51
|
Li Z, Xu X, Feng X, Murphy PM. The Macrophage-depleting Agent Clodronate Promotes Durable Hematopoietic Chimerism and Donor-specific Skin Allograft Tolerance in Mice. Sci Rep 2016; 6:22143. [PMID: 26917238 PMCID: PMC4768260 DOI: 10.1038/srep22143] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic chimerism is known to promote donor-specific organ allograft tolerance; however, clinical translation has been impeded by the requirement for toxic immunosuppression and large doses of donor bone marrow (BM) cells. Here, we investigated in mice whether durable chimerism might be enhanced by pre-treatment of the recipient with liposomal clodronate, a macrophage depleting agent, with the goal of vacating BM niches for preferential reoccupation by donor hematopoietic stem cells (HSC). We found that liposomal clodronate pretreatment of C57BL/6 mice permitted establishment of durable hematopoietic chimerism when the mice were given a low dose of donor BM cells and transient immunosuppression. Moreover, clodronate pre-treatment increased durable donor-specific BALB/c skin allograft tolerance. These results provide proof-of-principle that clodronate is effective at sparing the number of donor BM cells required to achieve durable hematopoietic chimerism and donor-specific skin allograft tolerance and justify further development of a tolerance protocol based on this principle.
Collapse
Affiliation(s)
- Zhanzhuo Li
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Xin Xu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
52
|
Sykes M. Immune tolerance in recipients of combined haploidentical bone marrow and kidney transplantation. Bone Marrow Transplant 2016; 50 Suppl 2:S82-6. [PMID: 26039215 DOI: 10.1038/bmt.2015.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of allogeneic hematopoietic cell transplantation (HCT) has been limited by transplant-associated toxicities related to the conditioning regimens used and to graft-vs-host disease (GVHD). The frequency and severity of GVHD observed when extensive HLA barriers are transgressed has greatly impeded the routine use of extensively HLA-mismatched HCT. Allogeneic HCT also has potential as an approach to organ allograft tolerance induction, but this potential has not been previously realized because of the toxicity associated with traditional conditioning. This paper reviews an approach to HCT involving reduced intensity conditioning that demonstrated sufficient safety in patients with hematologic malignancies, even in the HLA-mismatched transplant setting, to be applied for the induction of kidney allograft tolerance in humans with no other indication for HCT. These studies provided the first successful example of intentional organ allograft tolerance induction across HLA barriers in humans. Current data and hypotheses on the mechanisms of tolerance in these patients are reviewed.
Collapse
Affiliation(s)
- M Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
53
|
Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, Kay TWH, Bromberg J, Odorico JS, Weir GC, Bridges N, Kandaswamy R, Stock P, Friend P, Gotoh M, Cooper DKC, Park CG, O'Connell P, Stabler C, Matsumoto S, Ludwig B, Choudhary P, Kovatchev B, Rickels MR, Sykes M, Wood K, Kraemer K, Hwa A, Stanley E, Ricordi C, Zimmerman M, Greenstein J, Montanya E, Otonkoski T. Report from IPITA-TTS Opinion Leaders Meeting on the Future of β-Cell Replacement. Transplantation 2016; 100 Suppl 2:S1-44. [PMID: 26840096 PMCID: PMC4741413 DOI: 10.1097/tp.0000000000001055] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen T. Bartlett
- Department of Surgery, University of Maryland School of Medicine, Baltimore MD
| | - James F. Markmann
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Paul Johnson
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - David Scharp
- Prodo Laboratories, LLC, Irvine, CA
- The Scharp-Lacy Research Institute, Irvine, CA
| | - Thomas W. H. Kay
- Department of Medicine, St. Vincent’s Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne Victoria, Australia
| | - Jonathan Bromberg
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Jon S. Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Gordon C. Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Nancy Bridges
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raja Kandaswamy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Peter Stock
- Division of Transplantation, University of San Francisco Medical Center, San Francisco, CA
| | - Peter Friend
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mitsukazu Gotoh
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Phillip O'Connell
- The Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Cherie Stabler
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Shinichi Matsumoto
- National Center for Global Health and Medicine, Tokyo, Japan
- Otsuka Pharmaceutical Factory inc, Naruto Japan
| | - Barbara Ludwig
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden and DZD-German Centre for Diabetes Research, Dresden, Germany
| | - Pratik Choudhary
- Diabetes Research Group, King's College London, Weston Education Centre, London, United Kingdom
| | - Boris Kovatchev
- University of Virginia, Center for Diabetes Technology, Charlottesville, VA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Coulmbia University Medical Center, New York, NY
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Kristy Kraemer
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Albert Hwa
- Juvenile Diabetes Research Foundation, New York, NY
| | - Edward Stanley
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Camillo Ricordi
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Mark Zimmerman
- BetaLogics, a business unit in Janssen Research and Development LLC, Raritan, NJ
| | - Julia Greenstein
- Discovery Research, Juvenile Diabetes Research Foundation New York, NY
| | - Eduard Montanya
- Bellvitge Biomedical Research Institute (IDIBELL), Hospital Universitari Bellvitge, CIBER of Diabetes and Metabolic Diseases (CIBERDEM), University of Barcelona, Barcelona, Spain
| | - Timo Otonkoski
- Children's Hospital and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
54
|
Mahr B, Unger L, Hock K, Pilat N, Baranyi U, Schwarz C, Maschke S, Farkas AM, Wekerle T. IL-2/α-IL-2 Complex Treatment Cannot Be Substituted for the Adoptive Transfer of Regulatory T cells to Promote Bone Marrow Engraftment. PLoS One 2016; 11:e0146245. [PMID: 26731275 PMCID: PMC4701413 DOI: 10.1371/journal.pone.0146245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapy with recipient Tregs achieves engraftment of allogeneic bone marrow (BM) without the need for cytoreductive conditioning (i.e., without irradiation or cytotoxic drugs). Thereby mixed chimerism and transplantation tolerance are established in recipients conditioned solely with costimulation blockade and rapamycin. However, clinical translation would be substantially facilitated if Treg-stimulating pharmaceutical agents could be used instead of individualized cell therapy. Recently, it was shown that interleukin-2 (IL-2) complexed with a monoclonal antibody (mAb) (clone JES6-1A12) against IL-2 (IL-2 complexes) potently expands and activates Tregs in vivo. Therefore, we investigated whether IL-2 complexes can replace Treg therapy in a costimulation blockade-based and irradiation-free BM transplantation (BMT) model. Unexpectedly, the administration of IL-2 complexes at the time of BMT (instead of Tregs) failed to induce BM engraftment in non-irradiated recipients (0/6 with IL-2 complexes vs. 3/4 with Tregs, p<0.05). Adding IL-2 complexes to an otherwise effective regimen involving recipient irradiation (1Gy) but no Treg transfer indeed actively triggered donor BM rejection at higher doses (0/8 with IL-2 complexes vs. 9/11 without, p<0.01) and had no detectable effect at two lower doses (3/5 vs. 9/11, p>0.05). CD8 T cells and NK cells of IL-2 complex-treated naïve mice showed an enhanced proliferative response towards donor antigens in vitro despite the marked expansion of Tregs. However, IL-2 complexes also expanded conventional CD4 T cells, CD8 T cells, NK cells, NKT cells and notably even B cells, albeit to a lesser extent. Notably, IL-2 complex expanded Tregs featured less potent suppressive functions than in vitro activated Tregs in terms of T cell suppression in vitro and BM engraftment in vivo. In conclusion, these data suggest that IL-2 complexes are less effective than recipient Tregs in promoting BM engraftment and in contrast actually trigger BM rejection, as their effect is not sufficiently restricted to Tregs but rather extends to several other lymphocyte populations.
Collapse
Affiliation(s)
- Benedikt Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Lukas Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Karin Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Nina Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Ulrike Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Christoph Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Svenja Maschke
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Andreas Michael Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Währinger Gürtel 18–20, 1090, Vienna, Austria
- * E-mail:
| |
Collapse
|
55
|
NK Cell and CD4+FoxP3+ Regulatory T Cell Based Therapies for Hematopoietic Stem Cell Engraftment. Stem Cells Int 2016; 2016:9025835. [PMID: 26880996 PMCID: PMC4736409 DOI: 10.1155/2016/9025835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a powerful therapy to treat multiple hematological diseases. The intensive conditioning regimens used to allow for donor hematopoietic stem cell (HSC) engraftment are often associated with severe toxicity, delayed immune reconstitution, life-threatening infections, and thus higher relapse rates. Additionally, due to the high incidence of graft versus host disease (GvHD), HCT protocols have evolved to prevent such disease that has a detrimental impact on antitumor and antiviral responses. Here, we analyzed the role of host T and natural killer (NK) cells in the rejection of donor HSC engraftment as well as the impact of donor regulatory T cells (Treg) and NK cells on HSC engraftment. We review some of the current strategies that utilize NK or Treg to improve allogeneic HCT therapy in order to accomplish better HSC engraftment and immune reconstitution and achieve a lower incidence of cancer relapse, opportunistic infections, and GvHD.
