51
|
Bajpai PK, Weiss H, Dvir G, Hanin N, Wasserstrom H, Barazani O. Phenotypic differentiation and diversifying selection in populations of Eruca sativa along an aridity gradient. BMC Ecol Evol 2022; 22:40. [PMID: 35354367 PMCID: PMC8966261 DOI: 10.1186/s12862-022-01996-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aridity gradient in the eastern Mediterranean offers an opportunity to investigate intra-specific genetic differentiation and local adaptation in plant populations. Here we used genetic (FST) and quantitative trait (PST) differentiation to assess local adaptation among three natural populations of Eruca sativa (Brassicaceae) distributed along a climatic range representing desert, semi-arid and Mediterranean habitats. RESULTS Amplified fragment length polymorphism (AFLP) analysis revealed high genetic diversity in each population, but low genetic differentiation between populations and relatively high gene flow. Further phenotypic evaluation in a common garden experiment (conduced in a Mediterranean habitat) showed clear differences in phenological traits among populations (day of flowering and duration of the reproductive stage), shoot and root biomass, as well as fitness-related traits (total number of fruits and total seed weight). FST-PST comparison showed that PST values of the phenological traits, as well as below- and above-ground biomass and fitness-related traits, were higher than the FST values. CONCLUSIONS Overall, our results support the identification of genotypic and phenotypic differentiation among populations of E. sativa. Furthermore, the FST-PST comparison supports the hypothesis that these were subjected to past diversifying selection. Thus, the results clearly demonstrate adaptive divergence among populations along an aridity gradient, emphasize the ecological value of early flowering time in arid habitats, and contribute to our understanding of the possible impact of climate change on evolutionary processes in plant populations.
Collapse
Affiliation(s)
- Prabodh Kumar Bajpai
- Institute of Plant Sciences, Agricultural Research Organization-Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Harel Weiss
- Institute of Plant Sciences, Agricultural Research Organization-Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Gony Dvir
- Institute of Plant Sciences, Agricultural Research Organization-Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Nir Hanin
- Institute of Plant Sciences, Agricultural Research Organization-Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Haggai Wasserstrom
- Institute of Plant Sciences, Agricultural Research Organization-Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Oz Barazani
- Institute of Plant Sciences, Agricultural Research Organization-Volcani Institute, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
52
|
Berba CMP, Matias AMA. State of biodiversity documentation in the Philippines: Metadata gaps, taxonomic biases, and spatial biases in the DNA barcode data of animal and plant taxa in the context of species occurrence data. PeerJ 2022; 10:e13146. [PMID: 35341040 PMCID: PMC8944339 DOI: 10.7717/peerj.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Anthropogenic changes in the natural environment have led to alarming rates of biodiversity loss, resulting in a more urgent need for conservation. Although there is an increasing cognizance of the importance of incorporating biodiversity data into conservation, the accuracy of the inferences generated from these records can be highly impacted by gaps and biases in the data. Because of the Philippines' status as a biodiversity hotspot, the assessment of potential gaps and biases in biodiversity documentation in the country can be a critical step in the identification of priority research areas for conservation applications. In this study, we systematically assessed biodiversity data on animal and plant taxa found in the Philippines by examining the extent of metadata gaps, taxonomic biases, and spatial biases in DNA barcode data while using species occurrence data as a backdrop of the 'Philippines' biodiversity. These barcode and species occurrence datasets were obtained from public databases, namely: GenBank, Barcode of Life Data System and Global Biodiversity Information Facility. We found that much of the barcode data had missing information on either records and publishing, geolocation, or taxonomic metadata, which consequently, can limit the usability of barcode data for further analyses. We also observed that the amount of barcode data can be directly associated with the amount of species occurrence data available for a particular taxonomic group and location-highlighting the potential sampling biases in the barcode data. While the majority of barcode data came from foreign institutions, there has been an increase in local efforts in recent decades. However, much of the contribution to biodiversity documentation only come from institutions based in Luzon.
Collapse
|
53
|
Evans AE, Zimova M, Giery ST, Golden HE, Pastore AL, Nadeau CP, Urban MC. An eco‐evolutionary perspective on the humpty‐dumpty effect and community restoration. OIKOS 2022. [DOI: 10.1111/oik.08978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annette E. Evans
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Environmental Conservation, Univ. of Massachusetts Amherst MA USA
| | | | - Sean T. Giery
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Dept of Biology, The Pennsylvania State Univ. Univ. Park PA USA
| | - Heidi E. Golden
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Golden Ecology LLC Simsbury CT USA
| | - Amanda L. Pastore
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Christopher P. Nadeau
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Smith Conservation Research Fellow, Marine and Environmental Sciences, Northeastern Univ. Nahant MA USA
| | - Mark C. Urban
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
- Center of Biological Risks, Univ. of Connecticut Storrs CT USA
| |
Collapse
|
54
|
Population Genomics, Transcriptional Response to Heat Shock, and Gut Microbiota of the Hong Kong Oyster Magallana hongkongensis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hong Kong oyster Magallana hongkongensis, previously known as Crassostrea hongkongensis, is a true oyster species native to the estuarine-coast of the Pearl River Delta in southern China. The species—with scientific, ecological, cultural, and nutritional importance—has been farmed for hundreds of years. However, there is only limited information on its genetics, stress adaptation mechanisms, and gut microbiota, restricting the sustainable production and use of oyster resources. Here, we present population structure analysis on M. hongkongensis oysters collected from Deep Bay and Lantau Island in Hong Kong, as well as transcriptome analysis on heat shock responses and the gut microbiota profile of M. hongkongensis oysters collected from Deep Bay. Single nucleotide polymorphisms (SNPs), including those on the homeobox genes and heat shock protein genes, were revealed by the whole genome resequencing. Transcriptomes of oysters incubated at 25 °C and 32 °C for 24 h were sequenced which revealed the heat-induced regulation of heat shock protein pathway genes. Furthermore, the gut microbe community was detected by 16S rRNA sequencing which identified Cyanobacteria, Proteobacteria and Spirochaetes as the most abundant phyla. This study reveals the molecular basis for the adaptation of the oyster M. hongkongensis to environmental conditions.
Collapse
|
55
|
Van Rossum F, Le Pajolec S, Raspé O, Godé C. Assessing Population Genetic Status for Designing Plant Translocations. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.829332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Assisted gene flow interventions such as plant translocations are valuable complementary techniques to habitat restoration. Bringing new genetic variants can contribute to increasing genetic diversity and evolutionary resilience, counteract inbreeding depression and improve plant fitness through heterosis. Large, highly genetically variable populations are usually recommended as sources for translocation. Unfortunately, many critically endangered species only occur as small populations, which are expected to show low genetic variation, high inbreeding level, paucity of compatible mates in self-incompatible species, and increased genetic divergence. Therefore, assessment of population genetic status is required for an appropriate choice of the source populations. In this paper, we exemplify the different analyses relevant for genetic evaluation of populations combining both molecular (plastid and nuclear) markers and fitness-related quantitative traits. We assessed the genetic status of the adult generation and their seed progeny (the potential translocation founders) of small populations of Campanula glomerata (Campanulaceae), a self-incompatible insect-pollinated herbaceous species critically endangered in Belgium. Only a few small populations remain, so that the species has been part of a restoration project of calcareous grasslands implementing plant translocations. In particular, we estimated genetic diversity, inbreeding levels, genetic structure in adults and their seed progeny, recent bottlenecks, clonal extent in adults, contemporary gene flow, effective population size (Ne), and parentage, sibship and seed progeny fitness variation. Small populations of C. glomerata presented high genetic diversity, and extensive contemporary pollen flow within populations, with multiple parentage among seed progenies, and so could be good seed source candidates for translocations. As populations are differentiated from each other, mixing the sources will not only optimize the number of variants and of compatible mates in translocated populations, but also representativeness of species regional genetic diversity. Genetic diversity is no immediate threat to population persistence, but small Ne, restricted among-population gene flow, and evidence of processes leading to genetic erosion, inbreeding and inbreeding depression in the seed progeny require management measures to counteract these trends and stochastic vulnerability. Habitat restoration facilitating recruitment, flowering and pollination, reconnecting populations by biological corridors or stepping stones, and creating new populations through translocations in protected areas are particularly recommended.
