51
|
MTHFR Gene C677T Polymorphism in Autism Spectrum Disorders. GENETICS RESEARCH INTERNATIONAL 2014; 2014:698574. [PMID: 25431675 PMCID: PMC4241316 DOI: 10.1155/2014/698574] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022]
Abstract
Aim. Autism is a subgroup of autism spectrum disorders, classified as a heterogeneous neurodevelopmental disorder and symptoms occur in the first three years of life. The etiology of autism is largely unknown, but it has been accepted that genetic and environmental factors may both be responsible for the disease. Recent studies have revealed that the genes involved in the folate/homocysteine pathway may be risk factors for autistic children. In particular, C677T polymorphism in the MTHFR gene as a possible risk factor for autism is still controversial. We aimed to investigate the possible effect of C677T polymorphism in a Turkish cohort. Methods. Autism patients were diagnosed by child psychiatrists according to DSM-IV and DSM-V criteria. A total of 98 children diagnosed as autistic and 70 age and sex-matched children who are nonautistic were tested for C677T polymorphism. This polymorphism was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. Results. MTHFR 677T-allele frequency was found to be higher in autistic children compared with nonautistic children (29% versus 24%), but it was not found statistically significant. Conclusions. We conclude that other MTHFR polymorphisms such as A1298C or other folate/homocysteine pathway genes may be studied to show their possible role in autism.
Collapse
|
52
|
Main PA, Thomas P, Angley MT, Young R, Esterman A, King CE, Fenech MF. Lack of Evidence for Genomic Instability in Autistic Children as Measured by the Cytokinesis-Block Micronucleus Cytome Assay. Autism Res 2014; 8:94-104. [DOI: 10.1002/aur.1428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/26/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Penelope A.E. Main
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| | - Philip Thomas
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| | - Manya T. Angley
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
| | - Robyn Young
- Finders University of South Australia; Adelaide Australia
| | - Adrian Esterman
- School of Nursing and Midwifery; University of South Australia; Adelaide Australia
- Centre for Research Excellence in Chronic Disease; James Cook University; Townsville Australia
| | - Catherine E. King
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
| | - Michael F. Fenech
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| |
Collapse
|
53
|
Mitchell ES, Conus N, Kaput J. B vitamin polymorphisms and behavior: evidence of associations with neurodevelopment, depression, schizophrenia, bipolar disorder and cognitive decline. Neurosci Biobehav Rev 2014; 47:307-20. [PMID: 25173634 DOI: 10.1016/j.neubiorev.2014.08.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/11/2014] [Accepted: 08/18/2014] [Indexed: 11/16/2022]
Abstract
The B vitamins folic acid, vitamin B12 and B6 are essential for neuronal function, and severe deficiencies have been linked to increased risk of neurodevelopmental disorders, psychiatric disease and dementia. Polymorphisms of genes involved in B vitamin absorption, metabolism and function, such as methylene tetrahydrofolate reductase (MTHFR), cystathionine β synthase (CβS), transcobalamin 2 receptor (TCN2) and methionine synthase reductase (MTRR), have also been linked to increased incidence of psychiatric and cognitive disorders. However, the effects of these polymorphisms are often quite small and many studies failed to show any meaningful or consistent associations. This review discusses previous findings from clinical studies and highlights gaps in knowledge. Future studies assessing B vitamin-associated polymorphisms must take into account not just traditional demographics, but subjects' overall diet, relevant biomarkers of nutritional status and also analyze related genetic factors that may exacerbate behavioral effects or nutritional status.
Collapse
Affiliation(s)
- E Siobhan Mitchell
- Nestle Institute of Health Science, Innovation Park, EPFL Campus, Lausanne 1015, Switzerland.
| | - Nelly Conus
- Nestle Institute of Health Science, Innovation Park, EPFL Campus, Lausanne 1015, Switzerland
| | - Jim Kaput
- Nestle Institute of Health Science, Innovation Park, EPFL Campus, Lausanne 1015, Switzerland
| |
Collapse
|
54
|
Frye RE, Rossignol DA. Treatments for biomedical abnormalities associated with autism spectrum disorder. Front Pediatr 2014; 2:66. [PMID: 25019065 PMCID: PMC4073259 DOI: 10.3389/fped.2014.00066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Recent studies point to the effectiveness of novel treatments that address physiological abnormalities associated with autism spectrum disorder (ASD). This is significant because safe and effective treatments for ASD remain limited. These physiological abnormalities as well as studies addressing treatments of these abnormalities are reviewed in this article. Treatments commonly used to treat mitochondrial disease have been found to improve both core and associated ASD symptoms. Double-blind, placebo-controlled (DBPC) studies have investigated l-carnitine and a multivitamin containing B vitamins, antioxidants, vitamin E, and co-enzyme Q10 while non-blinded studies have investigated ubiquinol. Controlled and uncontrolled studies using folinic acid, a reduced form of folate, have reported marked improvements in core and associated ASD symptoms in some children with ASD and folate related pathway abnormities. Treatments that could address redox metabolism abnormalities include methylcobalamin with and without folinic acid in open-label studies and vitamin C and N-acetyl-l-cysteine in DBPC studies. These studies have reported improved core and associated ASD symptoms with these treatments. Lastly, both open-label and DBPC studies have reported improvements in core and associated ASD symptoms with tetrahydrobiopterin. Overall, these treatments were generally well-tolerated without significant adverse effects for most children, although we review the reported adverse effects in detail. This review provides evidence for potentially safe and effective treatments for core and associated symptoms of ASD that target underlying known physiological abnormalities associated with ASD. Further research is needed to define subgroups of children with ASD in which these treatments may be most effective as well as confirm their efficacy in DBPC, large-scale multicenter studies.