Collapse
|
56
|
Ruiz P, Maldonado P, Hidalgo Y, Sauma D, Rosemblatt M, Bono MR. Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance. Front Immunol 2015; 6:596. [PMID: 26635810 PMCID: PMC4655502 DOI: 10.3389/fimmu.2015.00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/06/2015] [Indexed: 01/27/2023] Open
Abstract
The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.
Collapse
Affiliation(s)
- Paulina Ruiz
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile ; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Paula Maldonado
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| | - Yessia Hidalgo
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| | - Daniela Sauma
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| | - Mario Rosemblatt
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile ; Fundación Ciencia y Vida , Santiago , Chile ; Facultad de Ciencias Biológicas, Universidad Andres Bello , Santiago , Chile
| | - Maria Rosa Bono
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| |
Collapse
|
57
|
Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells Prolong Graft Survival in Vascularized Composite Allotransplantation. Transplantation 2015; 99:1765-73. [PMID: 26102613 DOI: 10.1097/tp.0000000000000731] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Strategies aiming at minimization or elimination of systemic immunosuppression are key immediate goals for clinical expansion of vascularized composite allotransplantation (VCA). We compared the in vitro and in vivo immunomodulatory efficacy of adipose-derived mesenchymal stem cells (AD-MSCs) and bone marrow (BM)-derived MSCs in a rat VCA model. METHODS Both cell types were tested in vitro for suppressor function using mixed lymphocyte reactivity assays. AD-MSCs or BM-MSCs were administered intravenously (1 × 10 or 5 × 10 cells/animal) to Lewis rat recipients of mismatched Brown Norway hindlimb transplants. Short course tacrolimus (FK-506) monotherapy was withdrawn at postoperative day 21. In vivo regulatory T-cell induction, peripheral blood chimerism, and microchimerism in lymphatic organs were analyzed. RESULTS AD-MSCs and BM-MSCs exhibited strong dose-dependent suppressor function in vitro, which was significantly more pronounced for AD cells. In vivo, all animals revealed peripheral multi-lineage chimerism at four weeks (P < 0.01) independent of cell type and dosage. Regulatory T-cell levels were increased with both cell types, the most in AD-MSC groups. These immunomodulatory effects were only transient. MSC treatment resulted in long-term (>120 day) allograft survival in 47% of the animals, which correlated with durable microchimerism in BM and spleen. CONCLUSIONS AD-MSCs and BM-MSCs exert immunomodulatory effects that prolong survival of immunogenic skin-bearing VCA grafts with short course (21 day) tacrolimus induction therapy. The in vivo findings in terms of allograft survival did not reflect superior immunomodulatory characteristics of AD-MSCs found in vitro.
Collapse
|
58
|
Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. Induction of Regulatory T Cells by Intravenous Immunoglobulin: A Bridge between Adaptive and Innate Immunity. Front Immunol 2015; 6:469. [PMID: 26441974 PMCID: PMC4566032 DOI: 10.3389/fimmu.2015.00469] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is a polyclonal immunoglobulin G preparation with potent immunomodulatory properties. The mode of action of IVIg has been investigated in multiple disease states, with various mechanisms described to account for its benefits. Recent data indicate that IVIg increases both the number and the suppressive capacity of regulatory T cells, a subpopulation of T cells that are essential for immune homeostasis. IVIg alters dendritic cell function, cytokine and chemokine networks, and T lymphocytes, leading to development of regulatory T cells. The ability of IVIg to influence Treg induction has been shown both in animal models and in human diseases. In this review, we discuss data on the potential mechanisms contributing to the interaction between IVIg and the regulatory T-cell compartment.
Collapse
Affiliation(s)
- Gabriel N Kaufman
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Amir H Massoud
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada ; Laboratory of Cellular and Molecular Immunology, University of Montreal Hospital Research Centre , Montreal, QC , Canada
| | - Marieme Dembele
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Madelaine Yona
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada
| | - Bruce D Mazer
- Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre , Montreal, QC , Canada ; Department of Pediatrics, Faculty of Medicine, McGill University , Montreal, QC , Canada
| |
Collapse
|
59
|
Hock K, Mahr B, Schwarz C, Wekerle T. Deletional and regulatory mechanisms coalesce to drive transplantation tolerance through mixed chimerism. Eur J Immunol 2015. [DOI: 10.1002/eji.201545494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karin Hock
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| | - Benedikt Mahr
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| | - Christoph Schwarz
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| | - Thomas Wekerle
- Section of Transplantation Immunology; Department of Surgery; Medical University of Vienna; Austria
| |
Collapse
|
60
|
Polyclonal Recipient nTregs Are Superior to Donor or Third-Party Tregs in the Induction of Transplantation Tolerance. J Immunol Res 2015; 2015:562935. [PMID: 26273682 PMCID: PMC4530277 DOI: 10.1155/2015/562935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/22/2022] Open
Abstract
Induction of donor-specific tolerance is still considered as the "Holy Grail" in transplantation medicine. The mixed chimerism approach is virtually the only tolerance approach that was successfully translated into the clinical setting. We have previously reported successful induction of chimerism and tolerance using cell therapy with recipient T regulatory cells (Tregs) to avoid cytotoxic recipient treatment. Treg therapy is limited by the availability of cells as large-scale expansion is time-consuming and associated with the risk of contamination with effector cells. Using a costimulation-blockade based bone marrow (BM) transplantation (BMT) model with Treg therapy instead of cytoreductive recipient treatment we aimed to determine the most potent Treg population for clinical translation. Here we show that CD4(+)CD25(+) in vitro activated nTregs are superior to TGFβ induced iTregs in promoting the induction of chimerism and tolerance. Therapy with nTregs (but not iTregs) led to multilineage chimerism and donor-specific tolerance in mice receiving as few as 0.5 × 10(6) cells. Moreover, we show that only recipient Tregs, but not donor or third-party Tregs, had a beneficial effect on BM engraftment at the tested doses. Thus, recipient-type nTregs significantly improve chimerism and tolerance and might be the most potent Treg population for translation into the clinical setting.
Collapse
|
61
|
Methyl-Guanine-Methyl-Transferase Transgenic Bone Marrow Transplantation Allows N,N-bis(2-chloroethyl)-Nitrosourea Driven Donor Mixed-Chimerism Without Graft-Versus-Host Disease, and With Donor-Specific Allograft Tolerance. Transplantation 2015; 99:2476-84. [PMID: 26177088 DOI: 10.1097/tp.0000000000000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transplant tolerance has been achieved by mixed chimerism in animal models and in a limited number of kidney transplant patients. However, these mixed-chimerism strategies were limited either by loss of long-term mixed chimerism or risk of graft-versus-host disease (GVHD). Selective bone marrow (BM) engraftment using marrow protective strategies are currently reaching clinical use. In this study, we tested the utility of methyl-guanine-methyl-transferase (MGMT)-transgenic-C57BL/6 BM into a major histocompatibility complex mismatched-BALB/c model followed by N,N-bis(2-chloroethyl)-nitrosourea (BCNU) treatment to enhance donor-cell engraftment and then evaluated transplant tolerance induction. METHODS A single-dose of anti-CD8 antibody and busulfan was administered into BALB/c-host-mice at day 1. The BALB/c-mice also received costimulatory blockade through multiple-doses of anti-CD40L antibody. 10 × 10(6) BM-cells from MGMT-transgenic-mice were transplanted into host BALB/c mice at day 0. The BCNU was administered at 4 time points after BM transplantation (BMT). Heterotopic donor C57BL/6 cardiac allografts were performed at day 243 after BMT. Skin transplantation with third-party CBA, host BALB/c and donor C57BL/6 grafts was performed at day 358 after BMT. RESULTS The BALB/c-mice showed long-term stable and high-level donor-cell engraftment with MGMT transgenic C57BL/6 BMT after BCNU treatment, demonstrating full reconstitution and donor cardiac-allograft tolerance and no GVHD with expanded donor and host Foxp3 T regulatory cells. Further, skin grafts from donor, host, and third party showed good immune function with rejection of third-party grafts from all mice and benefit from enhanced chimerism after BCNU with less cell infiltrate and no chronic rejection in the donor skin grafts of BCNU treated mice compared no BCNU treated mice. CONCLUSIONS High-level mixed chimerism without GVHD can be achieved using MGMT transgenic BM in a mixed-chimerism model receiving BCNU across a major histocompatibility complex mismatch. Enhanced mixed chimerism leads to long-term donor-specific allograft tolerance.