Collapse
|
56
|
Van Rossum F, Hardy OJ. Guidelines for genetic monitoring of translocated plant populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13670. [PMID: 33236806 DOI: 10.1111/cobi.13670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Plant translocation is a useful tool for implementing assisted gene flow in recovery plans of critically endangered plant species. Although it helps to restore genetically viable populations, it is not devoid of genetic risks, such as poor adaptation of transplants and outbreeding depression in the hybrid progeny, which may have negative consequences in terms of demographic growth and plant fitness. Hence, a follow-up genetic monitoring should evaluate whether the translocated populations are genetically viable and self-sustaining in the short and long term. The causes of failure to adjust management responses also need to be identified. Molecular markers and fitness-related quantitative traits can be used to determine whether a plant translocation enhanced genetic diversity, increased fitness, and improved the probability of long-term survival. We devised guidelines and illustrated them with studies from the literature to help practitioners determine the appropriate genetic survey methods so that management practices can better integrate evolutionary processes. These guidelines include methods for sampling and for assessing changes in genetic diversity and differentiation, contemporary gene flow, mode of local recruitment, admixture level, the effects of genetic rescue, inbreeding or outbreeding depression and local adaptation on plant fitness, and long-term genetic changes.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic Garden, Nieuwelaan 38, Meise, 1860, Belgium
- Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, rue A. Lavallée 1, Brussels, 1080, Belgium
| | - Olivier J Hardy
- Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, Brussels, 1050, Belgium
| |
Collapse
|
57
|
LaRose SH, MacPherson MP, Lesmeister DB, Mundy Hackett H, Perry RW, Blake Sasse D, Gompper ME. Predicted distribution of plains spotted skunk in Arkansas and Missouri. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Summer H. LaRose
- School of Natural Resources University of Missouri 302 Anheuser‐Busch Natural Resources Building Columbia MO 65211 USA
| | - Maggie P. MacPherson
- School of Natural Resources University of Missouri 302 Anheuser‐Busch Natural Resources Building Columbia MO 65211 USA
- Louisiana State University Museum of Natural Science Louisiana State University 119 Foster Hall Baton Rouge LA 70802 USA
| | - Damon B. Lesmeister
- USDA Forest Service, Pacific Northwest Research Station; Department of Fisheries and Wildlife Oregon State University 3200 SW Jefferson Way Corvallis OR 97330 USA
| | | | - Roger W. Perry
- USDA Forest Service Southern Research Station PO Box 1270 Hot Springs AR 71902 USA
| | - D. Blake Sasse
- Arkansas Game and Fish Commission 213A Highway 89 South, Mayflower AR 72106 USA
| | - Matthew E. Gompper
- Department of Fish, Wildlife and Conservation Ecology New Mexico State University Las Cruces NM 88003 USA
| |
Collapse
|
58
|
Stronen AV, Norman AJ, Vander Wal E, Paquet PC. The relevance of genetic structure in ecotype designation and conservation management. Evol Appl 2022; 15:185-202. [PMID: 35233242 PMCID: PMC8867706 DOI: 10.1111/eva.13339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The concept of ecotypes is complex, partly because of its interdisciplinary nature, but the idea is intrinsically valuable for evolutionary biology and applied conservation. The complex nature of ecotypes has spurred some confusion and inconsistencies in the literature, thereby limiting broader theoretical development and practical application. We provide suggestions for how incorporating genetic analyses can ease confusion and help define ecotypes. We approach this by systematically reviewing 112 publications across taxa that simultaneously mention the terms ecotype, conservation and management, to examine the current use of the term in the context of conservation and management. We found that most ecotype studies involve fish, mammals and plants with a focus on habitat use, which at 60% was the most common criterion used for categorization of ecotypes. Only 53% of the studies incorporated genetic analyses, and major discrepancies in available genomic resources among taxa could have contributed to confusion about the role of genetic structure in delineating ecotypes. Our results show that the rapid advances in genetic methods, also for nonmodel organisms, can help clarify the spatiotemporal distribution of adaptive and neutral genetic variation and their relevance to ecotype designations. Genetic analyses can offer empirical support for the ecotype concept and provide a timely measure of evolutionary potential, especially in changing environmental conditions. Genetic variation that is often difficult to detect, including polygenic traits influenced by small contributions from several genes, can be vital for adaptation to rapidly changing environments. Emerging ecotypes may signal speciation in progress, and findings from genome-enabled organisms can help clarify important selective factors driving ecotype development and persistence, and thereby improve preservation of interspecific genetic diversity. Incorporation of genetic analyses in ecotype studies will help connect evolutionary biology and applied conservation, including that of problematic groups such as natural hybrid organisms and urban or anthropogenic ecotypes.
Collapse
Affiliation(s)
- Astrid V. Stronen
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Department of Biotechnology and Life SciencesInsubria UniversityVareseItaly
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Anita J. Norman
- Department of Fish, Wildlife and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Eric Vander Wal
- Department of BiologyMemorial University of NewfoundlandSt. John’sNLCanada
| | - Paul C. Paquet
- Department of GeographyUniversity of VictoriaVictoriaBCCanada
- Raincoast Conservation FoundationSidneyBCCanada
| |
Collapse
|
59
|
Marques AJD, Hanson JO, Camacho-Sanchez M, Martínez-Solano I, Moritz C, Tarroso P, Velo-Antón G, Veríssimo A, Carvalho SB. Range-wide genomic scans and tests for selection identify non-neutral spatial patterns of genetic variation in a non-model amphibian species (Pelobates cultripes). CONSERV GENET 2022. [DOI: 10.1007/s10592-021-01425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
60
|
Keeley ATH, Fremier AK, Goertler PAL, Huber PR, Sturrock AM, Bashevkin SM, Barbaree BA, Grenier JL, Dilts TE, Gogol-Prokurat M, Colombano DD, Bush EE, Laws A, Gallo JA, Kondolf M, Stahl AT. Governing Ecological Connectivity in Cross-Scale Dependent Systems. Bioscience 2022; 72:372-386. [PMID: 35370478 PMCID: PMC8970826 DOI: 10.1093/biosci/biab140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ecosystem management and governance of cross-scale dependent systems require integrating knowledge about ecological connectivity in its multiple forms and scales. Although scientists, managers, and policymakers are increasingly recognizing the importance of connectivity, governmental organizations may not be currently equipped to manage ecosystems with strong cross-boundary dependencies. Managing the different aspects of connectivity requires building social connectivity to increase the flow of information, as well as the capacity to coordinate planning, funding, and actions among both formal and informal governance bodies. We use estuaries in particular the San Francisco Estuary, in California, in the United States, as examples of cross-scale dependent systems affected by many intertwined aspects of connectivity. We describe the different types of estuarine connectivity observed in both natural and human-affected states and discuss the human dimensions of restoring beneficial physical and ecological processes. Finally, we provide recommendations for policy, practice, and research on how to restore functional connectivity to estuaries.
Collapse
Affiliation(s)
| | | | - Pascale A L Goertler
- Delta Stewardship Council, Delta Science Program, Sacramento, California, United States
| | - Patrick R Huber
- University of California, Davis, Davis, California, United States
| | | | | | - Blake A Barbaree
- Point Blue Conservation Science, based Petaluma, California, United States
| | - J Letitia Grenier
- San Francisco Estuary Institute, Richmond, California, United States
| | | | - Melanie Gogol-Prokurat
- California Department of Fish and Wildlife's Biogeographic Data Branch in Sacramento, California, United States
| | | | - Eva E Bush
- Delta Stewardship Council Delta Science Program, Sacramento, California, United States
| | - Angela Laws
- The Xerces Society, Portland, Oregon, United States
| | - John A Gallo
- Conservation Biology Institute, Corvallis, Oregon, United States
| | - Mathias Kondolf
- University of California, Berkeley, Berkeley, California, United States
| | - Amanda T Stahl
- Washington State University, Pullman, Washington, United States
| |
Collapse
|
61
|
de Aquino SO, Kiwuka C, Tournebize R, Gain C, Marraccini P, Mariac C, Bethune K, Couderc M, Cubry P, Andrade AC, Lepelley M, Darracq O, Crouzillat D, Anten N, Musoli P, Vigouroux Y, de Kochko A, Manel S, François O, Poncet V. Adaptive potential of
Coffea canephora
from Uganda in response to climate change. Mol Ecol 2022; 31:1800-1819. [DOI: 10.1111/mec.16360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Catherine Kiwuka
- NARO Kampala Uganda
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | - Clément Gain
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | | - Cédric Mariac
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Kévin Bethune
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | - Marie Couderc
- DIADE, Univ. Montpellier, CIRAD, IRD Montpellier France
| | | | | | | | | | | | - Niels Anten
- Centre for Crop Systems Analysis Wageningen Univ. Wageningen Netherlands
| | | | | | | | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE‐PSL University, IRD Montpellier France
| | - Olivier François
- U. Grenoble‐Alpes, TIMC‐IMAG, CNRS UMR 5525, Grenoble, France and LJK, Inria, CNRS UMR 5224 Grenoble France
| | | |
Collapse
|
62
|
Devillard S, Jacquier M, Vandel JM, Léger F, Duhayer J, Pardonnet S, Say L, Ruette S. Genetic variability and population size covary positively across nine badgers (Meles meles) populations in France. MAMMAL RES 2022. [DOI: 10.1007/s13364-021-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
63
|
Jochems LW, Lau JA, Brudvig LA, Grman E. Do southern seed or soil microbes mitigate the effects of warming on establishing prairie plant communities? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02487. [PMID: 34679217 DOI: 10.1002/eap.2487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Restoration in this era of climate change comes with a new challenge: anticipating how best to restore populations to persist under future climate conditions. Specifically, it remains unknown whether locally adapted or warm-adapted seeds best promote native plant community restoration in the warmer conditions predicted in the future and whether local or warm-adapted soil microbial communities could mitigate plant responses to warming. This may be especially relevant for biomes spanning large climatic gradients, such as the North American tallgrass prairie. Here, we used a short-term mesocosm experiment to evaluate how seed provenances (Local Northern region, Non-local Northern region, Non-local Southern region) of 10 native tallgrass prairie plants (four forbs, two legumes, and four grasses) responded to warmer conditions predicted in the future and how soil microbial communities from those three regions influenced these responses. Warming and seed provenance affected plant community composition and warming decreased plant diversity for all three seed provenances. Plant species varied in their individual responses to warming, and across species, we detected no consistent differences among the three provenances in terms of biomass response to warming and few strong effects of soil provenance. Our work provides evidence that warming, in part, may reduce plant diversity and affect restored prairie composition. Because the southern provenance did not consistently outperform others under warming and we found little support for the "local is best" paradigm currently dominating restoration practice, identifying appropriate seed provenances to promote restoration success both now and in future warmer environments may be challenging. Due to the idiosyncratic responses across species, we recommend that land managers compare seeds from different regions for each species to determine which seed provenance performs best under warming and in restoration for tallgrass prairies.
