. In most plasmids, addiction systems were found to maintain presence in the cell.
Collapse
Affiliation(s)
- Tania S. Darphorn
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Keshia Bel
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen Food Safety Research, Wageningen University and Research, Postbus 230, 6700 AE Wageningen, The Netherlands
| | - Belinda B. Koenders-van Sint Anneland
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H. Ter Kuile
- grid.7177.60000000084992262Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ,grid.435742.30000 0001 0726 7822Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands
| |
Collapse
|
79
|
Shropshire WC, Aitken SL, Pifer R, Kim J, Bhatti MM, Li X, Kalia A, Galloway-Peña J, Sahasrabhojane P, Arias CA, Greenberg DE, Hanson BM, Shelburne SA. IS26-mediated amplification of blaOXA-1 and blaCTX-M-15 with concurrent outer membrane porin disruption associated with de novo carbapenem resistance in a recurrent bacteraemia cohort. J Antimicrob Chemother 2021; 76:385-395. [PMID: 33164081 PMCID: PMC7816169 DOI: 10.1093/jac/dkaa447] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Approximately half of clinical carbapenem-resistant Enterobacterales (CRE) isolates lack carbapenem-hydrolysing enzymes and develop carbapenem resistance through alternative mechanisms. OBJECTIVES To elucidate development of carbapenem resistance mechanisms from clonal, recurrent ESBL-positive Enterobacterales (ESBL-E) bacteraemia isolates in a vulnerable patient population. METHODS This study investigated a cohort of ESBL-E bacteraemia cases in Houston, TX, USA. Oxford Nanopore Technologies long-read and Illumina short-read sequencing data were used for comparative genomic analysis. Serial passaging experiments were performed on a set of clinical ST131 Escherichia coli isolates to recapitulate in vivo observations. Quantitative PCR (qPCR) and qRT-PCR were used to determine copy number and transcript levels of β-lactamase genes, respectively. RESULTS Non-carbapenemase-producing CRE (non-CP-CRE) clinical isolates emerged from an ESBL-E background through a concurrence of primarily IS26-mediated amplifications of blaOXA-1 and blaCTX-M-1 group genes coupled with porin inactivation. The discrete, modular translocatable units (TUs) that carried and amplified β-lactamase genes mobilized intracellularly from a chromosomal, IS26-bound transposon and inserted within porin genes, thereby increasing β-lactamase gene copy number and inactivating porins concurrently. The carbapenem resistance phenotype and TU-mediated β-lactamase gene amplification were recapitulated by passaging a clinical ESBL-E isolate in the presence of ertapenem. Clinical non-CP-CRE isolates had stable carbapenem resistance phenotypes in the absence of ertapenem exposure. CONCLUSIONS These data demonstrate IS26-mediated mechanisms underlying β-lactamase gene amplification with concurrent outer membrane porin disruption driving emergence of clinical non-CP-CRE. Furthermore, these amplifications were stable in the absence of antimicrobial pressure. Long-read sequencing can be utilized to identify unique mobile genetic element mechanisms that drive antimicrobial resistance.
Collapse
Affiliation(s)
- William C Shropshire
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Samuel L Aitken
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Division of Pharmacy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Reed Pifer
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School at Houston, Houston, TX 77030, USA
| | - Jiwoong Kim
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Micah M Bhatti
- Department of Laboratory Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiqi Li
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Galloway-Peña
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Cesar A Arias
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Ak. 9#131a2, Colombia
| | - David E Greenberg
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Department of Internal Medicine, UT Southwestern, Dallas, TX 75390, USA
- Department of Microbiology, UT Southwestern, Dallas, TX 75390, USA
| | - Blake M Hanson
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Samuel A Shelburne
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
80
|
Roy PH, Partridge SR, Hall RM. Comment on "Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection" by A.N. Zhang et al. MICROBIOME 2021; 9:3. [PMID: 33397505 PMCID: PMC7784347 DOI: 10.1186/s40168-020-00950-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/06/2020] [Indexed: 05/31/2023]
Abstract
An article published in Microbiome in July 2018 uses incorrect definitions of integron integrase IntI1 and of class 1 integrons that affect the interpretation of the data.
Collapse
Affiliation(s)
- Paul H Roy
- Centre de Recherche en Infectiologie, CHU de Québec, Québec, QC, Canada.