Collapse
|
62
|
Li J, Heinrichs J, Haarberg K, Semple K, Veerapathran A, Liu C, Anasetti C, Yu XZ. HY-Specific Induced Regulatory T Cells Display High Specificity and Efficacy in the Prevention of Acute Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:717-25. [PMID: 26048147 DOI: 10.4049/jimmunol.1401250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
Abstract
Naturally derived regulatory T cells (Tregs) may prevent graft-versus-host disease (GVHD) while preserving graft-versus-leukemia (GVL) activity. However, clinical application of naturally derived regulatory T cells has been severely hampered by their scarce availability and nonselectivity. To overcome these limitations, we took alternative approaches to generate Ag-specific induced Tregs (iTregs) and tested their efficacy and selectivity in the prevention of GVHD in preclinical models of bone marrow transplantation. We selected HY as a target Ag because it is a naturally processed, ubiquitously expressed minor histocompatibility Ag (miHAg) with a proven role in GVHD and GVL effect. We generated HY-specific iTregs (HY-iTregs) from resting CD4 T cells derived from TCR transgenic mice, in which CD4 cells specifically recognize HY peptide. We found that HY-iTregs were highly effective in preventing GVHD in male (HY(+)) but not female (HY(-)) recipients using MHC II-mismatched, parent→F1, and miHAg-mismatched murine bone marrow transplantation models. Interestingly, the expression of target Ag (HY) on the hematopoietic or nonhematopoietic compartment alone was sufficient for iTregs to prevent GVHD. Furthermore, treatment with HY-iTregs still preserved the GVL effect even against pre-established leukemia. We found that HY-iTregs were more stable in male than in female recipients. Furthermore, HY-iTregs expanded extensively in male but not female recipients, which in turn significantly reduced donor effector T cell expansion, activation, and migration into GVHD target organs, resulting in effective prevention of GVHD. This study demonstrates that iTregs specific for HY miHAgs are highly effective in controlling GVHD in an Ag-dependent manner while sparing the GVL effect.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jessica Heinrichs
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33620; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Kelley Haarberg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kenrick Semple
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Anandharaman Veerapathran
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611
| | - Claudio Anasetti
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33620
| | - Xue-Zhong Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| |
Collapse
|
63
|
Pilat N, Klaus C, Schwarz C, Hock K, Oberhuber R, Schwaiger E, Gattringer M, Ramsey H, Baranyi U, Zelger B, Brandacher G, Wrba F, Wekerle T. Rapamycin and CTLA4Ig synergize to induce stable mixed chimerism without the need for CD40 blockade. Am J Transplant 2015; 15:1568-79. [PMID: 25783859 DOI: 10.1111/ajt.13154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/30/2014] [Indexed: 01/25/2023]
Abstract
The mixed chimerism approach achieves donor-specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti-CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor-specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC-mismatched/minor antigen-matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non-MHC antigens cause graft rejection and split tolerance.
Collapse
Affiliation(s)
- N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - C Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - R Oberhuber
- Department of Visceral, Transplant, and Thoracic Surgery, Center of Operative Medicine, Innsbruck Medical University, Austria
| | - E Schwaiger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - M Gattringer
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - H Ramsey
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - U Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - B Zelger
- Institute of Pathology, Medical University of Innsbruck, Austria
| | - G Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - F Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW Vascularized composite tissue allografts (CTAs) provide excellent restorative options for patients with limb loss and other deformities. Acute rejection remains common with CTA and immunosuppression is used in an attempt to prevent rejection. This has created ethical debates regarding the use of intensive immunosuppression for a nonlife-saving procedure. This highlights the need for newer immunosuppressive strategies for CTA, which are described in this review. RECENT FINDINGS Recent studies have looked into immunomodulation and tolerance to decrease toxicity of immunosuppression. Both strategies have had some success but have their own limitations. Although immunomodulation and decrease in immunosuppression decreases toxicity, it has been associated with higher rates of rejection. Induction of tolerance has achieved some initial success, but the initial conditioning regimens are associated with significant morbidity. SUMMARY Although recent advancements have been made in the immunosuppressive strategies in CTA, the ideal immunosuppression strategy with low toxicity and infection risk but with the ability to prevent acute and chronic rejection is yet to be discovered.
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW The field of vascularized composite allograft (VCA) to achieve its full potential will require induction of tolerance. This review will introduce a new method of potential inducing tolerance in hand transplantation. RECENT FINDINGS Hand transplantation is never a life-extending transplant. This fact resulted in considerable debate both for and against the use of immunosuppression for nonlife-extending transplants. There is considerable debate about the ethics of hand transplantation. There is now consensus that nonlife-extending transplants are acceptable in properly selected patients. However, ideally, hand transplants should not receive life-long immunosuppression. Therefore, attempts to achieve drug-free tolerance through nonlife-endangering therapies are warranted. To this end, we propose implementation of tolerizing therapy long after periinflammation has subsided and drug minimization has proven successful. Evidence that short-term treatment with low doses of IL-2 or a long-lived IL-2 immunoglobulin (Ig) can tilt the balance of immunity from tissue destructive to tolerance come from preclinical demonstrations in mouse and nonhuman primate models of autoimmunity and/or transplantation and even more recent clinical trials. SUMMARY We believe that with the proper use of low-dose IL-2 given at an opportune time in the inflammatory process of transplant that reduce immunosuppression and even tolerance can be induced in hand transplantation. We propose that tolerance can be inducted after a long period of conventional treatment to avoid 'tolerance-hindering' adverse inflammation that occurs in the posttransplant period. With abatement of posttransplant inflammation and with time, we will institute low-dose IL-2-based therapy to support the proliferation, viability and functional phenotype of regulatory T cells.
Collapse
|
66
|
Abstract
There is a clear need to develop strategies to induce tolerance without the need of chronic immunosuppression in transplant recipient and in patients with autoimmunity. Adoptive T regulatory cell (Treg) therapy offers the potential of long-lasting protection. However, based on results of clinical trials so far with ex vivo expanded autologous Tregs in type 1 diabetic (T1D) patients, it seems unlikely that single immunotherapy with Treg infusion without immunomodulation regimens that promote stable donor Treg engraftment and persistence would afford truly significant clinical benefit. Combination therapies could provide improved outcomes with consideration of the fundamental factors required for Treg generation, homeostasis, and function to promote long-term donor Treg persistence to provoke beneficial therapeutic outcomes.
Collapse
|
67
|
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2015; 258:241-58. [PMID: 24517437 DOI: 10.1111/imr.12152] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discrepancy between organ need and organ availability represents one of the major limitations in the field of transplantation. One possible solution to this problem is xenotransplantation. Research in this field has identified several obstacles that have so far prevented the successful development of clinical xenotransplantation protocols. The main immunologic barriers include strong T-cell and B-cell responses to solid organ and cellular xenografts. In addition, components of the innate immune system can mediate xenograft rejection. Here, we review these immunologic and physiologic barriers and describe some of the strategies that we and others have developed to overcome them. We also describe the development of two strategies to induce tolerance across the xenogeneic barrier, namely thymus transplantation and mixed chimerism, from their inception in rodent models through their current progress in preclinical large animal models. We believe that the addition of further beneficial transgenes to Gal knockout swine, combined with new therapies such as Treg administration, will allow for successful clinical application of xenotransplantation.
Collapse
Affiliation(s)
- Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
68
|
Klimczak A, Siemionow MZ. Cellular Therapies in Vascularized Composite Allograft: Review. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
69
|
Moore C, Tejon G, Fuentes C, Hidalgo Y, Bono MR, Maldonado P, Fernandez R, Wood KJ, Fierro JA, Rosemblatt M, Sauma D, Bushell A. Alloreactive regulatory T cells generated with retinoic acid prevent skin allograft rejection. Eur J Immunol 2014; 45:452-63. [PMID: 25381698 DOI: 10.1002/eji.201444743] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022]
Abstract
CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells mediate immunological self-tolerance and suppress immune responses. Retinoic acid (RA), a natural metabolite of vitamin A, has been reported to enhance the differentiation of Treg cells in the presence of TGF-β. In this study, we show that the co-culture of naive T cells from C57BL/6 mice with allogeneic antigen-presenting cells (APCs) from BALB/c mice in the presence of TGF-β, RA, and IL-2 resulted in a striking enrichment of Foxp3(+) T cells. These RA in vitro-induced regulatory T (RA-iTreg) cells did not secrete Th1-, Th2-, or Th17-related cytokines, showed a nonbiased homing potential, and expressed several cell surface molecules related to Treg-cell suppressive potential. Accordingly, these RA-iTreg cells suppressed T-cell proliferation and inhibited cytokine production by T cells in in vitro assays. Moreover, following adoptive transfer, RA-iTreg cells maintained Foxp3 expression and their suppressive capacity. Finally, RA-iTreg cells showed alloantigen-specific immunosuppressive capacity in a skin allograft model in immunodeficient mice. Altogether, these data indicate that functional and stable allogeneic-specific Treg cells may be generated using TGF-β, RA, and IL-2. Thus, RA-iTreg cells may have a potential use in the development of more effective cellular therapies in clinical transplantation.
