51
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
52
|
Yang M, Liu C, Niu M, Hu Y, Guo M, Zhang J, Luo Y, Yuan W, Yang M, Yun M, Guo L, Yan J, Liu D, Liu J, Jiang Y. Phage-display library biopanning and bioinformatic analysis yielded a high-affinity peptide to inflamed vascular endothelium both in vitro and in vivo. J Control Release 2014; 174:72-80. [DOI: 10.1016/j.jconrel.2013.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/20/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
|
53
|
Sarangthem V, Cho EA, Bae SM, Singh TD, Kim SJ, Kim S, Jeon WB, Lee BH, Park RW. Construction and application of elastin like polypeptide containing IL-4 receptor targeting peptide. PLoS One 2013; 8:e81891. [PMID: 24339977 PMCID: PMC3858272 DOI: 10.1371/journal.pone.0081891] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022] Open
Abstract
Various human solid tumors highly express IL-4 receptors which amplify the expression of some of anti-apoptotic proteins, preventing drug-induced cancer cell death. Thus, IL-4 receptor targeted drug delivery can possibly increase the therapeutic efficacy in cancer treatment. Macromolecular carriers with multivalent targeting moieties offered great advantages in cancer therapy as they not only increase the plasma half-life of the drug but also allow delivery of therapeutic drugs to the cancer cells with higher specificity, minimizing the deleterious effects of the drug on normal cells. In this study we designed a library of elastin like polypeptide (ELP) polymers containing tumor targeting AP1 peptide using recursive directional ligation method. AP1 was previously discovered as an atherosclerotic plaque and breast tumor tissue homing peptide using phage display screening method, and it can selectively bind to the interleukin 4 receptor (IL-4R). The fluorescently labeled [AP1-V12]6, an ELP polymer containing six AP1 enhanced tumor-specific targeting ability and uptake efficiency in H226 and MDA-MB-231 cancer cell lines in vitro. Surface plasmon resonance analysis showed that multivalent presentation of the targeting ligand in the ELP polymer increased the binding affinity towards IL-4 receptor compared to free peptide. The binding of [AP1-V12]6 to cancer cells was remarkably reduced when IL-4 receptors were blocked by antibody against IL-4 receptor further confirmed its binding. Importantly, the Cy5.5-labeled [AP1-V12]6 demonstrated excellent homing and longer retention in tumor tissues in MDA-MB-231 xenograft mouse model. Immunohistological studies of tumor tissues further validated the targeting efficiency of [AP1-V12]6 to tumor tissue. These results indicate that designed [AP1-V12]6 can serve as a novel carrier for selective delivery of therapeutic drugs to tumors.
Collapse
Affiliation(s)
- Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Eun A. Cho
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Sang Mun Bae
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Thoudam Debraj Singh
- Department of Nuclear Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Sun-Ji Kim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Soyoun Kim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Won Bae Jeon
- Division of NanoBioTechnology, Laboratory of Biochemistry and Cellular Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
54
|
Phage display identification of CD100 in human atherosclerotic plaque macrophages and foam cells. PLoS One 2013; 8:e75772. [PMID: 24098722 PMCID: PMC3787062 DOI: 10.1371/journal.pone.0075772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/18/2013] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas.
Collapse
|
55
|
Jeon JO, Kim S, Choi E, Shin K, Cha K, So IS, Kim SJ, Jun E, Kim D, Ahn HJ, Lee BH, Lee SH, Kim IS. Designed nanocage displaying ligand-specific Peptide bunches for high affinity and biological activity. ACS NANO 2013; 7:7462-71. [PMID: 23927443 DOI: 10.1021/nn403184u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein-cage nanoparticles are promising multifunctional platforms for targeted delivery of imaging and therapeutic agents owing to their biocompatibility, biodegradability, and low toxicity. The major advantage of protein-cage nanoparticles is the ability to decorate their surfaces with multiple functionalities through genetic and chemical modification to achieve desired properties for therapeutic and/or diagnostic purposes. Specific peptides identified by phage display can be genetically fused onto the surface of cage proteins to promote the association of nanoparticles with a particular cell type or tissue. Upon symmetrical assembly of the cage, peptides are clustered on the surface of the cage protein in bunches. The resulting PBNC (peptide bunches on nanocage) offers the potential of synergistically increasing the avidity of the peptide ligands, thereby enhancing their blocking ability for therapeutic purposes. Here, we demonstrated a proof-of-principle of PBNCs, fusing the interleukin-4 receptor (IL-4R)-targeting peptide, AP-1, identified previously by phage display, with ferritin-L-chain (FTL), which undergoes 24-subunit assembly to form highly stable AP-1-containing nanocage proteins (AP1-PBNCs). AP1-PBNCs bound specifically to the IL-4R-expressing cell line, A549, and their binding and internalization were specifically blocked by anti-IL-4R antibody. AP1-PBNCs exhibited dramatically enhanced binding avidity to IL-4R compared with AP-1 peptide, measured by surface plasmon resonance spectroscopy. Furthermore, treatment with AP1-PBNCs in a murine model of experimental asthma diminished airway hyper-responsiveness and eosinophilic airway inflammation along with decreased mucus hyperproduction. These findings hold great promise for the application of various PBNCs with ligand-specific peptides in therapeutics for different diseases, such as cancer.