Collapse
Affiliation(s)
- Richard Eugene Frye
- Department of Pediatrics, Arkansas Children’s Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
55
|
The need for a comprehensive molecular characterization of autism spectrum disorders. Int J Neuropsychopharmacol 2014; 17:651-73. [PMID: 24229490 DOI: 10.1017/s146114571300117x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of disorders which have complex behavioural phenotypes. Although ASD is a highly heritable neuropsychiatric disorder, genetic research alone has not provided a profound understanding of the underlying causes. Recent developments using biochemical tools such as transcriptomics, proteomics and cellular models, will pave the way to gain new insights into the underlying pathological pathways. This review addresses the state-of-the-art in the search for molecular biomarkers for ASD. In particular, the most important findings in the biochemical field are highlighted and the need for establishing streamlined interaction between behavioural studies, genetics and proteomics is stressed. Eventually, these approaches will lead to suitable translational ASD models and, therefore, a better disease understanding which may facilitate novel drug discovery efforts in this challenging field.
Collapse
|
56
|
Hodgson NW, Waly MI, Al-Farsi YM, Al-Sharbati MM, Al-Farsi O, Ali A, Ouhtit A, Zang T, Zhou ZS, Deth RC. Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med (Maywood) 2014; 239:697-706. [DOI: 10.1177/1535370214527900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic, nutrition, and environmental factors have each been implicated as sources of risk for autism. Oxidative stress, including low plasma levels of the antioxidant glutathione, has been reported by numerous autism studies, which can disrupt methylation-dependent epigenetic regulation of gene expression with neurodevelopmental consequences. We investigated the status of redox and methylation metabolites, as well as the level of protein homocysteinylation and hair mercury levels, in autistic and neurotypical control Omani children, who were previously shown to exhibit significant nutritional deficiencies in serum folate and vitamin B12. The serum level of glutathione in autistic subjects was significantly below control levels, while levels of homocysteine and S-adenosylhomocysteine were elevated, indicative of oxidative stress and decreased methionine synthase activity. Autistic males had lower glutathione and higher homocysteine levels than females, while homocysteinylation of serum proteins was increased in autistic males but not females. Mercury levels were markedly elevated in the hair of autistic subjects vs. control subjects, consistent with the importance of glutathione for its elimination. Thus, autism in Oman is associated with decreased antioxidant resources and decreased methylation capacity, in conjunction with elevated hair levels of mercury.
Collapse
Affiliation(s)
- Nathaniel W Hodgson
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mostafa I Waly
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Nutrition Department, High Institute of Public Health, Alexandria University, P.C. 165, El-Hadra, Alexandria, Egypt
| | - Yahya M Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Marwan M Al-Sharbati
- Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Omar Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Amanat Ali
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Allal Ouhtit
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
57
|
Gandhi RP, Klein U. Autism spectrum disorders: an update on oral health management. J Evid Based Dent Pract 2014; 14 Suppl:115-26. [PMID: 24929596 DOI: 10.1016/j.jebdp.2014.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Dental professionals caring for patients with a diagnosis of autism spectrum disorder (ASD) will need to provide oral health care based on a family-centered approach that involves a comprehensive understanding of parental concerns and preferences, as well as the unique medical management, behaviors, and needs of the individual patient. BACKGROUND With the rising prevalence of autism spectrum disorders (ASD), oral health providers will find themselves increasingly likely to care for these patients in their daily practice. The purpose of this article is to provide a comprehensive update on the medical and oral health management of patients with autism spectrum disorders. METHODS The authors conducted a literature review by searching for relevant articles written in English in the PubMed database pertaining to the medical and oral health management of autism, including caries status, preventive, behavioral, trauma, and restorative considerations. CONCLUSIONS A detailed family centered approach based on parental preferences and concerns, the patient's challenging behaviors, and related comorbidities can serve to improve the treatment planning and oral health management of dental patients with ASD.
Collapse
Affiliation(s)
- Roopa P Gandhi
- Department of Pediatric Dentistry, Children's Hospital Colorado and University of Colorado School of Dental Medicine, Aurora, CO, USA.
| | - Ulrich Klein
- Department of Pediatric Dentistry, Children's Hospital Colorado and University of Colorado School of Dental Medicine, Aurora, CO, USA
| |
Collapse
|
58
|
Raymond LJ, Deth RC, Ralston NVC. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. AUTISM RESEARCH AND TREATMENT 2014; 2014:164938. [PMID: 24734177 PMCID: PMC3966422 DOI: 10.1155/2014/164938] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain's high rate of oxygen consumption is accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of ASD etiology and pathology.
