51
|
Eisenberg-Bord M, Shai N, Schuldiner M, Bohnert M. A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. Dev Cell 2017; 39:395-409. [PMID: 27875684 DOI: 10.1016/j.devcel.2016.10.022] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
Abstract
Membrane contact sites enable interorganelle communication by positioning organelles in close proximity using molecular "tethers." With a growing understanding of the importance of contact sites, the hunt for new contact sites and their tethers is in full swing. Determining just what is a tether has proven challenging. Here, we aim to delineate guidelines that define the prerequisites for categorizing a protein as a tether. Setting this gold standard now, while groups from different disciplines are beginning to explore membrane contact sites, will enable efficient cooperation in the growing field and help to realize a great collaborative opportunity to boost its development.
Collapse
Affiliation(s)
- Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Maria Bohnert
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
52
|
Vitale A, Pedrazzini E. Endoplasmic reticulum and Golgi apparatus: old friends, novel intimate relationships. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3283-3285. [PMID: 28859381 PMCID: PMC5853868 DOI: 10.1093/jxb/erx216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article comments on: Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. 2017. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum–Golgi apparatus tethering. Journal of Experimental Botany 68, 3339–3350.
Collapse
Affiliation(s)
- Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy, European Union
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy, European Union
| |
Collapse
|
53
|
Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3339-3350. [PMID: 28605454 PMCID: PMC5853478 DOI: 10.1093/jxb/erx167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
The plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER) and synthesizes cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role for cis-Golgi plant golgins, which are long coiled-coil domain proteins anchored to Golgi membranes, in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.
Collapse
Affiliation(s)
- Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Imogen A Sparkes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Stan W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Andy Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| |
Collapse
|
54
|
Yuen CYL, Wang P, Kang BH, Matsumoto K, Christopher DA. A Non-Classical Member of the Protein Disulfide Isomerase Family, PDI7 of Arabidopsis thaliana, Localizes to the cis-Golgi and Endoplasmic Reticulum Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1103-1117. [PMID: 28444333 DOI: 10.1093/pcp/pcx057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Members of the protein disulfide isomerase (PDI)-C subfamily are chimeric proteins containing the thioredoxin (Trx) domain of PDIs, and the conserved N- and C-terminal Pfam domains of Erv41p/Erv46p-type cargo receptors. They are unique to plants and chromalveolates. The Arabidopsis genome encodes three PDI-C isoforms: PDI7, PDI12 and PDI13. Here we demonstrate that PDI7 is a 65 kDa integral membrane glycoprotein expressed throughout many Arabidopsis tissues. Using a PDI7-specific antibody, we show through immunoelectron microscopy that PDI7 localizes to the endoplasmic reticulum (ER) and Golgi membranes in wild-type root tip cells, and was also detected in vesicles. Tomographic modeling of the Golgi revealed that PDI7 was confined to the cis-Golgi, and accumulated primarily at the cis-most cisterna. Shoot apical meristem cells from transgenic plants overexpressing PDI7 exhibited a dramatic increase in anti-PDI7 labeling at the cis-Golgi. When N- or C-terminal fusions between PDI7 and the green fluorescent protein variant, GFP(S65T), were expressed in mesophyll protoplasts, the fusions co-localized with the ER marker, ER-mCherry. However, when GFP(S65T) was positioned internally within PDI7 (PDI7-GFPint), the fusion strongly co-localized with the cis-Golgi marker, mCherry-SYP31, and faintly labeled the ER. In contrast to the Golgi-resident fusion protein (Man49-mCherry), PDI7-GFPint did not redistribute to the ER after brefeldin A treatment. Protease protection experiments indicated that the Trx domain of PDI7 is located within the ER/Golgi lumen. We propose a model where PDI-C isoforms function as cargo receptors for proteins containing exposed cysteine residues, cycling them from the Golgi back to the ER.
Collapse
Affiliation(s)
- Christen Y L Yuen
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| | - Pengfei Wang
- Chinese University of Hong Kong, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong, China
| | - Byung-Ho Kang
- Chinese University of Hong Kong, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong, China
| | - Kristie Matsumoto
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| | - David A Christopher
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| |
Collapse
|
55
|
Wang P, Hawes C, Hussey PJ. Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites. TRENDS IN PLANT SCIENCE 2017; 22:289-297. [PMID: 27955928 DOI: 10.1016/j.tplants.2016.11.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 05/08/2023]
Abstract
The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
56
|
Liu M, Feng Z, Ke H, Liu Y, Sun T, Dai J, Cui W, Pastor-Pareja JC. Tango1 spatially organizes ER exit sites to control ER export. J Cell Biol 2017; 216:1035-1049. [PMID: 28280122 PMCID: PMC5379956 DOI: 10.1083/jcb.201611088] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023] Open
Abstract
Exit of secretory cargo from the endoplasmic reticulum (ER) takes place at specialized domains called ER exit sites (ERESs). In mammals, loss of TANGO1 and other MIA/cTAGE (melanoma inhibitory activity/cutaneous T cell lymphoma-associated antigen) family proteins prevents ER exit of large cargoes such as collagen. Here, we show that Drosophila melanogaster Tango1, the only MIA/cTAGE family member in fruit flies, is a critical organizer of the ERES-Golgi interface. Tango1 rings hold COPII (coat protein II) carriers and Golgi in close proximity at their center. Loss of Tango1, present at ERESs in all tissues, reduces ERES size and causes ERES-Golgi uncoupling, which impairs secretion of not only collagen, but also all other cargoes we examined. Further supporting an organizing role of Tango1, its overexpression creates more and larger ERESs. Our results suggest that spatial coordination of ERES, carrier, and Golgi elements through Tango1's multiple interactions increases secretory capacity in Drosophila and allows secretion of large cargo.