Collapse
Affiliation(s)
- Louis W Jochems
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Hall, Ypsilanti, Michigan, 48197, USA
| | - Jennifer A Lau
- Department of Biology and the Environmental Resilience Institute, Indiana University, Bloomington, Indiana, 47405, USA
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Emily Grman
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Hall, Ypsilanti, Michigan, 48197, USA
| |
Collapse
|
64
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
65
|
Blattner L, Lucek K, Beck N, Berner D, Fumetti S. Intra‐Alpine Islands: Population genomic inference reveals high degree of isolation between freshwater spring habitats. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lucas Blattner
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, Plant Ecology and Evolution University of Basel Basel Switzerland
| | - Nathanael Beck
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| | - Daniel Berner
- Department of Environmental Sciences, Animal Diversity and Evolution University of Basel Basel Switzerland
| | - Stefanie Fumetti
- Department of Environmental Sciences, Geoecology University of Basel Basel Switzerland
| |
Collapse
|
66
|
Arevalo E, Maire A, Tétard S, Prévost E, Lange F, Marchand F, Josset Q, Drouineau H. Does global change increase the risk of maladaptation of Atlantic salmon migration through joint modifications of river temperature and discharge? Proc Biol Sci 2021; 288:20211882. [PMID: 34875197 PMCID: PMC8651411 DOI: 10.1098/rspb.2021.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In freshwater ecosystems, water temperature and discharge are two intrinsically associated triggers of key events in the life cycle of aquatic organisms such as the migration of diadromous fishes. However, global changes have already profoundly altered the thermal and hydrological regimes of rivers, affecting the timing of fish migration as well as the environmental conditions under which it occurs. In this study, we focused on Atlantic salmon (Salmo salar), an iconic diadromous species whose individuals migrate between marine nursery areas and continental spawning grounds. An innovative multivariate method was developed to analyse long-term datasets of daily water temperature, discharge and both salmon juvenile downstream and adult upstream migrations in three French rivers (the Bresle, Oir and Nivelle rivers). While all three rivers have gradually warmed over the last 35 years, changes in discharge have been very heterogeneous. Juveniles more frequently used warmer temperatures to migrate. Adults migrating a few weeks before spawning more frequently used warm temperatures associated with high discharges. This has already led to modifications in preferential niches of both life stages and suggests a potential mismatch between these populations' ecological preference and changes in their local environment due to global change.
Collapse
Affiliation(s)
- Elorri Arevalo
- INRAE, Unité EABX-Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| | - Anthony Maire
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, HYNES (Irstea-EDF R&D), 6 quai Watier, 78401 Chatou Cedex, France
| | - Stéphane Tétard
- ICEO Environnement, 220 rue des Ailes, 85440 Talmont-Saint-Hilaire, France
| | - Etienne Prévost
- Université de Pau et des Pays de l'Adour, e2s UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | - Frédéric Lange
- Université de Pau et des Pays de l'Adour, e2s UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | - Frédéric Marchand
- INRAE, Unité Expérimentale d'Écologie et d'Écotoxicologie Aquatique, 65, rue de Saint-Brieuc, 35042 Rennes CEDEX, France
| | - Quentin Josset
- UMR BOREA 7208, Muséum National D'Histoire Naturelle, Service des Stations Marines, 35800 Dinard, France.,MIAME - Management of Diadromous Fish in their Environment, OFB, INRAE, Institut Agro, UNIV PAU & PAYS ADOUR/E2S UPPA, Rennes, France.,Office Français de la Biodiversité, Direction Recherche et Appui Scientifique, Rue des Fontaines, 76260 Eu, France
| | - Hilaire Drouineau
- INRAE, Unité EABX-Écosystèmes Aquatiques et Changements Globaux, HYNES (Irstea-EDF R&D), 50 avenue de Verdun, 33612 Cestas Cedex, France
| |
Collapse
|
67
|
Tsartsianidou V, Sánchez-Molano E, Kapsona VV, Basdagianni Z, Chatziplis D, Arsenos G, Triantafyllidis A, Banos G. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet Sel Evol 2021; 53:90. [PMID: 34856922 PMCID: PMC8641236 DOI: 10.1186/s12711-021-00682-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background The management of farm animal genetic resources and the adaptation of animals to climate change will probably have major effects on the long-term sustainability of the livestock sector. Genomic data harbour useful relevant information that needs to be harnessed for effectively managing genetic resources. In this paper, we report the genome characterization of the highly productive Mediterranean Chios dairy sheep and focus on genetic diversity measures related with local adaptation and selection and the genetic architecture of animal resilience to weather fluctuations as a novel adaptative trait linked to climate change. Results We detected runs of homozygosity (ROH) and heterozygosity (ROHet) that revealed multiple highly homozygous and heterozygous hotspots across the Chios sheep genome. A particularly highly homozygous region was identified on chromosome 13 as a candidate of directional genetic selection associated with milk traits, which includes annotated genes that were previously shown to be linked to local adaptation to harsh environmental conditions. Favourable heterozygosity related with a potentially protective role against livestock diseases and enhanced overall fitness was revealed in heterozygous-rich regions on sheep chromosomes 3, 10, 13 and 19. Furthermore, genomic analyses were conducted on sheep resilience phenotypes that display changes in milk production in response to weather variation. Sheep resilience to heat stress was a significantly heritable trait (h2 = 0.26) and genetically antagonistic to milk production. Genome-wide association and regional heritability mapping analyses revealed novel genomic markers and regions on chromosome 5 that were significantly associated with sheep resilience to climate change. Subsequently, an annotation analysis detected a set of genes on chromosome 5 that were associated with olfactory receptor complexes that could participate in heat stress mitigation through changes in respiration rate and respiratory evaporation. Other genes were grouped in previously reported biological processes relevant to livestock heat dissipation, including stress and immune response. Conclusions Our results may contribute to the optimal management of sheep genetic resources and inform modern selective breeding programmes that aim at mitigating future environmental challenges towards sustainable farming, while better balancing animal adaptation and productivity. Our results are directly relevant to the studied breed and the respective environmental conditions; however, the methodology may be extended to other livestock species of interest. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00682-7.