Collapse
Affiliation(s)
- Jae Og Jeon
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University , Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Lee BH, Kwon TH. Application of phage display for ligand peptidomics to identify peptide ligands binding to AQP2-expressing membrane fractions. Methods Mol Biol 2013; 1023:181-9. [PMID: 23765627 DOI: 10.1007/978-1-4614-7209-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vitro phage display represents an emerging and innovative technology for the rapid isolation of high-affinity peptide ligands. Phage display technologies using phages comprising a vast library of peptides have become fundamental to the isolation of high-affinity binding ligands for diagnostic and therapeutic applications, e.g., ligand proteomics, discovery of novel protein-protein interactions, antibody engineering, targeted delivery of therapeutic agents, and development of imaging probes. This chapter describes the procedures for phage display selection of peptide ligands that selectively bind to aquaporin-2-expressing membrane fractions of rat kidney.
Collapse
Affiliation(s)
- Byung-Heon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, South Korea
| | | |
Collapse
|
58
|
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42:1147-235. [DOI: 10.1039/c2cs35265f] [Citation(s) in RCA: 977] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Yang FY, Wang HE, Liu RS, Teng MC, Li JJ, Lu M, Wei MC, Wong TT. Pharmacokinetic analysis of 111 in-labeled liposomal Doxorubicin in murine glioblastoma after blood-brain barrier disruption by focused ultrasound. PLoS One 2012; 7:e45468. [PMID: 23029030 PMCID: PMC3445513 DOI: 10.1371/journal.pone.0045468] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
The goal of this study was to evaluate the pharmacokinetics of targeted and untargeted (111)In-doxorubicin liposomes after these have been intravenously administrated to tumor-bearing mice in the presence of blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). An intracranial brain tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM) 8401 cells was developed in this study. (111)In-labeled human atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes containing doxorubicin (Lipo-Dox; AP-1 Lipo-Dox) were used as a microSPECT probe for radioactivity measurements in the GBM-bearing mice. Compared to the control tumors treated with an injection of (111)In-AP-1 Lipo-Dox or (111)In-Lipo-Dox, the animals receiving the drugs followed by FUS exhibited enhanced accumulation of the drug in the brain tumors (p<0.05). Combining sonication with drugs significantly increased the tumor-to-normal brain doxorubicin ratio of the target tumors compared to the control tumors. The tumor-to-normal brain ratio was highest after the injection of (111)In-AP-1 Lipo-Dox with sonication. The (111)In-liposomes micro-SPECT/CT should be able to provide important information about the optimum therapeutic window for the chemotherapy of brain tumors using sonication.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Insight of key factors influencing tumor targeting characteristics of glycol chitosan-based nanoparticles and In vivo applications. Macromol Res 2012. [DOI: 10.1007/s13233-012-0176-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
61
|
Deramchia K, Jacobin-Valat MJ, Laroche-Traineau J, Bonetto S, Sanchez S, Dos Santos P, Massot P, Franconi JM, Martineau P, Clofent-Sanchez G. By-passing large screening experiments using sequencing as a tool to identify scFv fragments targeting atherosclerotic lesions in a novel in vivo phage display selection. Int J Mol Sci 2012; 13:6902-6923. [PMID: 22837671 PMCID: PMC3397503 DOI: 10.3390/ijms13066902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic, progressive inflammatory disease that may develop into vulnerable lesions leading to thrombosis. To interrogate the molecular components involved in this process, single-chain variable fragments (scFvs) from a semi-synthetic human antibody library were selected on the lesions induced in a rabbit model of atherosclerosis after two rounds of in vivo phage display. Homing Phage-scFvs were isolated from (1) the injured endothelium, (2) the underlying lesional tissue and (3) the cells within the intima. Clones selected on the basis of their redundancy or the presence of key amino acids, as determined by comparing the distribution between the native and the selected libraries, were produced in soluble form, and seven scFvs were shown to specifically target the endothelial cell surface and inflamed intima-related regions of rabbit tissue sections by immunohistology approaches. The staining patterns differed depending on the scFv compartment of origin. This study demonstrates that large-scale scFv binding assays can be replaced by a sequence-based selection of best clones, paving the way for easier use of antibody libraries in in vivo biopanning experiments. Future investigations will be aimed at characterizing the scFv/target couples by mass spectrometry to set the stage for more accurate diagnostic of atherosclerosis and development of therapeutic strategies.