Collapse
Affiliation(s)
- Min Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongmei Ke
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhui Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianli Dai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhong Cui
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
57
|
Abstract
Purpose of Review We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from Sorghum bicolor as a case study. Recent Findings Sessile plants control their metabolism to prioritize their resources between growth and development, or defense. This requires fine-tuned complex dynamic regulation of the metabolic networks involved. Within the recent years, numerous studies point to the formation of dynamic metabolons playing a major role in controlling the metabolic fluxes within such networks. Summary We propose that P450s and their partners interact and associate dynamically with POR, which acts as a charging station possibly in concert with Cytb5. Solvent environment, lipid composition, and non-catalytic proteins guide metabolon formation and thereby activity, which have important implications for synthetic biology approaches aiming to produce high-value specialized metabolites in heterologous hosts.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608 USA
| |
Collapse
|
58
|
Griffing LR, Lin C, Perico C, White RR, Sparkes I. Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. PROTOPLASMA 2017; 254:43-56. [PMID: 26862751 PMCID: PMC5216105 DOI: 10.1007/s00709-016-0945-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER) is an intricate and dynamic network of membrane tubules and cisternae. In plant cells, the ER 'web' pervades the cortex and endoplasm and is continuous with adjacent cells as it passes through plasmodesmata. It is therefore the largest membranous organelle in plant cells. It performs essential functions including protein and lipid synthesis, and its morphology and movement are linked to cellular function. An emerging trend is that organelles can no longer be seen as discrete membrane-bound compartments, since they can physically interact and 'communicate' with one another. The ER may form a connecting central role in this process. This review tackles our current understanding and quantification of ER dynamics and how these change under a variety of biotic and developmental cues.
Collapse
Affiliation(s)
- Lawrence R Griffing
- Biology Department, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - Congping Lin
- Mathematics Research Institute, Harrison Building, University of Exeter, Exeter, EX4 4QF, UK
| | - Chiara Perico
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK
| | - Rhiannon R White
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK
| | - Imogen Sparkes
- Biosciences, CLES, Exeter University, Geoffrey Pope Building, Stocker Rd, Exeter, EX4 4QD, UK.
| |
Collapse
|
59
|
van de Meene AML, Doblin MS, Bacic A. The plant secretory pathway seen through the lens of the cell wall. PROTOPLASMA 2017; 254:75-94. [PMID: 26993347 DOI: 10.1007/s00709-016-0952-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Collapse
Affiliation(s)
- A M L van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - M S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
60
|
Alvarez AA, Han SW, Toyota M, Brillada C, Zheng J, Gilroy S, Rojas-Pierce M. Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6459-6472. [PMID: 27816929 PMCID: PMC5181587 DOI: 10.1093/jxb/erw418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gravitropism in Arabidopsis shoots depends on the sedimentation of amyloplasts in the endodermis, and a complex interplay between the vacuole and F-actin. Gravity response is inhibited in zigzag-1 (zig-1), a mutant allele of VTI11, which encodes a SNARE protein involved in vacuole fusion. zig-1 seedlings have fragmented vacuoles that fuse after treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and underscore a role of phosphoinositides in vacuole fusion. Using live-cell imaging with a vertical stage microscope, we determined that young endodermal cells below the apical hook that are smaller than 70 μm in length are the graviperceptive cells in dark-grown hypocotyls. This result was confirmed by local wortmannin application to the top of zig-1 hypocotyls, which enhanced shoot gravitropism in zig-1 mutants. Live-cell imaging of zig-1 hypocotyl endodermal cells indicated that amyloplasts are trapped between juxtaposed vacuoles and their movement is severely restricted. Wortmannin-induced fusion of vacuoles in zig-1 seedlings increased the formation of transvacuolar strands, enhanced amyloplast sedimentation and partially suppressed the agravitropic phenotype of zig-1 seedlings. Hypergravity conditions at 10 g were not sufficient to displace amyloplasts in zig-1, suggesting the existence of a physical tether between the vacuole and amyloplasts. Our results overall suggest that vacuole membrane remodeling may be involved in regulating the association of vacuoles and amyloplasts during graviperception.
Collapse
Affiliation(s)
- Ashley Ann Alvarez
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Sang Won Han
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Masatsugu Toyota
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
- Department of Botany, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
| | - Carla Brillada
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Jiameng Zheng
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
61
|
Chung KP, Zeng Y, Jiang L. COPII Paralogs in Plants: Functional Redundancy or Diversity? TRENDS IN PLANT SCIENCE 2016; 21:758-769. [PMID: 27317568 DOI: 10.1016/j.tplants.2016.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 05/04/2023]
Abstract
In eukaryotes, the best-described mechanism of endoplasmic reticulum (ER) export is mediated by coat protein complex II (COPII) vesicles, which comprise five conserved cytosolic components [secretion-associated, Ras-related protein 1 (Sar1), Sec23-24, and Sec13-31]. In higher organisms, multiple paralogs of COPII components are created due to gene duplication. However, the functional diversity of plant COPII subunit isoforms remains largely elusive. Here we summarize and discuss the latest findings derived from studies of various arabidopsis COPII subunit isoforms and their functional diversity. We also put forward testable hypotheses on distinct populations of COPII vesicles performing unique functions in ER export in developmental and stress-related pathways in plants.
