51
|
Pambianchi E, Ferrara F, Pecorelli A, Woodby B, Grace M, Therrien JP, Lila MA, Valacchi G. Blueberry Extracts as a Novel Approach to Prevent Ozone-Induced Cutaneous Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9571490. [PMID: 32855770 PMCID: PMC7443250 DOI: 10.1155/2020/9571490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
The World Health Organization estimates that 7 million people die every year due to pollution exposure. Among the different pollutants to which living organism are exposed, ozone (O3) represents one of the most toxic, because its location which is the skin is one of the direct tissues exposed to the outdoor environment. Chronic exposure to outdoor stressors can alter cutaneous redox state resulting in the activation of inflammatory pathways. Recently, a new player in the inflammation mechanism was discovered: the multiprotein complex NLRP1 inflammasome, which has been shown to be also expressed in the skin. The topical application of natural compounds has been studied for the last 40 years as a possible approach to prevent and eventually cure skin conditions. Recently, the possibility to use blueberry (BB) extract to prevent pollution-induced skin toxicity has been of great interest in the cosmeceutical industry. In the present study, we analyzed the cutaneous protective effect of BB extract in several skin models (2D, 3D, and human skin explants). Specifically, we observed that in the different skin models used, BB extracts were able to enhance keratinocyte wound closure and normalize proliferation and migration responses previously altered by O3. In addition, pretreatment with BB extracts was able to prevent ozone-induced ROS production and inflammasome activation measured as NRLP1-ASC scaffold formation and also prevent the transcripts of key inflammasome players such as CASP1 and IL-18, suggesting that this approach as a possible new technology to prevent cutaneous pollution damage. Our data support the hypothesis that BB extracts can effectively reduce skin inflammation and be a possible new technology against cutaneous pollution-induced damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Francesca Ferrara
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Brittany Woodby
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Mary Grace
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | | | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
52
|
Rapanotti MC, Campione E, Suarez Viguria TM, Spallone G, Costanza G, Rossi P, Orlandi A, Valenti P, Bernardini S, Bianchi L. Stem-Mesenchymal Signature Cell Genes Detected in Heterogeneous Circulating Melanoma Cells Correlate With Disease Stage in Melanoma Patients. Front Mol Biosci 2020; 7:92. [PMID: 32548126 PMCID: PMC7272706 DOI: 10.3389/fmolb.2020.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of metastasis, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. These cancer cells, defined circulating tumor cells (CTCs) spreading through the blood stream, may develop metastatic lesions or remain dormant. Some emerging clinical evidence supports that some tumor cells may possess metastatic properties already in the earlier stages of tumorigenesis. Because the initiation and progression of vertical growth in human melanoma is fundamental to the notion of tumor virulence and progression, we decided to immune-magnetic collect and molecularly characterize circulating melanoma cells (CMCs) from melanoma patients AJCC staged = pT1b (i.e., transition from radial to vertical phase). CMCs are phenotypically and molecularly heterogeneous, thus we performed a "home-made Liquid-Biopsy," by targeting the melanoma-associated-antigen, MCAM/MUC18/CD146, and/or the melanoma-initiating marker, ABCB5. We assessed a biomarker qualitative expression panel, contemplating the angiogenic-potential, melanoma-initiating and melanoma-differentiation drivers, cell-cell adhesion molecules, matrix-metallo-proteinases, which was performed on three enriched subpopulations from a total of 61 blood-samples from 21 melanoma patients. At first, a significant differential expression of the specific transcripts was documented between and within the CMC fractions enriched with MCAM-, ABCB5-, and both MCAM/ABCB5-coated beads, when analyzing two distinct groups: early AJCC- (stage I-II) and advanced- staged patients (stage II-IV). Moreover, in the early-AJCC staged-group, we could distinguish "endothelial," CD45-MCAM+ enriched-, "stem" S-CMCs, CD45-ABCB5+ enriched- and a third hybrid bi-phenotypic CD45-MCAM+/ABCB5+ enriched-fractions, due to three distinct gene-expression profiles. In particular, the endothelial-CMCs were characterized by positive expression of genes involved in migration and invasion, whilst the stem CMC-fraction only expressed stem and differentiation markers. The third subpopulation isolated based on concurrent MCAM and ABCB5 protein expression showed an invasive phenotype. All three distinct CMCs sub-populations, exhibited a primitive, "stem-mesenchymal" profile suggesting a highly aggressive and metastasizing phenotype. This study confirms the phenotypic and molecular heterogeneity observed in melanoma and highlights those putative genes involved in early melanoma spreading and disease progression.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Tara Mayte Suarez Viguria
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Gaetana Costanza
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
53
|
The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker. Exp Mol Pathol 2020; 115:104443. [PMID: 32380056 DOI: 10.1016/j.yexmp.2020.104443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) or CD166 is a 100 to 105 KDa transmembrane immunoglobulin which is involved in activation of T-cells, hematopoiesis, neutrophils trans-endothelial migration, angiogenesis, inflammation and tumor propagation and invasiveness through formation of homophilic and heterophilic interactions. Recently, many studies have proposed that the expression pattern of ALCAM is highly associated with the grade, stage and invasiveness of tumors. Although ALCAM is a valuable prognostic marker in different carcinomas, similar expression patterns in different tumor types may be associated with completely different prognostic states, making it to be a tumor-type-dependent prognostic marker. In addition, ALCAM isoforms provide ways for primary detection of tumor cells with metastatic potential. More importantly, this prognostic marker has shown to be considerably dependent on the cytoplasmic and membranous expression, indirect and direct regulation of post-transcriptional molecules, pro-apoptotic proteins functionalities and several other oncogenic proteins or signalling pathways. This review mainly focuses on the pathways involved in expression of ALCAM and its prognostic value of in different types of cancers and the way in which it is regulated.
Collapse
|
54
|
Wenzina J, Holzner S, Puujalka E, Cheng PF, Forsthuber A, Neumüller K, Schossleitner K, Lichtenberger BM, Levesque MP, Petzelbauer P. Inhibition of p38/MK2 Signaling Prevents Vascular Invasion of Melanoma. J Invest Dermatol 2020; 140:878-890.e5. [DOI: 10.1016/j.jid.2019.08.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
|
55
|
Kopatz V, Selzer E. Quantitative and qualitative analysis of integrin subtype expression in melanocytes and melanoma cells. J Recept Signal Transduct Res 2020; 40:237-245. [PMID: 32066306 DOI: 10.1080/10799893.2020.1727923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objectives: Changes in the integrin expression pattern have been associated with the malignant transformation of melanocytes suggesting that integrins may be potential biomarkers as well as molecular targets for individualized therapy. Since there is a lack of comprehensive qualitative and quantitative expression data, we characterized the integrin expression profile in normal and malignant human cells of the melanocytic lineage.Methods: Seven melanoma cell lines as well as normal human melanocytes were investigated in western blots including recombinant integrin subunits for quantification.Results: Expression patterns were heterogeneous. In melanoma, overexpression of α4, α6, αL, β5, and β6 was found. Integrins α7, α9, and β4 were overexpressed in a subset of the melanoma cell lines. Overexpression was defined as a lack of expression in melanocytes but expression in more than half (4) of the melanoma lines. 1.9 to 6.7 × 106 integrin molecules (about 0.3% of total cellular protein) were estimated to be expressed per cell. Expression of integrin αE at the protein level was found in melanoma and melanocytes, to the best of our knowledge, for the first time. Integrins αM and β2 were not detected.Conclusion: Integrins α4, α6, αL, β5, and β6 appear to be overexpressed in melanoma cells. These subunits may serve as biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Edgar Selzer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
56
|
Brás MM, Radmacher M, Sousa SR, Granja PL. Melanoma in the Eyes of Mechanobiology. Front Cell Dev Biol 2020; 8:54. [PMID: 32117980 PMCID: PMC7027391 DOI: 10.3389/fcell.2020.00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body with several important functions that can be impaired by injury, genetic or chronic diseases. Among all skin diseases, melanoma is one of the most severe, which can lead to death, due to metastization. Mechanotransduction has a crucial role for motility, invasion, adhesion and metastization processes, since it deals with the response of cells to physical forces. Signaling pathways are important to understand how physical cues produced or mediated by the Extracellular Matrix (ECM), affect healthy and tumor cells. During these processes, several molecules in the nucleus and cytoplasm are activated. Melanocytes, keratinocytes, fibroblasts and the ECM, play a crucial role in melanoma formation. This manuscript will address the synergy among melanocytes, keratinocytes, fibroblasts cells and the ECM considering their mechanical contribution and relevance in this disease. Mechanical properties of melanoma cells can also be influenced by pigmentation, which can be associated with changes in stiffness. Mechanical changes can be related with the adhesion, migration, or invasiveness potential of melanoma cells promoting a high metastization capacity of this cancer. Mechanosensing, mechanotransduction, and mechanoresponse will be highlighted with respect to the motility, invasion, adhesion and metastization in melanoma cancer.