Collapse
Affiliation(s)
- Kamel Deramchia
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
- Technology Platform for Biomedical Innovation, Bordeaux Segalen University, 33600 Bordeaux Cedex, France; E-Mail:
| | - Marie-Josee Jacobin-Valat
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
- Technology Platform for Biomedical Innovation, Bordeaux Segalen University, 33600 Bordeaux Cedex, France; E-Mail:
| | - Jeanny Laroche-Traineau
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
- Technology Platform for Biomedical Innovation, Bordeaux Segalen University, 33600 Bordeaux Cedex, France; E-Mail:
| | - Stephane Bonetto
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
- Technology Platform for Biomedical Innovation, Bordeaux Segalen University, 33600 Bordeaux Cedex, France; E-Mail:
| | - Stephane Sanchez
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
| | - Pierre Dos Santos
- Technology Platform for Biomedical Innovation, Bordeaux Segalen University, 33600 Bordeaux Cedex, France; E-Mail:
| | - Philippe Massot
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
| | - Jean-Michel Franconi
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
| | - Pierre Martineau
- MCRI, Montpellier Cancer Research Institute, INSERM, U896, Montpellier1 University, CRLC Val d’Aurelle Paul Lamarque, Montpellier, F-34298, France; E-Mail:
| | - Gisele Clofent-Sanchez
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, 33076 Bordeaux Cedex, France; E-Mails: (K.D.); (M.-J.J.-V.); (J.L.-T.); (S.B.); (S.S.); (P.M.); (J.-M.F.)
- Technology Platform for Biomedical Innovation, Bordeaux Segalen University, 33600 Bordeaux Cedex, France; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+33-557-571-175; Fax: +33-557-574-556
| |
Collapse
|
62
|
Yang FY, Wong TT, Teng MC, Liu RS, Lu M, Liang HF, Wei MC. Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release 2012; 160:652-8. [PMID: 22405901 DOI: 10.1016/j.jconrel.2012.02.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/05/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022]
Abstract
The clinical application of chemotherapy to brain tumors has been severely limited because the blood-brain barrier (BBB) often prevents therapeutic levels from being achieved. Here we show that pulsed HIFU and human atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes containing doxorubicin (AP-1 Lipo-Dox) act synergistically in an experimental brain tumor model. We developed an intracranial brain-tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM) 8401 cells. Pulsed HIFU was used to transcranially disrupt the BBB in these mouse brains by delivering ultrasound waves in the presence of microbubbles. Prior to each sonication, AP-1 Lipo-Dox or unconjugated Lipo-Dox was administered intravenously, and the concentration in the brains was quantified by fluorometer. Compared to control animals treated with injections of AP-1 Lipo-Dox or unconjugated Lipo-Dox, animals receiving the drug followed by pulsed HIFU exhibited enhanced accumulation of the drug in tumor cells. Drug injection with sonication increased the tumor-to-normal brain doxorubicin ratio of the target tumors by about twofold compared with the control tumors. Moreover, the tumor-to-normal brain ratio was highest after the injection of AP-1 Lipo-Dox with sonication. Combining sonication with AP-1 Lipo-Dox also significantly inhibited tumor growth compared with chemotherapy alone. There was a modest but significant increase in the median survival time in mice treated with AP-1 Lipo-Dox followed by pulsed HIFU, compared to those treated with AP-1 Lipo-Dox without sonication. The use of AP-1-conjugated liposomes carrying cytotoxic agents followed by pulsed HIFU represents a feasible approach for enhanced targeted drug delivery in brain tumor therapies.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
63
|