- Department de Biochimie, de Microbiologie, et de Bio-informatique, Université Laval, Québec, QC, Canada.
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, 2145, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
81
|
Bokhary H, Rashid H, Hill-Cawthorne GA, Abd El Ghany M. The Rise of Antimicrobial Resistance in Mass Gatherings. HANDBOOK OF HEALTHCARE IN THE ARAB WORLD 2021:1199-1214. [DOI: 10.1007/978-3-030-36811-1_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
82
|
Tn 6603, a Carrier of Tn 5053 Family Transposons, Occurs in the Chromosome and in a Genomic Island of Pseudomonas aeruginosa Clinical Strains. Microorganisms 2020; 8:microorganisms8121997. [PMID: 33333808 PMCID: PMC7765201 DOI: 10.3390/microorganisms8121997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Transposons of the Pseudomonasaeruginosa accessory gene pool contribute to phenotype and to genome plasticity. We studied local P. aeruginosa strains to ascertain the encroachment of mer-type res site hunter transposons into clinical settings and their associations with other functional modules. Five different Tn5053 family transposons were detected, all chromosomal. Some were solitary elements; one was in res of Tn1013#, a relative of a reported carrier of int-type res site hunters (class 1 integrons), but most were in res of Tn6603, a new Tn501-related transposon of unknown phenotype. Most of the Tn6603::Tn elements, and some Tn6603 and Tn6603::Tn elements found in GenBank sequences, were at identical sites in an hypothetical gene of P. aeruginosa genomic island PAGI-5v. The island in clonally differing strains was at either of two tRNALys loci, suggesting lateral transfer to these sites. This observation is consistent with the membership of the prototype PAGI-5 island to the ICE family of mobile genetic elements. Additionally, the res site hunters in the nested transposons occupied different positions in the Tn6603 carrier. This suggested independent insertion events on five occasions at least. Tn5053 family members that were mer-/tni-defective were found in Tn6603- and Tn501-like carriers in GenBank sequences of non-clinical Pseudomonas spp. The transposition events in these cases presumably utilized tni functions in trans, as can occur with class 1 integrons. We suggest that in the clinical context, P. aeruginosa strains that carry Tn6603 alone or in PAGI-5v can serve to disseminate functional res site hunters; these in turn can provide the requisite trans-acting tni functions to assist in the dissemination of class 1 integrons, and hence of their associated antibiotic resistance determinants.
Collapse
|
83
|
El Hage R, Losasso C, Longo A, Petrin S, Ricci A, Mathieu F, Abi Khattar Z, El Rayess Y. Whole-genome characterisation of TEM-1 and CMY-2 β-lactamase-producing Salmonella Kentucky ST198 in Lebanese broiler chain. J Glob Antimicrob Resist 2020; 23:408-416. [DOI: 10.1016/j.jgar.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
|
84
|
Liu Y, Bailey KE, Dyall-Smith M, Marenda MS, Hardefeldt LY, Browning GF, Gilkerson JR, Billman-Jacobe H. Faecal microbiota and antimicrobial resistance gene profiles of healthy foals. Equine Vet J 2020; 53:806-816. [PMID: 33030244 DOI: 10.1111/evj.13366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The human and domestic animal faecal microbiota can carry various antimicrobial resistance genes (ARGs), especially if they have been exposed to antimicrobials. However, little is known about the ARG profile of the faecal microbiota of healthy foals. A high-throughput qPCR array was used to detect ARGs in the faecal microbiota of healthy foals. OBJECTIVES To characterise the faecal microbiota and ARG profiles in healthy Australian foals aged less than 1 month. STUDY DESIGN Observational study. METHODS The faecal microbiota and ARG profiles of 37 Thoroughbred foals with no known gastrointestinal disease or antimicrobial treatment were determined using 16S rRNA gene sequencing and a high-throughput ARG qPCR array. Each foal was sampled on one occasion. RESULTS Firmicutes and Bacteroidetes were dominant in the faecal microbiota. Foals aged 1-2 weeks had significantly lower microbiota richness than older foals. Tetracycline resistance genes were the most common ARGs in the majority of foals, regardless of age. ARGs of high clinical concern were rarely detected in the faeces. The presence of ARGs was associated with the presence of class I integron genes. MAIN LIMITATIONS Samples were collected for a case-control study so foals were not sampled longitudinally, and thus the development of the microbiota as individual foals aged could not be proven. The history of antimicrobial treatment of the dams was not collected and may have affected the microbiota of the foals. CONCLUSION The ARGs in foal faeces varied concomitantly with age-related microbiota shifts. The high abundance of tetracycline resistance genes was likely due to the dominance of Bacteroides spp.
