51
|
Negrín Dastis JO, Milne R, Guichard F, Derry AM. Phenotype-environment mismatch in metapopulations-Implications for the maintenance of maladaptation at the regional scale. Evol Appl 2019; 12:1475-1486. [PMID: 31417628 PMCID: PMC6691211 DOI: 10.1111/eva.12833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
Maladaptation is widespread in natural populations. However, maladaptation has most often been associated with absolute population decline in local habitats rather than on a spectrum of relative fitness variation that can assist natural populations in their persistence at larger regional scales. We report results from a field experiment that tested for relative maladaptation between-pond habitats with spatial heterogeneity and (a)symmetric selection in pH. In the experiment, we quantified relative maladaptation in a copepod metapopulation as a mismatch between the mean population phenotype and the optimal trait value that would maximize mean population fitness under either stable or fluctuating pH environmental conditions. To complement the field experiment, we constructed a metapopulation model that addressed both relative (distance from the optimum) and absolute (negative population growth) maladaptation, with the aim of forecasting maladaptation to pH at the regional scale in relation to spatial structure (environmental heterogeneity and connectivity) and temporal environmental fluctuations. The results from our experiment indicated that maladaptation to pH at the regional scale depended on the asymmetry of the fitness surface at the local level. The results from our metapopulation model revealed how dispersal and (a)symmetric selection can operate on the fitness surface to maintain maladaptive phenotype-environment mismatch at local and regional scales in a metapopulation. Environmental stochasticity resulted in the maintenance of maladaptation that was robust to dispersal, but also revealed an interaction between the asymmetry in selection and environmental correlation. Our findings emphasize the importance of maladaptation for planning conservation strategies that can support adaptive potential in fragmented and changing landscapes.
Collapse
Affiliation(s)
- Jorge Octavio Negrín Dastis
- Départment des sciences biologiquesUniversité du Québec à Montréal (UQAM)MontréalQuébecCanada
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL)MontréalCanada
| | - Russell Milne
- Department of BiologyMcGill UniversityMontréalQuébecCanada
| | | | - Alison Margaret Derry
- Départment des sciences biologiquesUniversité du Québec à Montréal (UQAM)MontréalQuébecCanada
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL)MontréalCanada
| |
Collapse
|
52
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
53
|
Use of genetic data in a species status assessment of the Sicklefin Redhorse (Moxostoma sp.). CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
Véron S, Saito V, Padilla-García N, Forest F, Bertheau Y. The Use of Phylogenetic Diversity in Conservation Biology and Community Ecology: A Common Base but Different Approaches. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
55
|
Marques da Cunha L, Uppal A, Seddon E, Nusbaumer D, Vermeirssen EL, Wedekind C. No additive genetic variance for tolerance to ethynylestradiol exposure in natural populations of brown trout ( Salmo trutta). Evol Appl 2019; 12:940-950. [PMID: 31080506 PMCID: PMC6503824 DOI: 10.1111/eva.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most common and potent pollutants of freshwater habitats is 17-alpha-ethynylestradiol (EE2), a synthetic component of oral contraceptives that is not completely eliminated during sewage treatment and that threatens natural populations of fish. Previous studies found additive genetic variance for the tolerance against EE2 in different salmonid fishes and concluded that rapid evolution to this type of pollution seems possible. However, these previous studies were done with fishes that are lake-dwelling and hence typically less exposed to EE2 than river-dwelling species. Here, we test whether there is additive genetic variance for the tolerance against EE2 also in river-dwelling salmonid populations that have been exposed to various concentrations of EE2 over the last decades. We sampled 287 adult brown trout (Salmo trutta) from seven populations that show much genetic diversity within populations, are genetically differentiated, and that vary in their exposure to sewage-treated effluent. In order to estimate their potential to evolve tolerance to EE2, we collected their gametes to produce 730 experimental families in blockwise full-factorial in vitro fertilizations. We then raised 7,302 embryos singly in 2-ml containers each and either exposed them to 1 ng/L EE2 (an ecologically relevant concentration, i.e., 2 pg per embryo added in a single spike to the water) or sham-treated them. Exposure to EE2 increased embryo mortality, delayed hatching time, and decreased hatchling length. We found no population differences and no additive genetic variance for tolerance to EE2. We conclude that EE2 has detrimental effects that may adversely affect population even at a very low concentration, but that our study populations lack the potential for rapid genetic adaptation to this type of pollution. One possible explanation for the latter is that continuous selection over the last decades has depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