Collapse
Affiliation(s)
- Carolina Moore
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Yamada Y, Ochiai T, Boskovic S, Nadazdin O, Oura T, Schoenfeld D, Cappetta K, Smith RN, Colvin RB, Madsen JC, Sachs DH, Benichou G, Cosimi AB, Kawai T. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Am J Transplant 2014; 14:2704-12. [PMID: 25394378 PMCID: PMC4236265 DOI: 10.1111/ajt.12936] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/18/2014] [Accepted: 07/12/2014] [Indexed: 01/25/2023]
Abstract
We have previously reported successful induction of renal allograft tolerance via a mixed chimerism approach in nonhuman primates. In those studies, we found that costimulatory blockade with anti-CD154 mAb was an effective adjunctive therapy for induction of renal allograft tolerance. However, since anti-CD154 mAb is not clinically available, we have evaluated CTLA4Ig as an alternative agent for effecting costimulation blockade in this treatment protocol. Two CTLA4Igs, abatacept and belatacept, were substituted for anti-CD154 mAb in the conditioning regimen (low dose total body irradiation, thymic irradiation, anti-thymocyte globulin and a 1-month posttransplant course of cyclosporine [CyA]). Three recipients treated with the abatacept regimen failed to develop comparable lymphoid chimerism to that achieved with anti-CD154 mAb treatment and these recipients rejected their kidney allografts early. With the belatacept regimen, four of five recipients developed chimerism and three of these achieved long-term renal allograft survival (>861, >796 and >378 days) without maintenance immunosuppression. Neither chimerism nor long-term allograft survival were achieved in two recipients treated with the belatacept regimen but with a lower, subtherapeutic dose of CyA. This study indicates that CD28/B7 blockade with belatacept can provide a clinically applicable alternative to anti-CD154 mAb for promoting chimerism and renal allograft tolerance.
Collapse
Affiliation(s)
- Yohei Yamada
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Takanori Ochiai
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Svjetlan Boskovic
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ognjenka Nadazdin
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Tetsu Oura
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - David Schoenfeld
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kate Cappetta
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Rex-Neal Smith
- Department of pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Robert B Colvin
- Department of pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Joren C. Madsen
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - David H. Sachs
- Transplant Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Gilles Benichou
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - A. Benedict Cosimi
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Tatsuo Kawai
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
71
|
Gracon ASA, Wilkes DS. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance. Hum Immunol 2014; 75:887-94. [PMID: 24979671 PMCID: PMC4357397 DOI: 10.1016/j.humimm.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.
Collapse
Affiliation(s)
- Adam S A Gracon
- Department of Surgery and Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Wilkes
- Departments of Medicine, Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
72
|
Im KI, Park MJ, Kim N, Lim JY, Park HS, Lee SH, Nam YS, Lee ES, Lee JH, Cho ML, Cho SG. Induction of mixed chimerism using combinatory cell-based immune modulation with mesenchymal stem cells and regulatory T cells for solid-organ transplant tolerance. Stem Cells Dev 2014; 23:2364-76. [PMID: 24804993 DOI: 10.1089/scd.2013.0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Establishment of mixed chimerism is an ideal approach to induce donor-specific tolerance while expanding its potential in various clinical settings. Despite the developments in partial conditioning regimens, improvements are still needed in reducing toxicity and bone marrow transplantation-related complications. Recently, cell-based therapies, including mesenchymal stem cells (MSCs), have been incorporated in establishing noncytoreductive mixed chimerism protocols; however, its efficacy is only partial and shows reversed immunosuppressive properties. This study demonstrates a novel approach to induce mixed chimerism and tolerance through combinatory cell-based immune modulation (CCIM) of MSCs and regulatory T cells (Tregs). We hypothesize that the interaction between these cells may lead to greater inhibition of host immune responses. Compared with single cell therapy, CCIM induced a higher engraftment rate and robust donor-specific tolerance to skin allografts across full major histocompatibility complex barriers. These regulatory effects were associated with inhibition of natural killer cell cytotoxic activity, CD4(+)IL-17(+) cells, memory B cells, plasma cells, and immunoglobulin production levels along with increased frequencies of CD4(+)Foxp3(+) cells, IL-10-producing mature B cells, and myeloid-derived suppressor cells. Furthermore, CCIM was able to regulate mortality in a graft-versus-host disease model through reciprocal regulation of Treg/Th17. Taken together, we suggest CCIM as a clinically applicable strategy for facilitating the induction of mixed chimerism and permanent tolerance.
Collapse
Affiliation(s)
- Keon-Il Im
- 1 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, The Catholic University of Korea College of Medicine , Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Mechanistic and therapeutic role of regulatory T cells in tolerance through mixed chimerism. Curr Opin Organ Transplant 2014; 15:725-30. [PMID: 20881493 DOI: 10.1097/mot.0b013e3283401755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW Although substantial advances in transplantation medicine have improved short-term graft survival, long-term outcome after organ transplantation is unsatisfactory. The induction of donor-specific tolerance as a potential solution remains an unmet need. Mixed chimerism established through transplantation of donor bone marrow is an appealing tolerance strategy, but widespread clinical application is prevented by the toxicity of recipient conditioning, which is required for achieving bone marrow engraftment. Clonal deletion - both central and peripheral - has long been recognized as a cardinal mechanism in experimental mixed chimerism models. RECENT FINDINGS Several recent studies have delineated the importance of nondeletional, regulatory mechanisms for the induction of tolerance through mixed chimerism. Moreover, the therapeutic application of recipient regulatory T cells (Tregs) has been combined with the transplantation of donor bone marrow. Such a 'Treg-chimerism' protocol leads to engraftment of conventional doses of fully allogeneic bone marrow and to donor-specific tolerance without the need for any cytotoxic conditioning. SUMMARY Regulatory mechanisms play a major role in mixed chimerism protocols. Treg therapy is exceptionally effective in achieving bone marrow engraftment without cytotoxic recipient treatment, thereby eliminating a major toxic factor preventing widespread application of the mixed chimerism strategy.
Collapse
|
74
|
Cabello-Kindelan C, de la Barrera A, Malek TR, Bayer AL. In vivo environment necessary to support transplanted donor mouse T regulatory cells. Am J Transplant 2014; 14:1032-45. [PMID: 24618297 DOI: 10.1111/ajt.12650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/06/2013] [Accepted: 12/26/2013] [Indexed: 01/25/2023]
Abstract
CD4(+) Foxp3(+) T regulatory cells (Tregs ) are essential for maintaining immunological tolerance, which could be harnessed for novel cell-based therapies to prevent allograft rejection and control autoimmunity. However, the use of Tregs for therapy is hindered by the inability to generate sufficient cell numbers to inhibit desired immune response(s) and achieve stable engraftment of the donor-Treg cell inoculums. The present study was undertaken to investigate the in vivo requirements to promote engraftment of adoptively transferred Tregs and induce tolerance. We established that not only is peripheral space required, but competition from endogenous Tregs must be minimized for successful donor-Treg engraftment with IL-2 critical for driving their proliferation and survival. Moreover, these studies revealed a critical level of donor-Treg engraftment was required for tolerance induction to skin transplants. These mouse studies lay the foundation for development of novel Treg approaches for tolerance induction in the clinic involving not only organ or cellular transplantation, but also to re-establish self-tolerance in autoimmune settings.