Collapse
Affiliation(s)
- Yuhong Liu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Kirsten E Bailey
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Michael Dyall-Smith
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Laura Y Hardefeldt
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| | - James R Gilkerson
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia
| | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Australia.,National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Melbourne, Australia
| |
Collapse
|
85
|
Taggar G, Attiq Rheman M, Boerlin P, Diarra MS. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics (Basel) 2020; 9:antibiotics9100693. [PMID: 33066205 PMCID: PMC7602032 DOI: 10.3390/antibiotics9100693] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The Enterobacteriales order consists of seven families including Enterobacteriaceae, Erwiniaceae, Pectobacteriaceae, Yersiniaceae, Hafniaceae, Morganellaceae, and Budviciaceae and 60 genera encompassing over 250 species. The Enterobacteriaceae is currently considered as the most taxonomically diverse among all seven recognized families. The emergence of carbapenem resistance (CR) in Enterobacteriaceae caused by hydrolytic enzymes called carbapenemases has become a major concern worldwide. Carbapenem-resistant Enterobacteriaceae (CRE) isolates have been reported not only in nosocomial and community-acquired pathogens but also in food-producing animals, companion animals, and the environment. The reported carbapenemases in Enterobacteriaceae from different sources belong to the Ambler class A (blaKPC), class B (blaIMP, blaVIM, blaNDM), and class D (blaOXA-48) β-lactamases. The carbapenem encoding genes are often located on plasmids or associated with various mobile genetic elements (MGEs) like transposons and integrons, which contribute significantly to their spread. These genes are most of the time associated with other antimicrobial resistance genes such as other β-lactamases, as well as aminoglycosides and fluoroquinolones resistance genes leading to multidrug resistance phenotypes. Control strategies to prevent infections due to CRE and their dissemination in human, animal and food have become necessary. Several factors involved in the emergence of CRE have been described. This review mainly focuses on the molecular epidemiology of carbapenemases in members of Enterobacteriaceae family from humans, animals, food and the environment.
Collapse
Affiliation(s)
- Gurleen Taggar
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), 93, Stone Road West, Guelph, ON N1G 5C6, Canada; (G.T.); (M.A.R.)
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Muhammad Attiq Rheman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), 93, Stone Road West, Guelph, ON N1G 5C6, Canada; (G.T.); (M.A.R.)
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), 93, Stone Road West, Guelph, ON N1G 5C6, Canada; (G.T.); (M.A.R.)
- Correspondence:
| |
Collapse
|
86
|
Shi Q, Han R, Guo Y, Zheng Y, Yang Y, Yin D, Zhang R, Hu F. Emergence of ST15 Klebsiella pneumoniae Clinical Isolates Producing Plasmids-Mediated RmtF and OXA-232 in China. Infect Drug Resist 2020; 13:3125-3129. [PMID: 32982327 PMCID: PMC7494224 DOI: 10.2147/idr.s257298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND RmtF, as 16S rRNA methyltransferase, leads to high-level resistance to aminoglycoside and is now barely reported. METHODS AND RESULTS Three rmtF-positive Klebsiella pneumoniae isolates, belonging to the pandemic clone sequence type 15, were isolated from children and coproduced bla OXA-232 and bla CTX-M-15. The rmtF gene was located on an IncFIB transformable plasmid of 128,536-bp and bla OXA-232 was on a 6141-bp ColKP3 plasmid, respectively. CONCLUSION Plasmids with rmtF found worldwide, shared relatively low similarity, and merely matched partly in their multidrug resistance region. Notably, clinical isolates coproducing rmtF and bla OXA-232 are gradually increasing in China.