Collapse
Affiliation(s)
- Valentina Tsartsianidou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Enrique Sánchez-Molano
- Division of Genetics and Genomics, School of Veterinary Studies, The Roslin Institute and Royal (Dick), University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Vanessa Varvara Kapsona
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, UK
| | - Zoitsa Basdagianni
- Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios Chatziplis
- Laboratory of Agrobiotechnology and Inspection of Agricultural Products, Department of Agriculture, International Hellenic University, Alexander Campus, 57400, Sindos, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Banos
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, UK.,Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
68
|
Ackiss AS, Magee MR, Sass GG, Turnquist K, McIntyre PB, Larson WA. Genomic and environmental influences on resilience in a cold-water fish near the edge of its range. Evol Appl 2021; 14:2794-2814. [PMID: 34950230 PMCID: PMC8674893 DOI: 10.1111/eva.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Small, isolated populations present a challenge for conservation. The dueling effects of selection and drift in a limited pool of genetic diversity make the responses of small populations to environmental perturbations erratic and difficult to predict. This is particularly true at the edge of a species range, where populations often persist at the limits of their environmental tolerances. Populations of cisco, Coregonus artedi, in inland lakes have experienced numerous extirpations along the southern edge of their range in recent decades, which are thought to result from environmental degradation and loss of cold, well-oxygenated habitat as lakes warm. Yet, cisco extirpations do not show a clear latitudinal pattern, suggesting that local environmental factors and potentially local adaptation may influence resilience. Here, we used genomic tools to investigate the nature of this pattern of resilience. We used restriction site-associated DNA capture (Rapture) sequencing to survey genomic diversity and differentiation in southern inland lake cisco populations and compared the frequency of deleterious mutations that potentially influence fitness across lakes. We also examined haplotype diversity in a region of the major histocompatibility complex involved in stress and immune system response. We correlated these metrics to spatial and environmental factors including latitude, lake size, and measures of oxythermal habitat and found significant relationships between genetic metrics and broad and local factors. High levels of genetic differentiation among populations were punctuated by a phylogeographic break and residual patterns of isolation-by-distance. Although the prevalence of deleterious mutations and inbreeding coefficients was significantly correlated with latitude, neutral and non-neutral genetic diversity were most strongly correlated with lake surface area. Notably, differences among lakes in the availability of estimated oxythermal habitat left no clear population genomic signature. Our results shed light on the complex dynamics influencing these isolated populations and provide valuable information for their conservation.
Collapse
Affiliation(s)
- Amanda S. Ackiss
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- U.S. Geological SurveyGreat Lakes Science CenterAnn ArborMichiganUSA
| | | | - Greg G. Sass
- Escanaba Lake Research StationWisconsin Department of Natural ResourcesBoulder JunctionWisconsinUSA
| | - Keith Turnquist
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Peter B. McIntyre
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
69
|
Fremout T, Thomas E, Taedoumg H, Briers S, Gutiérrez‐Miranda CE, Alcázar‐Caicedo C, Lindau A, Mounmemi Kpoumie H, Vinceti B, Kettle C, Ekué M, Atkinson R, Jalonen R, Gaisberger H, Elliott S, Brechbühler E, Ceccarelli V, Krishnan S, Vacik H, Wiederkehr‐Guerra G, Salgado‐Negret B, González MA, Ramírez W, Moscoso‐Higuita LG, Vásquez Á, Cerrón J, Maycock C, Muys B. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate‐resilient restoration of tropical forest landscapes. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias Fremout
- Division of Forest, Nature and Landscape KU Leuven Leuven Belgium
- Alliance Bioversity International—CIAT Lima Peru
| | - Evert Thomas
- Alliance Bioversity International—CIAT Lima Peru
| | - Hermann Taedoumg
- Department of Plant Biology Faculty of Science University of Yaoundé Yaoundé Cameroon
- Alliance Bioversity International—CIAT Yaoundé Cameroon
| | - Siebe Briers
- Division of Forest, Nature and Landscape KU Leuven Leuven Belgium
| | | | | | - Antonia Lindau
- University of Natural Resources and Life Sciences (BOKU) Vienna Austria
| | | | | | - Chris Kettle
- Alliance Bioversity International—CIAT Maccarese Italy
- Department of Environmental System Science ETH Zurich Zurich Switzerland
| | - Marius Ekué
- Alliance Bioversity International—CIAT Yaoundé Cameroon
| | | | - Riina Jalonen
- Alliance Bioversity International—CIAT Serdang Malaysia
| | - Hannes Gaisberger
- Alliance Bioversity International—CIAT Maccarese Italy
- Department of Geoinformatics Paris Lodron University of Salzburg Salzburg Austria
| | - Stephen Elliott
- Environmental Science Research Centre and Forest Restoration Research Unit Biology Department, Science Faculty Chiang Mai University Chiang Mai Thailand
| | - Esther Brechbühler
- Department of Environmental System Science ETH Zurich Zurich Switzerland
| | | | | | - Harald Vacik
- University of Natural Resources and Life Sciences (BOKU) Vienna Austria
| | | | - Beatriz Salgado‐Negret
- Departamento de Biología Facultad de Ciencias Universidad Nacional de Colombia Bogotá Colombia
| | | | - Wilson Ramírez
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Bogotá Colombia
| | | | - Álvaro Vásquez
- Facultad de Ciencias Agrarias Universidad Nacional de Colombia Medellín Colombia
| | | | - Colin Maycock
- Faculty of Science and Natural Resources Universiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Bart Muys
- Division of Forest, Nature and Landscape KU Leuven Leuven Belgium
| |
Collapse
|
70
|
Höfner J, Klein‐Raufhake T, Lampei C, Mudrak O, Bucharova A, Durka W. Populations restored using regional seed are genetically diverse and similar to natural populations in the region. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Johannes Höfner
- Institute of Landscape Ecology University of Münster Münster Germany
- Department of Community Ecology (BZF) Helmholtz Centre for Environmental Research‐UFZ Halle Germany
| | | | - Christian Lampei
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Ondrej Mudrak
- Institute of Botany of the Czech Academy of Sciences Třeboň Czech Republic
| | - Anna Bucharova
- Institute of Landscape Ecology University of Münster Münster Germany
- Department of Biology Philipps‐University Marburg Marburg Germany
| | - Walter Durka
- Department of Community Ecology (BZF) Helmholtz Centre for Environmental Research‐UFZ Halle Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
71
|
González‐Orozco CE, Sosa CC, Thornhill AH, Laffan SW. Phylogenetic diversity and conservation of crop wild relatives in Colombia. Evol Appl 2021; 14:2603-2617. [PMID: 34815742 PMCID: PMC8591330 DOI: 10.1111/eva.13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Crop wild relatives (CWR) are an important agricultural resource as they contain genetic traits not found in cultivated species due to localized adaptation to unique environmental and climatic conditions. Phylogenetic diversity (PD) measures the evolutionary relationship of species using the tree of life. Our knowledge of CWR PD in neotropical regions is in its infancy. We analysed the distribution of CWR PD across Colombia and assessed its conservation status. The areas with the largest concentration of PD were identified as being in the northern part of the central and western Andean mountain ranges and the Pacific region. These centres of high PD were comprised of predominantly short and closely related branches, mostly of species of wild tomatoes and black peppers. In contrast, the CWR PD in the lowland ecosystems of the Amazon and Orinoquia regions had deeply diverging clades predominantly represented by long and distantly related branches (i.e. tuberous roots, grains and cacao). We categorized 50 (52.6%) of the CWR species as 'high priority', 36 as 'medium priority' and nine as 'low priority' for further ex-situ and in situ conservation actions. New areas of high PD and richness with large ex-situ gap collections were identified mainly in the northern part of the Andes of Colombia. We found that 56% of the grid cells with the highest PD values were unprotected. These baseline data could be used to create a comprehensive national strategy of CWR conservation in Colombia.
Collapse
Affiliation(s)
- Carlos E. González‐Orozco
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)Centro de Investigación La LibertadVillavicencioColombia
| | - Chrystian C. Sosa
- Departamento de Ciencias naturales y MatemáticasPontificia Universidad Javeriana CaliCaliColombia
- Grupo de Investigación en EvoluciónEcología y Conservación EECOPrograma de BiologíaFacultad de Ciencias Básicas y TecnologíasUniversidad del QuindíoArmeniaColombia
| | - Andrew H. Thornhill
- Environment InstituteThe University of AdelaideAdelaideSAAustralia
- Department for Environment and WaterState Herbarium of South AustraliaBotanic Gardens and State HerbariumAdelaideSAAustralia
| | - Shawn W. Laffan
- Earth and Sustainability Science Research CentreSchool of Biological, Earth and Environmental SciencesThe University of New South WalesKensingtonNSWAustralia
| |
Collapse
|
72
|
Shay JE, Pennington LK, Mandussi Montiel-Molina JA, Toews DJ, Hendrickson BT, Sexton JP. Rules of Plant Species Ranges: Applications for Conservation Strategies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.700962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Earth is changing rapidly and so are many plant species’ ranges. Here, we synthesize eco-evolutionary patterns found in plant range studies and how knowledge of species ranges can inform our understanding of species conservation in the face of global change. We discuss whether general biogeographic “rules” are reliable and how they can be used to develop adaptive conservation strategies of native plant species across their ranges. Rules considered include (1) factors that set species range limits and promote range shifts; (2) the impact of biotic interactions on species range limits; (3) patterns of abundance and adaptive properties across species ranges; (4) patterns of gene flow and their implications for genetic rescue, and (5) the relationship between range size and conservation risk. We conclude by summarizing and evaluating potential species range rules to inform future conservation and management decisions. We also outline areas of research to better understand the adaptive capacity of plants under environmental change and the properties that govern species ranges. We advise conservationists to extend their work to specifically consider peripheral and novel populations, with a particular emphasis on small ranges. Finally, we call for a global effort to identify, synthesize, and analyze prevailing patterns or rules in ecology to help speed conservation efforts.