Collapse
Affiliation(s)
- C Cabello-Kindelan
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | |
Collapse
|
75
|
EXP CLIN TRANSPLANTExp Clin Transplant 2014; 12. [DOI: 10.6002/ect.2013.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
76
|
Cheng HY, Ghetu N, Huang WC, Wang YL, Wallace CG, Wen CJ, Chen HC, Shih LY, Lin CF, Hwang SM, Liao SK, Wei FC. Syngeneic adipose-derived stem cells with short-term immunosuppression induce vascularized composite allotransplantation tolerance in rats. Cytotherapy 2014; 16:369-380. [PMID: 24119648 DOI: 10.1016/j.jcyt.2013.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/23/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND AIMS A clinically applicable tolerance induction regimen that removes the requirement for lifelong immunosuppression would benefit recipients of vascularized composite allotransplantation (VCA). We characterized the immunomodulatory properties of syngeneic (derived from the recipient strain) adipocyte-derived stem cells (ADSCs) and investigated their potential to induce VCA tolerance in rats. METHODS ADSCs were isolated from Lewis (LEW, RT1A(l)) rats; their immunomodulatory properties were evaluated by means of mixed lymphocyte reactions in vitro and VCAs in vivo across a full major histocompatibility complex mismatch with the use of Brown-Norway (BN, RT1A(n)) donor rats. Two control and four experimental groups were designed to evaluate treatment effects of ADSCs and transient immunosuppressants (anti-lymphocyte globulin, cyclosporine) with or without low-dose (200 cGy) total body irradiation. Flow cytometry was performed to quantify levels of circulating CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). RESULTS Cultured syngeneic ADSCs exhibited CD90.1(+)CD29(+)CD73(+)CD45(-)CD79a(-)CD11b/c(-) phenotype and the plasticity to differentiate to adipocytes and osteocytes. ADSCs dramatically suppressed proliferation of LEW splenocytes against BN antigen and mitogen, respectively, in a dose-dependent fashion, culminating in abrogation of allo- and mitogen-stimulated proliferation at the highest concentration tested. Accordingly, one infusion of syngeneic ADSCs markedly prolonged VCA survival in LEW recipients treated with transient immunosuppression; of these, 66% developed tolerance. Total body irradiation provided no additional VCA survival benefit. An important role for Tregs in tolerance induction/maintenance was suggested in vivo and in vitro. CONCLUSIONS Treatment comprising syngeneic ADSCs and transient immunosuppression (i) increased levels of circulating Tregs and (ii) induced tolerance in 66% of recipients of major histocompatibility complex-mismatched VCAs.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Gueishan, Taiwan; Department of Medical Research and Development Linkou Branch, Chang Gung Medical Foundation, Taoyuan, Gueishan, Taiwan
| | - Nicolae Ghetu
- Former Microsurgery Fellow, Chang Gung Memorial Hospital; Regional Oncological Institute, University of Medicine and Pharmacy. "Grigore T. Popa," Iasi, România
| | - Wei-Chao Huang
- Division of Plastic and Reconstructive Surgery, Tzu Chi General Hospital at Taipei, New Taipei, Taiwan
| | - Yen-Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Gueishan, Taiwan
| | | | - Chih-Jen Wen
- School of Medicine, Chang Gung University, Gueishan, Taiwan
| | - Hung-Chang Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taiwan
| | - Ling-Yi Shih
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Gueishan, Taiwan
| | - Chih-Fan Lin
- School of Medicine, Chang Gung University, Gueishan, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Shuen-Kuei Liao
- Graduate Institute of Cancer Biology and Drug Discovery and Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan; R&D Division, Vectorite Biomedica Inc, Taipei, Taiwan.
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Gueishan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Gueishan, Taiwan; School of Medicine, Chang Gung University, Gueishan, Taiwan.
| |
Collapse
|
77
|
Hirai T, Ishii Y, Ikemiyagi M, Fukuda E, Omoto K, Namiki M, Taniguchi M, Tanabe K. A novel approach inducing transplant tolerance by activated invariant natural killer T cells with costimulatory blockade. Am J Transplant 2014; 14:554-67. [PMID: 24502294 DOI: 10.1111/ajt.12606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 01/25/2023]
Abstract
Invariant natural killer T (iNKT) cells are one of the innate lymphocytes that regulate immunity, although it is still elusive how iNKT cells should be manipulated for transplant tolerance. Here, we describe the potential of a novel approach using a ligand for iNKT cells and suboptimal dosage of antibody for CD40-CD40 ligand (L) blockade as a powerful method for mixed chimerism establishment after allogenic bone marrow transplantation in sublethally irradiated fully allo recipients. Mixed-chimera mice accepted subsequent cardiac allografts in a donor-specific manner. High amounts of type 2 helper T cytokines were detected right after iNKT cell activation, while subsequent interferon-gamma production by NK cells was effectively inhibited by CD40/CD40L blockade. Tolerogenic components, such as CD11c(low) mPDCA1(+) plasmacytoid dendritic cells and activated regulatory T cells (Tregs) expressing CD103, KLRG-1 and PD-1, were subsequently augmented. Those activating Tregs seem to be required for the establishment of chimerism because depletion of the Tregs 1 day before allogenic cell transfer resulted in a chimerism brake. These results collectively suggest that our new protocol makes it possible to induce donor-specific tolerance by enhancement of the innate ability for immune tolerance in place of the conventional immunosuppression.
Collapse
Affiliation(s)
- T Hirai
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan; Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Lin JY, Tsai FC, Wallace CG, Huang WC, Wei FC, Liao SK. Combined treatment with regulatory T cells and vascularized bone marrow transplantation creates mixed chimerism and induces donor-specific tolerance to vascularized composite allografts without cytoreductive conditioning. CHIMERISM 2013; 4:20-2. [PMID: 23712382 DOI: 10.4161/chim.23349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We demonstrate herein that combination treatment with regulatory T cells (Tregs) and vascularized bone marrow transplantation (VBMT) can achieve stable mixed chimerism and long-term transplantation tolerance to vascularized composite allografts (VCA) without requiring cytoreductive recipient conditioning in rats. An appreciable number of Tregs of recipient origin was shown at the interface between recipient and transplanted VCA tissues, implicating a significant role for Tregs in protecting VCA from rejection. This cytoreduction-free protocol using co-treatment with Tregs and VBMT warrants further investigation toward potential clinical application for VCA transplantation.
Collapse
Affiliation(s)
- Jeng-Yee Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Seminal studies in rabbits and rodent transplantation models by Peter Medawar revealed that cellular processes, rather than humoral antibodies, are central to the acute rejection of transplanted organs, and much of basic transplantation research continues to be focused on the biology and control of these cells, which were subsequently shown to be T cells. However, the success of current immunosuppression at controlling T-cell-mediated rejection has resulted in an increasing awareness of antibody-mediated rejection in the clinic. This, in turn, has fueled an emerging interest in the biology of allospecific antibodies, the B cells that produce these antibodies, and the development of mouse models that allow their investigation. Here we summarize some of the more widely used mouse models that have been developed to study the immunobiology of alloreactivity, transplantation rejection and tolerance, and used to identify therapeutic strategies that modulate these events.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois 60637
| | | | | | | |
Collapse
|
80
|
T-regulatory cell treatment prevents chronic rejection of heart allografts in a murine mixed chimerism model. J Heart Lung Transplant 2013; 33:429-37. [PMID: 24468120 PMCID: PMC3991417 DOI: 10.1016/j.healun.2013.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022] Open
Abstract
Background The mixed chimerism approach induces donor-specific tolerance in both pre-clinical models and clinical pilot trials. However, chronic rejection of heart allografts and acute rejection of skin allografts were observed in some chimeric animals despite persistent hematopoietic chimerism and tolerance toward donor antigens in vitro. We tested whether additional cell therapy with regulatory T cells (Tregs) is able to induce full immunologic tolerance and prevent chronic rejection. Methods We recently developed a murine “Treg bone marrow (BM) transplantation (BMT) protocol” that is devoid of cytoreductive recipient pre-treatment. The protocol consists of a moderate dose of fully mismatched allogeneic donor BM under costimulation blockade, together with polyclonal recipient Tregs and rapamycin. Control groups received BMT under non-myeloablative irradiation and costimulation blockade without Treg therapy. Multilineage chimerism was followed by flow cytometry, and tolerance was assessed by donor-specific skin and heart allografts. Results Durable multilineage chimerism and long-term donor skin and heart allograft survival were successfully achieved with both protocols. Notably, histologic examination of heart allografts at the end of follow-up revealed that chronic rejection is prevented only in chimeras induced with the Treg protocol. Conclusions In a mouse model of mixed chimerism, additional Treg treatment at the time of BMT prevents chronic rejection of heart allografts. As the Treg-chimerism protocol also obviates the need for cytoreductive recipient treatment it improves both efficacy and safety over previous non-myeloablative mixed chimerism regimens. These results may significantly impact the development of protocols for tolerance induction in cardiac transplantation.