Collapse
Affiliation(s)
- Laura J. Raymond
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nicholas V. C. Ralston
- Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202, USA
| |
Collapse
|
59
|
Field SS. Interaction of genes and nutritional factors in the etiology of autism and attention deficit/hyperactivity disorders: a case control study. Med Hypotheses 2014; 82:654-61. [PMID: 24685108 DOI: 10.1016/j.mehy.2014.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To compare risk factors of attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) to age/sex-matched controls with particular attention to family history, parental age and nutrition. METHOD 31 ASD and 81 ADHD patients were compared to 612 age/sex-matched controls by reviewing charts for parental age, sibling order, gestational age, and early feeding, and by parental interview for early feeding and family history of psychopathology on affected patients and 139 of those controls. FINDINGS Parental age affected ASD and ADHD females but not males. First-born males were at increased risk for both disorders even though their siblings had older parents and their parents were not more likely to stop having children. Breastfeeding in the absence of parental psychopathology reduced ADHD risk, but breastfeeding of first-born males by older mothers with psychopathology was a risk for ASD. Breastfeeding was only a risk for ADHD if the mother had psychopathology. Parent emigration from a place of high fish consumption was a significant ASD risk factor. RESULTING HYPOTHESES ADHD and ASD share risk factors due to shared genetic and nutritional interactions, likely revolving around deficiencies of omega-3 fatty acids (n3FAs) during brain development. Fatty acid metabolism genes are important in that process. The 4:1 male to female ratio for both disorders results from hormonally driven fat metabolism differences. Risk factors for both disorders including maternal smoking, prematurity, and gestational diabetes may also be attributed to their effect on n3FA supplies. Breastfeeding can be a risk factor when the mother's genes and/or age affect her milk quality. Parental age and gene defects may affect female more than male offspring. Childbirth with adequate spacing and breastfeeding can override maternal age and protect subsequent offspring. Genetic variations in fat metabolism can be influenced by cultural/geographic diet, causing deficiencies in offspring with migration-influenced diet changes. Interaction of n3FA deficient diets, delayed child-bearing, and breastfeeding by mothers with psychopathology may be important factors in the rising incidence of ASD and ADHD in recent decades. Partial prevention through diet and supplements may be possible.
Collapse
Affiliation(s)
- Scott S Field
- Huntsville Hospital, University of Alabama in Birmingham (Huntsville Campus), United States.
| |
Collapse
|
60
|
Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsychopharmacology 2014; 39:24-33. [PMID: 23842599 PMCID: PMC3857645 DOI: 10.1038/npp.2013.167] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022]
Abstract
Metabolomics research has the potential to provide biomarkers for the detection of disease, for subtyping complex disease populations, for monitoring disease progression and therapy, and for defining new molecular targets for therapeutic intervention. These potentials are far from being realized because of a number of technical, conceptual, financial, and bioinformatics issues. Mass spectrometry provides analytical platforms that address the technical barriers to success in metabolomics research; however, the limited commercial availability of analytical and stable isotope standards has created a bottleneck for the absolute quantitation of a number of metabolites. Conceptual and financial factors contribute to the generation of statistically under-powered clinical studies, whereas bioinformatics issues result in the publication of a large number of unidentified metabolites. The path forward in this field involves targeted metabolomics analyses of large control and patient populations to define both the normal range of a defined metabolite and the potential heterogeneity (eg, bimodal) in complex patient populations. This approach requires that metabolomics research groups, in addition to developing a number of analytical platforms, build sufficient chemistry resources to supply the analytical standards required for absolute metabolite quantitation. Examples of metabolomics evaluations of sulfur amino-acid metabolism in psychiatry, neurology, and neuro-oncology and of lipidomics in neurology will be reviewed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Math and Science 435, Harrogate, TN 37752, USA
| |
Collapse
|
61
|
Dietary intake and plasma levels of choline and betaine in children with autism spectrum disorders. AUTISM RESEARCH AND TREATMENT 2013; 2013:578429. [PMID: 24396597 PMCID: PMC3876775 DOI: 10.1155/2013/578429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 11/21/2022]
Abstract
Abnormalities in folate-dependent one-carbon metabolism have been reported in many children with autism. Because inadequate choline and betaine can negatively affect folate metabolism and in turn downstream methylation and antioxidant capacity, we sought to determine whether dietary intake of choline and betaine in children with autism was adequate to meet nutritional needs based on national recommendations. Three-day food records were analyzed for 288 children with autism (ASDs) who participated in the national Autism Intervention Research Network for Physical Health (AIR-P) Study on Diet and Nutrition in children with autism. Plasma concentrations of choline and betaine were measured in a subgroup of 35 children with ASDs and 32 age-matched control children. The results indicated that 60–93% of children with ASDs were consuming less than the recommended Adequate Intake (AI) for choline. Strong positive correlations were found between dietary intake and plasma concentrations of choline and betaine in autistic children as well as lower plasma concentrations compared to the control group. We conclude that choline and betaine intake is inadequate in a significant subgroup of children with ASDs and is reflected in lower plasma levels. Inadequate intake of choline and betaine may contribute to the metabolic abnormalities observed in many children with autism and warrants attention in nutritional counseling.