Collapse
Affiliation(s)
- M. Manuela Brás
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | | | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
57
|
Wang Y, Liu M, Chen S, Wu Q. Plantamajoside represses the growth and metastasis of malignant melanoma. Exp Ther Med 2020; 19:2296-2302. [PMID: 32104297 PMCID: PMC7027332 DOI: 10.3892/etm.2020.8442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Plantamajoside (PMS) has been shown to have anticancer effects and is the main compound of Plantago asiatica. The aim of the present study was to investigate the effects of PMS on malignant melanoma and its molecular mechanisms. The malignant melanoma cell line A2058 was treated with different concentrations of PMS (0, 20, 80 and 160 µg/ml) for 24, 48 or 72 h, followed by cell viability detection using the Cell Counting Kit-8 assay. The present results suggested that PMS inhibited cell viability in a dose-dependent manner. In addition, flow cytometry was used to analyze cell apoptosis, and Transwell assays were used to investigate cell migration and invasion. The present results suggested that PMS induced A2058 cell apoptosis, and inhibited cell invasion and migration in a dose-dependent manner. In order to study the molecular mechanism by which PMS inhibited malignant melanoma growth and metastasis, reverse transcription-quantitative PCR and western blotting were used to determine the expression levels of apoptotic-related genes and PI3K/AKT signaling pathway-related proteins. The present results indicated that PMS inhibited the protein and mRNA expression of Bcl-2, and promoted the expression of Bax and caspase-3 in a dose-dependent manner. The protein expression level of phosphorylated-AKT was dose-dependently reduced by PMS treatment. Collectively, the present results suggested that PMS inhibited the invasion, migration and viability of malignant melanoma cells. In addition, PMS induced apoptosis by regulating the expression levels of apoptotic-related genes and the activation of the PI3K/AKT signaling pathway, thereby exerting anti-malignant melanoma effects.
Collapse
Affiliation(s)
- Yan Wang
- College of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Mingzhu Liu
- Department of Dermatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210014, P.R. China
| | - Shenglan Chen
- College of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Qin Wu
- College of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
58
|
Liu H, Seynhaeve ALB, Brouwer RWW, van IJcken WFJ, Yang L, Wang Y, Chang Z, ten Hagen TLM. CREPT Promotes Melanoma Progression Through Accelerated Proliferation and Enhanced Migration by RhoA-Mediated Actin Filaments and Focal Adhesion Formation. Cancers (Basel) 2019; 12:cancers12010033. [PMID: 31877646 PMCID: PMC7016535 DOI: 10.3390/cancers12010033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/24/2022] Open
Abstract
Melanoma is one of the most aggressive cancers, and patients with distant metastases have dire outcomes. We observed previously that melanoma progression is driven by a high migratory potential of melanoma cells, which survive and proliferate under harsh environmental conditions. In this study, we report that CREPT (cell-cycle related and expression-elevated protein in tumor), an oncoprotein highly expressed in other cancers, is overexpressed in melanoma cells but not melanocytes. Overexpression of CREPT stimulates cell proliferation, migration, and invasion in several melanoma cell lines. Further, we show that CREPT enhances melanoma progression through upregulating and activating Ras homolog family member A (RhoA)-induced actin organization and focal adhesion assembly. Our study reveals a novel role of CREPT in promoting melanoma progression. Targeting CREPT may be a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Hui Liu
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-Tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Correspondence: (Z.C.); (T.L.M.t.H.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence: (Z.C.); (T.L.M.t.H.)
| |
Collapse
|
59
|
Thyagarajan A, Tsai KY, Sahu RP. MicroRNA heterogeneity in melanoma progression. Semin Cancer Biol 2019; 59:208-220. [PMID: 31163254 PMCID: PMC6885122 DOI: 10.1016/j.semcancer.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
The altered expression of miRNAs has been linked with neocarcinogenesis or the development of human malignancies including melanoma. Of significance, multiple clinical studies have documented that distinct sets of microRNAs (miRNAs) could be utilized as prognostic biomarkers for cancer development or predict the outcomes of treatment responses. To that end, an in-depth validation of such differentially expressed miRNAs is necessary in diverse settings of cancer patients in order to devise novel approaches to control tumor growth and/or enhance the efficacy of clinically-relevant therapeutic options. Moreover, considering the heterogeneity and sophisticated regulation of miRNAs, the precise delineation of their cellular targets could also be explored to design personalized medicine. Given the significance of miRNAs in regulating several key cellular processes of tumor cells including cell cycle progression and apoptosis, we review the findings of such miRNAs implicated in melanoma tumorigenesis. Understanding the novel mechanistic insights of such miRNAs will be useful for developing diagnostic or prognostic biomarkers or devising future therapeutic intervention for malignant melanoma.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology & Tumor Biology at H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA.
| |
Collapse
|
60
|
Sutton SK, Cheung BB, Massudi H, Tan O, Koach J, Mayoh C, Carter DR, Marshall GM. Heterozygous loss of keratinocyte TRIM16 expression increases melanocytic cell lesions and lymph node metastasis. J Cancer Res Clin Oncol 2019; 145:2241-2250. [PMID: 31342168 PMCID: PMC6708510 DOI: 10.1007/s00432-019-02981-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/16/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE The tripartite motif (TRIM)16 acts as a tumour suppressor in both squamous cell carcinoma (SCC) and melanoma. TRIM16 is known to be secreted by keratinocytes, but no studies have been reported yet to assess the relationship between TRIM16 keratinocyte expression and melanoma development. METHODS To study the role of TRIM16 in skin cancer development, we developed a keratinocyte TRIM16-specific knockout mouse model, and used the classical two-stage skin carcinogenesis challenge method, to assess the loss of keratinocyte TRIM16 on both papilloma, SCC and melanoma development in the skin after topical carcinogen treatment. RESULTS Heterozygous, but not homozygous, TRIM16 knockout mice exhibited an accelerated development of skin papillomas and melanomas, larger melanoma lesions and an increased potential for lymph node metastasis. CONCLUSION This study provides the first evidence that keratinocyte loss of the putative melanoma tumour suppressor protein, TRIM16, enhances melanomagenesis. Our data also suggest that TRIM16 expression in keratinocytes is involved in cross talk between keratinocytes and melanocytes, and has a role in melanoma tumorigenesis.
Collapse
Affiliation(s)
- Selina K Sutton
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, 2031, Australia.
| | - Hassina Massudi
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Owen Tan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Biomedical Engineering, University of Technology Sydney, Ultimo, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
61
|
Crawford M, Leclerc V, Barr K, Dagnino L. Essential Role for Integrin-Linked Kinase in Melanoblast Colonization of the Skin. J Invest Dermatol 2019; 140:425-434.e10. [PMID: 31330146 DOI: 10.1016/j.jid.2019.07.681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Valerie Leclerc
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Kevin Barr
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
62
|
Dual role of laminin‑511 in regulating melanocyte migration and differentiation. Matrix Biol 2019; 80:59-71. [DOI: 10.1016/j.matbio.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022]
|
63
|
Abstract
In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.
Collapse
|
64
|
Kiszner G, Balla P, Wichmann B, Barna G, Baghy K, Nemeth IB, Varga E, Furi I, Toth B, Krenacs T. Exploring Differential Connexin Expression across Melanocytic Tumor Progression Involving the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11020165. [PMID: 30717194 PMCID: PMC6406766 DOI: 10.3390/cancers11020165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
The incidence of malignant melanoma, one of the deadliest cancers, continues to increase. Here we tested connexin (Cx) expression in primary melanocytes, melanoma cell lines and in a common nevus, dysplastic nevus, and thin, thick, and metastatic melanoma tumor progression series involving the tumor microenvironment by utilizing in silico analysis, qRT-PCR, immunocyto-/histochemistry and dye transfer tests. Primary melanocytes expressed GJA1/Cx43, GJA3/Cx46 and low levels of GJB2/Cx26 and GJC3/Cx30.2 transcripts. In silico data revealed downregulation of GJA1/Cx43 and GJB2/Cx26 mRNA, in addition to upregulated GJB1/Cx32, during melanoma progression. In three melanoma cell lines, we also showed the loss of GJA1/Cx43 and the differential expression of GJB1/Cx32, GJB2/Cx26, GJA3/Cx46 and GJC3/Cx30.2. The dominantly paranuclear localization of connexin proteins explained the ~10–90 times less melanoma cell coupling compared to melanocytes. In melanocytic tumor tissues, we confirmed the loss of Cx43 protein, fall of cell membrane and elevated paranuclear Cx32 with moderately increased cytoplasmic Cx26 and paranuclear Cx30.2 positivity during tumor progression. Furthermore, we found Cx43, Cx26 and Cx30 proteins upregulated in the melanoma adjacent epidermis, and Cx43 in the tumor flanking vessels. Therefore, differential connexin expression is involved in melanocytic tumor progression where varying connexin isotypes and levels reflect tumor heterogeneity-related bidirectional adaptive interactions with the microenvironment.