Collapse
|
73
|
Development of highly polymorphic microsatellite markers for Campanula glomerata L. (Campanulaceae). Mol Biol Rep 2021; 49:805-810. [PMID: 34689293 DOI: 10.1007/s11033-021-06839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Campanula glomerata L. (Campanulaceae) is a self-incompatible, insect-pollinated herb occurring in calcareous grasslands, and is declining and (critically) endangered in many parts of its European distribution range. It often exists as small and isolated populations. A recovery plan of C. glomerata has been implemented in southern Belgium, involving plant translocations. METHODS AND RESULTS We developed microsatellite markers using an enriched genomic library and characterized 16 loci in 111 individuals from eight populations. These 16 loci were highly polymorphic, with 11 to 31 alleles per locus for a total of 329 alleles, and expected heterozygosity (He) ranging from 0.470 to 0.938. CONCLUSIONS These highly polymorphic loci constitute a promising tool for detailed genetic analyses: assigning individuals to distinct multilocus genotypes will allow quantifying pollen dispersal, clonal propagation and sexual recruitment and identifying admixed seed progeny and their pollen donors. Evaluating the genetic status of existing populations and a genetic monitoring of the translocated populations will contribute to optimize success in restoring viable and evolutionary resilient populations.
Collapse
|
74
|
Gauffre B, Boissinot A, Quiquempois V, Leblois R, Grillet P, Morin S, Picard D, Ribout C, Lourdais O. Agricultural intensification alters marbled newt genetic diversity and gene flow through density and dispersal reduction. Mol Ecol 2021; 31:119-133. [PMID: 34674328 DOI: 10.1111/mec.16236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.
Collapse
Affiliation(s)
- Bertrand Gauffre
- INRAE, UR 1115 PSH, Plantes et Systèmes de culture Horticoles, Avignon, France.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Alexandre Boissinot
- CNRS, UMR 7372 CEBC - Université de La Rochelle, Villiers-en-Bois, France.,Réserve Naturelle Régionale du Bocage des Antonins - Deux-Sèvres Nature Environnement, Niort, France
| | | | - Raphael Leblois
- CBGP UMR 1062, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France.,Institut de Biologie Computationnelle, Univ. Montpellier, Montpelier, France
| | - Pierre Grillet
- CNRS, UMR 7372 CEBC - Université de La Rochelle, Villiers-en-Bois, France
| | - Sophie Morin
- Office Français de la Biodiversité, Villiers-en-Bois, France
| | - Damien Picard
- Département de Biologie, UFR Sciences, Angers, France
| | - Cécile Ribout
- CNRS, UMR 7372 CEBC - Université de La Rochelle, Villiers-en-Bois, France
| | - Olivier Lourdais
- CNRS, UMR 7372 CEBC - Université de La Rochelle, Villiers-en-Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
75
|
Cardini A, de Jong YA, Butynski TM. Can morphotaxa be assessed with photographs? Estimating the accuracy of two-dimensional cranial geometric morphometrics for the study of threatened populations of African monkeys. Anat Rec (Hoboken) 2021; 305:1402-1434. [PMID: 34596361 PMCID: PMC9298422 DOI: 10.1002/ar.24787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
The classification of most mammalian orders and families is under debate and the number of species is likely greater than currently recognized. Improving taxonomic knowledge is crucial, as biodiversity is in rapid decline. Morphology is a source of taxonomic knowledge, and geometric morphometrics applied to two dimensional (2D) photographs of anatomical structures is commonly employed for quantifying differences within and among lineages. Photographs are informative, easy to obtain, and low cost. 2D analyses, however, introduce a large source of measurement error when applied to crania and other highly three dimensional (3D) structures. To explore the potential of 2D analyses for assessing taxonomic diversity, we use patas monkeys (Erythrocebus), a genus of large, semi-terrestrial, African guenons, as a case study. By applying a range of tests to compare ventral views of adult crania measured both in 2D and 3D, we show that, despite inaccuracies accounting for up to one-fourth of individual shape differences, results in 2D almost perfectly mirror those in 3D. This apparent paradox might be explained by the small strength of covariation in the component of shape variance related to measurement error. A rigorous standardization of photographic settings and the choice of almost coplanar landmarks are likely to further improve the correspondence of 2D to 3D shapes. 2D geometric morphometrics is, thus, appropriate for taxonomic comparisons of patas ventral crania. Although it is too early to generalize, our results corroborate similar findings from previous research in mammals, and suggest that 2D shape analyses are an effective heuristic tool for morphological investigation of small differences.
Collapse
Affiliation(s)
- Andrea Cardini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program and Lolldaiga Hills Research Programme, Nanyuki, Kenya
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program and Lolldaiga Hills Research Programme, Nanyuki, Kenya
| |
Collapse
|
76
|
Monnier‐Corbel A, Monnet A, Hingrat Y, Robert A. Patterns of abundance reveal evidence of translocation and climate effects on Houbara bustard population recovery. Anim Conserv 2021. [DOI: 10.1111/acv.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- A. Monnier‐Corbel
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum National d'Histoire Naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
- Emirates Center for Wildlife Propagation Missour Morocco
| | - A.‐C. Monnet
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum National d'Histoire Naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
| | - Y. Hingrat
- RENECO International Wildlife Consultants LLC Abu Dhabi United Arab Emirates
| | - A. Robert
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum National d'Histoire Naturelle Centre National de la Recherche Scientifique Sorbonne Université Paris France
| |
Collapse
|
77
|
Demographic modeling informs functional connectivity and management interventions in Graham’s beardtongue. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractFunctional connectivity (i.e., the movement of individuals across a landscape) is essential for the maintenance of genetic variation and persistence of rare species. However, illuminating the processes influencing functional connectivity and ultimately translating this knowledge into management practice remains a fundamental challenge. Here, we combine various population structure analyses with pairwise, population-specific demographic modeling to investigate historical functional connectivity in Graham’s beardtongue (Penstemon grahamii), a rare plant narrowly distributed across a dryland region of the western US. While principal component and population structure analyses indicated an isolation-by-distance pattern of differentiation across the species’ range, spatial inferences of effective migration exposed an abrupt shift in population ancestry near the range center. To understand these seemingly conflicting patterns, we tested various models of historical gene flow and found evidence for recent admixture (~ 3400 generations ago) between populations near the range center. This historical perspective reconciles population structure patterns and suggests management efforts should focus on maintaining connectivity between these previously isolated lineages to promote the ongoing transfer of genetic variation. Beyond providing species-specific knowledge to inform management options, our study highlights how understanding demographic history may be critical to guide conservation efforts when interpreting population genetic patterns and inferring functional connectivity.
Collapse
|
78
|
Palmquist EC, Allan GJ, Ogle K, Whitham TG, Butterfield BJ, Shafroth PB. Riverine complexity and life history inform restoration in riparian environments in the southwestern United States. Restor Ecol 2021. [DOI: 10.1111/rec.13418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Palmquist
- Grand Canyon Monitoring and Research Center U.S. Geological Survey, Southwest Biological Science Center 2255 North Gemini Drive Flagstaff AZ 86001 U.S.A
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
| | - Gerard J. Allan
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
- Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Kiona Ogle
- School of Informatics, Computing and Cyber Systems Northern Arizona University Box 5693 Flagstaff AZ 86011 U.S.A
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
- Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Bradley J. Butterfield
- Center for Ecosystem Science and Society Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Patrick B. Shafroth
- Fort Collins Science Center U.S. Geological Survey 2150 Centre Avenue, Building C Fort Collins CO 80526 U.S.A
| |
Collapse
|
79
|
McKone MJ, Hernández DL. Community‐level assisted migration for climate‐appropriate prairie restoration. Restor Ecol 2021. [DOI: 10.1111/rec.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mark J. McKone
- Department of Biology Carleton College 1 North College Street Northfield MN 55057 U.S.A
| | - Daniel L. Hernández
- Department of Biology Carleton College 1 North College Street Northfield MN 55057 U.S.A
| |
Collapse
|
80
|
Chromosome-Level Genome Assemblies Expand Capabilities of Genomics for Conservation Biology. Genes (Basel) 2021; 12:genes12091336. [PMID: 34573318 PMCID: PMC8466942 DOI: 10.3390/genes12091336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022] Open
Abstract
Genome assemblies are in the process of becoming an increasingly important tool for understanding genetic diversity in threatened species. Unfortunately, due to limited budgets typical for the area of conservation biology, genome assemblies of threatened species, when available, tend to be highly fragmented, represented by tens of thousands of scaffolds not assigned to chromosomal locations. The recent advent of high-throughput chromosome conformation capture (Hi-C) enables more contiguous assemblies containing scaffolds spanning the length of entire chromosomes for little additional cost. These inexpensive contiguous assemblies can be generated using Hi-C scaffolding of existing short-read draft assemblies, where N50 of the draft contigs is larger than 0.1% of the estimated genome size and can greatly improve analyses and facilitate visualization of genome-wide features including distribution of genetic diversity in markers along chromosomes or chromosome-length scaffolds. We compared distribution of genetic diversity along chromosomes of eight mammalian species, including six listed as threatened by IUCN, where both draft genome assemblies and newer chromosome-level assemblies were available. The chromosome-level assemblies showed marked improvement in localization and visualization of genetic diversity, especially where the distribution of low heterozygosity across the genomes of threatened species was not uniform.