Collapse
|
81
|
Abstract
BACKGROUND Allogeneic bone marrow transplantation is under investigation for a range of nonmalignant indications, including tolerance induction through mixed chimerism. This strategy has so far been tested experimentally only in young recipients. Due to immunosenescence, older patients have an increase in memory T cells (TMEM) as well as other alterations to their immune system, which may influence the potential to induce tolerance. We therefore investigated the impact of immunosenescence on chimerism-based tolerance induction. METHODS Groups of young (2 months) and old (12 months) C57BL/6 recipients received BALB/c bone marrow under nonmyeloablative (3 Gy) and minimal (1 Gy) total body irradiation and treatment with costimulation blockade, T-cell depletion, or rapamycin. Multilineage chimerism, clonal deletion, and lymphocyte subsets were analyzed by flow cytometry. Tolerance was assessed by skin and heart grafts and enzyme-linked immunospot, intracellular cytokine, and mixed lymphocyte reaction assays. RESULTS Unexpectedly, chimerism and tolerance were established in old recipients with comparable-and in some cases increased-efficacy as in young recipients employing costimulation blockade-based or T-cell depletion-based conditioning with 1 or 3 Gy total body irradiation. TMEM reactivity in (naïve) old mice was augmented in response to polyclonal but not to allogeneic stimulation, providing a mechanistic underpinning for the susceptibility to chimerism induction despite increased TMEM frequencies. Tolerance in old recipients was associated with peripheral and central clonal deletion and a higher frequency of regulatory T cells. CONCLUSION Advanced age does not impair bone marrow engraftment, thereby widening the clinical potential of experimental protocols inducing transplantation tolerance through mixed chimerism.
Collapse
|
82
|
Targeting apoptosis to induce stable mixed hematopoietic chimerism and long-term allograft survival without myelosuppressive conditioning in mice. Blood 2013; 122:1669-77. [PMID: 23869083 DOI: 10.1182/blood-2012-09-453944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of mixed hematopoietic chimerism results in donor-specific immunological tolerance by apoptosis-mediated deletion of donor-reactive lymphocytes. A broad clinical application of this approach is currently hampered by limited predictability and toxicity of the available conditioning protocols. We developed a new therapeutic approach to induce mixed chimerism and tolerance by a direct pharmacological modulation of the intrinsic apoptosis pathway in peripheral T cells. The proapoptotic small-molecule Bcl-2 inhibitor ABT-737 promoted mixed chimerism induction and reversed the antitolerogenic effect of calcineurin inhibitors by boosting the critical role of the proapoptotic Bcl-2 factor Bim. A short conditioning protocol with ABT-737 in combination with costimulation blockade and low-dose cyclosporine A resulted in a complete deletion of peripheral donor-reactive lymphocytes and was sufficient to induce mixed chimerism and robust systemic tolerance across full major histocompatibility complex barriers, without myelosuppression and by using moderate doses of bone marrow cells. Thus, immunological tolerance can be achieved by direct modulation of the intrinsic apoptosis pathway in peripheral lymphocytes-a new approach to translate immunological tolerance into clinically applicable protocols.
Collapse
|
83
|
Antony AK, Rodby K, Tobin MK, O'Connor MI, Pearl RK, DiPietro LA, Breidenbach WC, Bartholomew AM. Composite tissue allotransplantation and dysregulation in tissue repair and regeneration: a role for mesenchymal stem cells. Front Immunol 2013; 4:188. [PMID: 23847625 PMCID: PMC3705198 DOI: 10.3389/fimmu.2013.00188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/25/2013] [Indexed: 01/09/2023] Open
Abstract
Vascularized composite tissue allotransplantation is a rapidly evolving area that has brought technological advances to the forefront of plastic surgery, hand surgery, and transplant biology. Composite tissue allografts (CTAs) may have profound functional, esthetic, and psychological benefits, but carry with them the risks of life-long immunosuppression and the inadequate abilities to monitor and prevent rejection. Allografts may suffer from additional insults further weakening their overall benefits. Changes in local blood flow, lack of fully restored neurologic function, infection, inflammation with subsequent dysregulated regenerative activity, and paucity of appropriate growth factors may all be involved in reducing the potential of CTAs and therefore serve as new therapeutic targets to improve outcomes. Strategies involving minimized immunosuppression and pro-regenerative therapy may provide a greater path to optimizing long-term CTA function. One such strategy may include mesenchymal stem cells (MSCs), which can provide unique anti-inflammatory and pro-regenerative effects. Insights gained from new studies with MSCs on composite allografts, advances in tissue regeneration reported in other MSC-based clinical studies, as well as consideration of newly described capacities of MSCs, may provide new regenerative based strategies for the care of CTAs.
Collapse
Affiliation(s)
- Anuja K Antony
- Department of Surgery, Division of Plastic, Reconstructive and Cosmetic Surgery, University of Illinois at Chicago , Chicago, IL , USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Anam K, Lazdun Y, Davis PM, Banas RA, Elster EA, Davis TA. Amnion-derived multipotent progenitor cells support allograft tolerance induction. Am J Transplant 2013; 13:1416-28. [PMID: 23651511 DOI: 10.1111/ajt.12252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 02/11/2013] [Accepted: 03/10/2013] [Indexed: 01/25/2023]
Abstract
Donor-specific immunological tolerance using high doses of bone marrow cells (BMCs) has been demonstrated in mixed chimerism-based tolerance induction protocols; however, the development of graft versus host disease remains a risk. Here, we demonstrate that the co-infusion of limited numbers of donor unfractionated BMCs with human amnion-derived multipotent progenitor cells (AMPs) 7 days post-allograft transplantation facilitates macrochimerism induction and graft tolerance in a mouse skin transplantation model. AMPs + BMCs co-infusion with minimal conditioning led to stable, mixed, multilineage lymphoid and myeloid macrochimerism, deletion of donor-reactive T cells, expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cells (T(regs)) and long-term allograft survival (>300 days). Based on these findings, we speculate that AMPs maybe a pro-tolerogenic cellular therapeutic that could have clinical efficacy for both solid organ and hematopoietic stem cell transplant applications.
Collapse
Affiliation(s)
- K Anam
- Department of Regenerative Medicine, Operational and Undersea Medicine Directorate at the Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|
85
|
Mixed chimerism through donor bone marrow transplantation: a tolerogenic cell therapy for application in organ transplantation. Curr Opin Organ Transplant 2013; 17:63-70. [PMID: 22186093 DOI: 10.1097/mot.0b013e32834ee68b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Organ transplantation is the state-of-the-art treatment for end-stage organ failure; however, long-term graft survival is still unsatisfactory. Despite improved immunosuppressive drug therapy, patients are faced with substantial side effects and the risk of chronic rejection with subsequent graft loss. The transplantation of donor bone marrow for the induction of mixed chimerism has been recognized to induce donor-specific tolerance a long time ago, but safety concerns regarding toxicities of current bone marrow transplantation (BMT) protocols impede widespread application. RECENT FINDINGS Recent studies in nonhuman primates and kidney transplant patients have demonstrated successful induction of allograft tolerance even though--in contrast to murine models--only transient chimerism was achieved. Progress toward the development of nontoxic murine BMT protocols revealed that Treg therapy is a potent therapeutic adjunct eliminating the need for cytotoxic recipient conditioning. Furthermore, new insight into the mechanisms underlying tolerization of CD4 and CD8 T cells in mixed chimeras has been gained and has identified possible difficulties impeding clinical translation. SUMMARY This review will address the recent advances in murine models as well as findings from the first clinical trials for the induction of tolerance through mixed chimerism. Both the potential for more widespread clinical application and the remaining hurdles and challenges of this tolerance approach will be discussed.
Collapse
|
86
|
Gattringer M, Baranyi U, Pilat N, Hock K, Klaus C, Buchberger E, Ramsey H, Iacomini J, Valenta R, Wekerle T. Engraftment of retrovirally transduced Bet v 1-GFP expressing bone marrow cells leads to allergen-specific tolerance. Immunobiology 2013; 218:1139-46. [PMID: 23623394 DOI: 10.1016/j.imbio.2013.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
Abstract
Molecular chimerism is a promising strategy to induce tolerance to disease-causing antigens expressed on genetically modified haematopoietic stem cells. The approach was employed successfully in models of autoimmunity and organ transplantation. Recently, we demonstrated that molecular chimerism induces robust and lasting tolerance towards the major grass pollen allergen Phl p 5. Since allergens are a group of antigens differing widely in their function, origin and structure we further examined the effectiveness of molecular chimerism using the Phl p 5-unrelated major birch pollen allergen Bet v 1, co-expressed with the reporter GFP. Besides, inhibition of CD26 was used to promote engraftment of modified stem cells. Retrovirus VSV-Betv1-GFP was generated to transduce 5-FU-mobilized BALB/c hematopoietic cells to express membrane-bound Bet v 1 (VSV-GFP virus was used as control). Myeloablated BALB/c mice received Betv1-GFP or GFP expressing bone marrow cells, pre-treated with a CD26 inhibitor. Chimerism was followed by flow cytometry. Tolerance was assessed by measuring allergen-specific isotype levels in sera, RBL assays and T-cell proliferation assays. Mice transplanted with transduced BMC developed multi-lineage molecular chimerism which remained stable long-term (>8 months). After repeated immunizations with Bet v 1 and Phl p 5 serum levels of Bet v 1-specific antibodies (IgE, IgG1, IgG2a, IgG3 and IgA) remained undetectable in Betv1-GFP chimeras while high levels of Phl p 5-specific antibodies developed. Likewise, basophil degranulation was induced in response to Phl p 5 but not to Bet v 1 and specific non-responsiveness to Bet v 1 was observed in proliferation assays. These data demonstrate successful tolerization towards Bet v 1 by molecular chimerism. Stable long-term chimerism was achieved under inhibition of CD26. These results provide evidence for the broad applicability of molecular chimerism as tolerance strategy in allergy.