Collapse
|
62
|
Gu F, Chauhan V, Chauhan A. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes. Free Radic Biol Med 2013; 65:488-496. [PMID: 23892356 DOI: 10.1016/j.freeradbiomed.2013.07.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
Abstract
Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence in autism suggests a deficit in glutathione (GSH), a major endogenous antioxidant. It is not known whether the synthesis, consumption, and/or regeneration of GSH is affected in autism. In the cerebellum tissues from autism (n=10) and age-matched control subjects (n=10), the activities of GSH-related enzymes glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glutamate cysteine ligase (GCL) involved in antioxidant defense, detoxification, GSH regeneration, and synthesis, respectively, were analyzed. GCL is a rate-limiting enzyme for GSH synthesis, and the relationship between its activity and the protein expression of its catalytic subunit GCLC and its modulatory subunit GCLM was also compared between the autistic and the control groups. Results showed that the activities of GPx and GST were significantly decreased in autism compared to that of the control group (P<0.05). Although there was no significant difference in GR activity between autism and control groups, 40% of autistic subjects showed lower GR activity than 95% confidence interval (CI) of the control group. GCL activity was also significantly reduced by 38.7% in the autistic group compared to the control group (P=0.023), and 8 of 10 autistic subjects had values below 95% CI of the control group. The ratio of protein levels of GCLC to GCLM in the autism group was significantly higher than that of the control group (P=0.022), and GCLM protein levels were reduced by 37.3% in the autistic group compared to the control group. A positive strong correlation was observed between GCL activity and protein levels of GCLM (r=0.887) and GCLC (r=0.799) subunits in control subjects but not in autistic subjects, suggesting that regulation of GCL activity is affected in autism. These results suggest that enzymes involved in GSH homeostasis have impaired activities in the cerebellum in autism, and lower GCL activity in autism may be related to decreased protein expression of GCLM.
Collapse
Affiliation(s)
- Feng Gu
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
63
|
Abstract
Autism has been classically defined by its behavioral symptoms. Traditional medical research has focused on genetic or intrinsic brain-based causes of autism. While both of these are important, additional research has focused on the underlying disordered biochemistry seen in many individuals with autism. Many of these biomedical factors are amenable to treatment. This article will review the main pathophysiologic factors seen in individuals with autism spectrum disorders.
Collapse
|
64
|
Frye RE, Rossignol D, Casanova MF, Brown GL, Martin V, Edelson S, Coben R, Lewine J, Slattery JC, Lau C, Hardy P, Fatemi SH, Folsom TD, MacFabe D, Adams JB. A review of traditional and novel treatments for seizures in autism spectrum disorder: findings from a systematic review and expert panel. Front Public Health 2013; 1:31. [PMID: 24350200 PMCID: PMC3859980 DOI: 10.3389/fpubh.2013.00031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/20/2013] [Indexed: 01/20/2023] Open
Abstract
Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.
Collapse
Affiliation(s)
- Richard E. Frye
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | | | | | - Gregory L. Brown
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | - Victoria Martin
- Autism Recovery and Comprehensive Health Medical Center, Franklin, WI, USA
| | | | - Robert Coben
- New York University Brain Research Laboratory, New York, NY, USA
| | - Jeffrey Lewine
- MIND Research Network, University of New Mexico, Albuquerque, NM, USA
| | - John C. Slattery
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Chrystal Lau
- Arkansas Children’s Hospital Research Institute, Little Rock, AR, USA
| | - Paul Hardy
- Hardy Healthcare Associates, Hingham, MA, USA
| | | | | | | | | |
Collapse
|
65
|
Kern JK, Haley BE, Geier DA, Sykes LK, King PG, Geier MR. Thimerosal exposure and the role of sulfation chemistry and thiol availability in autism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3771-800. [PMID: 23965928 PMCID: PMC3774468 DOI: 10.3390/ijerph10083771] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder (ASD) is a neurological disorder in which a significant number of the children experience a developmental regression characterized by a loss of previously acquired skills and abilities. Typically reported are losses of verbal, nonverbal, and social abilities. Several recent studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased glutathione (GSH) reserve capacity, resulting in a compromised oxidation/reduction (redox) and detoxification capacity. Research indicates that the availability of thiols, particularly GSH, can influence the effects of thimerosal (TM) and other mercury (Hg) compounds. TM is an organomercurial compound (49.55% Hg by weight) that has been, and continues to be, used as a preservative in many childhood vaccines, particularly in developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have been identified. Importantly, the emergence of ASD symptoms post-6 months of age temporally follows the administration of many childhood vaccines. The purpose of the present critical review is provide mechanistic insight regarding how limited thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children with an ASD could make them more susceptible to the toxic effects of TM routinely administered as part of mandated childhood immunization schedules.
Collapse
Affiliation(s)
- Janet K. Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA; E-Mails: (D.A.G.); (M.R.G.)
| | - Boyd E. Haley
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; E-Mail:
| | - David A. Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA; E-Mails: (D.A.G.); (M.R.G.)
| | - Lisa K. Sykes
- CoMeD, Inc., Silver Spring, MD 20905, USA; E-Mails: (L.K.S.); (P.G.K.)
| | - Paul G. King
- CoMeD, Inc., Silver Spring, MD 20905, USA; E-Mails: (L.K.S.); (P.G.K.)
| | - Mark R. Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA; E-Mails: (D.A.G.); (M.R.G.)
