51
|
Bak SS, Kwack MH, Shin HS, Kim JC, Kim MK, Sung YK. Restoration of hair-inductive activity of cultured human follicular keratinocytes by co-culturing with dermal papilla cells. Biochem Biophys Res Commun 2018; 505:360-364. [PMID: 30253942 DOI: 10.1016/j.bbrc.2018.09.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Hair follicle outer root sheath (ORS) cells can be expanded in vitro, but often lose receptivity to hair-inducing dermal signals. Recent studies have shown hair-inductive activity (trichogenicity) can be restored in rat ORS cells expanded with a fibroblast feeder by co-culturing with rat vibrissae dermal papilla (DP) cells. In this study, we investigated whether the trichogenicity of human ORS cells can be restored by co-culturing with human DP cells. ORS cells from human scalp hair follicles were cultured independently or with DP cells for 5 days and implanted into nude mice alongside freshly isolated neonatal mouse dermal cells. Although there was no hair induction when monocultured ORS cells were implanted, it was observed in co-cultured ORS cells. We also observed differential regulation of a number of genes in ORS cells co-cultured with DP cells compared to monocultured ORS cells as examined by microarray. Taken together, our data strongly suggest that human DP cells restore the trichogenicity of co-cultured ORS cells by influencing ORS gene expression through paracrine factors.
Collapse
Affiliation(s)
- Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Su Shin
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
52
|
Choi YM, Choi SY, Kim H, Kim J, Ki MS, An IS, Jung J. TGFβ family mimetic peptide promotes proliferation of human hair follicle dermal papilla cells and hair growth in C57BL/6 mice. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0033-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
53
|
Ghetti M, Topouzi H, Theocharidis G, Papa V, Williams G, Bondioli E, Cenacchi G, Connelly JT, Higgins CA. Subpopulations of dermal skin fibroblasts secrete distinct extracellular matrix: implications for using skin substitutes in the clinic. Br J Dermatol 2018; 179:381-393. [PMID: 29266210 PMCID: PMC6175479 DOI: 10.1111/bjd.16255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 12/22/2022]
Abstract
Background While several commercial dermoepidermal scaffolds can promote wound healing of the skin, the achievement of complete skin regeneration still represents a major challenge. Objectives To perform biological characterization of self‐assembled extracellular matrices (ECMs) from three different subpopulations of fibroblasts found in human skin: papillary fibroblasts (Pfi), reticular fibroblasts (Rfi) and dermal papilla fibroblasts (DPfi). Methods Fibroblast subpopulations were cultured with ascorbic acid to promote cell‐assembled matrix production for 10 days. Subsequently, cells were removed and the remaining matrices characterized. Additionally, in another experiment, keratinocytes were seeded on the top of cell‐depleted ECMs to generate epidermal‐only skin constructs. Results We found that the ECM self‐assembled by Pfi exhibited randomly oriented fibres associated with the highest interfibrillar space, reflecting ECM characteristics that are physiologically present within the papillary dermis. Mass spectrometry followed by validation with immunofluorescence analysis showed that thrombospondin 1 is preferentially expressed within the DPfi‐derived matrix. Moreover, we observed that epidermal constructs grown on DPfi or Pfi matrices exhibited normal basement membrane formation, whereas Rfi matrices were unable to support membrane formation. Conclusions We argue that inspiration can be taken from these different ECMs, to improve the design of therapeutic biomaterials in skin engineering applications. What's already known about this topic? There are several types of skin fibroblasts within the dermis that can be defined by their spatial location: papillary fibroblasts (Pfi), reticular fibroblasts (Rfi) and dermal papilla fibroblasts (DPfi). Extracellular matrix (ECM) composition is distinct with regard to composition and architecture within the papillary, reticular and hair follicle dermis in vivo. When skin is injured, dermal replacement substitutes used for tissue repair do not reflect the heterogeneity observed within the skin dermis.
What does this study add? Self‐assembled ECMs from different subpopulations of skin fibroblasts can be generated in vitro. Cell‐assembled ECMs made in vitro from Pfi, Rfi and DPfi reflect dermal heterogeneity seen in vivo and are morphologically, functionally and compositionally distinct from one another. Inspiration should be taken from cell‐assembled ECMs from distinct fibroblast subpopulations, to improve the design of therapeutic biomaterials in skin engineering applications.
What is the translational message? Cell‐assembled ECMs from DPfi and Pfi, but not Rfi, can support formation of a basement membrane in adjacent keratinocytes in vitro. Inspiration should be taken from cell‐assembled ECMs from distinct fibroblast subpopulations, to improve the design of therapeutic biomaterials in skin engineering applications.
Linked Comment: https://doi.org/10.1111/bjd.16773. https://doi.org/10.1111/bjd.16946 available online https://goo.gl/Uqv3dl
Collapse
Affiliation(s)
- M Ghetti
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy.,Burns Centre and Emilia Romagna Regional Skin Bank, Cesena, Italy.,Department of Bioengineering, Imperial College London, London, U.K
| | - H Topouzi
- Department of Bioengineering, Imperial College London, London, U.K
| | - G Theocharidis
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - V Papa
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy
| | | | - E Bondioli
- Burns Centre and Emilia Romagna Regional Skin Bank, Cesena, Italy
| | - G Cenacchi
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy
| | - J T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - C A Higgins
- Department of Bioengineering, Imperial College London, London, U.K
| |
Collapse
|
54
|
Luo J, Chen M, Liu Y, Xie H, Yuan J, Zhou Y, Ding J, Deng Z, Li J. Nature-derived lignan compound VB-1 exerts hair growth-promoting effects by augmenting Wnt/β-catenin signaling in human dermal papilla cells. PeerJ 2018; 6:e4737. [PMID: 29761053 PMCID: PMC5947041 DOI: 10.7717/peerj.4737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022] Open
Abstract
Background Vitexin is a kind of lignan compound which has been shown to possess a variety of pharmacological effects, such as anti-inflammatory, anti-oxidative and anti-cancer activities. However the effect of vitexin on hair regeneration has not been elaborated. Methods The proliferation of human dermal papilla cells (hDPCs) was examined by cell counting and continuous cell culture after vitexin compound 1 (VB-1) was treated. The expression of lef1, wnt5a, bmp2, bmp4, alpl and vcan was examined by RT-PCR. The expression of dkk1, tgf-β1, active-β-Catenin, and AXIN2 was examined by RT-PCR or immunoblotting. Hair shaft growth was measured in the absence or presence of VB-1. Results We demonstrated that VB-1 significantly promotes the proliferation of hDPCs in a concentration-dependent manner within a certain concentration range. Among the hair growth-related genes investigated, dkk1 was clearly down-regulated in hDPCs treated with VB-1. The increased active β-Catenin and decreased AXIN2 protein levels suggest that VB-1 facilitates Wnt/β-catenin signaling in hDPCs in vitro. The expression of DP signature genes was also upregulated after VB-1 treatment. Our study further indicated that VB-1 promotes human hair follicle (HF) growth by HF organ culture assay. Discussion VB-1 may exert hair growth-promoting effects via augmenting Wnt/β-catenin signaling in hDPCs.