Collapse
Affiliation(s)
- Martina Gattringer
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Tolerance induction strategies in vascularized composite allotransplantation: mixed chimerism and novel developments. Clin Dev Immunol 2012; 2012:863264. [PMID: 23320020 PMCID: PMC3540904 DOI: 10.1155/2012/863264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/06/2012] [Accepted: 12/03/2012] [Indexed: 12/29/2022]
Abstract
Since the start of the clinical vascularized composite allotransplantation (VCA) era over a decade ago this field has witnessed significant developments in both basic and translational research. Transplant tolerance, defined as rejection-free acceptance of transplanted organs or tissues without long-term immunosuppression, holds the potential to revolutionize the field of VCA by removing the need for life-long immunosuppression. While tolerance of organ and vascularized composite transplants may be induced in small animal models by a variety of protocols, only mixed-chimerism-based protocols have successfully bridged the gap to preclinical study and to clinical trial in solid organ transplantation to date. In this paper we review the mixed-chimerism approach to tolerance induction, with specific reference to the field of VCA transplantation, and provide an overview of some novel cellular therapies as potential adjuvants to mixed chimerism in the development of tolerance induction protocols for clinical vascularized composite allotransplantation.
Collapse
|
88
|
Ramsey H, Pilat N, Hock K, Klaus C, Unger L, Schwarz C, Baranyi U, Gattringer M, Schwaiger E, Wrba F, Wekerle T. Anti-LFA-1 or rapamycin overcome costimulation blockade-resistant rejection in sensitized bone marrow recipients. Transpl Int 2012; 26:206-18. [PMID: 23240587 DOI: 10.1111/tri.12021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/15/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023]
Abstract
While costimulation blockade-based mixed chimerism protocols work well for inducing tolerance in rodents, translation to preclinical large animal/nonhuman primate models has been less successful. One recognized cause for these difficulties is the high frequency of alloreactive memory T cells (Tmem) found in the (pre)clinical setting as opposed to laboratory mice. In the present study, we therefore developed a murine bone marrow transplantation (BMT) model employing recipients harboring polyclonal donor-reactive Tmem without concomitant humoral sensitization. This model was then used to identify strategies to overcome this additional immune barrier. We found that B6 recipients that were enriched with 3 × 10(7) T cells isolated from B6 mice that had been previously grafted with Balb/c skin, rejected Balb/c BM despite costimulation blockade with anti-CD40L and CTLA4Ig (while recipients not enriched developed chimerism). Adjunctive short-term treatment of sensitized BMT recipients with rapamycin or anti-LFA-1 mAb was demonstrated to be effective in controlling Tmem in this model, leading to long-term mixed chimerism and donor-specific tolerance. Thus, rapamycin and anti-LFA-1 mAb are effective in overcoming the potent barrier that donor-reactive Tmem pose to the induction of mixed chimerism and tolerance despite costimulation blockade.
Collapse
Affiliation(s)
- Haley Ramsey
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Baranyi U, Pilat N, Gattringer M, Linhart B, Klaus C, Schwaiger E, Iacomini J, Valenta R, Wekerle T. Persistent molecular microchimerism induces long-term tolerance towards a clinically relevant respiratory allergen. Clin Exp Allergy 2012; 42:1282-92. [PMID: 22805476 DOI: 10.1111/j.1365-2222.2012.04049.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Development of antigen-specific preventive strategies is a challenging goal in IgE-mediated allergy. We have recently shown in proof-of-concept experiments that allergy can be successfully prevented by induction of durable tolerance via molecular chimerism. Transplantation of syngeneic hematopoietic stem cells genetically modified to express the clinically relevant grass pollen allergen Phl p 5 into myeloablated recipients led to high levels of chimerism (i.e. macrochimerism) and completely abrogated Phl p 5-specific immunity despite repeated immunizations with Phl p 5. OBJECTIVE It was unclear, however, whether microchimerism (drastically lower levels of chimerism) would be sufficient as well which would allow development of minimally toxic tolerance protocols. METHODS Bone marrow cells were transduced with recombinant viruses integrating Phl p 5 to be expressed in a membrane-anchored fashion. The syngeneic modified cells were transplanted into non-myeloablated recipients that were subsequently immunized repeatedly with Phl p 5 and Bet v 1 (control). Molecular chimerism was monitored using flow cytometry and PCR. T cell, B-cell and effector-cell tolerance were assessed by allergen-specific proliferation assays, isotype levels in sera and RBL assays. RESULTS Here we demonstrate that transplantation of Phl p 5-expressing bone marrow cells into recipients having received non-myeloablative irradiation resulted in chimerism persisting for the length of follow-up. Chimerism levels, however, declined from transient macrochimerism levels to persistent levels of microchimerism (followed for 11 months). Notably, these chimerism levels were sufficient to induce B-cell tolerance as no Phl p 5-specific IgE and other high affinity isotypes were detectable in sera of chimeric mice. Furthermore, T-cell and effector-cell tolerance were achieved. CONCLUSIONS AND CLINICAL RELEVANCE Low levels of persistent molecular chimerism are sufficient to induce long-term tolerance in IgE-mediated allergy. These results suggest that it will be possible to develop minimally toxic conditioning regimens sufficient for low level engraftment of genetically modified bone marrow.
Collapse
Affiliation(s)
- U Baranyi
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Combined treatment with regulatory T cells and vascularized bone marrow transplantation creates mixed chimerism and induces donor-specific tolerance to vascularized composite allografts without cytoreductive conditioning. J Surg Res 2012; 178:974-81. [DOI: 10.1016/j.jss.2012.06.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
|
91
|
Ravindra KV, Xu H, Bozulic LD, Song DD, Ildstad ST. The need for inducing tolerance in vascularized composite allotransplantation. Clin Dev Immunol 2012; 2012:438078. [PMID: 23251216 PMCID: PMC3509522 DOI: 10.1155/2012/438078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Successful hand and face transplantation in the last decade has firmly established the field of vascularized composite allotransplantation (VCA). The experience in VCA has thus far been very similar to solid organ transplantation in terms of the morbidity associated with long-term immunosuppression. The unique immunological features of VCA such as split tolerance and resistance to chronic rejection are being investigated. Simultaneously there has been laboratory work studying tolerogenic protocols in animal VCA models. In order to optimize VCA outcomes, translational studies are needed to develop less toxic immunosuppression and possibly achieve donor-specific tolerance. This article reviews the immunology, animal models, mixed chimerism & tolerance induction in VCA and the direction of future research to enable better understanding and wider application of VCA.
Collapse
Affiliation(s)
- Kadiyala V. Ravindra
- Department of Surgery, Duke University Medical Center (DUMC) 3512, Durham, NC 27710, USA
| | - Hong Xu
- Institute for Cellular Therapeutics and Jewish Hospital, University of Louisville, 570 South Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| | - Larry D. Bozulic
- Institute for Cellular Therapeutics and Jewish Hospital, University of Louisville, 570 South Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| | - David D. Song
- Institute for Cellular Therapeutics and Jewish Hospital, University of Louisville, 570 South Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| | - Suzanne T. Ildstad
- Institute for Cellular Therapeutics and Jewish Hospital, University of Louisville, 570 South Preston Street, Suite 404, Louisville, KY 40202-1760, USA
| |
Collapse
|
92
|
Improving the safety of tolerance induction: chimerism and cellular co-treatment strategies applied to vascularized composite allografts. Clin Dev Immunol 2012; 2012:107901. [PMID: 23118778 PMCID: PMC3479992 DOI: 10.1155/2012/107901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/17/2012] [Indexed: 12/26/2022]
Abstract
Although vascularized composite allografts (VCAs) have been performed clinically for a variety of indications, potential complications from long-term immunosuppression and graft-versus-host disease remain important barriers to widespread applications. Recently it has been demonstrated that VCAs incorporating a vascularized long bone in a rat model provide concurrent vascularized bone marrow transplantation that, itself, functions to establish hematopoietic chimerism and donor-specific tolerance following non-myeloablative conditioning of recipients. Advances such as this, which aim to improve the safety profile of tolerance induction, will help usher in an era of wider clinical VCA application for nonlife-saving reconstructions.