| | - Anshu Uppal
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Emily Seddon
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
56
|
Lafontaine A, Drapeau P, Fortin D, Gauthier S, Boulanger Y, St‐Laurent M. Exposure to historical burn rates shapes the response of boreal caribou to timber harvesting. Ecosphere 2019. [DOI: 10.1002/ecs2.2739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Alexandre Lafontaine
- Département de Biologie, Chimie et Géographie Centre for Northern Studies & Centre for Forest Research Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski Québec G5L 3A1 Canada
| | - Pierre Drapeau
- NSERC‐UQAT‐UQAM Département des Sciences Biologiques Centre for Forest Research UQAT‐UQAM NSERC Industrial Research Chair in Sustainable Forest Management Université du Québec à Montréal 141 Avenue du Président‐Kennedy Montréal Québec H2X 1Y4 Canada
| | - Daniel Fortin
- Département de Biologie Centre for Forest Research Université Laval 1045 Av. de la Médecine, Pavillon Alexandre‐Vachon Québec Québec G1V 0A6 Canada
| | - Sylvie Gauthier
- Natural Resources Canada Canadian Forest Service Laurentian Forestry Centre 1055 9 du P.E.P.S., P.O. Box 10380, Stn. Sainte‐Foy Québec Québec G1V 4C7 Canada
| | - Yan Boulanger
- Natural Resources Canada Canadian Forest Service Laurentian Forestry Centre 1055 9 du P.E.P.S., P.O. Box 10380, Stn. Sainte‐Foy Québec Québec G1V 4C7 Canada
| | - Martin‐Hugues St‐Laurent
- Département de Biologie, Chimie et Géographie Centre for Northern Studies & Centre for Forest Research Université du Québec à Rimouski 300 Allée des Ursulines, Rimouski Québec G5L 3A1 Canada
| |
Collapse
|
57
|
Avilés-Rodríguez KJ, Kolbe JJ. Escape in the city: urbanization alters the escape behavior of Anolis lizards. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00845-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
58
|
Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ, Johnson CR, Leis JM, Ling SD, Marshall D, Pandolfi JM, Pecl G, Rodgers GG, Booth DJ, Munday PL. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180186. [PMID: 30966966 PMCID: PMC6365866 DOI: 10.1098/rstb.2018.0186] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | | | - Will F. Figueira
- University of Sydney, School of Life and Environmental Sciences, Sydney 2006, Australia
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Craig R. Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeffrey M. Leis
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
- Australian Museum Research Institute, Sydney, New South Wales 2001, Australia
| | - Scott D. Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Dustin Marshall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John M. Pandolfi
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gretta Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Giverny G. Rodgers
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David J. Booth
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| |
Collapse
|
59
|
Shi P, Cao L, Gong Y, Ma L, Song W, Chen J, Hoffmann AA, Wei S. Independently evolved and gene flow-accelerated pesticide resistance in two-spotted spider mites. Ecol Evol 2019; 9:2206-2219. [PMID: 30847105 PMCID: PMC6392376 DOI: 10.1002/ece3.4916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022] Open
Abstract
Pest species are often able to develop resistance to pesticides used to control them, depending on how rapidly resistance can emerge within a population or spread from another resistant population. We examined the evolution of bifenazate resistance in China in the two-spotted spider mite (TSSM) Tetranychus uticae Koch (Acari: Tetranychidae), one of the most resistant arthropods, by using bioassays, detection of mutations in the target cytb gene, and population genetic structure analysis using microsatellite markers. Bioassays showed variable levels of resistance to bifenazate. The cytb mutation G126S, which confers medium resistance in TSSM to bifenazate, had previously been detected prior to the application of bifenazate and was now widespread, suggesting likely resistance evolution from standing genetic variation. G126S was detected in geographically distant populations across different genetic clusters, pointing to the independent origin of this mutation in different TSSM populations. A novel A269V mutation linked to a low-level resistance was detected in two southern populations. Widespread resistance associated with a high frequency of the G126S allele was found in four populations from the Beijing area which were not genetically differentiated. In this case, a high level of gene flows likely accelerated the development of resistance within this local region, as well as into an outlying region distant from Beijing. These findings, therefore, suggest patterns consistent with both local evolution of pesticide resistance as well as an impact of migration, helping to inform resistance management strategies in TSSM.