Yang FY, Teng MC, Lu M, Liang HF, Lee YR, Yen CC, Liang ML, Wong TT. Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound. Int J Nanomedicine 2012; 7:965-74. [PMID: 22393293 PMCID: PMC3289450 DOI: 10.2147/ijn.s29229] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background High-dose tissue-specific delivery of therapeutic agents would be a valuable clinical strategy. We have previously shown that repeated transcranial focused ultrasound is able to increase the delivery of Evans blue significantly into brain tissue. The present study shows that repeated pulsed high-intensity focused ultrasound (HIFU) can be used to deliver high-dose atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes selectively to brain tumors. Methods Firefly luciferase (Fluc)-labeled human GBM8401 glioma cells were implanted into NOD-scid mice. AP-1-conjugated liposomal doxorubicin or liposomal doxorubicin alone was administered followed by pulsed HIFU and the doxorubicin concentration in the treated brains quantified by fluorometer. Growth of the labeled glioma cells was monitored through noninvasive bioluminescence imaging and finally the brain tissue was histologically examined after sacrifice. Results Compared with the control group, the animals treated with 5 mg/kg injections of AP-1 liposomal doxorubicin or untargeted liposomal doxorubicin followed by repeated pulsed HIFU not only showed significantly enhanced accumulation of drug at the sonicated tumor site but also a significantly elevated tumor-to-normal brain drug ratio (P < 0.001). Combining repeated pulsed HIFU with AP-1 liposomal doxorubicin or untargeted liposomal doxorubicin has similar antitumor effects. Conclusion This study demonstrates that targeted or untargeted liposomal doxorubicin, followed by repeated pulsed HIFU, is a promising high-dose chemotherapy method that allows the desired brain tumor region to be targeted specifically.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei Taiwan. fyyang@ ym.edu.tw
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. J Control Release 2012; 157:493-9. [DOI: 10.1016/j.jconrel.2011.09.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 11/18/2022]
|
65
|
Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, Kwon IC. In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 2011; 44:1018-28. [PMID: 21851104 DOI: 10.1021/ar2000138] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future.
Collapse
Affiliation(s)
- Heebeom Koo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Myung Sook Huh
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Soon Hong Yuk
- College of Pharmacy, Korea University, Jochiwon, Yeongi, Chungnam 339-700, Republic of Korea
| | - Kuiwon Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 6, Seongbuk-gu, Seoul 136-791, Republic of Korea
| |
Collapse
|
66
|
Liu Y, Brindley PJ, Zeng Q, Li Y, Zhou J, Chen Y, Yang S, Zhang Z, Liu B, Cai L, McManus DP. Identification of phage display peptides with affinity for the tegument of Schistosoma japonicum schistosomula. Mol Biochem Parasitol 2011; 180:86-98. [PMID: 21930161 DOI: 10.1016/j.molbiopara.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 01/06/2023]
Abstract
Peptides, bound to the tegument of live Schistosoma japonicum schistosomula, were differentially screened by phage display in vitro using three rounds of reverse absorption and bio-panning. Three M13 phage peptides were isolated and identified by determination of their recovery rate, immunohistochemical localization, immunoblot analysis, and their anti-schistosomal effects in vivo and in vitro. Of the three, M13 phage peptide ZL4 (MppZL4, YSGLQDSSLRLR, 1.4kDa, pI 8.8) bound to the tegument of mechanically transformed schistosomula and to other developmental stages of S. japonicum from the mammalian host. By contrast, MppZL4 did not bind to the surface of cercariae. To further examine its binding properties, MppZL4 was conjugated to Rhodamine B (RhB-YSGLQDSSLRLR, RhB-ZL4) and a peptide control (RhB-AIPYFSGILQWR, RhB-12P) was similarly synthesized. The binding capacities of RhB-ZL4 to the surface membrane of S. japonicum schistosomula in vitro and of S. japonicum adult worms in vivo were examined and revealed specificity for binding. When examined for anti-parasite activity, both MppZL4 and RhB-ZL4 exhibited a potent schistosomicidal effect in vitro. Further MppZL4 also affected the growth and development of schistosomula in vivo. These findings extend previous studies showing that phage display techniques can recover polypeptides that bind specifically to living schistosomes and, moreover, that these bound peptides have the potential to inhibit key physiological processes in these parasites. Our findings suggest further that ectogenic polypeptides, which can bind to the tegument of S. japonicum, might be adapted as vectors to deliver experimental probes and/or pharmacologically relevant compounds to the schistosome tegument, including drugs and immunological mediators.