Collapse
Affiliation(s)
- Jieshu Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jinsong Ding
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
55
|
Boyce ST, Lalley AL. Tissue engineering of skin and regenerative medicine for wound care. BURNS & TRAUMA 2018; 6:4. [PMID: 30009192 PMCID: PMC6040609 DOI: 10.1186/s41038-017-0103-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Engineering of biologic skin substitutes has progressed over time from individual applications of skin cells, or biopolymer scaffolds, to combinations of cells and scaffolds for treatment, healing, and closure of acute and chronic skin wounds. Skin substitutes may be categorized into three groups: acellular scaffolds, temporary substitutes containing allogeneic skin cells, and permanent substitutes containing autologous skin cells. Combined use of acellular dermal substitutes with permanent skin substitutes containing autologous cells has been shown to provide definitive wound closure in burns involving greater than 90% of the total body surface area. These advances have contributed to reduced morbidity and mortality from both acute and chronic wounds but, to date, have failed to replace all of the structures and functions of the skin. Among the remaining deficiencies in cellular or biologic skin substitutes are hypopigmentation, absence of stable vascular and lymphatic networks, absence of hair follicles, sebaceous and sweat glands, and incomplete innervation. Correction of these deficiencies depends on regulation of biologic pathways of embryonic and fetal development to restore the full anatomy and physiology of uninjured skin. Elucidation and integration of developmental biology into future models of biologic skin substitutes promises to restore complete anatomy and physiology, and further reduce morbidity from skin wounds and scar. This article offers a review of recent advances in skin cell thrapies and discusses the future prospects in cutaneous regeneration.
Collapse
Affiliation(s)
- Steven T Boyce
- 1Department of Surgery, University of Cincinnati, P.O. Box 670558, Cincinnati, Ohio 45267-0558 USA.,2Research Department, Shriners Hospitals for Children, Cincinnati, Ohio USA
| | - Andrea L Lalley
- 2Research Department, Shriners Hospitals for Children, Cincinnati, Ohio USA
| |
Collapse
|
56
|
Xing F, Yi WJ, Miao F, Su MY, Lei TC. Baicalin increases hair follicle development by increasing canonical Wnt/β‑catenin signaling and activating dermal papillar cells in mice. Int J Mol Med 2018; 41:2079-2085. [PMID: 29336472 PMCID: PMC5810219 DOI: 10.3892/ijmm.2018.3391] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
Baicalin is a traditional Chinese herbal medicine commonly used for hair loss, the precise molecular mechanism of which is unknown. In the present study, the mechanism of baicalin was investigated via the topical application of baicalin to reconstituted hair follicles on mice dorsa and evaluating the effect on canonical Wnt/β‑catenin signaling in the hair follicles and the activity of dermal papillar cells. The results indicate that baicalin stimulates the expression of Wnt3a, Wnt5a, frizzled 7 and disheveled 2 whilst inhibiting the Axin/casein kinase 1α/adenomatous polyposis coli/glycogen synthase kinase 3β degradation complex, leading to accumulation of β‑catenin and activation of Wnt/β‑catenin signaling. In addition, baicalin was observed to increase the alkaline phosphatase levels in dermal papillar cells, a process which was dependent on Wnt pathway activation. Given its non‑toxicity and ease of topical application, baicalin represents a promising treatment for alopecia and other forms of hair loss. Further studies of baicalin using human hair follicle transplants are warranted in preparation for future clinical use.
Collapse
Affiliation(s)
- Fei Xing
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wen-Juan Yi
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Fang Miao
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Meng-Yun Su
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Tie-Chi Lei
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
57
|
Kwack MH, Yang JM, Won GH, Kim MK, Kim JC, Sung YK. Establishment and characterization of five immortalized human scalp dermal papilla cell lines. Biochem Biophys Res Commun 2018; 496:346-351. [PMID: 29331373 DOI: 10.1016/j.bbrc.2018.01.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022]
Abstract
Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research.
Collapse
Affiliation(s)
- Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Min Yang
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Gong Hee Won
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
58
|
Abstract
The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.
Collapse
|
59
|
Harland DP. Environment of the Anagen Follicle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1054:97-108. [DOI: 10.1007/978-981-10-8195-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
60
|
Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine. Biomaterials 2017; 154:291-300. [PMID: 29156398 DOI: 10.1016/j.biomaterials.2017.10.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Hair follicle morphogenesis is triggered by reciprocal interactions between hair follicle germ (HFG) epithelial and mesenchymal layers. Here, we developed a method for large-scale preparation of HFGs in vitro via self-organization of cells. We mixed mouse epidermal and mouse/human mesenchymal cells in suspension and seeded them in microwells of a custom-designed array plate. Over a 3-day culture period, cells initially formed a randomly distributed single cell aggregate and then spatially separated from each other, exhibiting typical HFG morphological features. These self-sorted hair follicle germs (ssHFGs) were shown to be capable of efficient hair-follicle and shaft generation upon intracutaneous transplantation into the backs of nude mice. This finding facilitated the large-scale preparation of approximately 5000 ssHFGs in a microwell-array chip made of oxygen-permeable silicone. We demonstrated that the integrity of the oxygen supply through the bottom of the silicone chip was crucial to enabling both ssHFG formation and subsequent hair shaft generation. Finally, spatially aligned ssHFGs on the chip were encapsulated into a hydrogel and simultaneously transplanted into the back skin of nude mice to preserve their intervening spaces, resulting in spatially aligned hair follicle generation. This simple ssHFG preparation approach is a promising strategy for improving current hair-regenerative medicine techniques.