Collapse
Affiliation(s)
- Kin Pan Chung
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yonglun Zeng
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
62
|
Pérez-Sancho J, Tilsner J, Samuels AL, Botella MA, Bayer EM, Rosado A. Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants. Trends Cell Biol 2016; 26:705-717. [PMID: 27318776 DOI: 10.1016/j.tcb.2016.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
Abstract
The coordination of multiple metabolic activities in plants relies on an interorganelle communication network established through membrane contact sites (MCS). The MCS are maintained in transient or durable configurations by tethering structures which keep the two membranes in close proximity, and create chemical microdomains that allow localized and targeted exchange of small molecules and possibly proteins. The past few years have witnessed a dramatic increase in our understanding of the structural and molecular organization of plant interorganelle MCS, and their crucial roles in plant specialized functions including stress responses, cell to cell communication, and lipid transport. In this review we summarize recent advances in understanding the molecular components, structural organization, and functions of different plant-specific MCS architectures.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain; Department of Botany, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - A Lacey Samuels
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis (LBM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5200, University of Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon CEDEX, France
| | - Abel Rosado
- Department of Botany, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
63
|
Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. THE NEW PHYTOLOGIST 2016; 210:1311-26. [PMID: 27159525 DOI: 10.1111/nph.13857] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/14/2015] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is connected to the plasma membrane (PM) through the plant-specific NETWORKED protein, NET3C, and phylogenetically conserved vesicle-associated membrane protein-associated proteins (VAPs). Ten VAP homologues (VAP27-1 to 27-10) can be identified in the Arabidopsis genome and can be divided into three clades. Representative members from each clade were tagged with fluorescent protein and expressed in Nicotiana benthamiana. Proteins from clades I and III localized to the ER as well as to ER/PM contact sites (EPCSs), whereas proteins from clade II were found only at the PM. Some of the VAP27-labelled EPCSs localized to plasmodesmata, and we show that the mobility of VAP27 at EPCSs is influenced by the cell wall. EPCSs closely associate with the cytoskeleton, but their structure is unaffected when the cytoskeleton is removed. VAP27-labelled EPCSs are found in most cell types in Arabidopsis, with the exception of cells in early trichome development. Arabidopsis plants expressing VAP27-GFP fusions exhibit pleiotropic phenotypes, including defects in root hair morphogenesis. A similar effect is also observed in plants expressing VAP27 RNAi. Taken together, these data indicate that VAP27 proteins used at EPCSs are essential for normal ER-cytoskeleton interaction and for plant development.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Timothy J Hawkins
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Imogen Sparkes
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Chris Hawes
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Patrick J Hussey
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
64
|
Sparkes I. Using Optical Tweezers to Characterize Physical Tethers at Membrane Contact Sites: Grab It, Pull It, Set It Free? Front Cell Dev Biol 2016; 4:22. [PMID: 27066480 PMCID: PMC4809892 DOI: 10.3389/fcell.2016.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Affiliation(s)
- Imogen Sparkes
- Biosciences, College of Life and Environmental Sciences, University of ExeterExeter, UK
| |
Collapse
|
65
|
Abstract
Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process.
Collapse
|
66
|
Li Y, Xin H, Liu X, Li B. Non-contact intracellular binding of chloroplasts in vivo. Sci Rep 2015; 5:10925. [PMID: 26043396 PMCID: PMC4455249 DOI: 10.1038/srep10925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.
Collapse
Affiliation(s)
- Yuchao Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongbao Xin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaoshuai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baojun Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
67
|
De Matteis MA, Rega LR. Endoplasmic reticulum-Golgi complex membrane contact sites. Curr Opin Cell Biol 2015; 35:43-50. [PMID: 25950841 DOI: 10.1016/j.ceb.2015.04.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022]
Abstract
Although they were identified as long ago as the 1960s, there are still many unknowns regarding the functions and composition of membrane contact sites between the endoplasmic reticulum (ER) and the trans-Golgi (TG). While it seems to be fairly well established that they facilitate lipid exchange between the two organelles, much less is known about how they are regulated. A bottleneck in the study of the ER-TG contact sites has been the absence of methods for their biochemical isolation and visualization by light microscopy. Herein we provide an overview of current knowledge about ER-TG contact sites with a particular emphasis on the questions that remain to be explored.
Collapse
Affiliation(s)
| | - Laura Rita Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - Scientific Institute, Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| |
Collapse
|
68
|
Hawes C, Kiviniemi P, Kriechbaumer V. The endoplasmic reticulum: a dynamic and well-connected organelle. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:50-62. [PMID: 25319240 DOI: 10.1111/jipb.12297] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The endoplasmic reticulum forms the first compartment in a series of organelles which comprise the secretory pathway. It takes the form of an extremely dynamic and pleomorphic membrane-bounded network of tubules and cisternae which have numerous different cellular functions. In this review, we discuss the nature of endoplasmic reticulum structure and dynamics, its relationship with closely associated organelles, and its possible function as a highway for the distribution and delivery of a diverse range of structures from metabolic complexes to viral particles.
Collapse
Affiliation(s)
- Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | | |
Collapse
|
69
|
Hepler PK, Winship LJ. The pollen tube clear zone: clues to the mechanism of polarized growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:79-92. [PMID: 25431342 DOI: 10.1111/jipb.12315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/24/2014] [Indexed: 05/08/2023]
Abstract
Pollen tubes usually exhibit a prominent region at their apex called the "clear zone" because it lacks light refracting amyloplasts. A robust, long clear zone often associates with fast growing pollen tubes, and thus serves as an indicator of pollen tube health. Nevertheless we do not understand how it arises or how it is maintained. Here we review the structure of the clear zone, and attempt to explain the factors that contribute to its formation. While amyloplasts and vacuolar elements are excluded from the clear zone, virtually all other organelles are present including secretory vesicles, mitochondria, Golgi dictyosomes, and the endoplasmic reticulum (ER). Secretory vesicles aggregate into an inverted cone appressed against the apical plasma membrane. ER elements move nearly to the extreme apex, whereas mitochondria and Golgi dictyosomes move less far forward. The cortical actin fringe assumes a central position in the control of clear zone formation and maintenance, given its role in generating cytoplasmic streaming. Other likely factors include the tip-focused calcium gradient, the apical pH gradient, the influx of water, and a host of signaling factors (small G-proteins). We think that the clear zone is an emergent property that depends on the interaction of several factors crucial for polarized growth.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | | |
Collapse
|
70
|
Wang P, Hussey PJ. Interactions between plant endomembrane systems and the actin cytoskeleton. FRONTIERS IN PLANT SCIENCE 2015; 6:422. [PMID: 26106403 PMCID: PMC4460326 DOI: 10.3389/fpls.2015.00422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/25/2015] [Indexed: 05/04/2023]
Abstract
Membrane trafficking, organelle movement, and morphogenesis in plant cells are mainly controlled by the actin cytoskeleton. Not all proteins that regulate the cytoskeleton and membrane dynamics in animal systems have functional homologs in plants, especially for those proteins that form the bridge between the cytoskeleton and membrane; the membrane-actin adaptors. Their nature and function is only just beginning to be elucidated and this field has been greatly enhanced by the recent identification of the NETWORKED (NET) proteins, which act as membrane-actin adaptors. In this review, we will summarize the role of the actin cytoskeleton and its regulatory proteins in their interaction with endomembrane compartments and where they potentially act as platforms for cell signaling and the coordination of other subcellular events.