Collapse
Affiliation(s)
- Yan Liu
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South University (CSU), 410013 Tongzipo Road 172#, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lee GY, Kim JH, Oh GT, Lee BH, Kwon IC, Kim IS. Molecular targeting of atherosclerotic plaques by a stabilin-2-specific peptide ligand. J Control Release 2011; 155:211-7. [PMID: 21781994 DOI: 10.1016/j.jconrel.2011.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/22/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
Many cells, including macrophages, accumulate in atherosclerotic lesions, destabilizing plaques and driving plaque disruption. Therefore, macrophages serve as useful targets for atherosclerosis treatment and imaging. Stabilin-2 is a transmembrane protein expressed predominantly in macrophages and endothelial cells. In the present study, we found that stabilin-2 was widely expressed in atherosclerotic plaques than in normal vessel walls, and was present not only in macrophages but also in endothelial and smooth muscle cells in plaques. We used phage display technology to identify peptides that specifically bound to stabilin-2. After four rounds of selection, the most commonly isolated peptide had the sequence CRTLTVRKC, and was named S2P. We confirmed that this peptide specifically bound to stabilin-2-expressing cells in vitro and sinus endothelial cells in the spleen and lymph nodes in vivo. A FITC-conjugated synthetic CRTLTVRKC peptide was shown to home to atherosclerotic plaques in Ldlr-/- mice and to co-localize with endothelial cells, macrophages, and smooth muscle cells in such plaques. S2P conjugated to hydrophobically modified glycol chitosan nanoparticles was efficiently delivered to atherosclerotic plaques. These results show that the CRLTLTVRKC peptide homes to plaques by targeting stabilin-2; the peptide shows promise as a drug delivery moiety for, and an aid to molecular imaging of, atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Ga Young Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, 101 Dongin 2Ga, Jung-Gu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
68
|
Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 2011; 108:7154-9. [PMID: 21482787 DOI: 10.1073/pnas.1104540108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to selectively deliver compounds into atherosclerotic plaques would greatly benefit the detection and treatment of atherosclerotic disease. We describe such a delivery system based on a 9-amino acid cyclic peptide, LyP-1. LyP-1 was originally identified as a tumor-homing peptide that specifically recognizes tumor cells, tumor lymphatics, and tumor-associated macrophages. As the receptor for LyP-1, p32, is expressed in atherosclerotic plaques, we tested the ability of LyP-1 to home to plaques. Fluorescein-labeled LyP-1 was intravenously injected into apolipoprotein E (ApoE)-null mice that had been maintained on a high-fat diet to induce atherosclerosis. LyP-1 accumulated in the plaque interior, predominantly in macrophages. More than 60% of cells released from plaques were positive for LyP-1 fluorescence. Another plaque-homing peptide, CREKA, which binds to fibrin-fibronectin clots and accumulates at the surface of plaques, yielded fewer positive cells. Tissues that did not contain plaque yielded only traces of LyP-1(+) cells. LyP-1 was capable of delivering intravenously injected nanoparticles to plaques; we observed abundant accumulation of LyP-1-coated superparamagnetic iron oxide nanoparticles in the plaque interior, whereas CREKA-nanoworms remained at the surface of the plaques. Intravenous injection of 4-[(18)F]fluorobenzoic acid ([(18)F]FBA)-conjugated LyP-1 showed a four- to sixfold increase in peak PET activity in aortas containing plaques (0.31% ID/g) compared with aortas from normal mice injected with [(18)F]FBA-LyP-1(0.08% ID/g, P < 0.01) or aortas from atherosclerotic ApoE mice injected with [(18)F]FBA-labeled control peptide (0.05% ID/g, P < 0.001). These results indicate that LyP-1 is a promising agent for the targeting of atherosclerotic lesions.