Collapse
Affiliation(s)
- Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yonggui Zheng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Rong Zhang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, People’s Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
87
|
Harmer CJ, Pong CH, Hall RM. Structures bounded by directly-oriented members of the IS26 family are pseudo-compound transposons. Plasmid 2020; 111:102530. [DOI: 10.1016/j.plasmid.2020.102530] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
|
88
|
Camiade M, Bodilis J, Chaftar N, Riah-Anglet W, Gardères J, Buquet S, Ribeiro AF, Pawlak B. Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiol Ecol 2020; 96:5702129. [PMID: 31930390 DOI: 10.1093/femsec/fiaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/12/2020] [Indexed: 01/04/2023] Open
Abstract
The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles.
Collapse
Affiliation(s)
- Mathilde Camiade
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, 76821 Mont Saint Aignan cedex, France.,Institut Polytechnique UniLaSalle, Laboratoire AGHYLE, Campus de Rouen, 76130 Mont Saint Aignan cedex, France.,Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| | - Josselin Bodilis
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| | - Naouel Chaftar
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Wassila Riah-Anglet
- Institut Polytechnique UniLaSalle, Laboratoire AGHYLE, Campus de Rouen, 76130 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| | - Johan Gardères
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Sylvaine Buquet
- Normandie Université, UNIROUEN, IRSTEA, Laboratoire ECODIV, 76821 Mont Saint Aignan cedex, France
| | - Angela Flores Ribeiro
- Normandie Université, UNIROUEN, Laboratoire de Microbiologie - Signaux et Microenvironnement EA4312, Campus de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Barbara Pawlak
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, 76821 Mont Saint Aignan cedex, France.,Normandie Université, Fédération de Recherche Normandie-Végétal FED 4277, 76821 Mont Saint Aignan cedex, France
| |
Collapse
|
89
|
Zhang LJ, Gu XX, Zhang J, Yang L, Lu YW, Fang LX, Jiang HX. Characterization of a fosA3 Carrying IncC-IncN Plasmid From a Multidrug-Resistant ST17 Salmonella Indiana Isolate. Front Microbiol 2020; 11:1582. [PMID: 32793137 PMCID: PMC7385254 DOI: 10.3389/fmicb.2020.01582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the characteristics of a fosA3 carrying IncC-IncN plasmid from a multidrug-resistant Salmonella isolate HNK130. HNK130 was isolated from a chicken and identified as ST17 Salmonella enterica serovar Indiana and exhibited resistance to 13 antibiotics including the cephalosporins and fosfomycin. S1 nuclease pulsed-field gel electrophoresis and Southern blot assays revealed that HNK130 harbored only one ∼180-kb plasmid carrying fosA3 and bla CTX-M-14, which was not transferable via conjugation. We further examined 107 Escherichia coli electro-transformants and identified 3 different plasmid variants, pT-HNK130-1 (69), pT-HNK130-2 (15), and pT-HNK130-3 (23), in which pT-HNK130-1 seemed to be the same as the plasmid harbored in HNK130. We completely sequenced an example of each of these variants, and all three variants were IncC-IncN multi-incompatible plasmid and showed a mosaic structure. The fosA3 gene was present in all three and bounded by IS26 elements in the same orientation (IS26-322bp-fosA3-1758bp-IS26) that could form a minicircle containing fosA3. The bla CTX-M-14 gene was located within an IS15DI-ΔIS15DI-iroN-IS903B-bla CTX-M-14 -ΔISEcp1-IS26 structure separated from the fosA3 gene in pT-HNK130-1, but was adjacent to fosA3 in pT-HNK130-3 in an inverted orientation. Linear comparison of the three variants showed that pT-HNK130-2 and pT-HNK130-3 resulted from the sequence deletion and inversion of pT-HNK130-1. Stability tests demonstrated that pT-HNK130-1 and pT-HNK130-3 could be stably maintained in the transformants without antibiotic selection but pT-HNK130-2 was unstable. This is the first description of an IncC-IncN hybrid plasmid from an ST17 S. Indiana strain and indicates that this plasmid may further facilitate dissemination of fosfomycin and cephalosporin resistance in Salmonella.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xi-Xi Gu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue-Wei Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong-Xia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