Collapse
Affiliation(s)
| | - Patrick J. Hussey
- *Correspondence: Patrick J. Hussey, School of Biological and Biomedical Science, Durham University, South Road, Durham DH1 3LE, UK,
| |
Collapse
|
71
|
Buchnik L, Abu-Abied M, Sadot E. Role of plant myosins in motile organelles: is a direct interaction required? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:23-30. [PMID: 25196231 DOI: 10.1111/jipb.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Plant organelles are highly motile, with speed values of 3-7 µm/s in cells of land plants and about 20-60 µm/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins. Most plants express multiple members of two main classes: myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in all kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.
Collapse
Affiliation(s)
- Limor Buchnik
- The Institute of Plant Sciences, The Volcani Center, ARO, PO Box 6, Bet-Dagan, 50250, Israel
| | | | | |
Collapse
|
72
|
Stefano G, Hawes C, Brandizzi F. ER - the key to the highway. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:30-38. [PMID: 25259957 PMCID: PMC4250414 DOI: 10.1016/j.pbi.2014.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is the key organelle at the start of the secretory pathway and the list of its functions is continually growing. The ER organization as a tubular/cisternal network at the cortex of plant cells has recently been shown to be governed by the membrane tubulation proteins of the reticulon family working alongside plant atlastin homologues, members of the RHD3 group of proteins. Such a network has intimate connections with other organelles such as peroxisomes via peroxules, chloroplasts, Golgi bodies and at the cell cortex to the plasma membrane with cytoskeleton at so called 'anchor/contact sites'. The ER network is by no means static displaying a range of different movements and acting as a subcellular highway supports the motility of organelles such as peroxisomes, mitochondria and Golgi bodies plus the transport of macromolecules such as viral movement proteins, nucleocapsid proteins and RNA. Here we highlight recent and exciting discoveries on the maintenance of the ER structure and its role on movement and biology of other organelles.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, United States; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, United States; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
73
|
Hamada T, Ueda H, Kawase T, Hara-Nishimura I. Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1869-76. [PMID: 25367857 PMCID: PMC4256883 DOI: 10.1104/pp.114.252320] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a network of tubules and sheet-like structures in eukaryotic cells. Some ER tubules dynamically change their morphology, and others form stable structures. In plants, it has been thought that the ER tubule extension is driven by the actin-myosin machinery. Here, we show that microtubules also contribute to the ER tubule extension with an almost 20-fold slower rate than the actin filament-based ER extension. Treatment with the actin-depolymerizing drug Latrunculin B made it possible to visualize the slow extension of the ER tubules in transgenic Arabidopsis (Arabidopsis thaliana) plants expressing ER-targeted green fluorescent protein. The ER tubules elongated along microtubules in both directions of microtubules, which have a distinct polarity. This feature is similar to the kinesin- or dynein-driven ER tubule extension in animal cells. In contrast to the animal case, ER tubules elongating with the growing microtubule ends were not observed in Arabidopsis. We also found the spots where microtubules are stably colocalized with the ER subdomains during long observations of 1,040 s, suggesting that cortical microtubules contribute to provide ER anchoring points. The anchoring points acted as the branching points of the ER tubules, resulting in the formation of multiway junctions. The density of the ER tubule junction positively correlated with the microtubule density in both elongating cells and mature cells of leaf epidermis, showing the requirement of microtubules for formation of the complex ER network. Taken together, our findings show that plants use microtubules for ER anchoring and ER tubule extension, which establish fine network structures of the ER within the cell.
Collapse
Affiliation(s)
- Takahiro Hamada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Kawase
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
74
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
75
|
Ronchi P, Tischer C, Acehan D, Pepperkok R. Positive feedback between Golgi membranes, microtubules and ER exit sites directs de novo biogenesis of the Golgi. J Cell Sci 2014; 127:4620-33. [PMID: 25189616 DOI: 10.1242/jcs.150474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex is the central organelle of the secretory pathway. It undergoes dynamic changes during the cell cycle, but how it acquires and maintains its complex structure is unclear. To address this question, we have used laser nanosurgery to deplete BSC1 cells of the Golgi complex and have monitored its biogenesis by quantitative time-lapse microscopy and correlative electron microscopy. After Golgi depletion, endoplasmic reticulum (ER) export is inhibited and the number of ER exit sites (ERES) is reduced and does not increase for several hours. Occasional fusion of small post-ER carriers to form the first larger structures triggers a rapid and drastic growth of Golgi precursors, due to the capacity of these structures to attract more carriers by microtubule nucleation and to stimulate ERES biogenesis. Increasing the chances of post-ER carrier fusion close to ERES by depolymerizing microtubules results in the acceleration of Golgi and ERES biogenesis. Taken together, on the basis of our results, we propose a self-organizing principle of the early secretory pathway that integrates Golgi biogenesis, ERES biogenesis and the organization of the microtubule network by positive-feedback loops.