Collapse
|
69
|
Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 2011; 16:857-87. [PMID: 21258295 PMCID: PMC6259427 DOI: 10.3390/molecules16010857] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 12/14/2022] Open
Abstract
Ligands selected from phage-displayed random peptide libraries tend to be directed to biologically relevant sites on the surface of the target protein. Consequently, peptides derived from library screenings often modulate the target protein’s activity in vitro and in vivo and can be used as lead compounds in drug design and as alternatives to antibodies for target validation in both genomics and drug discovery. This review discusses the use of phage display to identify membrane receptor modulators with agonistic or antagonistic activities. Because isolating or producing recombinant membrane proteins for use as target molecules in library screening is often impossible, innovative selection strategies such as panning against whole cells or tissues, recombinant receptor ectodomains, or neutralizing antibodies to endogenous binding partners were devised. Prominent examples from a two-decade history of peptide phage display will be presented, focusing on the design of affinity selection experiments, methods for improving the initial hits, and applications of the identified peptides.
Collapse
|
70
|
Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 2010; 110:3087-111. [PMID: 20225899 DOI: 10.1021/cr900361p] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Drive, Suite 1C14, Bethesda, Maryland 20892-2281, USA
| | | | | |
Collapse
|
71
|
Lee YW, Kim PH, Lee WH, Hirani AA. Interleukin-4, Oxidative Stress, Vascular Inflammation and Atherosclerosis. Biomol Ther (Seoul) 2010; 18:135-144. [PMID: 21072258 DOI: 10.4062/biomolther.2010.18.2.135] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the initiation and progression of atherosclerosis. In fact, inflammatory responses in vascular endothelium are primarily regulated through oxidative stress-mediated signaling pathways leading to overexpression of pro-inflammatory mediators. Enhanced expression of cytokines, chemokines and adhesion molecules in endothelial cells and their close interactions facilitate recruiting and adhering blood leukocytes to vessel wall, and subsequently stimulate transendothelial migration, which are thought to be critical early pathologic events in atherogenesis. Although interleukin-4 (IL-4) was traditionally considered as an anti-inflammatory cytokine, recent in vitro and in vivo studies have provided robust evidence that IL-4 exerts pro-inflammatory effects on vascular endothelium and may play a critical role in the development of atherosclerosis. The cellular and molecular mechanisms responsible for IL-4-induced atherosclerosis, however, remain largely unknown. The present review focuses on the distinct sources of IL-4-mediated reactive oxygen species (ROS) generation as well as the pivotal role of ROS in IL-4-induced vascular inflammation. These studies will provide novel insights into a clear delineation of the oxidative mechanisms of IL-4-mediated stimulation of vascular inflammation and subsequent development of atherosclerosis. It will also contribute to novel therapeutic approaches for atherosclerosis specifically targeted against pro-oxidative and pro-inflammatory pathways in vascular endothelium.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
72
|
Abstract
Targeted molecular imaging techniques have become indispensable tools in modern diagnostics because they provide accurate and specific diagnosis of disease information. Conventional nonspecific contrast agents suffer from low targeting efficiency; thus, the use of molecularly targeted imaging probes is needed depending on different imaging modalities. Although recent technologies have yielded various strategies for designing smart probes, utilization of peptide-based probes has been most successful. Phage display technology and combinatorial peptide chemistry have profoundly impacted the pool of available targeting peptides for the efficient and specific delivery of imaging labels. To date, selected peptides that target a variety of disease-related receptors and biomarkers are in place. These targeting peptides can be coupled with the appropriate imaging moieties or nanoplatforms on demand with the help of sophisticated bioconjugation or radiolabeling techniques. This review article examines the current trends in peptide-based imaging probes developed for in vivo applications. We discuss the advantage of and challenges in developing peptide-based probes and summarize current systems with respect to their unique design strategies and applications.