Collapse
Affiliation(s)
- Pan Shi
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Li‐Jun Cao
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ya‐Jun Gong
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ling Ma
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Wei Song
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jin‐Cui Chen
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Shu‐Jun Wei
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
60
|
Yousef HA, Abdelfattah EA, Augustyniak M. Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3823-3833. [PMID: 30539392 DOI: 10.1007/s11356-018-3756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The response of antioxidant enzymes to oxidative environmental stress was determined in 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae) collected from sites with different level of pollution with heavy metals, PO43-, and SO42-. The high polluted site induced higher DNA damage to individuals compared to the control site. The highest values of tail length (TL), tail moment (TM), and percent of DNA in tail (TDNA) were found in the gut of 5th instar nymphs from a high polluted site. Also, protein carbonyls and lipid peroxide levels were significantly higher in insects collected from polluted sites compared to those from the control site. A strong positive correlation between both protein carbonyl and lipid peroxide concentration and the pollution level of the sites was found in all tissues of the insects. The activity of superoxide dismutase (SOD) in the brain of insects collected from the high polluted site was significantly higher than that in the thoracic muscles and gut. We observed strong inhibition of catalase (CAT) activity. This effect was apparently caused by pollutants present at the high polluted site. The level of pollution significantly influenced polyphenol oxidase (PPO) activity in A. thalassinus nymphs in all examined tissues. The highest values were observed in the brain. The relationship between pollution and ascorbate peroxidase (APOX) activity in the examined tissues had no clear tendency. However, the lowest APOX activity was observed in individuals from the low polluted site. Level of pollution of sampling sites, oxidative stress biomarkers, and enzymatic response in A. thalanthsis 5th instar were negatively or positively correlated. Oxidative damage parameters, especially the percent of severed cells, lipid peroxides, and the activity of APOX, can be perceived as good markers of environmental multistress.
Collapse
Affiliation(s)
- Hesham A Yousef
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Eman A Abdelfattah
- Entomology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
61
|
Dumont F, Aubry O, Lucas E. From Evolutionary Aspects of Zoophytophagy to Biological Control. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
62
|
Cook CN, Sgrò CM. Poor understanding of evolutionary theory is a barrier to effective conservation management. Conserv Lett 2018. [DOI: 10.1111/conl.12619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Carly N. Cook
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
63
|
Honda T, Iijima H, Tsuboi J, Uchida K. A review of urban wildlife management from the animal personality perspective: The case of urban deer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:576-582. [PMID: 29990907 DOI: 10.1016/j.scitotenv.2018.06.335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Wildlife living around urbanized areas is often a cause of crucial issues such as zoonosis and wildlife-vehicle collisions. Despite this, residents hold positive views on the presence of urban wildlife primarily due to aesthetic reasons. This accepting attitude towards our coexistence with urban wildlife has made it difficult for wildlife managers to come to a consensus concerning the importance of human-urban wildlife conflicts. Although countermeasures such as lethal force and/or fencing are commonly used to control human-wildlife conflicts, these approaches are rarely applied in the case of urban wildlife. It is essential to recognize the gap between the current state of urban wildlife management and advanced scientific knowledge of urban wildlife behavior in order to mitigate urban deer conflicts. Fortunately, behavioral ecologists have been attempting to apply the perspective of individual differences, such as animal personality, to wildlife management. Studies have shown how the personalities of wildlife contribute to their adaptation to urban habitats. In order to prevent human-urban wildlife conflicts, recognizing the personalities of wildlife and selective culling of bold individuals should be conducted for deliberate selection for shyness when developing wildlife management plans. Making wildlife shy away from humans is essential to urban wildlife management. The aim of this study is to review observed measures against human-urban wildlife conflicts in Japan and to propose a new direction for innovative and effective approaches that takes animals personality into account to mitigate urban-wildlife conflicts. For this review we will target deer as a model species because deer are among the most serious of problem-causing urban wildlife.
Collapse
Affiliation(s)
- T Honda
- Yamanashi Prefecture Agricultural Research Center, 1100 Shimoimai, Kai, Japan.