Collapse
|
61
|
Michler JK, Hillmann A, Savkovic V, Mülling CKW. Horse hair follicles: A novel dermal stem cell source for equine regenerative medicine. Cytometry A 2017; 93:104-114. [DOI: 10.1002/cyto.a.23198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/07/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jule K. Michler
- Faculty of Veterinary Medicine; Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Aline Hillmann
- Saxon Incubator for Clinical Translation; Leipzig University, Leipzig, Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical Translation; Leipzig University, Leipzig, Germany
| | - Christoph K. W. Mülling
- Faculty of Veterinary Medicine; Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| |
Collapse
|
62
|
Dobreva A, Paus R, Cogan NG. Analysing the dynamics of a model for alopecia areata as an autoimmune disorder of hair follicle cycling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:387-407. [DOI: 10.1093/imammb/dqx009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Atanaska Dobreva
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - N G Cogan
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
63
|
Basement Membrane Matrix Promotes the Efficiency of Hair Follicle Reconstruction In Vivo and Is a Cell Delivery Vehicle for Follicle Regeneration. Dermatol Surg 2017; 43:848-855. [PMID: 28541264 DOI: 10.1097/dss.0000000000001050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The efficiency of hair follicle (HF) reconstruction is decreased by extensive apoptotic remodeling that occurs soon after grafting. OBJECTIVE To evaluate a basement membrane matrix (matrix) to improve the efficiency of HF reconstruction and serve as a cell delivery vehicle. MATERIALS AND METHODS Newborn mouse skin cells were suspended in a matrix and transplanted in a chamber assay. The viability and proliferation of mouse dermal papilla cells seeded in the matrix were tested. Dermal papilla cells and epidermal cells seeded in matrix sheets were grafted into nude mice to observe hair formation. RESULTS The matrix significantly shortened the time to hair formation. The first hair shafts appeared within the matrix at 17.67 ± 1.21 days versus 23.00 ± 1.41 days for Dulbecco's modified Eagle medium controls. There was a significant difference (p < .05) in the number of newly formed hairs in areas of reconstructed skin with the matrix (100 μL) grafts (323 ± 12) versus controls (276 ± 11). Dermal papilla cells were successfully cultured in the matrix, and hair formation was dense when the matrix was used as a cell delivery vehicle for follicle reconstruction. CONCLUSION The matrix improved the efficiency of HF reconstruction and was a suitable delivery vehicle of cells for HF engineering.
Collapse
|
64
|
Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50:e12334. [PMID: 28144997 PMCID: PMC6529062 DOI: 10.1111/cpr.12334] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Faculty of PharmacyHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
65
|
Various Types of Minor Trauma to Hair Follicles During Follicular Unit Extraction for Hair Transplantation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1260. [PMID: 28458974 PMCID: PMC5404445 DOI: 10.1097/gox.0000000000001260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND When performing follicular unit extraction (FUE), various types of minor hair follicle trauma unapparent during follicular unit strip surgery are likely to occur. However, no studies have examined such damage. METHODS In total, 100 grafts were randomly selected from each of 42 patients who underwent FUE with a 1-mm-diameter sharp punch. A ×5.5 magnifying loupe and a ×60 magnifying binocular microscope were used. The transection rate (TR), paring, fractures of and damage to the dermal papilla (DP) areas, and hair bulb partial injury were assessed. RESULTS Observation with the magnifying loupe revealed an average TR of 7.40%, and 4.31, 1.90, 1.52, and 0.43 hair follicles per 100 grafts exhibited paring, fracture, DP partial injury, and hair bulb partial injury, respectively. An average of 9.21 telogen hairs were observed. Microscopic examination revealed a TR of 6.34%, and 9.07, 1.95, 0.79, and 1.24 hair follicles per 100 grafts exhibited paring, fracture, DP injury, and hair bulb partial injury, respectively. An average of 16.62 telogen hairs were observed. CONCLUSIONS Various types of minor hair follicle damage occur during FUE as shown by loupe and microscopic examination of the grafts. Especially paring and hair bulb injury were more apparent under microscopic examination. These minor hair follicle injuries should be considered when choosing operative method or surgical techniques.
Collapse
|
66
|
Nilforoushzadeh M, Rahimi Jameh E, Jaffary F, Abolhasani E, Keshtmand G, Zarkob H, Mohammadi P, Aghdami N. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice. CELL JOURNAL 2017; 19:259-268. [PMID: 28670518 PMCID: PMC5412784 DOI: 10.22074/cellj.2016.3916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/28/2016] [Indexed: 11/16/2022]
Abstract
Objective Dermal papilla and hair epithelial stem cells regulate hair formation and
the growth cycle. Damage to or loss of these cells can cause hair loss. Although
several studies claim to reconstitute hairs using rodent cells in an animal model,
additional research is needed to develop a stable human hair follicle reconstitution
protocol. In this study, we have evaluated hair induction by injecting adult cultured
human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in
a mouse model.
Materials and Methods In this experimental study, discarded human scalp skins were
used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured
and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into
three groups that received injections in their dorsal skin. The first group received cultured
dermal papilla cells, the second group received a mixture of cultured epithelial and dermal
papilla cells, and the third group (control) received a placebo [phosphate-buffered saline
(PBS-)].
Results Histopathologic examination of the injection sites showed evidence of hair
growth in samples that received cells compared with the control group. However, the
group that received epithelial and dermal papilla cells had visible evidence of hair growth.
PKH tracing confirmed the presence of transplanted cells in the new hair.
Conclusion Our data showed that injection of a combination of adult human cultured
dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells
could induce new hair in nude mice.