Collapse
|
81
|
Crespi E, Burnap R, Chen J, Das M, Gassman N, Rosa E, Simmons R, Wada H, Wang ZQ, Xiao J, Yang B, Yin J, Goldstone JV. Resolving the Rules of Robustness and Resilience in Biology Across Scales. Integr Comp Biol 2021; 61:2163-2179. [PMID: 34427654 DOI: 10.1093/icb/icab183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system.
Collapse
Affiliation(s)
- Erica Crespi
- School of Biological Sciences, Washington State University
| | - Robert Burnap
- Microbiology and Molecular Genetics, Oklahoma State University
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology
| | | | - Epaminondas Rosa
- Department of Physics and School of Biological Sciences, Illinois State University
| | | | - Haruka Wada
- Department of Biological Sciences, Auburn University
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine
| | - Bing Yang
- Division of Plant Sciences, University of Missouri
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| | | |
Collapse
|
82
|
McDonald G, Appleby MW, Sime H, Radford J, Hoffmann AA. Establishing a climate‐ready revegetation trial in central Victoria – A case study. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
83
|
Major EI, Höhn M, Avanzi C, Fady B, Heer K, Opgenoorth L, Piotti A, Popescu F, Postolache D, Vendramin GG, Csilléry K. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol Ecol 2021; 30:5247-5265. [PMID: 34365696 PMCID: PMC9291806 DOI: 10.1111/mec.16107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
Variation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations’ resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine‐scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1,368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east‐west isolation‐by‐distance pattern consistent with the post‐glacial colonization history of the species. Genetic differentiation among sites (FCT = 0.148) was an order of magnitude greater than between elevations within sites (FSC = 0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modelling revealed that elevation and, to a lesser extent, post‐glacial colonization history, but not climatic and habitat variables, were the best predictors of FSGS across populations. These results suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide information about demographic history complementary to non‐spatial statistics, and could be used for genetic diversity monitoring, especially in forest trees.
Collapse
Affiliation(s)
- Enikő I Major
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Mária Höhn
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Bruno Fady
- Ecology of Mediterranean Forests (URFM), INRAE, UR629, Avignon, France
| | - Katrin Heer
- Conservation Biology, Philipps Universität Marburg, Marburg, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany.,Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Flaviu Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Dragos Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
84
|
Cook CN, Beever EA, Thurman LL, Thompson LM, Gross JE, Whiteley AR, Nicotra AB, Szymanski JA, Botero CA, Hall KR, Hoffmann AA, Schuurman GW, Sgrò CM. Supporting the adaptive capacity of species through more effective knowledge exchange with conservation practitioners. Evol Appl 2021; 14:1969-1979. [PMID: 34429742 PMCID: PMC8372063 DOI: 10.1111/eva.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 01/28/2023] Open
Abstract
There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well-positioned to inform the development of evidence-based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbour concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is an opportunity to accelerate the required changes by promoting closer collaboration between these two groups. We highlight how evolutionary biologists can harness lessons from other disciplines about how to foster effective knowledge exchange to make a substantive contribution to the development of effective conservation practices. These lessons include the following: (1) recognizing why practitioners do and do not use scientific evidence; (2) building an evidence base that will influence management decisions; (3) translating theory into a format that conservation practitioners can use to inform management practices; and (4) developing strategies for effective knowledge exchange. Although efforts will be required on both sides, we believe there are rewards for both practitioners and evolutionary biologists, not least of which is fostering practices to help support the long-term persistence of species.
Collapse
Affiliation(s)
- Carly N. Cook
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| | - Erik A. Beever
- Northern Rocky Mountain Science CenterU.S. Geological SurveyBozemanMTUSA
- Department of EcologyMontana State UniversityBozemanMTUSA
| | - Lindsey L. Thurman
- Northwest Climate Adaptation Science CenterU.S. Geological SurveyCorvallisORUSA
| | - Laura M. Thompson
- National Climate Adaptation Science CenterU.S. Geological SurveyRestonVAUSA
- Department of Forestry, Wildlife and FisheriesUniversity of TennesseeKnoxvilleTNUSA
| | - John E. Gross
- Climate Change Response ProgramU.S. National Park ServiceFort CollinsCOUSA
| | - Andrew R. Whiteley
- Wildlife Biology ProgramDepartment of Ecosystem and Conservation SciencesFranke College of Forestry and ConservationUniversity of MontanaMissoulaMTUSA
| | - Adrienne B. Nicotra
- Division of Ecology and EvolutionResearch School of BiologyAustralian National UniversityCanberraACTAustralia
| | | | | | | | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneMelbourneVICAustralia
| | | | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
85
|
Genetic Diversity and Divergence among Bighorn Sheep from Reintroduced Herds in Washington and Idaho. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
O'Donnell FC, Atkinson CL, Frischer ME. A Participatory Approach for Balancing Accuracy and Complexity in Modeling Resilience and Robustness. Integr Comp Biol 2021; 61:2154-2162. [PMID: 34323964 DOI: 10.1093/icb/icab170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Robustness and resilience are widely used in the biological sciences and related disciplines to describe how systems respond to change. Robustness is the ability to tolerate change without adapting or moving to another state. Resilience refers to the ability for a system to sustain a perturbation and maintain critical functions. Robustness and resilience transcend levels of biological organization, though they do not scale directly across levels. We live in an era of novel stressors and unprecedented change, including climate change, emerging environmental contaminants, and changes to earth's biogeochemical and hydrological cycles. We envision a common framework for developing models to predict the robustness and resilience of biological functions associated with complex systems that can transcend disciplinary boundaries. Conceptual and quantitative models of robustness and resilience must consider cross-scale interactions of potentially infinite complexity, but it is impossible to capture everything within a single model. Here, we discuss the need to balance accuracy and complexity when designing models, data collection, and downstream analyses to study robustness and resilience. We also consider the difficulties in defining the spatiotemporal domain when studying robustness and resilience as an emergent property of a complex system. We suggest a framework for implementing transdisciplinary research on robustness and resilience of biological systems that draws on participatory stakeholder engagement methods from the fields of conservation and natural resources management. Further, we suggest that a common, simplified model development framework for describing complex biological systems will provide new, broadly relevant educational tools. Efficient interdisciplinary collaboration to accurately develop a model of robustness and resilience would enable rapid, context-specific assessment of complex biological systems with benefits for a broad range of societally relevant problems.
Collapse
|
87
|
Llorente-Culebras S, Molina-Venegas R, Barbosa AM, Carvalho SB, Rodríguez MÁ, Santos AMC. Iberian Protected Areas Capture Regional Functional, Phylogenetic and Taxonomic Diversity of Most Tetrapod Groups. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protected areas (PAs) have been created with the purpose of preserving biodiversity, acting as refuges from anthropogenic pressures. Traditionally, PAs have been designed and managed to represent mainly taxonomic diversity, ignoring other diversity facets such as its functional and phylogenetic components. Yet, functional and phylogenetic diversity are, respectively, connected with species’ roles on ecosystems and evolutionary history held within communities. Here, we focused on the amphibian, reptile, resident breeding bird, and non-flying mammal faunas of the national and natural parks of the Iberian Peninsula, to evaluate whether these PAs are adequately representing regional functional, phylogenetic, and taxonomic diversity of each group. Specifically, we computed functional and phylogenetic diversity within each PA, and then compared those values to the ones obtained from a random assembly of species from the regional pool, that was defined as the region encompassing the PA and a neighboring area of 50 km beyond its boundary. We also calculated the proportion of species in each regional pool that were present within the PAs. In general, the functional and phylogenetic diversity of amphibians, reptiles and non-flying mammals found within PAs did not differ significantly from random expectations generated from the species pertaining to the regional pool, although a few PAs showed a higher diversity. In contrast, resident breeding birds presented lower functional and phylogenetic diversity than expected by chance in many of the PAs, which could relate to climatic variables and the habitat specificity of some species. The proportion of species from the regional pools that are present in the PAs was high for amphibians, reptiles and mammals, and slightly lower for birds. These results suggest that the Iberian natural and national parks are effectively capturing the functional, phylogenetic and taxonomic diversity of most tetrapod assemblages present at the regional level. Future studies should identify priority areas to expand the representation of these biodiversity components, and assess potential effects of climate and land-use changes on current patterns.