Collapse
Affiliation(s)
- Gergo Kiszner
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| | - Peter Balla
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| | - Barna Wichmann
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
| | - Gabor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| | - Kornelia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| | - Istvan Balazs Nemeth
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.
| | - Erika Varga
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.
| | - Istvan Furi
- 2nd Department of Internal Medicine, Semmelweis University, H-1088 Budapest, Hungary.
| | - Bela Toth
- Department of Dermatology, Venereology and Dermato-oncology, Semmelweis University, H-1085 Budapest, Hungary.
| | - Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary.
| |
Collapse
|
65
|
Shah MK, Leary EA, Darling EM. Integration of hyper-compliant microparticles into a 3D melanoma tumor model. J Biomech 2018; 82:46-53. [PMID: 30392774 DOI: 10.1016/j.jbiomech.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
Multicellular spheroids provide a physiologically relevant platform to study the microenvironment of tumors and therapeutic applications, such as microparticle-based drug delivery. The goal of this study was to investigate the incorporation/penetration of compliant polyacrylamide microparticles (MPs), into either cancer or normal human cell spheroids. Incorporation of collagen-1-coated MPs (stiffness: 0.1 and 9 kPa; diameter: 15-30 µm) into spheroids (diameter ∼100 µm) was tracked for up to 22 h. Results indicated that cells within melanoma spheroids were more influenced by MP mechanical properties than cells within normal cell spheroids. Melanoma spheroids had a greater propensity to incorporate and displace the more compliant MPs over time. Mature spheroids composed of either cell type were able to recognize and integrate MPs. While many tumor models exist to study drug delivery and efficacy, the study of uptake and incorporation of cell-sized MPs into established spheroids/tissues or tumors has been limited. The ability of hyper-compliant MPs to successfully penetrate 3D tumor models with natural extracellular matrix deposition provides a novel platform for potential delivery of drugs and other therapeutics into the core of tumors and micrometastases.
Collapse
Affiliation(s)
- Manisha K Shah
- Center for Biomedical Engineering, Brown University, RI, USA
| | | | - Eric M Darling
- Center for Biomedical Engineering, Brown University, RI, USA; Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, RI, USA; Department of Orthopaedics, Brown University, RI, USA; School of Engineering, Brown University, RI, USA.
| |
Collapse
|
66
|
Ferreira LM, Cervi VF, Sari MHM, Barbieri AV, Ramos AP, Copetti PM, de Brum GF, Nascimento K, Nadal JM, Farago PV, Sagrillo MR, Nogueira CW, Cruz L. Diphenyl diselenide loaded poly(ε-caprolactone) nanocapsules with selective antimelanoma activity: Development and cytotoxic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:1-9. [DOI: 10.1016/j.msec.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
|
67
|
Abstract
DDR1 and DDR2 are expressed in skin but their expression differs according to the skin compartment, epidermis, dermis, hypodermis and to the embryonic origin of the cells. In skin, it seems that during physiological processes such as wound healing or pathological processes such as tumorigenesis or systemic sclerosis development only one of the DDR is dysregulated. Furthermore, the altered DDR in pathological process is not necessarily the DDR implicated in basal homeostasis. Indeed, in epidermis, while DDR1 is the main DDR involved in melanocyte homeostasis, DDR2 seems to be the main DDR implicated in melanoma. On the contrary, in dermis, while DDR2 is necessary for normal wound healing, dysregulation of DDR1 is associated with abnormal wound healing leading to keloid. In conclusion, targeting DDR could be a therapeutic solution, however side effects have to be managed carefully.
Collapse
Affiliation(s)
- Muriel Cario
- a INSERM 1035 , University Bordeaux , Bordeaux , France
| |
Collapse
|
68
|
Matsumoto Y, Furusawa Y, Uzawa A, Hirayama R, Koike S, Ando K, Tsuboi K, Sakurai H. Antimetastatic Effects of Carbon-Ion Beams on Malignant Melanomas. Radiat Res 2018; 190:412-423. [DOI: 10.1667/rr15075.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshitaka Matsumoto
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Uzawa
- Department of Charged Particle Therapy Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Sachiko Koike
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Koichi Ando
- Medicine & Biology Division, Heavy Ion Medical Center, Gunma University, Gunma, 371-8511, Japan
| | - Koji Tsuboi
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Hideyuki Sakurai
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
69
|
Bornyl cis-4-Hydroxycinnamate Suppresses Cell Metastasis of Melanoma through FAK/PI3K/Akt/mTOR and MAPK Signaling Pathways and Inhibition of the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2018; 19:ijms19082152. [PMID: 30042328 PMCID: PMC6121392 DOI: 10.3390/ijms19082152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022] Open
Abstract
Bornyl cis-4-hydroxycinnamate, a bioactive compound isolated from Piper betle stems, has the potential for use as an anti-cancer agent. This study investigated the effects of bornyl cis-4-hydroxycinnamate on cell migration and invasion in melanoma cells. Cell migration and invasion were compared in A2058 and A375 melanoma cell lines treated with/without bornyl cis-4-hydroxycinnamate (1–6 µM). To examine whether bornyl cis-4-hydroxycinnamate has a potential anti-metastatic effect on melanoma cells, cell migration and invasion assays were performed using a Boyden chamber assay and a transwell chamber in A2058 and A375 cells. Gelatin zymography was employed to determine the enzyme activities of MMP-2 and MMP-9. Cell lysates were collected for Western blotting analysis of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of metalloproteinase-1/2 (TIMP-1/2), as well as key molecules in the mitogen-activated protein kinase (MAPK), focal adhesion kinase (FAK)/ phosphatidylinositide-3 kinases (PI3K)/Akt/ mammalian target of rapamycin (mTOR), growth factor receptor-bound protein 2 (GRB2) signaling pathways. Our results demonstrated that bornyl cis-4-hydroxycinnamate is a potentially useful agent that inhibits melanoma cell migration and invasion, and altered melanoma cell metastasis by reducing MMP-2 and MMP-9 expression through inhibition of the FAK/PI3K/Akt/mTOR, MAPK, and GRB2 signaling pathways. Moreover, bornyl cis-4-hydroxycinnamate inhibited the process of the epithelial-to-mesenchymal transition in A2058 and A375 melanoma cells. These findings suggested that bornyl cis-4-hydroxycinnamate has potential as a chemotherapeutic agent, and warrants further investigation for its use in the management of human melanoma.