Collapse
Affiliation(s)
| | - Elham Rahimi Jameh
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran.,Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariba Jaffary
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran.,Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Abolhasani
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Gelavizh Keshtmand
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Hajar Zarkob
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Mohammadi
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
67
|
Veraitch O, Mabuchi Y, Matsuzaki Y, Sasaki T, Okuno H, Tsukashima A, Amagai M, Okano H, Ohyama M. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells. Sci Rep 2017; 7:42777. [PMID: 28220862 PMCID: PMC5318903 DOI: 10.1038/srep42777] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases.
Collapse
Affiliation(s)
- Ophelia Veraitch
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Tumor Biology, Department of Life Sciences, Faculty of Medicine, Shimane University, Shiojicho 89-1, Izumo-shi, Shimane, 693-8501, Japan
| | - Takashi Sasaki
- KOSÉ Endowed Program for Skin Care and Allergy Prevention, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Aki Tsukashima
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| |
Collapse
|
68
|
Seo CH, Kwack MH, Kim MK, Kim JC, Sung YK. Activin A-induced signalling controls hair follicle neogenesis. Exp Dermatol 2017; 26:108-115. [DOI: 10.1111/exd.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Chang H. Seo
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Mi H. Kwack
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Moon K. Kim
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Jung C. Kim
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Young K. Sung
- Department of Immunology; School of Medicine; Kyungpook National University; Daegu Korea
| |
Collapse
|
69
|
Sugiyama-Nakagiri Y, Fujimura T, Moriwaki S. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0168451. [PMID: 27992514 PMCID: PMC5167543 DOI: 10.1371/journal.pone.0168451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
Abstract
The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.
Collapse
|
70
|
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human Hair Reconstruction: Close, But Yet So Far. Stem Cells Dev 2016; 25:1767-1779. [PMID: 27649771 DOI: 10.1089/scd.2016.0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Billions of dollars are annually invested in pharmaceutical industry and cosmetic sector with intent to develop new drugs and treatment strategies for alopecia. Because the hair looks an important characteristic of humans-an effective appendage in perception, expression of beauty, and preservation of self-esteem-the global market for hair loss treatment products is exponentially increasing. However, current methods to treat hair loss endure yet multiple challenges, such as unfavorable outcomes, nonpermanent and patient-dependent results, as well as unpredictable impacts, which limit their application. Over recent years, remarkable advances in the fields of regenerative medicine and hair tissue engineering have raised new hopes for introducing novel cell-based approaches to treat hair loss. Through cell-based approaches, it is possible to produce hair-like structures in the laboratory setting or manipulate cells in their native niche (in vivo lineage reprogramming) to reconstruct the hair follicle. However, challenging issues still exist with the functionality of cultured human hair cells, the proper selection of nonhair cell sources in cases of shortage of donor hair, and the development of defined culture conditions. Moreover, in the case of in vivo lineage reprogramming, selecting appropriate induction factors and their efficient delivery to guide resident cells into a hair fate-with the aim of reconstructing functional hair-still needs further explorations. In this study, we highlight recent advances and current challenges in hair loss treatment using cell-based approaches and provide novel insights for crucial steps, which must be taken into account to develop reproducible, safe, and efficient cell-based treatment.
Collapse
Affiliation(s)
- Parvaneh Mohammadi
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Khalil Kass Youssef
- 3 Department of Developmental Neurobiology, Instituto de Neurociencias CSIC-UMH , San Juan de Alicante, Spain
| | - Saeed Abbasalizadeh
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| | - Hossein Baharvand
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Nasser Aghdami
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| |
Collapse
|
71
|
Li J, Qu H, Jiang H, Zhao Z, Zhang Q. Transcriptome-Wide Comparative Analysis of microRNA Profiles in the Telogen Skins of Liaoning Cashmere Goats (Capra hircus) and Fine-Wool Sheep (Ovis aries) by Solexa Deep Sequencing. DNA Cell Biol 2016; 35:696-705. [PMID: 27754706 DOI: 10.1089/dna.2015.3161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Compare the microRNA (miRNA) trancriptomes of goat and sheep skin using Solexa sequencing to understand the development of skin and hair follicles (HFs). miRNA expression patterns vary in the two small RNA libraries from goat (G library) and sheep (S library) telogen skin samples. Analysis of the size distribution of 25.32 million clean reads revealed that most are 21-23 nucleotides. A total of 1910 known miRNAs and 2261 novel mature miRNAs were identified in this study. Among them, 107 novel miRNAs and 1246 known miRNAs were differentially expressed in the two libraries; 10 of the known miRNAs were identified using stem-loop quantitative real-time PCR. Furthermore, GO and KEGG pathway analysis of predicted miRNA targets illustrated the roles of these differentially expressed miRNAs in telogen HF development and growth. This study provides important information about the role of miRNAs in the regulation of HF development and their function in the telogen phase. This observation may help future investigations of the regulation of miRNAs during wool quality improvement.
Collapse
Affiliation(s)
- Jianping Li
- 1 College of Veterinary Medicine, Jilin University, Changchun, China .,2 Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - HaiE Qu
- 1 College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huaizhi Jiang
- 3 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhihui Zhao
- 4 College of Animal Science and Technology, Jilin University, Changchun, China
| | - Qiaoling Zhang
- 1 College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
72
|
Seo CH, Kwack MH, Lee SH, Kim MK, Kim JC, Sung YK. Poor Capability of 3D-Cultured Adipose-Derived Stem Cells to Induce Hair Follicles in Contrast to 3D-Cultured Dermal Papilla Cells. Ann Dermatol 2016; 28:662-665. [PMID: 27746657 PMCID: PMC5064207 DOI: 10.5021/ad.2016.28.5.662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/18/2015] [Accepted: 09/24/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chang Hoon Seo
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Mi Hee Kwack
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Moon Kyu Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Jung Chul Kim
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea.; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
73
|
Zhang H, Nan W, Wang S, Zhang T, Si H, Wang D, Yang F, Li G. Epidermal growth factor promotes proliferation of dermal papilla cells via Notch signaling pathway. Biochimie 2016; 127:10-8. [DOI: 10.1016/j.biochi.2016.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
|
74
|
Huang CF, Chang YJ, Hsueh YY, Huang CW, Wang DH, Huang TC, Wu YT, Su FC, Hughes M, Chuong CM, Wu CC. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction. Sci Rep 2016; 6:26436. [PMID: 27210831 PMCID: PMC4876394 DOI: 10.1038/srep26436] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types.