Collapse
Affiliation(s)
- Paolo Ronchi
- European Molecular Biology Laboratory (EMBL), Cell biology and biophysics unit
| | - Christian Tischer
- European Molecular Biology Laboratory (EMBL), Advanced Light Microscopy
| | - Devrim Acehan
- European Molecular Biology Laboratory (EMBL), Electron Microscopy Core Facilities, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- European Molecular Biology Laboratory (EMBL), Cell biology and biophysics unit European Molecular Biology Laboratory (EMBL), Advanced Light Microscopy
| |
Collapse
|
76
|
Lin C, Zhang Y, Sparkes I, Ashwin P. Structure and dynamics of ER: minimal networks and biophysical constraints. Biophys J 2014; 107:763-772. [PMID: 25099815 PMCID: PMC4129489 DOI: 10.1016/j.bpj.2014.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/10/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) in live cells is a highly mobile network whose structure dynamically changes on a number of timescales. The role of such drastic changes in any system is unclear, although there are correlations with ER function. A better understanding of the fundamental biophysical constraints on the system will allow biologists to determine the effects of molecular factors on ER dynamics. Previous studies have identified potential static elements that the ER may remodel around. Here, we use these structural elements to assess biophysical principles behind the network dynamics. By analyzing imaging data of tobacco leaf epidermal cells under two different conditions, i.e., native state (control) and latrunculin B (treated), we show that the geometric structure and dynamics of ER networks can be understood in terms of minimal networks. Our results show that the ER network is well modeled as a locally minimal-length network between the static elements that potentially anchor the ER to the cell cortex over longer timescales; this network is perturbed by a mixture of random and deterministic forces. The network need not have globally minimum length; we observe cases where the local topology may change dynamically between different Euclidean Steiner network topologies. The networks in the treated cells are easier to quantify, because they are less dynamic (the treatment suppresses actin dynamics), but the same general features are found in control cells. Using a Langevin approach, we model the dynamics of the nonpersistent nodes and use this to show that the images can be used to estimate both local viscoelastic behavior of the cytoplasm and filament tension in the ER network. This means we can explain several aspects of the ER geometry in terms of biophysical principles.
Collapse
Affiliation(s)
- Congping Lin
- Mathematics Research Institute, University of Exeter, Exeter, United Kingdom.
| | - Yiwei Zhang
- Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Imogen Sparkes
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Peter Ashwin
- Mathematics Research Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
77
|
López-Quesada C, Fontaine AS, Farré A, Joseph M, Selva J, Egea G, Ludevid MD, Martín-Badosa E, Montes-Usategui M. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells. BIOMEDICAL OPTICS EXPRESS 2014; 5:1993-2008. [PMID: 25071944 PMCID: PMC4102344 DOI: 10.1364/boe.5.001993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 05/24/2023]
Abstract
Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.
Collapse
Affiliation(s)
- C. López-Quesada
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - A.-S. Fontaine
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - A. Farré
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M. Joseph
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - J. Selva
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - G. Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M. D. Ludevid
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - E. Martín-Badosa
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M. Montes-Usategui
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
78
|
Wang P, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, Sparkes I, Hawes C, Hussey PJ. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol 2014; 24:1397-1405. [PMID: 24909329 DOI: 10.1016/j.cub.2014.05.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/04/2014] [Accepted: 05/02/2014] [Indexed: 02/03/2023]
Abstract
The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic structure, and it contacts the plasma membrane (PM) at ER-PM anchor/contact sites. These sites are known to be essential for communication between the ER and PM for lipid transport, calcium influx, and ER morphology in mammalian and fungal cells. The nature of these contact sites is unknown in plants, and here, we have identified a complex that forms this bridge. This complex includes (1) NET3C, which belongs to a plant-specific superfamily (NET) of actin-binding proteins, (2) VAP27, a plant homolog of the yeast Scs2 ER-PM contact site protein, and (3) the actin and microtubule networks. We demonstrate that NET3C and VAP27 localize to puncta at the PM and that NET3C and VAP27 form homodimers/oligomers and together form complexes with actin and microtubules. We show that F-actin modulates the turnover of NET3C at these puncta and microtubules regulate the exchange of VAP27 at the same sites. Based on these data, we propose a model for the structure of the plant ER-PM contact sites.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Timothy J Hawkins
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Christine Richardson
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Ian Cummins
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Michael J Deeks
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Imogen Sparkes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Patrick J Hussey
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
79
|
Griffing LR, Gao HT, Sparkes I. ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. FRONTIERS IN PLANT SCIENCE 2014; 5:218. [PMID: 24904614 PMCID: PMC4033215 DOI: 10.3389/fpls.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) of higher plants is a complex network of tubules and cisternae. Some of the tubules and cisternae are relatively persistent, while others are dynamically moving and remodeling through growth and shrinkage, cycles of tubule elongation and retraction, and cisternal expansion and diminution. Previous work showed that transient expression in tobacco leaves of the motor-less, truncated tail of myosin XI-K increases the relative area of both persistent cisternae and tubules in the ER. Likewise, transient expression of XI-K tail diminishes the movement of organelles such as Golgi and peroxisomes. To examine whether other class XI myosins are involved in the remodeling and movement of the ER, other myosin XIs implicated in organelle movement, XI-1 (MYA1),XI-2 (MYA2), XI-C, XI-E, XI-I, and one not, XI-A, were expressed as motor-less tail constructs and their effect on ER persistent structures determined. Here, we indicate a differential effect on ER dynamics whereby certain class XI myosins may have more influence over controlling cisternalization rather than tubulation.