Collapse
Affiliation(s)
- Seulki Lee
- Laboratory for Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Drive, Suite 1C14, Bethesda, Maryland 20892-2281, USA
| | | | | |
Collapse
|
73
|
Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm Res 2010; 59:755-65. [PMID: 20349326 DOI: 10.1007/s00011-010-0187-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/12/2010] [Accepted: 03/05/2010] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE AND DESIGN The pro-oxidative and pro-inflammatory pathways in vascular endothelium have been implicated in the development of atherosclerosis. In the present study, we investigated effect of interleukin-4 (IL-4) on monocyte chemoattractant protein-1 (MCP-1) expression in vascular endothelium and examined the role of distinct sources of reactive oxygen species (ROS) in this process. METHODS AND RESULTS Real-time reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay showed that IL-4 significantly up-regulated mRNA and protein expression of MCP-1 in human aortic endothelial cells (HAEC) and C57BL/6 mice. A significant and dose-dependent inhibition of IL-4-induced MCP-1 expression was observed in HAEC pre-treated with antioxidants, such as pyrrolidine dithiocarbamate and epigallocatechin gallate, indicating that IL-4-induced MCP-1 expression is mediated via a ROS-dependent mechanism. Additionally, pharmacological inhibitors of NADPH oxidase (NOX) significantly attenuated IL-4-induced MCP-1 expression in HAEC. Furthermore, the disruption of the NOX gene dramatically reduced IL-4-induced MCP-1 expression in NOX knockout mice (B6.129S6-Cybb(tm1Din)/J). In contrast, overexpression of MCP-1 in IL-4-stimulated HAEC was not affected by inhibiting other ROS generating pathways, such as xanthine oxidase and the mitochondrial electron transport chain. CONCLUSIONS These results demonstrate that IL-4 up-regulates MCP-1 expression in vascular endothelium through NOX-mediated ROS generation.
Collapse
|
74
|
Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, Lee BH, Park RW, Kim IS, Choi K, Kwon IC, Kim K, Lee DS. Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjug Chem 2010; 21:208-13. [DOI: 10.1021/bc9005283] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiang Lan Wu
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Jong Ho Kim
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Heebeom Koo
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Sang Mun Bae
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Hyeri Shin
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Min Sang Kim
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Byung-Heon Lee
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Rang-Woon Park
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - In-San Kim
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Kuiwon Choi
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Ick Chan Kwon
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Kwangmeyung Kim
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| | - Doo Sung Lee
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea, Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul, 136-791, South Korea, and Advanced Medical Technology Cluster for Diagnosis & Prediction, Kyungpook National University, Daegu 700-422, South Korea
| |
Collapse
|
75
|
Lee YW, Lee WH, Kim PH. Oxidative mechanisms of IL-4-induced IL-6 expression in vascular endothelium. Cytokine 2010; 49:73-9. [PMID: 19822443 PMCID: PMC2808430 DOI: 10.1016/j.cyto.2009.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/28/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
Abstract
The present study is designed to investigate the effects of interleukin-4 (IL-4) on expression of interleukin-6 (IL-6), as well as to examine the role of distinct sources of reactive oxygen species (ROS) in this process. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that IL-4 significantly up-regulated the mRNA and protein expression of IL-6 in human aortic endothelial cells (HAEC) and C57BL/6 mice. Dihydroethidium (DHE) and dichlorofluorescein (DCF) fluorescence staining demonstrated that IL-4 significantly increased ROS generation in HAEC. A significant and dose-dependent inhibition of IL-4-induced IL-6 expression was observed in HAEC pre-treated with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) and epigallocatechin gallate (EGCG), indicating that IL-4-induced IL-6 expression is mediated via an ROS-dependent mechanism. Additionally, pharmacological inhibitor of NADPH oxidase (NOX) significantly attenuated IL-4-induced ROS generation and IL-6 expression in HAEC. Furthermore, the disruption of NOX gene dramatically and significantly reduced IL-4-induced IL-6 expression in NOX knockout mice (B6.129S6-Cybb(tm1Din)/J). In contrast, overexpression of IL-6 in IL-4-activated HAEC was not affected by inhibiting other ROS generating pathways, such as xanthine oxidase, arachidonic acid metabolism, and the mitochondrial electron transport chain. These results demonstrate that IL-4 up-regulates IL-6 expression in vascular endothelium through NOX-mediated ROS generation.
Collapse
Affiliation(s)
- Yong Woo Lee
- Laboratory of Vascular Biology, Department of Biomedical Sciences and Pathobiology, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
76
|
Rubinstein M, Niv MY. Peptidic modulators of protein-protein interactions: progress and challenges in computational design. Biopolymers 2009; 91:505-13. [PMID: 19226619 DOI: 10.1002/bip.21164] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the decline in productivity of drug-development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence-based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure-based approach, in which protein-peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors.
Collapse
Affiliation(s)
- Mor Rubinstein
- The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|