Collapse
|
93
|
Issa F, Wood KJ. Translating tolerogenic therapies to the clinic - where do we stand? Front Immunol 2012; 3:254. [PMID: 22934094 PMCID: PMC3422982 DOI: 10.3389/fimmu.2012.00254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/30/2012] [Indexed: 12/12/2022] Open
Abstract
Manipulation of the immune system to prevent the development of a specific immune response is an ideal strategy to improve outcomes after transplantation. A number of experimental techniques exploiting central and peripheral tolerance mechanisms have demonstrated success, leading to the first early phase clinical trials for tolerance induction. The first major strategy centers on the facilitation of donor-cell mixed chimerism in the transplant recipient with the use of bone marrow or hematopoietic stem cell transplantation. The second strategy, utilizing peripheral regulatory mechanisms, focuses on cellular therapy with regulatory T cells. This review examines the key studies and novel research directions in the field of immunological tolerance.
Collapse
Affiliation(s)
- Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, Level 6, John Radcliffe Hospital, University of Oxford Oxford, UK
| | | |
Collapse
|
94
|
Su Y, Huang X, Wang S, Min WP, Yin Z, Jevnikar AM, Zhang ZX. Double negative Treg cells promote nonmyeloablative bone marrow chimerism by inducing T-cell clonal deletion and suppressing NK cell function. Eur J Immunol 2012; 42:1216-1225. [PMID: 22539294 DOI: 10.1002/eji.201141808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The establishment of immune tolerance and prevention of chronic rejection remain major goals in clinical transplantation. In bone marrow (BM) transplantation, T cells and NK cells play important roles for graft rejection. In addition, graft-versus-host-disease (GVHD) remains a major obstacle for BM transplantation. In this study, we aimed to establish mixed chimerism in an irradiation-free condition. Our data indicate that adoptive transfer of donor-derived T-cell receptor (TCR) αβ(+) CD3(+) CD4(-) CD8(-) NK1.1(-) (double negative, DN) Treg cells prior to C57BL/6 to BALB/c BM transplantation, in combination with cyclophosphamide, induced a stable-mixed chimerism and acceptance of C57BL/6 skin allografts but rejection of third-party C3H (H-2k) skin grafts. Adoptive transfer of CD4(+) and CD8(+) T cells, but not DN Treg cells, induced GVHD in this regimen. The recipient T-cell alloreactive responsiveness was reduced in the DN Treg cell-treated group and clonal deletions of TCRVβ2, 7, 8.1/2, and 8.3 were observed in both CD4(+) and CD8(+) T cells. Furthermore, DN Treg-cell treatment suppressed NK cell-mediated BM rejection in a perforin-dependent manner. Taken together, our results suggest that adoptive transfer of DN Treg cells can control both adoptive and innate immunities and promote stable-mixed chimerism and donor-specific tolerance in the irradiation-free regimen.
Collapse
Affiliation(s)
- Ye Su
- The Multi-Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
95
|
Fricke S, Rothe K, Hilger N, Ackermann M, Oelkrug C, Fricke C, Schönfelder U, Niederwieser D, Emmrich F, Sack U. Allogeneic bone marrow grafts with high levels of CD4+CD25+FoxP3+ T cells can lead to engraftment failure. Cytometry A 2012; 81:476-88. [DOI: 10.1002/cyto.a.22061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/02/2023]
|
96
|
Innate and adaptive immune responses are tolerized in chimeras prepared with nonmyeloablative conditioning. Transplantation 2012; 93:469-76. [PMID: 22228418 DOI: 10.1097/tp.0b013e318242bddf] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Mixed chimerism is an effective approach for tolerance induction in transplantation. Strategies to achieve mixed chimerism with relatively low toxicity have significantly expanded the clinical use of chimerism. METHODS Allogeneic bone marrow transplants were performed between B6 (H2(b)) and BALB/c (H2(d)) mice. Recipient B6 mice were nonmyeloablatively conditioned with anti-αβ-T-cell receptor, anti-CD154, or rapamycin alone or in different combinations. A total of 15 × 10(6) BALB/c bone marrow cells were transplanted after varying doses of cGy of total body irradiation. RESULTS Pretreatment of recipients with anti-CD154 and rapamycin with or without T-cell lymphodepletion reduced the total body irradiation requirement to 100 cGy for establishing stable mixed chimerism. The mixed chimeras accepted donor islet allografts long term. Lymphocytes from mixed chimeras did not respond to host or donor antigens, yet were reactive to major histocompatibility complex-disparate third-party alloantigens, demonstrating functional donor-specific T-cell tolerance. No antibodies against donor and host were detected in mixed chimeras, suggesting humoral tolerance. Mixed chimeras showed no cytotoxicity to donor cells, but a similar rapid killing rate for major histocompatibility complex disparate third-party B10.BR cells compared with T-cell-deficient and wild-type controls in in vivo cytotoxicity assays, suggesting donor-specific tolerance in the innate immune cells was achieved in mixed chimeras. CONCLUSIONS Mixed chimeras prepared with low-intensity nonmyeloablative conditioning exhibit systemic tolerance in innate immunity and tolerance in adaptive T- and B-cell immune responses.
Collapse
|
97
|
Affiliation(s)
- Nina Pilat
- Division of Transplantation, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
98
|
Lin JY, Tsai FC, Wallace CG, Huang WC, Wei FC, Liao SK. Optimizing chimerism level through bone marrow transplantation and irradiation to induce long-term tolerance to composite tissue allotransplantation. J Surg Res 2012; 178:487-93. [PMID: 22484382 DOI: 10.1016/j.jss.2012.02.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Mixed chimerism with long-term composite tissue allotransplant (CTA) acceptance can be achieved through allogeneic bone marrow transplantation (BMT). The present study investigated the optimal chimerism level by giving different irradiation dosages to recipients to induce tolerance to CTA. METHODS Chimera were prepared using Brown-Norway and Lewis rats with strong major histocompatibility complex incompatibility. The Lewis rats received 5 mg antilymphocyte globulin (day -1 and 10) and 16 mg/kg cyclosporine (day 0-10) and were separated into groups 1, 2, 3, 4, and 5 according to the day -1 irradiation dosage: 0, 200, 400, 600, and 950 cGy, respectively. The Lewis rats were then reconstituted with 100 × 10(6) T-cell-depleted Brown-Norway bone marrow cells (day 0) and received vascularized Brown-Norway-CTA on day 28. Chimerism was assessed monthly by flow cytometry starting on day 28 after BMT. Graft-versus-host disease (GVHD) was assessed clinically and histologically. RESULTS Chimerism, 4 weeks after BMT, averaged 0.2%, 9.2%, 30.7%, 58%, and 99.3% in groups 1 to 5, respectively. GVHD occurred as follows: groups 1 and 2, none; group 3, 1 case of GVHD; group 4, 7 cases of GVHD (of which 3 died); and group 5, 10 cases of GVHD (of which 6 died). The percentage of long-term CTA acceptance was 0%, 0%, 90%, 70%, and 40% in groups 1 to 5, respectively. The percentage of regulatory T cells was significantly lower in high-chimerism (≥ 20%, n = 15) than in low-chimerism (<20%, n = 5) rats that accepted CTA long-term . CONCLUSIONS The chimerism level correlated positively with GVHD occurrence and long-term CTA acceptance but correlated negatively with regulatory T-cell levels. Optimal chimerism for CTA acceptance through pre-CTA BMT and irradiation occurs at 20-50% at day 28 after BMT in the rat model.
Collapse
Affiliation(s)
- Jeng-Yee Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
99
|
|
100
|
Moore C, Fuentes C, Sauma D, Morales J, Bono MR, Rosemblatt M, Fierro JA. Retinoic acid generates regulatory T cells in experimental transplantation. Transplant Proc 2012; 43:2334-7. [PMID: 21839265 DOI: 10.1016/j.transproceed.2011.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulatory T cells play a key role to inhibit effector lymphocytes, avoid, autoimmunity, and restrain allogeneic immunity. Retinoic acid is an important cofactor that stimulates the generation and expansion of regulatory T cells. Naive T cells, coincubated with allogeneic antigen-presenting cells and retinoic acid, in conjunction with transforming growth factor (TGF) β and interleukin (IL) 2, generated allogeneic regulatory T cells de novo. These cells were able to inhibit skin rejection in adoptive transfer experiments. The generation of regulatory T cells ex vivo with retinoic acid, TGF-β, and IL-2 represents a new step toward specific regulation of allogeneic immune responses.
Collapse
Affiliation(s)
- C Moore
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|