Collapse
Affiliation(s)
| | - Hongbo T. Gao
- Biosciences, College of Life and Environmental Sciences, Exeter UniversityExeter, UK
| | - Imogen Sparkes
- Biosciences, College of Life and Environmental Sciences, Exeter UniversityExeter, UK
| |
Collapse
|
80
|
Serra-Soriano M, Pallás V, Navarro JA. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:863-79. [PMID: 24438546 DOI: 10.1111/tpj.12435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
Viral movement proteins exploit host endomembranes and the cytoskeleton to move within the cell via routes that, in some cases, are dependent on the secretory pathway. For example, melon necrotic spot virus p7B, a type II transmembrane protein, leaves the endoplasmic reticulum (ER) through the COPII-dependent Golgi pathway to reach the plasmodesmata. Here we investigated the sequence requirements and putative mechanisms governing p7B transport through the early secretory pathway. Deletion of either the cytoplasmic N-terminal region (CR) or the luminal C-terminal region (LR) led to ER retention, suggesting that they are both essential for ER export. Through alanine-scanning mutagenesis, we identified residues in the CR and LR that are critical for both ER export and for viral cell-to-cell movement. Within the CR, alanine substitution of aspartic and proline residues in the DSSP β-turn motif (D7 AP10 A) led to movement of discrete structures along the cortical ER in an actin-dependent manner. In contrast, alanine substitution of a lysine residue in the LR (K49 A) resulted in a homogenous ER distribution of the movement protein and inhibition of ER-Golgi traffic. Moreover, the ability of p7B to recruit Sar1 to the ER membrane is lost in the D7 AP10 A mutant, but enhanced in the K49 A mutant. In addition, fluorescence recovery after photobleaching revealed that K49 A but not D7 AP10 A dramatically diminished protein lateral mobility. From these data, we propose a model whereby the LR directs actin-dependent mobility toward the cortical ER, where the cytoplasmic DSSP β-turn favors assembly of COPII vesicles for export of p7B from the ER.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València/Consejo Superior de Investigaciones Científicas, Avenida Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | |
Collapse
|
81
|
Stefano G, Renna L, Brandizzi F. The endoplasmic reticulum exerts control over organelle streaming during cell expansion. J Cell Sci 2014; 127:947-53. [PMID: 24424025 DOI: 10.1242/jcs.139907] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
82
|
Abstract
Optical tweezers allow noninvasive manipulation of subcellular compartments to study their physical interactions and attachments. By measuring (delay of) displacements, (semi-)quantitative force measurements within a living cell can be performed. In this chapter, we provide practical tips for setting up such experiments paying special attention to the technical considerations for integrating optical tweezers into a confocal microscope. Next, we describe some working protocols to trap intracellular structures in plant cells.
Collapse
Affiliation(s)
- Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | | | | |
Collapse
|
83
|
Zhang M, Hu J. Homotypic fusion of endoplasmic reticulum membranes in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:514. [PMID: 24385977 PMCID: PMC3866526 DOI: 10.3389/fpls.2013.00514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/01/2013] [Indexed: 05/22/2023]
Abstract
The endoplasmic reticulum (ER) is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs), a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3), are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.
Collapse
Affiliation(s)
- Miao Zhang
- Tianjin Key Laboratory of Protein Science and Department of Genetics and Cell Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Junjie Hu
- Tianjin Key Laboratory of Protein Science and Department of Genetics and Cell Biology, College of Life Sciences, Nankai UniversityTianjin, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
- *Correspondence: Junjie Hu, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, New Life Science Building A408, Tianjin 300071, China e-mail:
| |
Collapse
|
84
|
Peña EJ, Heinlein M. Cortical microtubule-associated ER sites: organization centers of cell polarity and communication. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:764-73. [PMID: 24269577 DOI: 10.1016/j.pbi.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 05/21/2023]
Abstract
Anisotropic cell growth and the ability of plant cells to communicate within and across the borders of cellular and supracellular domains depends on the ability of the cells to dynamically establish polarized networks able to deliver structural and informational macromolecules to distinct cellular sites. Studies of organelle movements and transport of endogenous and viral proteins suggest that organelle and macromolecular trafficking pathways involve transient or stable interactions with cortical microtubule-associated endoplasmic reticulum sites (C-MERs). The observations suggest that C-MERs may function as cortical hubs that organize cargo exchange between organelles and allow the recruitment, assembly, and subsequently site-specific delivery of macromolecular complexes. We propose that viruses interact with such hubs for replication and intercellular spread.
Collapse
Affiliation(s)
- Eduardo José Peña
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre National de la Recherche Scientifique, Strasbourg 67084, France
| | | |
Collapse
|
85
|
Takagi J, Renna L, Takahashi H, Koumoto Y, Tamura K, Stefano G, Fukao Y, Kondo M, Nishimura M, Shimada T, Brandizzi F, Hara-Nishimura I. MAIGO5 functions in protein export from Golgi-associated endoplasmic reticulum exit sites in Arabidopsis. THE PLANT CELL 2013; 25:4658-75. [PMID: 24280388 PMCID: PMC3875742 DOI: 10.1105/tpc.113.118158] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 05/19/2023]
Abstract
Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially in plants. Here, we report a protein transport mutant of Arabidopsis thaliana, named maigo5 (mag5), which abnormally accumulates precursor forms of storage proteins in seeds. mag5-1 has a deletion in the putative ortholog of the Saccharomyces cerevisiae and Homo sapiens Sec16, which encodes a critical component of ER exit sites (ERESs). mag mutants developed abnormal structures (MAG bodies) within the ER and exhibited compromised ER export. A functional MAG5/SEC16A-green fluorescent protein fusion localized at Golgi-associated cup-shaped ERESs and cycled on and off these sites at a slower rate than the COPII coat. MAG5/SEC16A interacted with SEC13 and SEC31; however, in the absence of MAG5/SEC16A, recruitment of the COPII coat to ERESs was accelerated. Our results identify a key component of ER export in plants by demonstrating that MAG5/SEC16A is required for protein export at ERESs that are associated with mobile Golgi stacks, where it regulates COPII coat turnover.