Collapse
|
88
|
Robledo-Ruiz DA, Pavlova A, Clarke RH, Magrath MJL, Quin B, Harrisson KA, Gan HM, Low GW, Sunnucks P. A novel framework for evaluating in situ breeding management strategies in endangered populations. Mol Ecol Resour 2021; 22:239-253. [PMID: 34288508 DOI: 10.1111/1755-0998.13476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Conservation breeding management aims to reduce inbreeding and maximize the retention of genetic diversity in endangered populations. However, breeding management of wild populations is still rare, and there is a need for approaches that provide data-driven evidence of the likelihood of success of alternative in situ strategies. Here, we provide an analytical framework that uses in silico simulations to evaluate, for real wild populations, (i) the degree of population-level inbreeding avoidance, (ii) the genetic quality of mating pairs, and (iii) the potential genetic benefits of implementing two breeding management strategies. The proposed strategies aim to improve the genetic quality of breeding pairs by splitting detrimental pairs and allowing the members to re-pair in different ways. We apply the framework to the wild population of the Critically Endangered helmeted honeyeater by combining genomic data and field observations to estimate the inbreeding (i.e., pair-kinship) and genetic quality (i.e., Mate Suitability Index) of all mating pairs for seven consecutive breeding seasons. We found no evidence of population-level inbreeding avoidance and that ~91.6% of breeding pairs were detrimental to the genetic health of the population. Furthermore, the framework revealed that neither proposed management strategy would significantly improve the genetic quality or reduce inbreeding of the mating pairs in this population. Our results demonstrate the usefulness of our analytical framework for testing the efficacy of different in situ breeding management strategies and for making evidence-based management decisions.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Rohan H Clarke
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Michael J L Magrath
- Department of Wildlife Conservation and Science, Zoos Victoria, Parkville, Vic., Australia.,School of BioSciences, University of Melbourne, Parkville, Vic., Australia
| | - Bruce Quin
- Department of Environment, Land, Water and Planning, Woori Yallock, Vic., Australia
| | - Katherine A Harrisson
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia.,Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Vic., Australia
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia.,Deakin Genomics Centre, Deakin University, Geelong, Vic., Australia
| | - Gabriel W Low
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
89
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
90
|
Lecocq T, Toomey L. A workflow to design new directed domestication programs to move forward current and future insect production. Anim Front 2021; 11:69-77. [PMID: 34158991 PMCID: PMC8214433 DOI: 10.1093/af/vfab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Thomas Lecocq
- INRAE, URAFPA, University of Lorraine, Nancy, France
| | - Lola Toomey
- INRAE, URAFPA, University of Lorraine, Nancy, France
| |
Collapse
|
91
|
Ridlon AD, Wasson K, Waters T, Adams J, Donatuto J, Fleener G, Froehlich H, Govender R, Kornbluth A, Lorda J, Peabody B, Pinchot IV G, Rumrill SS, Tobin E, Zabin CJ, Zacherl D, Grosholz ED. Conservation aquaculture as a tool for imperiled marine species: Evaluation of opportunities and risks for Olympia oysters, Ostrea lurida. PLoS One 2021; 16:e0252810. [PMID: 34153054 PMCID: PMC8216563 DOI: 10.1371/journal.pone.0252810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers’ portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation—issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.
Collapse
Affiliation(s)
- April D. Ridlon
- Science for Nature and People Partnership and National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, Watsonvile, California, United States of America
- Ecology and Evolutionary Biology University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Tiffany Waters
- Global Aquaculture, The Nature Conservancy, Arlington, Virginia, United States of America
| | - John Adams
- Sound Fresh Clams and Oysters, Shelton, Washington, United States of America
| | - Jamie Donatuto
- Community Environmental Health Program, Swinomish Indian Tribal Community, LaConner, Washington, United States of America
| | - Gary Fleener
- Research and Development, Hog Island Oyster Co., Marshall, California, United States of America
| | - Halley Froehlich
- Ecology, Evolution & Marine Biology and Environmental Studies, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Rhona Govender
- Species at Risk Program, Fisheries and Oceans Canada, British Columbia, Canada
| | - Aaron Kornbluth
- Officer, The Pew Charitable Trusts, Washington D.C., United States of America
| | - Julio Lorda
- Facultad de Ciencias, Universidad Autónoma de Baja California, Mexicali, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, California, United States of America
| | - Betsy Peabody
- Puget Sound Restoration Fund, Bainbridge Island, Washington, United States of America
| | | | - Steven S. Rumrill
- Marine Resources Program, Oregon Department of Fish and Wildlife, Newport, Oregon, United States of America
| | - Elizabeth Tobin
- Natural Resources Department, Jamestown S’Klallam Tribe, Sequim, Washington, United States of America
| | - Chela J. Zabin
- Marine Invasions Research, Smithsonian Environmental Research Center, Belvedere Tiburon, California, United States of America
| | - Danielle Zacherl
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Edwin D. Grosholz
- Department of Environmental Science and Policy, University of California—Davis, Davis, California, United States of America
| |
Collapse
|
92
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
93
|
Morris AB, Trostel K, Scalf C, Burleyson A, Call G, Albrecht MA. Genetic variation and structure in natural and reintroduced populations of the endangered legume, Pyne’s ground plum (Astragalus bibullatus). CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01346-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Abstract
AbstractGenetic diversity is a fundamental component of biological diversity, and its conservation is considered key to ensure the long-term survival of natural populations and species. National and international legislation increasingly mandates a monitoring of genetic diversity. Examples are the United Nation’s Convention on Biological Diversity (CBD) Aichi target 13 and the current post-2020 negotiations to specify a new target for maintaining genetic diversity. To date, only a few pilot projects have been launched that systematically monitor genetic diversity over time in natural populations of a broad variety of wild species. The Swiss Federal Office for the Environment mandated a feasibility study in 2019 for implementing a national monitoring of genetic diversity in natural populations. To obtain information on whether stakeholders are interested in such a systematic monitoring, what they would expect from such a monitoring and where they see respective caveats, we conducted an online survey, which 138 (42% of those surveyed) Swiss stakeholders answered. We find that Swiss stakeholders are generally aware of the lacking evidence regarding the status of genetic diversity in wild populations and species. Accordingly, most stakeholders are interested in a monitoring of genetic diversity and see opportunities for the application of its results in their work. Nevertheless, stakeholders also expressed concerns regarding financial resources and that the results of a genetic diversity monitoring program would not benefit conservation practice. Our findings highlight the importance of stakeholder engagement and demonstrate the value of a detailed stakeholder analysis prior to developing and implementing a genetic diversity monitoring program. A powerful tool for examining the constellation and interactions of the different stakeholders are social network analyses (SNAs). Finally, it is particularly important to communicate transparently about the possibilities and limitations of a genetic diversity monitoring program as well as to closely involve stakeholders from the beginning to increase the acceptance of genetic diversity monitoring and facilitate its implementation.
Collapse
|
95
|
Grismer LL, Ngo HN, Qi S, Wang YY, Le MD, Ziegler T. Phylogeny and evolution of habitat preference in Goniurosaurus (Squamata: Eublepharidae) and their correlation with karst and granite-stream-adapted ecomorphologies in species groups from Vietnam. VERTEBRATE ZOOLOGY 2021. [DOI: 10.3897/vz.71.e65969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Maximum likelihood (ML) and Bayesian inference (BI) analyses using two mitochondrial (16S and cyt b) and two nuclear (CMOS and RAG1) genes and 103 specimens recovered the first phylogenies of all 23 extant species of Goniurosaurus. The analyses strongly supported the recognition of four monophyletic species groups with identical inter-specific relationships within the kuroiwae, lichtenfelderi, and yingdeensis groups but discordant topologies at some nodes within the luii group. Both analyses recovered a polyphyletic G. luii with respect to G. kadoorieorum, and owing to the lack of diagnostic characters in the latter, it is considered a junior synonym of G. luii. A stochastic character mapping analysis of karst versus non-karst habitat preference suggested that karstic landscapes may have played a major role in the evolution and diversification of Goniurosaurus. A karst habitat preference is marginally supported as the most probable ancestral condition for Goniurosaurus as well as for the kuroiwae, luii, and yingdeensis groups. However, a non-karst habitat preference is marginally supported as the most probable ancestral condition for the lichtenfelderi group. Multivariate and univariate ecomorphological analyses of the karst-adapted G. catbaensis, G. huuliensis, and G. luii of the luii group and the granite-stream-adapted G. lichtenfelderii of the lichtenfelderi group demonstrated that their markedly statistically different body shapes may be an adaptive response that contributes to habitat partitioning in areas of northern Vietnam where they are nearly sympatric.