Collapse
|
70
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
71
|
Nemlich Y, Baruch EN, Besser MJ, Shoshan E, Bar-Eli M, Anafi L, Barshack I, Schachter J, Ortenberg R, Markel G. ADAR1-mediated regulation of melanoma invasion. Nat Commun 2018; 9:2154. [PMID: 29855470 PMCID: PMC5981216 DOI: 10.1038/s41467-018-04600-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Melanoma cells use different migratory strategies to exit the primary tumor mass and invade surrounding and subsequently distant tissues. We reported previously that ADAR1 expression is downregulated in metastatic melanoma, thereby facilitating proliferation. Here we show that ADAR1 silencing enhances melanoma cell invasiveness and ITGB3 expression. The enhanced invasion is reversed when ITGB3 is blocked with antibodies. Re-expression of wild-type or catalytically inactive ADAR1 establishes this mechanism as independent of RNA editing. We demonstrate that ADAR1 controls ITGB3 expression both at the post-transcriptional and transcriptional levels, via miR-22 and PAX6 transcription factor, respectively. These are proven here as direct regulators of ITGB3 expression. miR-22 expression is controlled by ADAR1 via FOXD1 transcription factor. Clinical relevance is demonstrated in patient-paired progression tissue microarray using immunohistochemistry. The novel ADAR1-dependent and RNA-editing-independent regulation of invasion, mediated by ITGB3, strongly points to a central involvement of ADAR1 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Yael Nemlich
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel
| | - Erez Nissim Baruch
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel.,Sackler Faculty of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv, 69978, Israel
| | - Michal Judith Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel.,Sackler Faculty of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv, 69978, Israel
| | - Einav Shoshan
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liat Anafi
- Department of Pathology, Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel
| | - Rona Ortenberg
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel
| | - Gal Markel
- Ella Lemelbaum Institute for Immuno-Oncology, Ramat-Gan, 52621, Israel. .,Sackler Faculty of Medicine, Department of Clinical Microbiology and Immunology, Tel Aviv, 69978, Israel. .,Talpiot Medical Leadership Program, Sheba Medical Center, Ramat-Gan, 52621, Israel.
| |
Collapse
|
72
|
Pu W, Shang Y, Shao Q, Yuan X. miR-146a promotes cell migration and invasion in melanoma by directly targeting SMAD4. Oncol Lett 2018; 15:7111-7117. [PMID: 29731876 PMCID: PMC5921230 DOI: 10.3892/ol.2018.8172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 01/27/2023] Open
Abstract
Previous studies have explored the functions of microRNA (miR)-146a in different types of cancer through mediating different targets. However, the roles of miR-146a in malignant melanoma (MM) cell migration and invasion remain largely elusive. In the present study, the potential molecular function of miR-146a in MM was investigated. Reverse transcription-quantitative polymerase chain reaction was utilized to detect miR-146a expression in MM tissues and cell lines. A Transwell assay was performed to confirm the ability of migration and invasion. A luciferase assay and biological analysis were used to predict and determine the targets of miR-146a. The expression of miR-146a was upregulated in melanoma tissues and cell lines. Clinicopathological analysis indicated that the miR-146a level was negatively correlated with the progression of melanoma. Abnormal expression of miR-146a promoted cell migration and invasion in MM cells. Additionally, it was also observed that Mothers against decapentaplegic homolog 4 (SMAD4) was a novel target of miR-146a in MM. SMAD4 was negatively associated with miR-146a in MM and abnormal expression of SMAD4 attenuated miR-146a-mediated promotion of cell migration and invasion. In conclusion, miR-146a functioned as an oncogene by directly targeting SMAD4 and it may be a novel diagnostic and therapeutic marker of MM.
Collapse
Affiliation(s)
- Wei Pu
- Department of Dermatology, The Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Yongming Shang
- Department of Dermatology, Zibo Traditional Chinese Medicine Hospital, Zibo, Shandong 255300, P.R. China
| | - Qiang Shao
- Department of Dermatology, The Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Xinpeng Yuan
- Department of Dermatology, The Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
73
|
Yi Y, Wang Z, Sun Y, Chen J, Zhang B, Wu M, Li T, Hu L, Zeng J. The EMT-related transcription factor snail up-regulates FAPα in malignant melanoma cells. Exp Cell Res 2018; 364:160-167. [PMID: 29410133 DOI: 10.1016/j.yexcr.2018.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
FAPα is a cell surface serine protease, mainly expressed in tumor stromal fibroblasts in more than 90% of human epithelial carcinomas. Due to its almost no expression in normal tissues and its tumor-promoting effects, FAPα has been studied as a novel potential target for antitumor therapy. However, the regulation mechanism on FAPα expression is poorly understood. In this study, we found that overexpression of snail significantly increased the mRNA and protein expression levels of FAPα in malignant melanoma B16 and SK-MEL-28 cells. Overexpression of snail increased FAPα promoter activity remarkably. Snail could directly bind to FAPα promoter to regulate FAPα expression. Moreover, snail expression was positively correlated to FAPα expression in human cutaneous malignant melanoma. Furthermore, knockdown of FAPα markedly reduced snail-induced cell migration. Overall, our findings provide a novel regulation mechanism on FAPα expression and highlight the role of snail/FAPα axis as a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| | - Zhaotong Wang
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Junhu Chen
- Department of Biological Products Surveillance and Evaluation, Institute of Biological Products and Materia Medica, Guangzhou 510440, Guangdong, China
| | - Biao Zhang
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Tianyu Li
- Department of Surgery, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jun Zeng
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
74
|
Boyce ST, Lalley AL. Tissue engineering of skin and regenerative medicine for wound care. BURNS & TRAUMA 2018; 6:4. [PMID: 30009192 PMCID: PMC6040609 DOI: 10.1186/s41038-017-0103-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Engineering of biologic skin substitutes has progressed over time from individual applications of skin cells, or biopolymer scaffolds, to combinations of cells and scaffolds for treatment, healing, and closure of acute and chronic skin wounds. Skin substitutes may be categorized into three groups: acellular scaffolds, temporary substitutes containing allogeneic skin cells, and permanent substitutes containing autologous skin cells. Combined use of acellular dermal substitutes with permanent skin substitutes containing autologous cells has been shown to provide definitive wound closure in burns involving greater than 90% of the total body surface area. These advances have contributed to reduced morbidity and mortality from both acute and chronic wounds but, to date, have failed to replace all of the structures and functions of the skin. Among the remaining deficiencies in cellular or biologic skin substitutes are hypopigmentation, absence of stable vascular and lymphatic networks, absence of hair follicles, sebaceous and sweat glands, and incomplete innervation. Correction of these deficiencies depends on regulation of biologic pathways of embryonic and fetal development to restore the full anatomy and physiology of uninjured skin. Elucidation and integration of developmental biology into future models of biologic skin substitutes promises to restore complete anatomy and physiology, and further reduce morbidity from skin wounds and scar. This article offers a review of recent advances in skin cell thrapies and discusses the future prospects in cutaneous regeneration.
Collapse
Affiliation(s)
- Steven T Boyce
- 1Department of Surgery, University of Cincinnati, P.O. Box 670558, Cincinnati, Ohio 45267-0558 USA.,2Research Department, Shriners Hospitals for Children, Cincinnati, Ohio USA
| | - Andrea L Lalley
- 2Research Department, Shriners Hospitals for Children, Cincinnati, Ohio USA
| |
Collapse
|
75
|
Abstract
Harnessing female sex hormones may improve how all patients with melanoma respond to treatment.
Collapse
Affiliation(s)
- Keiran Sm Smalley
- Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, United States.,Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, United States
| |
Collapse
|
76
|
Peptide-Based Radiopharmaceuticals for Molecular Imaging of Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:135-158. [DOI: 10.1007/978-3-319-99286-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
77
|
Romano G, Kwong LN. miRNAs, Melanoma and Microenvironment: An Intricate Network. Int J Mol Sci 2017; 18:ijms18112354. [PMID: 29112174 PMCID: PMC5713323 DOI: 10.3390/ijms18112354] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
miRNAs are central players in cancer biology and they play a pivotal role in mediating the network communication between tumor cells and their microenvironment. In melanoma, miRNAs can impair or facilitate a wide array of processes, and here we will focus on: the epithelial to mesenchymal transition (EMT), the immune milieu, and metabolism. Multiple miRNAs can affect the EMT process, even at a distance, for example through exosome-mediated mechanisms. miRNAs also strongly act on some components of the immune system, regulating the activity of key elements such as antigen presenting cells, and can facilitate an immune evasive/suppressive phenotype. miRNAs are also involved in the regulation of metabolic processes, specifically in response to hypoxic stimuli where they can mediate the metabolic switch from an oxidative to a glycolytic metabolism. Overall, this review discusses and summarizes recent findings on miRNA regulation in the melanoma tumor microenvironment, analyzing their potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
78
|
Arozarena I, Wellbrock C. Targeting invasive properties of melanoma cells. FEBS J 2017; 284:2148-2162. [PMID: 28196297 DOI: 10.1111/febs.14040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/11/2024]
Abstract
Melanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic. In this review, we assess the major contributions towards the understanding of the molecular biology of melanoma cell invasion with a focus on melanoma specific traits. These traits are based on the neural crest origin of melanoma cells and explain their intrinsic invasive nature. A particular emphasis is given not only to lineage specific signalling mediated by TGFβ, and noncanonical and canonical WNT signalling, but also to the role of PDE5A and RHO-GTPases in modulating modes of melanoma cell invasion. We discuss existing caveats in the current understanding of the metastatic properties of melanoma cells, as well as the relevance of the 'phenotype switch' model and 'co-operativity' between different phenotypes in heterogeneous tumours. At the centre of these phenotypes is the lineage commitment factor microphthalmia-associated transcription factor, one of the most crucial regulators of the balance between de-differentiation (neural crest specific gene expression) and differentiation (melanocyte specific gene expression) that defines invasive and noninvasive melanoma cell phenotypes. Finally, we provide insight into the current evidence linking resistance to targeted therapies to invasive properties of melanoma cells.