Collapse
Affiliation(s)
- Junpei Takagi
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Luciana Renna
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Hideyuki Takahashi
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuko Koumoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Giovanni Stefano
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Federica Brandizzi
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
86
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
87
|
Abstract
Shape changes and topological remodeling of membranes are essential for the identity of organelles and membrane trafficking. Although all cellular membranes have common features, membranes of different organelles create unique environments that support specialized biological functions. The endoplasmic reticulum (ER) is a prime example of this specialization, as its lipid bilayer forms an interconnected system of cisternae, vesicles, and tubules, providing a highly compartmentalized structure for a multitude of biochemical processes. A variety of peripheral and integral membrane proteins that facilitate membrane curvature generation, fission, and/or fusion have been identified over the past two decades. Among these, the dynamin-related proteins (DRPs) have emerged as key players. Here, we review recent advances in our functional and molecular understanding of fusion DRPs, exemplified by atlastin, an ER-resident DRP that controls ER structure, function, and signaling.
Collapse
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005;
| | | | | | | | | |
Collapse
|
88
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
89
|
Du W, Tamura K, Stefano G, Brandizzi F. The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1. MOLECULAR PLANT 2013; 6:905-915. [PMID: 23125314 DOI: 10.1093/mp/sss124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.
Collapse
Affiliation(s)
- Wenyan Du
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
90
|
Renna L, Stefano G, Majeran W, Micalella C, Meinnel T, Giglione C, Brandizzi F. Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis. THE PLANT CELL 2013; 25:1756-73. [PMID: 23673980 PMCID: PMC3694704 DOI: 10.1105/tpc.113.111393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified. Using a confocal microscopy forward genetics screen for the identification of Arabidopsis thaliana secretory mutants, we isolated STINGY, a recessive mutant with defective Golgi traffic and integrity. We mapped STINGY to a substitution at position 160 of Arabidopsis NMT1 (NMT1A160T). In vitro kinetic studies with purified NMT1A160T enzyme revealed a significant reduction in its activity due to a remarkable decrease in affinity for both myristoyl-CoA and peptide substrates. We show here that this recessive mutation is responsible for the alteration of Golgi traffic and integrity by predominantly affecting the Golgi membrane/cytosol partitioning of ADP-ribosylation factor proteins. Our results provide important functional insight into N-myristoylation in plants by ascribing postembryonic functions of Arabidopsis NMT1 that involve regulation of the functional and morphological integrity of the plant endomembranes.
Collapse
Affiliation(s)
- Luciana Renna
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Giovanni Stefano
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Wojciech Majeran
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Chiara Micalella
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Federica Brandizzi
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
91
|
Trapping red blood cells in living animals using optical tweezers. Nat Commun 2013; 4:1768. [DOI: 10.1038/ncomms2786] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/22/2013] [Indexed: 11/08/2022] Open
|
92
|
Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberté JF. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 2012; 86:9255-65. [PMID: 22718813 PMCID: PMC3416146 DOI: 10.1128/jvi.01146-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.
Collapse
Affiliation(s)
- Romain Grangeon
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Maxime Agbeci
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Jun Chen
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Gilles Grondin
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
93
|
Langhans M, Meckel T, Kress A, Lerich A, Robinson DG. ERES (ER exit sites) and the "secretory unit concept". J Microsc 2012; 247:48-59. [PMID: 22360601 DOI: 10.1111/j.1365-2818.2011.03597.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The higher plant Golgi apparatus consists of hundreds of individual Golgi stacks which move along the cortical ER, propelled by the actomysin system. Anterograde and retrograde transport between the endoplasmic reticulum (ER) and the plant Golgi occurs over a narrow interface (around 500 nm) and is generally considered to be mediated by COP-coated vesicles. Previously, ER exit sites (ERES) have been identified on the basis of to localization of transiently expressed COPII-coat proteins. As a consequence it has been held that ERES in higher plants are intimately associated with Golgi stacks, and that both move together as an integrated structure: the "secretory unit". Using a new COPII marker, as well as YFP-SEC24 (a bona fide COPII coat protein), we have made observations on tobacco leaf epidermis at high resolution in the CLSM. Our data clearly shows that COPII fluorescence is associated with the Golgi stacks rather than the surface of the ER and probably represents the temporary accumulation of COPII vesicles in the Golgi matrix prior to fusion with the cis-Golgi cisternae. We have calculated the numbers of COPII vesicles which would be required to provide a typical Golgi-associated COPII-fluorescent signal as being much less than 20. We have discussed the consequences of this and question the continued usage of the term "secretory unit".
Collapse
Affiliation(s)
- M Langhans
- Department of Plant Cell Biology, Centre for Organismal Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
94
|
Hawes C. The ER/Golgi Interface - Is There Anything in-between? FRONTIERS IN PLANT SCIENCE 2012; 3:73. [PMID: 22645598 PMCID: PMC3355773 DOI: 10.3389/fpls.2012.00073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/29/2012] [Indexed: 05/23/2023]
Affiliation(s)
- Chris Hawes
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes UniversityOxford, UK
| |
Collapse
|
95
|
Sparkes I, Brandizzi F. Fluorescent protein-based technologies: shedding new light on the plant endomembrane system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:96-107. [PMID: 22449045 DOI: 10.1111/j.1365-313x.2011.04884.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Without doubt, GFP and spectral derivatives have revolutionized the way biologists approach their journey toward the discovery of how plant cells function. It is fascinating that in its early days GFP was used merely for localization studies, but as time progressed researchers successfully explored new avenues to push the power of GFP technology to reach new and exciting research frontiers. This has had a profound impact on the way we can now study complex and dynamic systems such as plant endomembranes. Here we briefly describe some of the approaches where GFP has revolutionized in vivo studies of protein distribution and dynamics and focus on two emerging approaches for the application of GFP technology in plant endomembranes, namely optical tweezers and forward genetics approaches, which are based either on the light or on genetic manipulation of secretory organelles to gain insights on the factors that control their activities and integrity.