| |
Collapse
|
66
|
Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res 2013; 6:384-92. [PMID: 23653228 DOI: 10.1002/aur.1300] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/12/2013] [Indexed: 11/09/2022]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is essential for DNA biosynthesis and the epigenetic process of DNA methylation, and its gene polymorphisms have been implicated as risk factors for birth defects, neurological disorders, and cancers. However, reports on the association of MTHFR polymorphisms with autism spectrum disorders (ASD) are inconclusive. Therefore, we investigated the relationship of the MTHFR polymorphisms (C677T and A1298C) and the risk of ASD by meta-analysis. Up to December 2012, eight case-control studies involving 1672 patients with ASD and 6760 controls were included for meta-analysis. The results showed that the C677T polymorphism was associated with significantly increased ASD risk in all the comparison models [T vs. C allele (frequency of allele): odds ratio (OR) = 1.42, 95% confidence interval (CI): 1.09-1.85; CT vs. CC (heterozygote): OR = 1.48, 95% CI: 1.09-2.00; TT vs. CC (homozygote): OR = 1.86, 95% CI: 1.08-3.20; CT+TT vs. CC (dominant model): OR = 1.56, 95% CI: 1.12-2.18; and TT vs. CC+CT (recessive model): OR = 1.51, 95% CI: 1.02-2.22], whereas the A1298C polymorphism was found to be significantly associated with reduced ASD risk but only in a recessive model (CC vs. AA+AC: OR = 0.73, 95% CI: 0.56-0.97). In addition, we stratified the patient population based on whether they were from a country with food fortification of folic acid or not. The meta-analysis showed that the C677T polymorphism was found to be associated with ASD only in children from countries without food fortification. Our study indicated that the MTHFR C677T polymorphism contributes to increased ASD risk, and periconceptional folic acid may reduce ASD risk in those with MTHFR 677C>T polymorphism.
Collapse
Affiliation(s)
- Danhua Pu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
67
|
Muratore CR, Hodgson NW, Trivedi MS, Abdolmaleky HM, Persico AM, Lintas C, De La Monte S, Deth RC. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS One 2013; 8:e56927. [PMID: 23437274 PMCID: PMC3577685 DOI: 10.1371/journal.pone.0056927] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Christina R. Muratore
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Hamid M. Abdolmaleky
- Genetics Program, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Antonio M. Persico
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Carla Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Suzanne De La Monte
- Department of Medicine and Pathology, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
68
|
Tu WJ, Yin CH, Guo YQ, Li SO, Chen H, Zhang Y, Feng YL, Long BH. Serum homocysteine concentrations in Chinese children with autism. Clin Chem Lab Med 2013; 51:e19-e22. [PMID: 23095201 DOI: 10.1515/cclm-2012-0196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/08/2012] [Indexed: 11/15/2022]
|
69
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
70
|
Schaevitz LR, Berger-Sweeney JE. Gene-Environment Interactions and Epigenetic Pathways in Autism: The Importance of One-Carbon Metabolism. ILAR J 2012; 53:322-40. [DOI: 10.1093/ilar.53.3-4.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
71
|
Autism, imprinting and epigenetic disorders: a metabolic syndrome linked to anomalies in homocysteine recycling starting in early life?? J Assist Reprod Genet 2012; 28:1143-5. [PMID: 22048978 DOI: 10.1007/s10815-011-9645-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
72
|
Guo T, Chen H, Liu B, Ji W, Yang C. Methylenetetrahydrofolate reductase polymorphisms C677T and risk of autism in the Chinese Han population. Genet Test Mol Biomarkers 2012; 16:968-73. [PMID: 22775456 DOI: 10.1089/gtmb.2012.0091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Causes of autism are still unknown. Some studies have shown that autism might be associated with metabolic abnormalities in the folate/homocysteine pathway, which is involved in DNA methylation, thus altering gene expression. The association between the methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphisms and the risk of autism is still controversial and ambiguous. The purpose of this study was to examine the effect of the MTHFR C677T polymorphism on the autism risk in the Chinese Han population. A population-based case-control study was conducted in 186 children with autism and 186 controls. The MTHFR C677T polymorphisms were determined by using a polymerase chain reaction-restriction fragment length polymorphism assay. The frequency of genotype MTHFR 677TT in children with autism (16.1%) was significantly higher (odds ratio [OR]=2.04; 95% confidence interval [CI]=1.07, 3.89; p=0.03] than those in controls (8.6%). When stratifying by select-item scores on the Autism Diagnostic Interview-Revised, it was found that children with current overactivity had a significantly higher frequency of the MTHFR 677TT genotype (OR=2.77, 95% CI=1.17, 6.60; p=0.02) than those without. This study suggested that MTHFR C677T is a risk factor of autism in Chinese Han children.
Collapse
Affiliation(s)
- Tianyou Guo
- Department of Psychology, Normal College, Shenzhen University, Shenzhen, Guangdong Province, China
| | | | | | | | | |
Collapse
|
73
|
Prenatal and Postnatal Epigenetic Programming: Implications for GI, Immune, and Neuronal Function in Autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:190930. [PMID: 22934169 PMCID: PMC3420412 DOI: 10.1155/2012/190930] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022]
Abstract
Although autism is first and foremost a disorder of the central nervous system, comorbid dysfunction of the gastrointestinal (GI) and immune systems is common, suggesting that all three systems may be affected by common molecular mechanisms. Substantial systemic deficits in the antioxidant glutathione and its precursor, cysteine, have been documented in autism in association with oxidative stress and impaired methylation. DNA and histone methylation provide epigenetic regulation of gene expression during prenatal and postnatal development. Prenatal epigenetic programming (PrEP) can be affected by the maternal metabolic and nutritional environment, whereas postnatal epigenetic programming (PEP) importantly depends upon nutritional support provided through the GI tract. Cysteine absorption from the GI tract is a crucial determinant of antioxidant capacity, and systemic deficits of glutathione and cysteine in autism are likely to reflect impaired cysteine absorption. Excitatory amino acid transporter 3 (EAAT3) provides cysteine uptake for GI epithelial, neuronal, and immune cells, and its activity is decreased during oxidative stress. Based upon these observations, we propose that neurodevelopmental, GI, and immune aspects of autism each reflect manifestations of inadequate antioxidant capacity, secondary to impaired cysteine uptake by the GI tract. Genetic and environmental factors that adversely affect antioxidant capacity can disrupt PrEP and/or PEP, increasing vulnerability to autism.