Collapse
Affiliation(s)
- Imanol Arozarena
- Cancer Signalling Group, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
79
|
Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations. Proc Natl Acad Sci U S A 2017; 114:E5750-E5759. [PMID: 28655842 DOI: 10.1073/pnas.1700054114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell polarization and directional cell migration can display random, persistent, and oscillatory dynamic patterns. However, it is not clear whether these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent, and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all of these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechanochemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.
Collapse
|
80
|
Holmes WR, Park J, Levchenko A, Edelstein-Keshet L. A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns. PLoS Comput Biol 2017; 13:e1005524. [PMID: 28472054 PMCID: PMC5436877 DOI: 10.1371/journal.pcbi.1005524] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/18/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
Protrusion and retraction of lamellipodia are common features of eukaryotic cell motility. As a cell migrates through its extracellular matrix (ECM), lamellipod growth increases cell-ECM contact area and enhances engagement of integrin receptors, locally amplifying ECM input to internal signaling cascades. In contrast, contraction of lamellipodia results in reduced integrin engagement that dampens the level of ECM-induced signaling. These changes in cell shape are both influenced by, and feed back onto ECM signaling. Motivated by experimental observations on melanoma cells lines (1205Lu and SBcl2) migrating on fibronectin (FN) coated topographic substrates (anisotropic post-density arrays), we probe this interplay between intracellular and ECM signaling. Experimentally, cells exhibited one of three lamellipodial dynamics: persistently polarized, random, or oscillatory, with competing lamellipodia oscillating out of phase (Park et al., 2017). Pharmacological treatments, changes in FN density, and substrate topography all affected the fraction of cells exhibiting these behaviours. We use these observations as constraints to test a sequence of hypotheses for how intracellular (GTPase) and ECM signaling jointly regulate lamellipodial dynamics. The models encoding these hypotheses are predicated on mutually antagonistic Rac-Rho signaling, Rac-mediated protrusion (via activation of Arp2/3 actin nucleation) and Rho-mediated contraction (via ROCK phosphorylation of myosin light chain), which are coupled to ECM signaling that is modulated by protrusion/contraction. By testing each model against experimental observations, we identify how the signaling layers interact to generate the diverse range of cell behaviors, and how various molecular perturbations and changes in ECM signaling modulate the fraction of cells exhibiting each. We identify several factors that play distinct but critical roles in generating the observed dynamic: (1) competition between lamellipodia for shared pools of Rac and Rho, (2) activation of RhoA by ECM signaling, and (3) feedback from lamellipodial growth or contraction to cell-ECM contact area and therefore to the ECM signaling level.
Collapse
Affiliation(s)
- William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - JinSeok Park
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | | |
Collapse
|
81
|
Minimal residual disease in melanoma: circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146. Cell Death Discov 2017; 3:17005. [PMID: 28280601 PMCID: PMC5337524 DOI: 10.1038/cddiscovery.2017.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumour cells (CTCs), identified in numerous cancers including melanoma, are unquestionably considered valuable and useful as diagnostic and prognostic markers. They can be detected at all melanoma stages and may persist long after treatment. A crucial step in metastatic processes is the intravascular invasion of neoplastic cells as circulating melanoma cells (CMCs). Only a small percentage of these released cells are efficient and capable of colonizing with a strong metastatic potential. CMCs' ability to survive in circulation express a variety of genes with continuous changes of signal pathways and proteins to escape immune surveillance. This makes it difficult to detect them; therefore, specific isolation, enrichment and characterization of CMC population could be useful to monitor disease status and patient clinical outcome. Overall and disease-free survival have been correlated with the presence of CMCs. Specific melanoma antigens, in particular MCAM (MUC18/MelCAM/CD146), could be a potentially useful tool to isolate CMCs as well as be a prognostic, predictive biomarker. These are the areas reviewed in the article.
Collapse
|
82
|
Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol Res 2017; 119:327-346. [PMID: 28242334 DOI: 10.1016/j.phrs.2017.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous carcinoma, which has occupied a peculiar place among worldwide populations, is commonly responsible for the considerably increasing morbidity and mortality rates. Currently available medical procedures fail to completely avoid cutaneous carcinoma development or to prevent mortality. Cancer chemoprevention, as an alternative strategy, is being considered to reduce the incidence and burden of cancers through chemical agents. Derived from dietary foods, phytochemicals have become safe and reliable compounds for the chemoprevention of cutaneous carcinoma by relieving multiple pathological processes, including oxidative damage, epigenetic alteration, chronic inflammation, angiogenesis, etc. In this review, we presented comprehensive knowledges, main molecular mechanisms for the initiation and development of cutaneous carcinoma as well as effects of various diet phytochemicals on chemoprevention.
Collapse
|
83
|
Hofschröer V, Koch KA, Ludwig FT, Friedl P, Oberleithner H, Stock C, Schwab A. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells. Sci Rep 2017; 7:42369. [PMID: 28205573 PMCID: PMC5304230 DOI: 10.1038/srep42369] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
Detachment of cells from the primary tumour precedes metastatic progression by
facilitating cell release into the tissue. Solid tumours exhibit altered pH
homeostasis with extracellular acidification. In human melanoma, the
Na+/H+ exchanger NHE1 is an important modifier of
the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by
extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix
unravelled the efficacy of cell-cell contact loosening and 3D emigration into an
environment mimicking physiological confinement. Adhesive interaction strength
between individual MV3 cells was quantified using atomic force microscopy and
validated by multicellular aggregation assays. Extracellular acidification from
pHe7.4 to 6.4 decreases cell migration and invasion but increases
single cell detachment from the spheroids. Acidification and NHE1 overexpression
both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces
and adhesion energies. Multicellular aggregation and spheroid formation are strongly
impaired under acidification or NHE1 overexpression. We show a clear dependence of
melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects
are opposite to cell-matrix interactions that are strengthened by protons extruded
via NHE1. We conclude that these opposite effects of NHE1 act synergistically during
the metastatic cascade.
Collapse
Affiliation(s)
| | | | | | - Peter Friedl
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Nijmegen, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States.,Cancer Genomics Center, CG Utrecht, The Netherlands
| | | | - Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
84
|
Yan S, Holderness BM, Li Z, Seidel GD, Gui J, Fisher JL, Ernstoff MS. Epithelial-Mesenchymal Expression Phenotype of Primary Melanoma and Matched Metastases and Relationship with Overall Survival. Anticancer Res 2017; 36:6449-6456. [PMID: 27919967 DOI: 10.21873/anticanres.11243] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/10/2022]
Abstract
E-Cadherin and N-cadherin are important components of epithelial-mesenchymal transition (EMT). The majority of studies on EMT in melanoma have been performed with cultured cell lines or pooled melanoma samples. The goal of our study was to evaluate the expression of E-cadherin and N-cadherin in matched tissue samples from primary and metastatic sites of melanoma and to determine the correlation with survival outcome. We analyzed tissues from 42 melanoma primary lesions and their corresponding metastases, as well as 53 benign nevi, for expression levels of E-cadherin and N-cadherin using immunohistochemical methods. There were heterogenous expression patterns of E- and N-cadherin in both primary and metastatic melanomas. Overall, metastatic tumor showed a decrease in E-cadherin expression and an increase in N-cadherin expression compared to the primary tumor, although the difference did not reach statistical significance (p=0.24 and 0.28 respectively). A switch of membranous expression from E-cadherin to N-cadherin from primary to metastatic melanoma was seen in eight patients (19%). Aberrant E-cadherin expression (defined as negative to weak membranous E-cadherin or positive nuclear E-cadherin expression) was more frequently observed in metastatic than in primary melanomas (p=0.03). Multivariate analysis showed that absence of N-cadherin expression in primary melanomas and the presence of aberrant E-cadherin expression in primary melanomas and metastatic melanomas was associated with a significantly worse overall survival. Our data support the importance of E-cadherin and N-cadherin proteins in melanoma progression and patient survival.