90
|
Huyan J, Tian Z, Zhang Y, Zhang H, Shi Y, Gillings MR, Yang M. Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. ENVIRONMENT INTERNATIONAL 2020; 140:105816. [PMID: 32474215 DOI: 10.1016/j.envint.2020.105816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Class 1 integrons are strongly associated with the dissemination of antibiotic resistance in bacteria. However, little is known about whether the presence of antibiotics affects the abundance of integrons and antibiotic resistance genes during biological wastewater treatment. To explore the roles of class 1 integrons in spreading antibiotic resistance genes in environmental compartments, the dynamics of integrons were followed in biofilm reactors treating synthetic wastewater respectively spiked with streptomycin (STM) and oxytetracycline (OTC). The relative abundance of the integron-integrase gene (intI1) increased 12 or 29-fold respectively when treated with STM or OTC, under incrementally increasing dosage regimes from 0 to 50 mg L-1. Significant increases in intI1 abundance initially occurred at an antibiotic dose of 0.1 mg L-1. At the beginning of the experiment, 51% to 64% of integrons carried no gene cassettes. In STM and OTC spiked systems, there was a significant increase in the proportion of integrons that contained resistance gene cassettes, particularly at intermediate and higher antibiotic concentrations. Gene cassettes encoding resistance to aminoglycosides, trimethoprim, beta-lactam, erythromycin, and quaternary ammonium compounds were all detected in the treated systems. Three tetracycline resistance genes (tetA, tetC, tetG) were significantly correlated with the abundance of intI1 (p < 0.01), despite no tet resistance being present as a gene cassette. Genome sequencing of isolates showed synteny between the tet resistance genes and intI1, mediated through linkage to transposable elements including Tn3, IS26 and ISCR3. Class 1 integrons appeared to be under positive selection in the presence of antibiotics, and might have actively acquired new gene cassettes during the experiment.
Collapse
Affiliation(s)
- Jiaoqi Huyan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanhong Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.
| |
Collapse
|
91
|
Zingali T, Chapman TA, Webster J, Roy Chowdhury P, Djordjevic SP. Genomic Characterisation of a Multiple Drug Resistant IncHI2 ST4 Plasmid in Escherichia coli ST744 in Australia. Microorganisms 2020; 8:microorganisms8060896. [PMID: 32545892 PMCID: PMC7355605 DOI: 10.3390/microorganisms8060896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Antibiotic resistance genes (ARGs) including those from the blaCTX-M family and mcr-1 that encode resistance to extended spectrum β–lactams and colistin, respectively, have been linked with IncHI2 plasmids isolated from swine production facilities globally but not in IncHI2 plasmids from Australia. Here we describe the first complete sequence of a multiple drug resistance Australian IncHI2-ST4 plasmid, pTZ41_1P, from a commensal E. coli from a healthy piglet. pTZ41_1P carries genes conferring resistance to heavy-metals (copper, silver, tellurium and arsenic), β-lactams, aminoglycosides and sulphonamides. The ARGs reside within a complex resistance locus (CRL) that shows considerable sequence identity to a CRL in pSDE_SvHI2, an IncHI2:ST3 plasmid from an enterotoxigenic E. coli with serotype O157:H19 of porcine origin that caused substantial losses to swine production operations in Australia in 2007. pTZ41_1P is closely related to IncHI2 plasmids found in E. coli and Salmonella enterica from porcine, avian and human sources in Europe and China but it does not carry genes encoding resistance to clinically-important antibiotics. We identified regions of IncHI2 plasmids that contribute to the genetic plasticity of this group of plasmids and highlight how they may readily acquire new resistance gene cargo. Genomic surveillance should be improved to monitor IncHI2 plasmids.
Collapse
Affiliation(s)
- Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (T.Z.); (P.R.C.)
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Toni A. Chapman
- NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia; (T.A.C.); (J.W.)
| | - John Webster
- NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia; (T.A.C.); (J.W.)
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (T.Z.); (P.R.C.)
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (T.Z.); (P.R.C.)