Collapse
Affiliation(s)
- Chin-Fu Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Ju Chang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic Surgery, National Cheng Kung University Hospital, Tainan, 701, Taiwan
| | - Chia-Wei Huang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Duo-Hsiang Wang
- Division of Plastic Surgery, National Cheng Kung University Hospital, Tainan, 701, Taiwan
| | - Tzu-Chieh Huang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Ting Wu
- Division of Plastic Surgery, National Cheng Kung University Hospital, Tainan, 701, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Michael Hughes
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Ming Chuong
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Pathology, University of Southern California, California 90033, USA
| | - Chia-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.,Institute of Basic Medical Science, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 701, Taiwan.,International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
75
|
Jimenez F, Shiell RC. The Okuda papers: an extraordinary--but unfortunately unrecognized--piece of work that could have changed the history of hair transplantation. Exp Dermatol 2015; 24:185-6. [PMID: 25557647 DOI: 10.1111/exd.12628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Francisco Jimenez
- Mediteknia Dermatology and Hair Transplant Clinic, Las Palmas de Gran Canaria, Spain
| | | |
Collapse
|
76
|
Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 2015; 90:1179-96. [PMID: 25410793 PMCID: PMC4437968 DOI: 10.1111/brv.12151] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
The hair follicle (HF) represents a prototypic ectodermal-mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem-cell-rich mini-organs is that they undergo life-long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy-efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro-environment (including its stem cell niche) as well as in their external tissue macro-environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub-stages: early 'refractory' and late 'competent' telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response-signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro-regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active 'regenerative mode' of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.
Collapse
Affiliation(s)
- Mikhail Geyfman
- Department of Ophthalmology, University of California, Irvine, CA 92697, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Labouratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, CA 92697, USA
- Department of Medicine, University of California Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
77
|
Lobikin M, Lobo D, Blackiston DJ, Martyniuk CJ, Tkachenko E, Levin M. Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Sci Signal 2015; 8:ra99. [PMID: 26443706 DOI: 10.1126/scisignal.aac6609] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experimentally induced depolarization of resting membrane potential in "instructor cells" in Xenopus laevis embryos causes hyperpigmentation in an all-or-none fashion in some tadpoles due to excess proliferation and migration of melanocytes. We showed that this stochastic process involved serotonin signaling, adenosine 3',5'-monophosphate (cAMP), and the transcription factors cAMP response element-binding protein (CREB), Sox10, and Slug. Transcriptional microarray analysis of embryos taken at stage 15 (early neurula) and stage 45 (free-swimming tadpole) revealed changes in the abundance of 45 and 517 transcripts, respectively, between control embryos and embryos exposed to the instructor cell-depolarizing agent ivermectin. Bioinformatic analysis revealed that the human homologs of some of the differentially regulated genes were associated with cancer, consistent with the induced arborization and invasive behavior of converted melanocytes. We identified a physiological circuit that uses serotonergic signaling between instructor cells, melanotrope cells of the pituitary, and melanocytes to control the proliferation, cell shape, and migration properties of the pigment cell pool. To understand the stochasticity and properties of this multiscale signaling system, we applied a computational machine-learning method that iteratively explored network models to reverse-engineer a stochastic dynamic model that recapitulated the frequency of the all-or-none hyperpigmentation phenotype produced in response to various pharmacological and molecular genetic manipulations. This computational approach may provide insight into stochastic cellular decision-making that occurs during normal development and pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Maria Lobikin
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Douglas J Blackiston
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Tkachenko
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
78
|
Shim JH. Hair growth-promoting effect of human dermal stem/progenitor cell-derived conditioned medium. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
79
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|
80
|
Niemann C, Schneider MR. Hair type-specific function of canonical Wnt activity in adult mouse skin. Exp Dermatol 2015; 23:881-3. [PMID: 25039641 DOI: 10.1111/exd.12509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Wnt/β-catenin signalling is a key regulator of hair follicle (HF) morphogenesis and life-long HF regeneration. In a recently published issue of Experimental Dermatology, Lei et al. report that sustained WNT10B supply and pathway activation in regenerating mouse HF increased the width of hair bulbs, hair shafts and the dermal papilla (DP), and enlarged the CD34(+) HF bulge cell compartment. Notably, WNT10B affected primarily zigzag HFs, while size and morphology of other HF types remained largely unaffected. Thus, these findings raise a number of questions regarding a HF type-specific function of Wnt/β-catenin and on the role of the WNT-stimulated DP in this process.
Collapse
Affiliation(s)
- Catherin Niemann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
81
|
Chan CC, Fan SMY, Wang WH, Mu YF, Lin SJ. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes. Tissue Eng Part C Methods 2015; 21:1070-9. [PMID: 25951188 DOI: 10.1089/ten.tec.2015.0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Successful hair follicle (HF) neogenesis in adult life depends on the existence of both capable dermal cells and competent epidermal keratinocytes that recapitulate embryonic organogenesis through epithelial-mesenchymal interaction. In tissue engineering, the maintenance of trichogenic potential of adult epidermal cells, while expanding them remains a challenging issue. We found that although HF outer root sheath keratinocytes could be expanded for more than 100 passages as clonogenic cells without losing the proliferative potential with a 3T3J2 fibroblast feeder layer, these keratinocytes were unable to form new HFs when combined with inductive HF dermal papilla (DP) cells. However, when these high-passage keratinocytes were cocultured with HF DP cells for 4 days in vitro, they regained the trichogenic ability to form new HFs after transplantation. We found that the short-term coculture with DP cells enhanced both Wnt/β-catenin signaling, a signaling cascade key to HF development, and upregulated the expression of HF-specific genes, including K6, K16, K17, and K75, in keratinocytes, indicating that these cells were poised toward a HF fate. Hence, efficient production of trichogenic keratinocytes can be obtained by a two-stepped procedure with initial cell expansion with a 3T3J2 fibroblast feeder followed by short-term coculture with DP cells.