Collapse
Affiliation(s)
- Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, U.S.A
| | - Britt M Holderness
- Department of Hematology/Oncology, Dartmouth Hitchcock Medical Center, Lebanon, NH, U.S.A
| | - Zhongze Li
- Biostatistics Shared Resource, Geisel School of Medicine at Dartmouth, Lebanon, NH, U.S.A
| | - Gregory D Seidel
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, U.S.A
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, U.S.A
| | - Jan L Fisher
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, U.S.A
| | - Marc S Ernstoff
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, U.S.A.
| |
Collapse
|
85
|
Increased Angiogenesis and Lymphangiogenesis in Metastatic Sentinel Lymph Nodes Is Associated With Nonsentinel Lymph Node Involvement and Distant Metastasis in Patients With Melanoma. Am J Dermatopathol 2017; 38:338-46. [PMID: 26909582 DOI: 10.1097/dad.0000000000000488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lymph node angio- and lymphangio-genesis have been shown to play an important role in the premetastatic niche of sentinel lymph nodes. In the current study we have investigated the association of angio- and lympangio-genesis related parameters in metastatic sentinel lymph nodes of patients with melanoma with the presence of nonsentinel and distant organ metastasis. Peritumoral and intratumoral relative blood and lymphatic vessel areas (evaluated by Chalkley method), blood and lymphatic microvessel densities, and the rates of blood and lymphatic vessel proliferation were assessed in primary tumors and sentinel lymph node metastasis of 44 patients with melanoma using CD34/Ki-67 and D240/Ki-67 immunohistochemical double staining. Primary melanoma exhibited significantly higher rate of lymphatic proliferation compared with its lymph node metastasis (P < 0.05), while lymph node metastasis showed significantly higher rate of blood vessel proliferation (P < 0.05). Using multivariate logistic regression model, the rate of peritumoral lymphatic proliferation was inversely associated with positive nonsentinel lymph node status (P < 0.05), whereas the rate of intratumoral blood vessel proliferation was associated with distant organ metastasis (P < 0.05). Using multivariate Cox regression analysis, the rate of intratumoral blood vessel proliferation was also inversely associated with overall survival of patients with melanoma (P < 0.05).
Collapse
|
86
|
AHNAK is downregulated in melanoma, predicts poor outcome, and may be required for the expression of functional cadherin-1. Melanoma Res 2017; 26:108-16. [PMID: 26672724 PMCID: PMC4777222 DOI: 10.1097/cmr.0000000000000228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to further our understanding of the transformation process by identifying differentially expressed proteins in melanocytes compared with melanoma cell lines. Tandem mass spectrometry incorporating iTRAQ reagents was used as a screen to identify and comparatively quantify the expression of proteins in membrane-enriched samples isolated from primary human melanocytes or three melanoma cells lines. Real-time PCR was used to validate significant hits. Immunohistochemistry was used to validate the expression of proteins of interest in melanocytes in human skin and in melanoma-infiltrated lymph nodes. Publically available databases were examined to assess mRNA expression and correlation to patient outcome in a larger cohort of samples. Finally, preliminary functional studies were carried out using siRNAs to reduce the expression of a protein of interest in primary melanocytes and in a keratinocyte cell line. Two proteins, AHNAK and ANXA2, were significantly downregulated in the melanoma cell lines compared with melanocytes. Downregulation was confirmed in tumor cells in a subset of human melanoma-infiltrated human lymph nodes compared with melanocytes in human skin. Examination of Gene Expression Omnibus database data sets suggests that downregulation of AHNAK mRNA and mutation of the AHNAK gene are common in metastatic melanoma and correlates to a poor outcome. Knockdown of AHNAK in primary melanocytes and in a keratinocyte cell line led to a reduction in detectable cadherin-1. This is the first report that we are aware of which correlates a loss of AHNAK with melanoma and poor patient outcome. We hypothesize that AHNAK is required for the expression of functional cadherin-1.
Collapse
|
87
|
Olivos DJ, Mayo LD. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness. Int J Mol Sci 2016; 17:ijms17121982. [PMID: 27898034 PMCID: PMC5187782 DOI: 10.3390/ijms17121982] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/15/2023] Open
Abstract
Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53's functions in non-malignant stem cells and cancer stem-like cells (CSCs) and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF) roles in stemness. Mutant p53 (mutp53) GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT) and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53) function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs) are poorly understood thus far. Further elucidation of p53's effects on stemness could lead to novel therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- David J Olivos
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
88
|
Varamo C, Occelli M, Vivenza D, Merlano M, Lo Nigro C. MicroRNAs role as potential biomarkers and key regulators in melanoma. Genes Chromosomes Cancer 2016; 56:3-10. [PMID: 27561079 DOI: 10.1002/gcc.22402] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma (MM) is a highly aggressive skin cancer with high incidence worldwide. It originates from melanocytes and is characterized by invasion, early metastasis and despite the use of new drugs it is still characterized by high mortality. Since an early diagnosis determines a better prognosis, it is important to explore novel prognostic markers in the management of patients with MM. microRNAs (miRNAs) are small (∼22 nucleotides) single-stranded non-coding RNAs that negatively regulate the expression of more than 60% of human genes.miRNAs alterations are involved in several cancers, including MM, where a differential expression for some of them has been reported between healthy controls and MM patients. Moreover, since miRNAs are stable and easily detectable in body fluids, they might be considered as robust candidate biomarkers useful to identify risk of MM, to diagnose an early lesion and/or an early metastatic disease. This review highlights the importance of miRNAs as risk factors, prognostic factors and their role as molecular regulator in the development and progression of MM. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Varamo
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marcella Occelli
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Daniela Vivenza
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marco Merlano
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Cristiana Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| |
Collapse
|
89
|
Dror S, Sander L, Schwartz H, Sheinboim D, Barzilai A, Dishon Y, Apcher S, Golan T, Greenberger S, Barshack I, Malcov H, Zilberberg A, Levin L, Nessling M, Friedmann Y, Igras V, Barzilay O, Vaknine H, Brenner R, Zinger A, Schroeder A, Gonen P, Khaled M, Erez N, Hoheisel JD, Levy C. Melanoma miRNA trafficking controls tumour primary niche formation. Nat Cell Biol 2016; 18:1006-17. [DOI: 10.1038/ncb3399] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
|
90
|
Díaz-Núñez M, Díez-Torre A, De Wever O, Andrade R, Arluzea J, Silió M, Aréchaga J. Histone deacetylase inhibitors induce invasion of human melanoma cells in vitro via differential regulation of N-cadherin expression and RhoA activity. BMC Cancer 2016; 16:667. [PMID: 27549189 PMCID: PMC4994393 DOI: 10.1186/s12885-016-2693-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/09/2016] [Indexed: 01/11/2023] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) exert multiple cytotoxic actions on cancer cells. Currently, different synthetic HDACi are in clinical use or clinical trials; nevertheless, since both pro-invasive and anti-invasive activities have been described, there is some controversy about the effect of HDACi on melanoma cells. Methods Matrigel and Collagen invasion assays were performed to evaluate the effect of several HDACi (Butyrate, Trichostatin A, Valproic acid and Vorinostat) on two human melanoma cell line invasion (A375 and HT-144). The expression of N- and E-Cadherin and the activity of the RhoA GTPase were analyzed to elucidate the mechanisms involved in the HDACi activity. Results HDACi showed a pro-invasive effect on melanoma cells in vitro. This effect was accompanied by an up-regulation of N-cadherin expression and an inhibition of RhoA activity. Moreover, the down-regulation of N-cadherin through blocking antibodies or siRNA abrogated the pro-invasive effect of the HDACi and, additionally, the inhibition of the Rho/ROCK pathway led to an increase of melanoma cell invasion similar to that observed with the HDACi treatments. Conclusion These results suggest a role of N-cadherin and RhoA in HDACi induced invasion and call into question the suitability of some HDACi as antitumor agents for melanoma patients.