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Correspondence: ; Tel.: +61-2-9514-4127
| |
Collapse
|
92
|
Whole Genome Sequencing Analysis of Porcine Faecal Commensal Escherichia coli Carrying Class 1 Integrons from Sows and Their Offspring. Microorganisms 2020; 8:microorganisms8060843. [PMID: 32512857 PMCID: PMC7355456 DOI: 10.3390/microorganisms8060843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Intensive pig production systems often rely on the use of antimicrobials and heavy metal feed additives to maintain animal health and welfare. To gain insight into the carriage of antimicrobial resistance genes (ARGs) in the faecal flora of commercially reared healthy swine, we characterised the genome sequences of 117 porcine commensal E. coli that carried the class 1 integrase gene (intI1+). Isolates were sourced from 42 healthy sows and 126 of their offspring from a commercial breeding operation in Australia in 2017. intI1+ E. coli was detected in 28/42 (67%) sows and 90/126 (71%) piglets. Phylogroup A, particularly clonal complex 10, and phylogroup B1 featured prominently in the study collection. ST10, ST20, ST48 and ST361 were the dominant sequence types. Notably, 113/117 isolates (96%) carried three or more ARGs. Genes encoding resistance to -lactams, aminoglycosides, trimethoprim, sulphonamides, tetracyclines and heavy metals were dominant. ARGs encoding resistance to last-line agents, such as carbapenems and third generation cephalosporins, were not detected. IS26, an insertion sequence noted for its ability to capture and mobilise ARGs, was present in 108/117 (92%) intI1+ isolates, and it played a role in determining class 1 integron structure. Our data shows that healthy Australian pig faeces are an important reservoir of multidrug resistant E. coli that carry genes encoding resistance to multiple first-generation antibiotics and virulence-associated genes.
Collapse
|
93
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
94
|
Novel IncR/IncP6 Hybrid Plasmid pCRE3-KPC Recovered from a Clinical KPC-2-Producing Citrobacter braakii Isolate. mSphere 2020; 5:5/2/e00891-19. [PMID: 32213624 PMCID: PMC7096625 DOI: 10.1128/msphere.00891-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reports of human-pathogenic C. braakii strains, especially of strains showing resistance to carbapenems, are rare. To the best of our knowledge, our results represent the first detection of carbapenemase gene blaKPC-2 in C. braakii strains. In addition, we have studied detailed genetic characteristics of the novel IncR/IncP6 hybrid plasmid pCRE3-KPC, which was isolated from a clinical multidrug-resistant Citrobacter braakii CRE3 strain. Our results may provide further insight into the horizontal transfer of multidrug resistance genes in bacteria and into the genomic diversity and molecular evolution of plasmids. Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae have become widespread in hospitals and the environment. Here, we describe a blaKPC-2-carrying plasmid called pCRE3-KPC, which was recovered from a clinical multidrug-resistant Citrobacter braakii CRE3 strain in China. The complete nucleotide sequence of pCRE3-KPC was determined by combining MiSeq and MinION sequencing and then compared with those of three related plasmids. Plasmid conjugal transfer and electroporation tests, modified carbapenem inactivation method, and bacterial antimicrobial susceptibility test were carried out. We compared this plasmid with three related plasmids to verify that the backbone of pCRE3-KPC was composed of the backbones of the IncR plasmid and IncP6 plasmid. Further bioinformatics analysis showed that pCRE3-KPC carried two resistance-related regions (the blaKPC-2 gene cluster and the aacC2-tmrB-related region). The aacC2-tmrB-related region included two novel insertion sequences (ISCfr28 and ISCfr16). IMPORTANCE Reports of human-pathogenic C. braakii strains, especially of strains showing resistance to carbapenems, are rare. To the best of our knowledge, our results represent the first detection of carbapenemase gene blaKPC-2 in C. braakii strains. In addition, we have studied detailed genetic characteristics of the novel IncR/IncP6 hybrid plasmid pCRE3-KPC, which was isolated from a clinical multidrug-resistant Citrobacter braakii CRE3 strain. Our results may provide further insight into the horizontal transfer of multidrug resistance genes in bacteria and into the genomic diversity and molecular evolution of plasmids.