Collapse
|
74
|
Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B, Bonassi S. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 2012; 52:2128-41. [PMID: 22542447 DOI: 10.1016/j.freeradbiomed.2012.03.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASDs) are rarely diagnosed in children younger than 2 years, because diagnosis is based entirely on behavioral tests. Oxidative damage may play a central role in this pathogenesis, together with the interconnected transmethylation cycle and transsulfuration pathway. In an attempt to clarify and quantify the relationship between oxidative stress-related blood biomarkers and ASDs, a systematic literature review was carried out. For each identified study, mean biomarker levels were compared in cases and controls providing a point estimate, the mean ratio, for each biomarker. After meta-analysis, the ASD patients showed decreased blood levels of reduced glutathione (27%), glutathione peroxidase (18%), methionine (13%), and cysteine (14%) and increased concentrations of oxidized glutathione (45%) relative to controls, whereas superoxide dismutase, homocysteine, and cystathionine showed no association with ASDs. For the C677T allele in the methylene tetrahydrofolate reductase gene (MTHFR), homozygous mutant subjects (TT) showed a meta-OR of 2.26 (95% CI 1.30-3.91) of being affected by ASD with respect to the homozygous nonmutant (CC). Case-control studies on blood levels of vitamins suggest a lack of association (folic acid and vitamin B12) or rare association (vitamins A, B6, C, D, E). Sparse results were available for other biomarkers (ceruloplasmin, catalase, cysteinylglycine, thiobarbituric acid-reactive substances, nitric oxide) and for polymorphisms in other genes. Existing evidence is heterogeneous and many studies are limited by small sample size and effects. In conclusion, existing evidence suggests a role for glutathione metabolism, the transmethylation cycle, and the transsulfuration pathway, although these findings should be interpreted with caution, and larger, more standardized studies are warranted.
Collapse
Affiliation(s)
- Alessandra Frustaci
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Main PAE, Angley MT, O'Doherty CE, Thomas P, Fenech M. The potential role of the antioxidant and detoxification properties of glutathione in autism spectrum disorders: a systematic review and meta-analysis. Nutr Metab (Lond) 2012; 9:35. [PMID: 22524510 PMCID: PMC3373368 DOI: 10.1186/1743-7075-9-35] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 04/24/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glutathione has a wide range of functions; it is an endogenous anti-oxidant and plays a key role in the maintenance of intracellular redox balance and detoxification of xenobiotics. Several studies have indicated that children with autism spectrum disorders may have altered glutathione metabolism which could play a key role in the condition. METHODS A systematic literature review and meta-analysis was conducted of studies examining metabolites, interventions and/or genes of the glutathione metabolism pathways i.e. the γ-glutamyl cycle and trans-sulphuration pathway in autism spectrum disorders. RESULTS Thirty nine studies were included in the review comprising an in vitro study, thirty two metabolite and/or co-factor studies, six intervention studies and six studies with genetic data as well as eight studies examining enzyme activity. CONCLUSIONS The review found evidence for the involvement of the γ-glutamyl cycle and trans-sulphuration pathway in autistic disorder is sufficiently consistent, particularly with respect to the glutathione redox ratio, to warrant further investigation to determine the significance in relation to clinical outcomes. Large, well designed intervention studies that link metabolites, cofactors and genes of the γ-glutamyl cycle and trans-sulphuration pathway with objective behavioural outcomes in children with autism spectrum disorders are required. Future risk factor analysis should include consideration of multiple nutritional status and metabolite biomarkers of pathways linked with the γ-glutamyl cycle and the interaction of genotype in relation to these factors.
Collapse
Affiliation(s)
- Penelope AE Main
- Sansom Institute for Health Research, University of South Australia, City East Campus, Adelaide, SA 5000, Australia
- Food and Nutritional Sciences, Commonwealth Scientific and Industrial Research Organisation, Kintore Ave, Adelaide, SA 5000, Australia
| | - Manya T Angley
- Sansom Institute for Health Research, University of South Australia, City East Campus, Adelaide, SA 5000, Australia
| | - Catherine E O'Doherty
- Sansom Institute for Health Research, University of South Australia, City East Campus, Adelaide, SA 5000, Australia
| | - Philip Thomas
- Food and Nutritional Sciences, Commonwealth Scientific and Industrial Research Organisation, Kintore Ave, Adelaide, SA 5000, Australia
| | - Michael Fenech
- Food and Nutritional Sciences, Commonwealth Scientific and Industrial Research Organisation, Kintore Ave, Adelaide, SA 5000, Australia
| |
Collapse
|
76
|
Abstract
BACKGROUND This review examines the associations between low vitamin B12 levels, neurodegenerative disease, and cognitive impairment. The potential impact of comorbidities and medications associated with vitamin B12 derangements were also investigated. In addition, we reviewed the evidence as to whether vitamin B12 therapy is efficacious for cognitive impairment and dementia. METHODS A systematic literature search identified 43 studies investigating the association of vitamin B12 and cognitive impairment or dementia. Seventeen studies reported on the efficacy of vitamin B12 therapy for these conditions. RESULTS Vitamin B12 levels in the subclinical low-normal range (<250 ρmol/L) are associated with Alzheimer's disease, vascular dementia, and Parkinson's disease. Vegetarianism and metformin use contribute to depressed vitamin B12 levels and may independently increase the risk for cognitive impairment. Vitamin B12 deficiency (<150 ρmol/L) is associated with cognitive impairment. Vitamin B12 supplements administered orally or parenterally at high dose (1 mg daily) were effective in correcting biochemical deficiency, but improved cognition only in patients with pre-existing vitamin B12 deficiency (serum vitamin B12 levels <150 ρmol/L or serum homocysteine levels >19.9 μmol/L). CONCLUSION Low serum vitamin B12 levels are associated with neurodegenerative disease and cognitive impairment. There is a small subset of dementias that are reversible with vitamin B12 therapy and this treatment is inexpensive and safe. Vitamin B12 therapy does not improve cognition in patients without pre-existing deficiency. There is a need for large, well-resourced clinical trials to close the gaps in our current understanding of the nature of the associations of vitamin B12 insufficiency and neurodegenerative disease.