Collapse
Affiliation(s)
- Chih-Chieh Chan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Wei-Hung Wang
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Yi-Fen Mu
- 2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sung-Jan Lin
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| |
Collapse
|
82
|
Balañá ME, Charreau HE, Leirós GJ. Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World J Stem Cells 2015; 7:711-27. [PMID: 26029343 PMCID: PMC4444612 DOI: 10.4252/wjsc.v7.i4.711] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/02/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.
Collapse
Affiliation(s)
- María Eugenia Balañá
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Hernán Eduardo Charreau
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Gustavo José Leirós
- María Eugenia Balañá, Gustavo José Leirós, Fundación Pablo Cassará -Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
83
|
Driskell RR, Watt FM. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 2014; 25:92-9. [PMID: 25455110 DOI: 10.1016/j.tcb.2014.10.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
Fibroblasts are found in most tissues, yet they remain poorly characterised. Different fibroblast subpopulations with distinct functions have been identified in the skin. This functional heterogeneity reflects the varied fibroblast lineages that arise from a common embryonic precursor. In addition to autocrine signals, fibroblasts are highly responsive to Wnt-regulated signals from the overlying epidermis, which can act both locally, via extracellular matrix (ECM) deposition, and via secreted factors that impact the behaviour of fibroblasts in different dermal locations. These findings may explain some of the changes that occur in connective tissue during wound healing and cancer progression.
Collapse
Affiliation(s)
- Ryan R Driskell
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital Campus, London SE1 9RT, UK.
| |
Collapse
|
84
|
Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions. J Invest Dermatol 2014; 135:679-689. [PMID: 25371971 DOI: 10.1038/jid.2014.475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Here, we studied how epithelial energy metabolism impacts overall skin development by selectively deleting intraepithelial mtDNA in mice by ablating a key maintenance factor (Tfam(EKO)), which induces loss of function of the electron transport chain (ETC). Quantitative (immuno)histomorphometry demonstrated that Tfam(EKO) mice showed significantly reduced hair follicle (HF) density and morphogenesis, fewer intrafollicular keratin15+ epithelial progenitor cells, increased apoptosis, and reduced proliferation. Tfam(EKO) mice also displayed premature entry into (aborted) HF cycling by apoptosis-driven HF regression (catagen). Ultrastructurally, Tfam(EKO) mice exhibited severe HF dystrophy, pigmentary abnormalities, and telogen-like condensed dermal papillae. Epithelial HF progenitor cell differentiation (Plet1, Lrig1 Lef1, and β-catenin), sebaceous gland development (adipophilin, Scd1, and oil red), and key mediators/markers of epithelial-mesenchymal interactions during skin morphogenesis (NCAM, versican, and alkaline phosphatase) were all severely altered in Tfam(EKO) mice. Moreover, the number of mast cells, major histocompatibility complex class II+, or CD11b+ immunocytes in the skin mesenchyme was increased, and essentially no subcutis developed. Therefore, in contrast to their epidermal counterparts, pilosebaceous unit stem cells depend on a functional ETC. Most importantly, our findings point toward a frontier in skin biology: the coupling of HF keratinocyte mitochondrial function with the epithelial-mesenchymal interactions that drive overall development of the skin and its appendages.
Collapse
|
85
|
Zhang P, Kling RE, Ravuri SK, Kokai LE, Rubin JP, Chai JK, Marra KG. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. J Tissue Eng 2014; 5:2041731414556850. [PMID: 25383178 PMCID: PMC4221925 DOI: 10.1177/2041731414556850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russell E Kling
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudheer K Ravuri
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Jia-Ke Chai
- Department of Burns and Plastic Surgery, First Hospital Affiliated to General Hospital of PLA, Beijing, China
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
86
|
Leirós GJ, Kusinsky AG, Drago H, Bossi S, Sturla F, Castellanos ML, Stella IY, Balañá ME. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells. Stem Cells Transl Med 2014; 3:1209-19. [PMID: 25161315 DOI: 10.5966/sctm.2013-0217] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair.
Collapse
Affiliation(s)
- Gustavo José Leirós
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Gabriela Kusinsky
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hugo Drago
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Bossi
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Flavio Sturla
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Lía Castellanos
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Inés Yolanda Stella
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Balañá
- Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina; Banco de Tejidos, Hospital de Quemados de la Ciudad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
87
|
Larouche D, Kim DH, Ratté G, Beaumont C, Germain L. Effect of intense pulsed light treatment on human skin in vitro: analysis of immediate effects on dermal papillae and hair follicle stem cells. Br J Dermatol 2014; 169:859-68. [PMID: 23796167 DOI: 10.1111/bjd.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hair follicles house a permanent pool of epithelial stem cells. Intense pulsed light (IPL) sources have been successfully used for hair removal, but long-term hair reduction may require several treatments. Many questions remain regarding the impact of IPL treatment on the structure of the hair follicle, more specifically on hair follicular stem cells and dermal papilla cells, a group of specialized cells that orchestrate hair growth. OBJECTIVES To characterize the destruction of human hair follicles and surrounding tissues following IPL treatment, with more attention paid to the bulge and the bulb regions. METHODS Human scalp specimens of Fitzpatrick skin phototype II were exposed ex vivo to IPL pulses and were then processed for histological analysis, immunodetection of stem cell-associated keratin 19, and revelation of the endogenous alkaline phosphatase activity expressed in dermal papilla cells. RESULTS Histological analysis confirmed that pigmented structures, such as the melanin-rich matrix cells of the bulb in anagen follicles and the hair shaft, are principally targeted by IPL treatment, while white hairs and epidermis remained unaffected. Damage caused by heat sometimes extended over the dermal papilla cells, while stem cells were mostly spared. CONCLUSIONS IPL epilation principally targets pigmented structures. Our results suggest that, under the tested conditions, collateral damage does not deplete stem cells. Damage at the dermal papilla was observed only with high-energy treatment modalities. Extrapolated to frequently treated hairs, these observations explain why some hairs grow back after a single IPL treatment.