Collapse
|
95
|
Ranjith K, SaiAbhilash CR, Sai Prashanthi G, Padakandla SR, Sharma S, Shivaji S. Phylogenetic Grouping of Human Ocular Escherichia coli Based on Whole-Genome Sequence Analysis. Microorganisms 2020; 8:microorganisms8030422. [PMID: 32192112 PMCID: PMC7143957 DOI: 10.3390/microorganisms8030422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli is a predominant bacterium in the intestinal tracts of animals. Phylogenetically, strains have been classified into seven phylogroups, A, B1, B2, C, D, E, and F. Pathogenic strains have been categorized into several pathotypes such as Enteropathogenic (EPEC), Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enteroaggregative (EAEC), Diffusely adherent (DAEC), Uropathogenic (UPEC), Shiga-toxin producing (STEC) or Enterohemorrhagic (EHEC) and Extra-intestinal pathogenic E. coli (ExPEC). E. coli also survives as a commensal on the ocular surface. However, under conditions of trauma and immune-compromised states, E. coli causes conjunctivitis, keratitis, endopthalmitis, dacyrocystitis, etc. The phylogenetic affiliation and the pathotype status of these ocular E. coli strains is not known. For this purpose, the whole-genome sequencing of the 10 ocular E. coli strains was accomplished. Based on whole-genome SNP variation, the ocular E. coli strains were assigned to phylogenetic groups A (two isolates), B2 (seven isolates), and C (one isolate). Furthermore, results indicated that ocular E. coli originated either from feces (enteropathogenic and enterotoxigenic), urine (uropathogenic), or from extra-intestinal sources (extra-intestinal pathogenic). A high concordance was observed between the presence of AMR (Antimicrobial Resistance) genes and antibiotic resistance in the ocular E. coli strains. Furthermore, several virulent genes (fimB to fimI, papB to papX, etc.) and prophages (Enterobacteria phage HK97, Enterobacteria phage P1, Escherichia phage D108 etc.) were unique to ocular E. coli. This is the first report on a whole-genome analysis of ocular E. coli strains.
Collapse
|
96
|
Jalalvand K, Shayanfar N, Shahcheraghi F, Amini E, Mohammadpour M, Babaheidarian P. Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:86-95. [PMID: 32215024 PMCID: PMC7081758 DOI: 10.30699/ijp.2020.111181.2188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/23/2020] [Indexed: 11/06/2022]
Abstract
Background & Objective Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. Methods In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. Results 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. Conclusion OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future.
Collapse
Affiliation(s)
- Kosar Jalalvand
- Department of Pathology, Hazret-e-Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Shayanfar
- Department of Pathology, Hazret-e-Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Elahe Amini
- Skull Base Research Center, Hazret-e-Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pegah Babaheidarian
- Department of Pathology, Hazret-e-Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Fouz N, Pangesti KNA, Yasir M, Al-Malki AL, Azhar EI, Hill-Cawthorne GA, Abd El Ghany M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop Med Infect Dis 2020; 5:tropicalmed5010033. [PMID: 32106595 PMCID: PMC7157536 DOI: 10.3390/tropicalmed5010033] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance (AMR) is the major issue posing a serious global health threat. Low- and middle-income countries are likely to be the most affected, both in terms of impact on public health and economic burden. Recent studies highlighted the role of resistance networks on the transmission of AMR organisms, with this network being driven by complex interactions between clinical (e.g., human health, animal husbandry and veterinary medicine) and other components, including environmental factors (e.g., persistence of AMR in wastewater). Many studies have highlighted the role of wastewater as a significant environmental reservoir of AMR as it represents an ideal environment for AMR bacteria (ARB) and antimicrobial resistant genes (ARGs) to persist. Although the treatment process can help in removing or reducing the ARB load, it has limited impact on ARGs. ARGs are not degradable; therefore, they can be spread among microbial communities in the environment through horizontal gene transfer, which is the main resistance mechanism in most Gram-negative bacteria. Here we analysed the recent literature to highlight the contribution of wastewater to the emergence, persistence and transmission of AMR under different settings, particularly those associated with mass gathering events (e.g., Hajj and Kumbh Mela).