Collapse
Affiliation(s)
- Eileen Moore
- Department of Psychiatry, The University of Melbourne, Department of Surgery, The Geelong Hospital, Barwon Health, Geelong, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
77
|
Salbaum JM, Kappen C. Genetic and epigenomic footprints of folate. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:129-58. [PMID: 22656376 DOI: 10.1016/b978-0-12-398397-8.00006-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dietary micronutrient composition has long been recognized as a determining factor for human health. Historically, biochemical research has successfully unraveled how vitamins serve as essential cofactors for enzymatic reactions in the biochemical machinery of the cell. Folate, also known as vitamin B9, follows this paradigm as well. Folate deficiency is linked to adverse health conditions, and dietary supplementation with folate has proven highly beneficial in the prevention of neural tube defects. With its function in single-carbon metabolism, folate levels affect nucleotide synthesis, with implications for cell proliferation, DNA repair, and genomic stability. Furthermore, by providing the single-carbon moiety in the synthesis pathway for S-adenosylmethionine, the main methyl donor in the cell, folate also impacts methylation reactions. It is this capacity that extends the reach of folate functions into the realm of epigenetics and gene regulation. Methylation reactions play a major role for several modalities of the epigenome. The specific methylation status of histones, noncoding RNAs, transcription factors, or DNA represents a significant determinant for the transcriptional output of a cell. Proper folate status is therefore necessary for a broad range of biological functions that go beyond the biochemistry of folate. In this review, we examine evolutionary, genetic, and epigenomic footprints of folate and the implications for human health.
Collapse
Affiliation(s)
- J Michael Salbaum
- Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
78
|
Abstract
AbstractAccumulating evidence from the field of neuroscience indicates a crucial role for epigenetic regulation of gene expression in development and aging of nervous system and suggests that aberrations in the epigenetic machinery are involved in the etiology of psychiatric disorders. Epidemiologic evidence on epigenetics in psychiatry, however, is currently very sparsely available, but is consistent with a mediating role for epigenetic mechanisms in bringing together inherited and acquired risk factors into a neurodevelopmental etiological model of psychiatric disorders. Here, we review evidence from the epidemiological and neuroscience literature, and aim to converge the evidence into an etiological model of psychiatric disorders that encompasses environmental, genetic and epigenetic contributions. Given the dynamic nature of the epigenetic machinery and the potential reversibility of epigenetic modifications, future well-designed interdisciplinary and translational studies will be of key importance in order to identify new targets for prevention and therapeutic strategies.
Collapse
|
79
|
Peerbooms OLJ, van Os J, Drukker M, Kenis G, Hoogveld L, de Hert M, Delespaul P, van Winkel R, Rutten BPF. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun 2011; 25:1530-43. [PMID: 21185933 DOI: 10.1016/j.bbi.2010.12.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/23/2010] [Accepted: 12/10/2010] [Indexed: 01/17/2023] Open
Abstract
Past analyses examining the relationship between genetic variation in the 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene and psychiatric disorders have provided mixed and largely inconclusive findings. MTHFR is involved in the one-carbon metabolic pathway which is essential for DNA biosynthesis and the epigenetic process of DNA methylation. We conducted a meta-analysis of all published case-control studies investigating associations between two common MTHFR single nucleotide polymorphisms (SNPs), MTHFR C677T (sample size 29,502) and A1298C (sample size 7934), and the major psychiatric disorders (i) schizophrenia (SZ), (ii) bipolar disorder (BPD), and (iii) unipolar depressive disorder (UDD). In order to examine possible shared genetic vulnerability, we also tested for associations between MTHFR and all of these major psychiatric disorders (SZ, BPD and UDD) combined. MTHFR C677T was significantly associated with all of the combined psychiatric disorders (SZ, BPD and UDD); random effects odds ratio (OR)=1.26 for TT versus CC genotype carriers; confidence interval (CI) 1.09-1.46); meta-regression did not suggest moderating effects of psychiatric diagnosis, sex, ethnic group or year of publication. Although MTHFR A1298C was not significantly associated with the combination of major psychiatric disorders, nor with SZ, there was evidence for diagnostic moderation indicating a significant association with BPD (random effects OR=2.03 for AA versus CC genotype carriers, CI: 1.07-3.86). Meta-analysis on UDD was not possible due to the small number of studies available. This study provides evidence for shared genetic vulnerability for SZ, BPD and UDD mediated by MTHFR 677TT genotype, which is in line with epigenetic involvement in the pathophysiology of these psychiatric disorders.