Collapse
Affiliation(s)
- D Larouche
- Axe Médecine Régénératrice, Centre LOEX de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
88
|
Plikus MV. At the dawn of hair research - testing the limits of hair follicle regeneration. Exp Dermatol 2014; 23:314-5. [DOI: 10.1111/exd.12334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Maksim V. Plikus
- Department of Developmental and Cell Biology; Sue and Bill Gross Stem Cell Research Center; University of California; Irvine CA 92697 USA
| |
Collapse
|
89
|
Miao Y, Sun YB, Liu BC, Jiang JD, Hu ZQ. Controllable production of transplantable adult human high-passage dermal papilla spheroids using 3D matrigel culture. Tissue Eng Part A 2014; 20:2329-38. [PMID: 24528213 DOI: 10.1089/ten.tea.2013.0547] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have succeeded in culturing human dermal papilla (DP) cell spheroids and developed a three-dimensional (3D) Matrigel (basement membrane matrix) culture technique that can enhance and restore DP cells unique characteristics in vitro. When 1 × 10(4) DP cells were cultured on the 96-well plates precoated with Matrigel for 5 days, both passage 2 and passage 8 DP cells formed spheroidal microtissues with a diameter of 150-250 μm in an aggregative and proliferative manner. We transferred and recultured these DP spheroids onto commercial plates. Cells within DP spheres could disaggregate and migrate out, which was similar to primary DP. Moreover, we examined the expression of several genes and proteins associated with hair follicle inductivity of DP cells, such as NCAM, Versican, and α-smooth muscle actin, and confirmed that their expression level was elevated in the spheres compared with the dissociated DP cells. To examine the hair-inducing ability of DP spheres, hair germinal matrix cells (HGMCs) and DP spheres were mixed and cultured on Matrigel. Unlike the dissociated DP cells and HGMCs cocultured in two dimensions, HGMCs can differentiate into hair-like fibers under the induction of the DP spheres made from the high-passage cells (passage 8) in vitro. We are the first to show that passage 3 human HGMCs differentiate into hair-like fibers in the presence of human DP spheroids. These results suggest that the 3D Matrigel culture technique is an ideal culture model for forming DP spheroids and that sphere formation partially models the intact DP, resulting in hair induction, even by high-passage DP cells.
Collapse
Affiliation(s)
- Yong Miao
- 1 Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University , Guangzhou, China
| | | | | | | | | |
Collapse
|
90
|
Wang Y, Liu J, Tan X, Li G, Gao Y, Liu X, Zhang L, Li Y. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Rev Rep 2014; 9:451-60. [PMID: 23242965 PMCID: PMC3742959 DOI: 10.1007/s12015-012-9420-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reprogramming of somatic cells into inducible pluripotent stem cells (iPSCs) provides an alternative to using embryonic stem cells (ESCs). Mesenchymal stem cells derived from human hair follicles (hHF-MSCs) are easily accessible, reproducible by direct plucking of human hairs. Whether these hHF-MSCs can be reprogrammed has not been previously reported. Here we report the generation of iPSCs from hHF-MSCs obtained by plucking several hairs. hHF-MSCs were isolated from hair follicle tissues and their mesenchymal nature confirmed by detecting cell surface antigens and multilineage differentiation potential towards adipocytes and osteoblasts. They were then reprogrammed into iPSCs by lentiviral transduction with Oct4, Sox2, c-Myc and Klf4. hHF-MSC-derived iPSCs appeared indistinguishable from human embryonic stem cells (hESCs) in colony morphology, expression of alkaline phosphotase, and expression of specific hESCs surface markers, SSEA-3, SSEA-4, Tra-1-60, Tra-1-81, Nanog, Oct4, E-Cadherin and endogenous pluripotent genes. When injected into immunocompromised mice, hHF-MSC-derived iPSCs formed teratomas containing representatives of all three germ layers. This is the first study to report reprogramming of hHF-MSCs into iPSCs.
Collapse
Affiliation(s)
- Yimei Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
91
|
OVO Homolog-Like 1, a Target Gene of the Wnt/β-Catenin Pathway, Controls Hair Follicle Neogenesis. J Invest Dermatol 2014; 134:838-840. [DOI: 10.1038/jid.2013.421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
92
|
Abstract
Mesenchymal cells play a role in controlling the number of hair follicles. However, the precise molecules involved are unclear. Absence in mesenchymal cells of the expression of the secreted matricellular protein CTGF/CCN2 results in an increased number of hair follicles, concomitant with increased β-catenin activity. It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.
Collapse
Affiliation(s)
- Shangxi Liu
- Departments of Dentistry and Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
93
|
Kwack MH, Kim MK, Kim JC, Sung YK. Wnt5a attenuates Wnt/β-catenin signalling in human dermal papilla cells. Exp Dermatol 2013; 22:229-31. [PMID: 23489428 DOI: 10.1111/exd.12101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 12/16/2022]
Abstract
Findings of recent studies have demonstrated modulation of Wnt/β-catenin signalling by Wnt5a, which is highly expressed in hair follicular dermal papilla (DP) in vivo. Here, we investigated the question of whether Wnt5a can affect canonical Wnt/β-catenin signalling in DP cells. Treatment with Wnt5a resulted in attenuation of Wnt3a-mediated elevation of β-catenin signalling, which was increased by Wnt5a siRNA transfection in cultured DP cells, as examined by reporter assay. In addition, treatment with Wnt5a resulted in repressed Wnt3a-mediated expression of Axin2, EP2 and LEF1 in cultured DP cells, whereas Wnt5a siRNA transfection resulted in increased Wnt3a-mediated expression of the genes in isolated DPs of cultured hair follicles. Moreover, treatment with Wnt5a resulted in attenuation of Wnt3a-mediated accumulation of β-catenin in the nucleus in DP cells. Our data strongly suggest that Wnt5a acts as an autocrine factor and attenuates canonical Wnt signalling pathway in human DP cells.