Collapse
|
96
|
Van Rossum F, Le Pajolec S. Mixing gene pools to prevent inbreeding issues in translocated populations of clonal species. Mol Ecol 2021; 30:2756-2771. [PMID: 33890338 DOI: 10.1111/mec.15930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
Assisted gene flow by plant translocations is increasingly implemented for restoring populations of critically endangered species. The success in restoring genetically healthy populations may depend on translocation design, in particular the choice of the source populations. Highly clonal populations may show low genetic diversity despite large census sizes, and disrupted and geitonogamous pollination may result in selfing and inbreeding issues in the offspring intended for translocation. We carried out a genetic monitoring of translocated populations of the clonal Dianthus deltoides using 14 microsatellite markers and quantified fitness traits over two generations (transplants, F1 seed progeny and newly established individuals). Inbreeding levels were higher in the offspring used as transplants than in the adult generation of the source populations, as a result of high clonality and pollination disruption leading to self-pollination. The F1 generation in translocated populations showed high genetic diversity maintained across generations, diminished inbreeding levels, low genetic differentiation, pollen flow and genetic mixing between the four sources. New individuals were established from seed germination. Fitness patterns were a combination of inbreeding depression in inbred transplants and F1 progeny, heterosis in admixed F1 progeny, source population adaptive capacities, phenotypic plasticity, maternal effects and site environmental specificities. The strategy in the translocation design to mix several local sources, combined with large founding population sizes and ecological management has proved success in initiating the processes leading to the establishment of genetically healthy populations, even when source populations are highly clonal with low genetic diversity leading to inbreeding issues in the transplants.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic Garden, Meise, Belgium.,Service général de l'Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Brussels, Belgium
| | | |
Collapse
|
97
|
Marinoni L, Parra Quijano M, Zabala JM, Pensiero JF, Iriondo JM. Spatiotemporal seed transfer zones as an efficient restoration strategy in response to climate change. Ecosphere 2021. [DOI: 10.1002/ecs2.3462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- L. Marinoni
- Programa de Documentación, Conservación y Valoración de la Flora Nativa (PRODOCOVA) Facultad de Ciencias Agrarias Universidad Nacional del Litoral Kreder 2805 Esperanza Santa Fe3080Argentina
- Consejo de Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - M. Parra Quijano
- Departamento de Agronomía Universidad Nacional de Colombia sede Bogotá Ciudad Universitaria Bogota D.C. Colombia
| | - J. M. Zabala
- Programa de Documentación, Conservación y Valoración de la Flora Nativa (PRODOCOVA) Facultad de Ciencias Agrarias Universidad Nacional del Litoral Kreder 2805 Esperanza Santa Fe3080Argentina
- Consejo de Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - J. F. Pensiero
- Programa de Documentación, Conservación y Valoración de la Flora Nativa (PRODOCOVA) Facultad de Ciencias Agrarias Universidad Nacional del Litoral Kreder 2805 Esperanza Santa Fe3080Argentina
- Consejo de Nacional de Investigaciones Científicas y Técnicas Ciudad Autónoma de Buenos Aires Argentina
| | - J. M. Iriondo
- Área de Biodiversidad y Conservación ESCET Universidad Rey Juan Carlos Mostoles, Madrid Spain
| |
Collapse
|
98
|
Peniston JH, Barfield M, Holt RD, Orive ME. Environmental fluctuations dampen the effects of clonal reproduction on evolutionary rescue. J Evol Biol 2021; 34:710-722. [PMID: 33682225 DOI: 10.1111/jeb.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Evolutionary rescue occurs when genetic change allows a population to persist in response to an environmental change that would otherwise have led to extinction. Most studies of evolutionary rescue assume that species have either fully clonal or fully sexual reproduction; however, many species have partially clonal reproductive strategies in which they reproduce both clonally and sexually. Furthermore, the few evolutionary rescue studies that have evaluated partially clonal reproduction did not consider fluctuations in the environment, which are nearly ubiquitous in nature. Here, we use individual-based simulations to investigate how environmental fluctuations (either uncorrelated or positively autocorrelated) influence the effect of clonality on evolutionary rescue. We show that, for moderate magnitudes of environmental fluctuations, as was found in the absence of fluctuations, increasing the degree of clonality increases the probability of population persistence in response to an abrupt environmental change, but decreases persistence in response to a continuous, directional environmental change. However, with large magnitudes of fluctuations, both the benefits of clonality following a step change and the detrimental effects of clonality following a continuous, directional change are generally reduced; in fact, in the latter scenario, increasing clonality can even become beneficial if environmental fluctuations are autocorrelated. We also show that increased generational overlap dampens the effects of environmental fluctuations. Overall, we demonstrate that understanding the evolutionary rescue of partially clonal organisms requires not only knowledge of the species life history and the type of environmental change, but also an understanding of the magnitude and autocorrelation of environmental fluctuations.
Collapse
Affiliation(s)
- James H Peniston
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Maria E Orive
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
99
|
The Genetic Component of Seagrass Restoration: What We Know and the Way Forwards. WATER 2021. [DOI: 10.3390/w13060829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seagrasses are marine flowering plants providing key ecological services and functions in coasts and estuaries across the globe. Increased environmental changes fueled by human activities are affecting their existence, compromising natural habitats and ecosystems’ biodiversity and functioning. In this context, restoration of disturbed seagrass environments has become a worldwide priority to reverse ecosystem degradation and to recover ecosystem functionality and associated services. Despite the proven importance of genetic research to perform successful restoration projects, this aspect has often been overlooked in seagrass restoration. Here, we aimed to provide a comprehensive perspective of genetic aspects related to seagrass restoration. To this end, we first reviewed the importance of studying the genetic diversity and population structure of target seagrass populations; then, we discussed the pros and cons of different approaches used to restore and/or reinforce degraded populations. In general, the collection of genetic information and the development of connectivity maps are critical steps for any seagrass restoration activity. Traditionally, the selection of donor population preferred the use of local gene pools, thought to be the best adapted to current conditions. However, in the face of rapid ocean changes, alternative approaches such as the use of climate-adjusted or admixture genotypes might provide more sustainable options to secure the survival of restored meadows. Also, we discussed different transplantation strategies applied in seagrasses and emphasized the importance of long-term seagrass monitoring in restoration. The newly developed information on epigenetics as well as the application of assisted evolution strategies were also explored. Finally, a view of legal and ethical issues related to national and international restoration management is included, highlighting improvements and potential new directions to integrate with the genetic assessment. We concluded that a good restoration effort should incorporate: (1) a good understanding of the genetic structure of both donors and populations being restored; (2) the analysis of local environmental conditions and disturbances that affect the site to be restored; (3) the analysis of local adaptation constraints influencing the performances of donor populations and native plants; (4) the integration of distribution/connectivity maps with genetic information and environmental factors relative to the target seagrass populations; (5) the planning of long-term monitoring programs to assess the performance of the restored populations. The inclusion of epigenetic knowledge and the development of assisted evolution programs are strongly hoped for the future.
Collapse
|
100
|
Grismer LL, Wood, Jr. PL, Poyarkov NA, Le MD, Kraus F, Agarwal I, Oliver PM, Nguyen SN, Nguyen TQ, Karunarathna S, Welton LJ, Stuart BL, Luu VQ, Bauer AM, O’Connell KA, Quah ESH, Chan KO, Ziegler T, Ngo H, Nazarov RA, Aowphol A, Chomdej S, Suwannapoom C, Siler CD, Anuar S, Tri NV, Grismer JL. Phylogenetic partitioning of the third-largest vertebrate genus in the world, Cyrtodactylus Gray, 1827 (Reptilia; Squamata; Gekkonidae) and its relevance to taxonomy and conservation. VERTEBRATE ZOOLOGY 2021. [DOI: 10.3897/vz.71.e59307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gekkonid genus Cyrtodactylus is the third most speciose vertebrate genus in the world, containing well over 300 species that collectively range from South Asia to Melanesia across some of the most diverse landscapes and imperiled habitats on the planet. A genus-wide phylogeny of the group has never been presented because researchers working on different groups were using different genetic markers to construct phylogenies that could not be integrated. We present here Maximum likelihood and Bayesian inference mitochondrial and mito-nuclear phylogenies incorporating of 310 species that include dozens of species that had never been included in a genus-wide analysis. Based on the mitochondrial phylogeny, we partition Cyrtodactylus into 31 well-supported monophyletic species groups which, if used as recommended herein, will increase the information content of future integrative taxonomic analyses that continue to add new species to this genus at an ever-increasing annual rate. Data presented here reiterate the outcome of several previous studies indicating that Cyrtodactylus comprises an unprecedented number of narrow-range endemics restricted to single mountain tops, small islands, or karst formations that still remain unprotected. This phylogeny can provide a platform for various comparative ecological studies that can be integrated with conservation management programs across the broad diversity of landscapes and habitats occupied by this genus. Additionally, these data indicate that the true number of Cyrtodactylus remains substantially underrepresented.
Collapse
|