Collapse
Affiliation(s)
- Odette L J Peerbooms
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 2011; 8:34. [PMID: 21651783 PMCID: PMC3135510 DOI: 10.1186/1743-7075-8-34] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/08/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers. METHOD Participants were children ages 5-16 years in Arizona with Autistic Spectrum Disorder (n = 55) compared with non-sibling, neurotypical controls (n = 44) of similar age, gender and geographical distribution. Neither group had taken any vitamin/mineral supplements in the two months prior to sample collection. Autism severity was assessed using the Pervasive Development Disorder Behavior Inventory (PDD-BI), Autism Treatment Evaluation Checklist (ATEC), and Severity of Autism Scale (SAS). Study measurements included: vitamins, biomarkers of vitamin status, minerals, plasma amino acids, plasma glutathione, and biomarkers of oxidative stress, methylation, sulfation and energy production. RESULTS Biomarkers of children with autism compared to those of controls using a t-test or Wilcoxon test found the following statistically significant differences (p < 0.001): Low levels of biotin, plasma glutathione, RBC SAM, plasma uridine, plasma ATP, RBC NADH, RBC NADPH, plasma sulfate (free and total), and plasma tryptophan; also high levels of oxidative stress markers and plasma glutamate. Levels of biomarkers for the neurotypical controls were in good agreement with accessed published reference ranges. In the Autism group, mean levels of vitamins, minerals, and most amino acids commonly measured in clinical care were within published reference ranges.A stepwise, multiple linear regression analysis demonstrated significant associations between several groups of biomarkers with all three autism severity scales, including vitamins (adjusted R2 of 0.25-0.57), minerals (adj. R2 of 0.22-0.38), and plasma amino acids (adj. R2 of 0.22-0.39). CONCLUSION The autism group had many statistically significant differences in their nutritional and metabolic status, including biomarkers indicative of vitamin insufficiency, increased oxidative stress, reduced capacity for energy transport, sulfation and detoxification. Several of the biomarker groups were significantly associated with variations in the severity of autism. These nutritional and metabolic differences are generally in agreement with other published results and are likely amenable to nutritional supplementation. Research investigating treatment and its relationship to the co-morbidities and etiology of autism is warranted.
Collapse
Affiliation(s)
| | | | | | - Robert A Rubin
- Department of Mathematics, Whittier College, Whittier, CA, USA
| | | | | | - Eva Gehn
- Arizona State University, Tempe, AZ, USA
| | | | | | | | | | - Wondra Lee
- Arizona State University, Tempe, AZ, USA
| |
Collapse
|
81
|
Garrecht M, Austin DW. The plausibility of a role for mercury in the etiology of autism: a cellular perspective. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2011; 93:1251-1273. [PMID: 22163375 PMCID: PMC3173748 DOI: 10.1080/02772248.2011.580588] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/10/2011] [Indexed: 05/23/2023]
Abstract
Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed.
Collapse
Affiliation(s)
- Matthew Garrecht
- Swinburne Autism Bio-Research Initiative, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - David W. Austin
- Swinburne Autism Bio-Research Initiative, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
82
|
Gaita L, Manzi B, Sacco R, Lintas C, Altieri L, Lombardi F, Pawlowski TL, Redman M, Craig DW, Huentelman MJ, Ober-Reynolds S, Brautigam S, Melmed R, Smith CJ, Marsillach J, Camps J, Curatolo P, Persico AM. Decreased serum arylesterase activity in autism spectrum disorders. Psychiatry Res 2010; 180:105-13. [PMID: 20488557 DOI: 10.1016/j.psychres.2010.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/16/2010] [Accepted: 04/08/2010] [Indexed: 12/11/2022]
Abstract
The PON1 gene, previously found associated with autism spectrum disorders (ASDs), encodes a serum protein responsible for the detoxification of organophosphates (OPs) and able to exert several enzymatic activities. PON1 arylesterase, but not diazoxonase activity, was significantly decreased in 174 ASD patients compared to 175 first-degree relatives and 144 controls (P=2.65×10⁻¹⁶). First degree relatives displayed intermediate activities, closer to patient than to control levels. Differences between patients, first-degree relatives and controls were especially evident among 164 Italians compared to 329 Caucasian-Americans, because arylesterase activity was significantly higher in Italian controls, compared to Caucasian-American controls (P=2.84×10⁻¹⁶). Arylesterase activity and PON protein concentrations were not significantly correlated, supporting a functional inhibition of arylesterase activity in ASD patients over quantitative changes in protein amounts. Serum arylesterase activity, in combination with PON1 genotypes at two single nucleotide polymorphisms (SNPs) known to influence protein amounts (rs705379: C-108T) and substrate specificity (rs662: Q192R), was able to discriminate ASD patients from controls with elevated sensitivity and specificity, depending on genotype and ethnic group. Serum arylesterase activity and genotyping at these two SNPs could thus represent an informative biochemical/genetic test, able to aid clinicians in estimating autism risk in ethnic groups with higher baseline arylesterase activity levels.
Collapse
Affiliation(s)
- Laura Gaita
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
|