Collapse
Affiliation(s)
- Imogen Sparkes
- Biosciences,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, UK
| | | |
Collapse
|
96
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Hamada T, Tominaga M, Fukaya T, Nakamura M, Nakano A, Watanabe Y, Hashimoto T, Baskin TI. RNA Processing Bodies, Peroxisomes, Golgi Bodies, Mitochondria, and Endoplasmic Reticulum Tubule Junctions Frequently Pause at Cortical Microtubules. ACTA ACUST UNITED AC 2012; 53:699-708. [DOI: 10.1093/pcp/pcs025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
98
|
Stefano G, Renna L, Moss T, McNew JA, Brandizzi F. In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus is influenced by the integrity of the C-terminal domain of RHD3, a non-essential GTPase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:957-66. [PMID: 22082223 DOI: 10.1111/j.1365-313x.2011.04846.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions. Here we characterized an EMS mutant, gom8, with disrupted Golgi movement and positioning and compromised ER shape and dynamics. gom8 mapped to a missense mutation in the RHD3 hairpin loop domain, causing accumulation of the mutant protein into large structures, a markedly different distribution compared with wild-type RHD3 over the ER network. Despite the GOM8 distribution, tubules fused in the peripheral ER of the gom8 mutant. These data imply that integrity of the hairpin region is important for the subcellular distribution of RHD3, and that reduced availability of RHD3 over the ER can cause ER morphology defects, but does not prevent peripheral fusion between tubules. This was confirmed by evidence that gom8 was phenocopied in an RHD3 null background. Furthermore, we established that the region encompassing the RHD3 hairpin domain and the C-terminal cytosolic domain is necessary for RHD3 function. We conclude that RHD3 is important in ER morphology, but is dispensable for peripheral ER tubulation in an endogenous context, and that its activity relies on the C-terminal region in addition to the GTPase domain.
Collapse
Affiliation(s)
- Giovanni Stefano
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
99
|
Lerich A, Hillmer S, Langhans M, Scheuring D, van Bentum P, Robinson DG. ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:143. [PMID: 22876251 PMCID: PMC3410614 DOI: 10.3389/fpls.2012.00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/12/2012] [Indexed: 05/08/2023]
Abstract
Per definition, ER exit sites are COPII vesiculation events at the surface of the ER and in higher plants are only visualizable in the electron microscope through cryofixation techniques. Fluorescent COPII labeling moves with Golgi stacks and locates to the interface between the ER and the Golgi. In contrast, the domain of the ER where retrograde COPI vesicles fuse, i.e., ER import sites (ERIS), has remained unclear. To identify ERIS we have employed ER-located SNAREs and tethering factors. We screened several SNAREs (SYP81, the SYP7 family, and USE1) to find a SNARE whose overexpression did not disrupt ER-Golgi traffic and which gave rise to discrete fluorescent punctae when expressed with an XFP tag. Only the Qc-SNARE SYP72 fulfilled these criteria. When coexpressed with SYP72-YFP, both the type I-membrane protein RFP-p24δ5 and the luminal marker CFP-HDEL whose ER localization are due to an efficient COPI-mediated recycling, form nodules along the tubular ER network. SYP72-YFP colocalizes with these nodules which are not seen when RFP-p24δ5 or CFP-HDEL is expressed alone or when SYP72-YFP is coexpressed with a mutant form of RFP-p24δ5 that cannot exit the ER. SYP72-YFP does not colocalize with Golgi markers, except when the Golgi stacks are immobilized through actin depolymerization. Endogenous SYP7 SNAREs, also colocalize with immobilized COPII/Golgi. In contrast, XFP-tagged versions of plant homologs to TIP20 of the Dsl1 COPI-tethering factor complex, and the COPII-tethering factor p115 colocalize perfectly with Golgi stacks irrespective of the motile status. These data suggest that COPI vesicle fusion with the ER is restricted to periods when Golgi stacks are stationary, but that when moving both COPII and COPI vesicles are tethered and collect in the ER-Golgi interface. Thus, the Golgi stack and an associated domain of the ER thereby constitute a mobile secretory and recycling unit: a unique feature in eukaryotic cells.
Collapse
Affiliation(s)
- Alexander Lerich
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Stefan Hillmer
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Markus Langhans
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - David Scheuring
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Paulien van Bentum
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: David G. Robinson, Department Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany. e-mail:
| |
Collapse
|
100
|
Sparkes I, Hawes C, Frigerio L. FrontiERs: movers and shapers of the higher plant cortical endoplasmic reticulum. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:658-65. [PMID: 21831697 DOI: 10.1016/j.pbi.2011.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/01/2011] [Accepted: 07/13/2011] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) in higher plants performs many important functions, yet our understanding of how its intricate network shape and dynamics relate to function is very limited. Recent work has begun to unpick key molecular players in the generation of the pleomorphic, highly dynamic ER network structure that pervades the entire cytoplasm. ER movement is acto-myosin dependent. ER shape is dependent on RHD3 (Root Hair Defective 3) and a family of proteins called reticulons. The major challenge that lies ahead is understanding how factors that control ER shape and movement are regulated and how this relates to the numerous functions of the ER.
Collapse
Affiliation(s)
- Imogen Sparkes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | | | |
Collapse
|