Collapse
Affiliation(s)
- Nour Fouz
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia;
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Krisna N. A. Pangesti
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Y.); (E.I.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman L. Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Y.); (E.I.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Grant A. Hill-Cawthorne
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia;
- The Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Correspondence: or
| |
Collapse
|
98
|
Li Q, Zhao P, Li L, Zhao H, Shi L, Tian P. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli. Antimicrob Agents Chemother 2020; 64:e01789-19. [PMID: 31871091 PMCID: PMC7038292 DOI: 10.1128/aac.01789-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial multidrug resistance (MDR) poses a huge threat to human health. Bacterial acquisition of MDR relies primarily on class 1 integron-involved horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). To date, no strategies other than the use of antibiotics can efficiently cope with MDR. Here, we report that an engineered CRISPR interference (CRISPRi) system can markedly reduce MDR by blocking a class 1 integron in Escherichia coli Using CRISPRi to block plasmid R388 class 1 integron, E. coli recombinants showed halted growth upon exposure to relevant antibiotics. A microplate alamarBlue assay showed that both subgenomic RNAs (sgRNAs) R3 and R6 led to 8- and 32-fold decreases in half-maximal inhibitory concentrations (IC50) for trimethoprim and sulfamethoxazole, respectively. Reverse transcription and quantitative PCR (RT-qPCR) revealed that the strain employing sgRNA R6 exhibited 97% and 84% decreases in the transcriptional levels of the dfrB2 cassette and sul1, two typical ARGs, respectively. RT-qPCR analysis also demonstrated that the strain recruiting sgRNA R3 showed a 96% decrease in the transcriptional level of intI1, and a conjugation assay revealed a 1,000-fold decrease in HGT rates of ARGs. Overall, the sgRNA R3 targeting the 31 bp downstream of the Pc promoter on the intI1 nontemplate strand outperformed other sgRNAs in reducing integron activity. Furthermore, this CRISPRi system is reversible, genetically stable, and titratable by varying the concentration of the inducer. To our knowledge, this is the first report on exploiting a CRISPRi system to reduce the class 1 integron in E. coli This study provides valuable insights for future development of CRISPRi-based antimicrobial agents and cellular therapy to suppress MDR.
Collapse
Affiliation(s)
- Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
99
|
Hamamoto K, Tokunaga T, Yagi N, Hirai I. Characterization of blaCTX-M-14 transposition from plasmid to chromosome in Escherichia coli experimental strain. Int J Med Microbiol 2020; 310:151395. [DOI: 10.1016/j.ijmm.2020.151395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/28/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022] Open
|
100
|
Mbelle NM, Feldman C, Sekyere JO, Maningi NE, Modipane L, Essack SY. Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical Klebsiella pneumoniae Isolated from Pretoria, South Africa. Sci Rep 2020; 10:1232. [PMID: 31988374 PMCID: PMC6985128 DOI: 10.1038/s41598-020-58012-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/09/2020] [Indexed: 11/14/2022] Open
Abstract
Antibiotic-resistant Klebsiella pneumoniae is increasingly being implicated in invasive infections worldwide with high mortalities. Forty-two multidrug resistant (MDR) K. pneumoniae isolates were collected over a 4-month period. Antimicrobial susceptibility was determined using Microscan. The evolutionary epidemiology, resistome, virulome and mobilome of the isolates were characterised using whole-genome sequencing and bioinformatics analysis. All isolates contained the blaCTX-M gene, whilst 41/42(97%) contained blaTEM, 36/42(86%) contained blaOXA and 35/42(83%) harboured blaSHV genes. Other resistance genes found included blaLEN, aac(6′)-lb-cr, qnrA, qnrB, qnrS, oqxAB, aad, aph, dfr, sul1, sul2, fosA, and cat genes. Fluoroquinolone and colistin resistance-conferring mutations in parC, gyrAB, pmrAB, phoPQ and kpnEF were identified. The blaLEN gene, rarely described worldwide, was identified in four isolates. The isolates comprised diverse sequence types, the most common being ST152 in 7/42(17%) isolates; clone-specific O and K capsule types were identified. Diverse virulence genes that were not clone-specific were identified in all but one isolate. IncF, IncH and IncI plasmid replicons and two novel integrons were present. The blaCTX-M-15 and blaTEM-1 genes were bracketed by Tn3 transposons, ISEc9, a resolvase and IS91 insertion sequence. There were 20 gene cassettes in 14 different cassette arrays, with the dfrA and aadA gene cassettes being the most frequent. Phylogenetic analysis demonstrated that the isolates were evolutionarily associated with strains from both South Africa and abroad. These findings depict the rich resistome, mobilome and virulome repertoire in clinical K. pneumoniae strains, which are mainly transmitted by clonal, multiclonal and horizontal means in South Africa.
Collapse
Affiliation(s)
- Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Service, Johannesburg, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | | | - Lesedi Modipane
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sabiha Yusuf Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu/Natal, Durban, South Africa
| |
Collapse
|