Collapse
|
94
|
Hill RP, Gardner A, Crawford HC, Richer R, Dodds A, Owens WA, Lawrence C, Rao S, Kara B, James SE, Jahoda CA. Human hair follicle dermal sheath and papilla cells support keratinocyte growth in monolayer coculture. Exp Dermatol 2013; 22:236-8. [PMID: 23489431 DOI: 10.1111/exd.12107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Traditional skin grafting techniques are effective but limited methods of skin replacement. Autologous transplantation of rapidly cultured keratinocytes is successful for epidermal regeneration, but the current gold-standard technique requires mouse fibroblast feeders and serum-rich media, with serum-free systems and dermal fibroblast (DF) feeders performing relatively poorly. Here, we investigated the capacity of human hair follicle dermal cells to act as alternative supports for keratinocyte growth. Dermal papilla (DP) dermal sheath (DS), DF and 3T3 cells were used as inactivated feeder cells for human keratinocyte coculture. Under conditions favouring dermal cells, proliferation of keratinocytes in the presence of either DS or DP cells was significantly enhanced compared with DF cells, at levels comparable to keratinocytes cultured under gold-standard conditions. Secreted protein acidic and rich in cysteine (SPARC) expression increased DS and DP cells relative to DFs; however, further experiments did not demonstrate a role in keratinocyte support.
Collapse
|
95
|
Lin J, Li MR, Ti DD, Zhao YL, Fu XB, Han WD. Rekindling the lost hair-forming world. Int Wound J 2013; 12:489-90. [PMID: 23937652 DOI: 10.1111/iwj.12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ji Lin
- Central Lab, Hainan Branch Chinese PLA General Hospital Sanya, China.,Institute of Basic Medicine Chinese PLA General Hospital Beijing, China
| | - Mei-rong Li
- Central Lab, Hainan Branch Chinese PLA General Hospital Sanya, China.,Institute of Basic Medicine Chinese PLA General Hospital Beijing, China
| | - Dong-dong Ti
- Institute of Basic Medicine Chinese PLA General Hospital Beijing, China
| | - Ya-li Zhao
- Central Lab, Hainan Branch Chinese PLA General Hospital Sanya, China.,Institute of Basic Medicine Chinese PLA General Hospital Beijing, China
| | - Xiao-bing Fu
- Central Lab, Hainan Branch Chinese PLA General Hospital Sanya, China. .,Institute of Basic Medicine Chinese PLA General Hospital Beijing, China.
| | - Wei-dong Han
- Institute of Basic Medicine Chinese PLA General Hospital Beijing, China.
| |
Collapse
|
96
|
Dissociated human dermal papilla cells induce hair follicle neogenesis in grafted dermal-epidermal composites. J Invest Dermatol 2013; 134:538-540. [PMID: 23924901 PMCID: PMC3947143 DOI: 10.1038/jid.2013.337] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
97
|
Shin SH, Joo HW, Kim MK, Kim JC, Sung YK. Extracellular histones inhibit hair shaft elongation in cultured human hair follicles and promote regression of hair follicles in mice. Exp Dermatol 2013; 21:956-8. [PMID: 23171459 DOI: 10.1111/exd.12033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 12/24/2022]
Abstract
Release of histone H4 in rat vibrissa dermal papilla (DP) cells exposed to sub-toxic dose of colchicines has been recently reported. In addition, exposure to histone H4 has been reported to result in inhibited proliferation and reduced alkaline phosphatase (ALP) activity of cultured vibrissa DP cells. These findings prompted us to investigate the role of extracellular histones in hair growth using cultured human hair follicles and hair cycling using back skin of mice. We report here that exposure of cultured hair follicles to histone H4 and H2A resulted in significant inhibition of elongation of hair shafts, decreased expression of IGF-1 and decreased expression and activity of ALP. Injection of histones into hypodermis of mice during anagen resulted in premature onset of catagen. Findings of the current study provide strong evidence suggesting the inhibitory role of extracellular histones in hair growth.
Collapse
|
98
|
Chueh SC, Lin SJ, Chen CC, Lei M, Wang LM, Widelitz R, Hughes MW, Jiang TX, Chuong CM. Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin Biol Ther 2013; 13:377-91. [PMID: 23289545 PMCID: PMC3706200 DOI: 10.1517/14712598.2013.739601] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate, and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration, and potential therapeutic opportunities these advances may offer. AREAS COVERED Here, we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories: i) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. ii) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. iii) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. iv) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair-forming competent epidermal cells and hair-inducing dermal cells. EXPERT OPINION Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials.
Collapse
|
99
|
Ohyama M, Veraitch O. Strategies to enhance epithelial-mesenchymal interactions for human hair follicle bioengineering. J Dermatol Sci 2013; 70:78-87. [PMID: 23557720 DOI: 10.1016/j.jdermsci.2013.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 12/17/2022]
Abstract
Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Accordingly, the enhancement of this crosstalk represents a promising approach to achieve successful bioengineering of human hair follicles. The present article summarizes the techniques, both currently available and potentially feasible, to promote epithelial-mesenchymal interactions (EMIs) necessary for human hair follicle regeneration. The strategies include the preparation of epithelial components with high receptivity to trichogenic dermal signals and/or mesenchymal cell populations with potent hair inductive capacity. In this regard, bulge epithelial stem cells, keratinocytes predisposed to hair follicle fate or keratinocyte precursor cells with plasticity may provide favorable epithelial cell populations. Dermal papilla cells sustaining intrinsic hair inductive capacity, putative dermal papilla precursor cells in the dermal sheath/neonatal dermis or trichogenic dermal cells derived from undifferentiated stem/progenitor cells are promising candidates as hair inductive dermal cells. The most established protocol for in vivo hair follicle reconstitution is co-grafting of epithelial and mesenchymal components into immunodeficient mice. In theory, combination of individually optimized cellular components of respective lineages should elicit most intensive EMIs to form hair follicles. Still, EMIs can be further ameliorated by the modulation of non-cell autonomous conditions, including cell compartmentalization to replicate the positional relationship in vivo and humanization of host environment by preparing human stromal bed. These approaches may not always synergistically intensify EMIs, however, step-by-step investigation probing optimal combinations should maximally enhance EMIs to achieve successful human hair follicle bioengineering.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
100
|
|