Collapse
Affiliation(s)
- María Díaz-Núñez
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain
| | - Alejandro Díez-Torre
- Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Ricardo Andrade
- Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Arluzea
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.,Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Margarita Silió
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain
| | - Juan Aréchaga
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain. .,Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain. .,Department of Cell Biology & Histology, Faculty of Medicine & Dentistry, University of the Basque Country, E-48940, Leioa, Spain.
| |
Collapse
|
91
|
Das AM, Bolkestein M, van der Klok T, Oude Ophuis CMC, Vermeulen CE, Rens JAP, Dinjens WNM, Atmodimedjo PN, Verhoef C, Koljenović S, Smits R, Ten Hagen TLM, Eggermont AMM. Tissue inhibitor of metalloproteinase-3 (TIMP3) expression decreases during melanoma progression and inhibits melanoma cell migration. Eur J Cancer 2016; 66:34-46. [PMID: 27522248 DOI: 10.1016/j.ejca.2016.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/11/2016] [Accepted: 06/21/2016] [Indexed: 02/09/2023]
Abstract
AIMS Malignant melanoma is the most aggressive form of skin cancer, and metastatic dissemination to regional and visceral sites is responsible for the majority of melanoma-related mortalities. In a recent study by our group, we observed reduced expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in the majority of stage III melanoma samples studied. TIMP3 has been reported as a tumour suppressor in several human malignancies, with reduced expression correlating with poor clinical outcome. In this study, we investigated the changes in TIMP3 expression during melanoma progression. PATIENTS AND METHODS TIMP3 expression was analysed by immunohistochemistry in sequential archived tumour material from stage I/II, stage III and stage IV samples from melanoma patients (n = 33). Protein expression was investigated for associations with disease-free survival and overall survival. Methylation status of the gene promoter was determined using methylation-specific PCR. In vitro assays were used to investigate the functional consequences of TIMP3 expression on behavioural aspects of melanoma cells. RESULTS We show that TIMP3 expression decreases with melanoma progression although no significant clinical associations were obtained. Analysis of the status of promoter methylation using methylation-specific PCR revealed it to be a low-frequency event in melanoma. Additionally, through gene modulation experiments in melanoma cell lines, we show that TIMP3 negatively regulates cell migration, invasion and anoikis resistance. CONCLUSIONS Collectively, our data suggests that TIMP3 functions as a tumour suppressor in melanoma and negatively regulates several aspects of the metastatic cascade.
Collapse
Affiliation(s)
- Asha M Das
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Michiel Bolkestein
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thom van der Klok
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Cindy E Vermeulen
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joost A P Rens
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Senada Koljenović
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander M M Eggermont
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands; Gustave Roussy Cancer Campus Grand Paris, Villejuif, France.
| |
Collapse
|
92
|
García-Fernández M, Karras P, Checinska A, Cañón E, Calvo GT, Gómez-López G, Cifdaloz M, Colmenar A, Espinosa-Hevia L, Olmeda D, Soengas MS. Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 2016; 12:1776-1790. [PMID: 27464255 DOI: 10.1080/15548627.2016.1199301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Melanoma is a paradigm of aggressive tumors with a complex and heterogeneous genetic background. Still, melanoma cells frequently retain developmental traits that trace back to lineage specification programs. In particular, lysosome-associated vesicular trafficking is emerging as a melanoma-enriched lineage dependency. However, the contribution of other lysosomal functions such as autophagy to melanoma progression is unclear, particularly in the context of metastasis and resistance to targeted therapy. Here we mined a broad spectrum of cancers for a meta-analysis of mRNA expression, copy number variation and prognostic value of 13 core autophagy genes. This strategy identified heterozygous loss of ATG5 at chromosome band 6q21 as a distinctive feature of advanced melanomas. Importantly, partial ATG5 loss predicted poor overall patient survival in a manner not shared by other autophagy factors and not recapitulated in other tumor types. This prognostic relevance of ATG5 copy number was not evident for other 6q21 neighboring genes. Melanocyte-specific mouse models confirmed that heterozygous (but not homozygous) deletion of Atg5 enhanced melanoma metastasis and compromised the response to targeted therapy (exemplified by dabrafenib, a BRAF inhibitor in clinical use). Collectively, our results support ATG5 as a therapeutically relevant dose-dependent rheostat of melanoma progression. Moreover, these data have important translational implications in drug design, as partial blockade of autophagy genes may worsen (instead of counteracting) the malignant behavior of metastatic melanomas.
Collapse
Affiliation(s)
- María García-Fernández
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Panagiotis Karras
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Agnieszka Checinska
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Estela Cañón
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guadalupe T Calvo
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Gonzalo Gómez-López
- b Bioinformatics Unit , Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Metehan Cifdaloz
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Angel Colmenar
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Luis Espinosa-Hevia
- c Cytogenetics Unit , Spanish National Cancer Research Center (CNIO) , Madrid , Spain
| | - David Olmeda
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - María S Soengas
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
93
|
Ortiz R, Díaz J, Díaz N, Lobos-Gonzalez L, Cárdenas A, Contreras P, Díaz MI, Otte E, Cooper-White J, Torres V, Leyton L, Quest AF. Extracellular matrix-specific Caveolin-1 phosphorylation on tyrosine 14 is linked to augmented melanoma metastasis but not tumorigenesis. Oncotarget 2016; 7:40571-40593. [PMID: 27259249 PMCID: PMC5130029 DOI: 10.18632/oncotarget.9738] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
Caveolin-1 (CAV1) is a scaffolding protein that plays a dual role in cancer. In advanced stages of this disease, CAV1 expression in tumor cells is associated with enhanced metastatic potential, while, at earlier stages, CAV1 functions as a tumor suppressor. We recently implicated CAV1 phosphorylation on tyrosine 14 (Y14) in CAV1-enhanced cell migration. However, the contribution of this modification to the dual role of CAV1 in cancer remained unexplored. Here, we used in vitro [2D and transendothelial cell migration (TEM), invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question in B16F10 murine melanoma cells. CAV1 promoted directional migration on fibronectin or laminin, two abundant lung extracellular matrix (ECM) components, which correlated with enhanced Y14 phosphorylation during spreading. Moreover, CAV1-driven migration, invasion, TEM and metastasis were ablated by expression of the phosphorylation null CAV1(Y14F), but not the phosphorylation mimicking CAV1(Y14E) mutation. Finally, CAV1-enhanced focal adhesion dynamics and surface expression of beta1 integrin were required for CAV1-driven TEM. Importantly, CAV1 function as a tumor suppressor in tumor formation assays was not altered by the Y14F mutation. In conclusion, our results provide critical insight to the mechanisms of CAV1 action during cancer development. Specific ECM-integrin interactions and Y14 phosphorylation are required for CAV1-enhanced melanoma cell migration, invasion and metastasis to the lung. Because Y14F mutation diminishes metastasis without inhibiting the tumor suppressor function of CAV1, Y14 phosphorylation emerges as an attractive therapeutic target to prevent metastasis without altering beneficial traits of CAV1.
Collapse
Affiliation(s)
- Rina Ortiz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Universidad Bernardo O Higgins, Facultad de Salud, Departamento de Ciencias Químicas y Biológicas, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Jorge Díaz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Natalia Díaz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Andes Biotechnologies SA, Ñuñoa, Santiago, Chile
- Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Areli Cárdenas
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Pamela Contreras
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Inés Díaz
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ellen Otte
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Vicente Torres
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI) Santiago, Chile
| | - Andrew F.G. Quest
- Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
94
|
Lau E, Feng Y, Claps G, Fukuda MN, Perlina A, Donn D, Jilaveanu L, Kluger H, Freeze HH, Ronai ZA. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation. Sci Signal 2015; 8:ra124. [PMID: 26645581 DOI: 10.1126/scisignal.aac6479] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)-mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients.
Collapse
Affiliation(s)
- Eric Lau
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Giuseppina Claps
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michiko N Fukuda
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ally Perlina
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dylan Donn
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lucia Jilaveanu
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT 06520, USA
| | - Harriet Kluger
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT 06520, USA
| | - Hudson H Freeze
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
95
|
AlQathama A, Prieto JM. Natural products with therapeutic potential in melanoma metastasis. Nat Prod Rep 2015; 32:1170-82. [PMID: 26018751 DOI: 10.1039/c4np00130c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant melanoma is the most aggressive form of skin cancer and accounts for about 3% of all cases of malignant tumour. Its incidence is increasing worldwide and it is becoming resistant to current therapeutic agents. Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. This paper systematically and critically surveys all natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and maps the mechanisms of action for these underexploited properties. As a result, over 30 natural active principles are described acting mainly through their antagonistic effects upon the TNF-α and EP2 receptors or the suppression of several protein kinases involved in metastatic pathways such as RAS, PI3K, ERK and FAK. Also, some were able to reduce the level of mesenchymal biomarkers such as N-cadherin and/or elevate the expression of other molecules such as E-cadherin. Consequently, downstream transcription factors namely NF-kB, AP-1, ATF-2, CREB, and HIF were inactivated leading to diminished production of MMPs, IL-1, IL-6, COX-2, VEGF and GM-CSF. This review also discusses the opportunity of combination therapies based on natural products and approved drugs, such as the combination of EGCG and dacarbazine, or the combination of two natural compounds such as quercetin and sulforaphane.
Collapse
Affiliation(s)
- A AlQathama
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK.
| | | |
Collapse
|
96
|
Vera RE, Lamberti MJ, Rivarola VA, Rumie Vittar NB. Developing strategies to predict photodynamic therapy outcome: the role of melanoma microenvironment. Tumour Biol 2015; 36:9127-36. [PMID: 26419592 DOI: 10.1007/s13277-015-4059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Melanoma is among the most aggressive and treatment-resistant human skin cancer. Photodynamic therapy (PDT), a minimally invasive therapeutic modality, is a promising approach to treating melanoma. It combines a non-toxic photoactivatable drug called photosensitizer with harmless visible light to generate reactive oxygen species which mediate the antitumor effects. The aim of this review was to compile the available data about PDT on melanoma. Our comparative analysis revealed a disconnection between several hypotheses generated by in vitro therapeutic studies and in vivo and clinical assays. This fact led us to highlight new preclinical experimental platforms that mimic the complexity of tumor biology. The tumor and its stromal microenvironment have a dynamic and reciprocal interaction that plays a critical role in tumor resistance, and these interactions can be exploited for novel therapeutic targets. In this sense, we review two strategies used by photodynamic researchers: (a) developing 3D culture systems which mimic tumor architecture and (b) heterotypic cultures that resemble tumor microenvironment to favor therapeutic regimen design. After this comprehensive review of the literature, we suggest that new complementary preclinical models are required to better optimize the clinical outcome of PDT on skin melanoma.
Collapse
Affiliation(s)
- Renzo Emanuel Vera
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina
| | - María Julia Lamberti
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina
| | - Viviana Alicia Rivarola
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina
| | - Natalia Belén Rumie Vittar
- Biología Molecular, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
97
|
Wang H, Luo X, Leighton J. Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. BIOCHEMISTRY INSIGHTS 2015; 8:15-21. [PMID: 26462244 PMCID: PMC4589090 DOI: 10.4137/bci.s30377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) are pluripotent cells with great therapeutic potentials. The in vitro differentiation of ESC was designed by recapitulating embryogenesis. Significant progress has been made to improve the in vitro differentiation protocols by toning soluble maintenance factors. However, more robust methods for lineage-specific differentiation and maturation are still under development. Considering the complexity of in vivo embryogenesis environment, extracellular matrix (ECM) cues should be considered besides growth factor cues. ECM proteins bind to cells and act as ligands of integrin receptors on cell surfaces. Here, we summarize the role of the ECM and integrins in the formation of three germ layer progenies. Various ECM–integrin interactions were found, facilitating differentiation toward definitive endoderm, hepatocyte-like cells, pancreatic beta cells, early mesodermal progenitors, cardiomyocytes, neuroectoderm lineages, and epidermal cells, such as keratinocytes and melanocytes. In the future, ECM combinations for the optimal ESC differentiation environment will require substantial study.
Collapse
Affiliation(s)
- Han Wang
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xie Luo
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jake Leighton
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
98
|
Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids. Sci Rep 2015. [PMID: 26213355 PMCID: PMC4515638 DOI: 10.1038/srep12425] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of autophagy in cell death is still controversial and a lot of debate has concerned the transition from its pro-survival to its pro-death roles. The similar structure of the triterpenoids Betulinic (BA) and Oleanolic (OA) acids allowed us to prove that this transition involves parallel damage in mitochondria and lysosome. After treating immortalized human skin keratinocytes (HaCaT) with either BA or OA, we evaluated cell viability, proliferation and mechanism of cell death, function and morphology of mitochondria and lysosomes, and the status of the autophagy flux. We also quantified the interactions of BA and OA with membrane mimics, both in-vitro and in-silico. Essentially, OA caused mitochondrial damage that relied on autophagy to rescue cellular homeostasis, which failed upon lysosomal inhibition by Chloroquine or Bafilomycin-A1. BA caused parallel damage on mitochondria and lysosome, turning autophagy into a destructive process. The higher cytotoxicity of BA correlated with its stronger efficiency in damaging membrane mimics. Based on these findings, we underlined the concept that autophagy will turn into a destructive outcome when there is parallel damage in mitochondrial and lysosomal membranes. We trust that this concept will help the development of new drugs against aggressive cancers.
Collapse
|
99
|
Donizy P, Zietek M, Halon A, Leskiewicz M, Kozyra C, Matkowski R. Prognostic significance of ALCAM (CD166/MEMD) expression in cutaneous melanoma patients. Diagn Pathol 2015; 10:86. [PMID: 26134500 PMCID: PMC4489046 DOI: 10.1186/s13000-015-0331-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/17/2015] [Indexed: 11/22/2022] Open
Abstract
Background ALCAM (activated leukocyte cell adhesion molecule, CD166, MEMD) is a transmembrane protein of immunoglobulin superfamily (Ig-SF) and plays an important role in human malignant melanoma progression and formation of locoregional and distant metastases. The study using melanoma cell lines showed that overexpression of ALCAM is directly related with the increase of cytoaggregation and the ability to form cell nests. The aim of the study was to assess the expression and intracellular localization of ALCAM in primary skin melanomas and metastatic lesions from regional lymph nodes. Also, prognostic significance of ALCAM expression in primary tumor cells and metastatic lesion cells was evaluated in the context of 5-year observation. Methods Formalin-fixed paraffin-embedded tissue specimens from 104 primary cutaneous melanomas and 16 regional lymph nodes metastases were studied for the expression of ALCAM measured by immunohistochemistry. Results We demonstrate that high ALCAM expression in primary melanoma cells (IRS ≥8) is strongly correlated with unfavorable prognosis as compared with patients with lower ALCAM immunoreactivity in tumor compartment as regards cancer specific overall survival (CSOS) (P = 0.001) and disease free survival (DFS) (P < 0.001). Additionally lower ALCAM immunoreactivity in nodal metastatic foci was significantly statistically correlated with deeper melanoma invasion in the primary tumor according to Clark scale (P = 0.032). It was also found that decreased ALCAM expression (IRS <8) in nodal metastases shows a trend related with a correlation with shorter cancer specific overall survival (P = 0.083). Statistically significant correlations were also demonstrated between the presence of ulceration and decreased intensity of lymphocytic inflammatory infiltration and a high percentage of ALCAM-positive cells (P = 0.035, P = 0.01, respectively). Conclusions High ALCAM expression in melanoma cells of the primary tumor can be used as a marker of negative outcome and may indicate a more invasive phenotype of cancer cells, which would require a more intensive therapeutic strategy. Low expression of ALCAM in regional lymph node metastases is a feature associated with unfavorable prognosis in patients with cutaneous melanoma. Our study is the first one to evaluate the effect of increased ALCAM expression on long-term survival in melanoma patients.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
| | - Marcin Zietek
- Lower Silesian Oncology Centre, pl. Hirszfelda 12, 53-413, Wroclaw, Poland.
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
| | - Marek Leskiewicz
- Department of Statistics, Wroclaw University of Economics, Komandorska 118-120, 53-345, Wroclaw, Poland.
| | - Cyprian Kozyra
- Department of Statistics, Wroclaw University of Economics, Komandorska 118-120, 53-345, Wroclaw, Poland.
| | - Rafal Matkowski
- Lower Silesian Oncology Centre, pl. Hirszfelda 12, 53-413, Wroclaw, Poland. .,Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, pl. Hirszfelda 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
100
|
Abstract
Fibronectin and vitronectin are the important components of the extracellular matrix proteins. The aim of this study was to determine the clinical significance of these protein serum levels in patients with melanoma. A total of 60 patients with a pathologically confirmed diagnosis of melanoma were enrolled in this study. Serum fibronectin and vitronectin concentrations were determined using the solid-phase sandwich ELISA method. Thirty age-matched and sex-matched healthy controls were included in the analysis. The baseline serum fibronectin and vitronectin levels were significantly higher in patients with melanoma than those in the healthy control group (P<0.001 and P=0.04, respectively). However, known clinical variables including age of the patient, sex, site of lesion, histology, stage of disease, serum lactate dehydrogenase levels, and response to chemotherapy were not found to be correlated with either serum fibronectin or vitronectin concentrations (P>0.05). Moreover, neither serum fibronectin nor vitronectin levels played a prognostic role in outcome in melanoma patients (P=0.47 and 0.24, respectively). In conclusion, serum levels of both fibronectin and vitronectin may be diagnostic markers in melanoma patients. However, their predictive and prognostic values were not determined.
Collapse
|