| | - H Iijima
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Japan
| | - J Tsuboi
- National Research Institute of Fisheries Science, Fisheries Research and Education Agency, 2482-3, Chugushi, Nikko, Japan
| | - K Uchida
- Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo, Hokkaido, Japan
| |
Collapse
|
64
|
Corcoran P, Gossmann TI, Barton HJ, Slate J, Zeng K. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species. Genome Biol Evol 2018; 9:2987-3007. [PMID: 29045655 PMCID: PMC5714183 DOI: 10.1093/gbe/evx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Population genetic theory predicts that selection should be more effective when the effective population size (Ne) is larger, and that the efficacy of selection should correlate positively with recombination rate. Here, we analyzed the genomes of ten great tits and ten zebra finches. Nucleotide diversity at 4-fold degenerate sites indicates that zebra finches have a 2.83-fold larger Ne. We obtained clear evidence that purifying selection is more effective in zebra finches. The proportion of substitutions at 0-fold degenerate sites fixed by positive selection (α) is high in both species (great tit 48%; zebra finch 64%) and is significantly higher in zebra finches. When α was estimated on GC-conservative changes (i.e., between A and T and between G and C), the estimates reduced in both species (great tit 22%; zebra finch 53%). A theoretical model presented herein suggests that failing to control for the effects of GC-biased gene conversion (gBGC) is potentially a contributor to the overestimation of α, and that this effect cannot be alleviated by first fitting a demographic model to neutral variants. We present the first estimates in birds for α in the untranslated regions, and found evidence for substantial adaptive changes. Finally, although purifying selection is stronger in high-recombination regions, we obtained mixed evidence for α increasing with recombination rate, especially after accounting for gBGC. These results highlight that it is important to consider the potential confounding effects of gBGC when quantifying selection and that our understanding of what determines the efficacy of selection is incomplete.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | | | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
65
|
Cook CN, Sgrò CM. Understanding managers' and scientists' perspectives on opportunities to achieve more evolutionarily enlightened management in conservation. Evol Appl 2018; 11:1371-1388. [PMID: 30151046 PMCID: PMC6099810 DOI: 10.1111/eva.12631] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/08/2018] [Indexed: 01/04/2023] Open
Abstract
Despite wide acceptance that conservation could benefit from greater attention to principles and processes from evolutionary biology, little attention has been given to quantifying the degree to which relevant evolutionary concepts are being integrated into management practices. There has also been increasing discussion of the potential reasons for a lack of evolutionarily enlightened management, but no attempts to understand the challenges from the perspective of those making management decisions. In this study, we asked conservation managers and scientists for their views on the importance of a range of key evolutionary concepts, the degree to which these concepts are being integrated into management, and what would need to change to support better integration into management practices. We found that while managers recognize the importance of a wide range of evolutionary concepts for conservation outcomes, they acknowledge these concepts are rarely incorporated into management. Managers and scientists were in strong agreement about the range of barriers that need to be overcome, with a lack of knowledge reported as the most important barrier to better integration of evolutionary biology into conservation decision-making. Although managers tended to be more focused on the need for more training in evolutionary biology, scientists reported greater engagement between managers and evolutionary biologists as most important to achieve the necessary change. Nevertheless, the challenges appear to be multifaceted, and several are outside the control of managers, suggesting solutions will need to be multidimensional.
Collapse
Affiliation(s)
- Carly N. Cook
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
66
|
Marshall DJ, Lawton RJ, Monro K, Paul NA. Biochemical evolution in response to intensive harvesting in algae: Evolution of quality and quantity. Evol Appl 2018; 11:1389-1400. [PMID: 30151047 PMCID: PMC6099826 DOI: 10.1111/eva.12632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/09/2018] [Indexed: 11/28/2022] Open
Abstract
Evolutionary responses to indirect selection pressures imposed by intensive harvesting are increasingly common. While artificial selection has shown that biochemical components can show rapid and dramatic evolution, it remains unclear as to whether intensive harvesting can inadvertently induce changes in the biochemistry of harvested populations. For applications such as algal culture, many of the desirable bioproducts could evolve in response to harvesting, reducing cost-effectiveness, but experimental tests are lacking. We used an experimental evolution approach where we imposed heavy and light harvesting regimes on multiple lines of an alga of commercial interest for twelve cycles of harvesting and then placed all lines in a common garden regime for four cycles. We have previously shown that lines in a heavy harvesting regime evolve a "live fast" phenotype with higher growth rates relative to light harvesting regimes. Here, we show that algal biochemistry also shows evolutionary responses, although they were temporarily masked by differences in density under the different harvesting regimes. Heavy harvesting regimes, relative to light harvesting regimes, had reduced productivity of desirable bioproducts, particularly fatty acids. We suggest that commercial operators wishing to maximize productivity of desirable bioproducts should maintain mother cultures, kept at higher densities (which tend to select for desirable phenotypes), and periodically restart their intensively harvested cultures to minimize the negative consequences of biochemical evolution. Our study shows that the burgeoning algal culture industry should pay careful attention to the role of evolution in intensively harvested crops as these effects are nontrivial if subtle.
Collapse
Affiliation(s)
- Dustin J Marshall
- Centre for Geometric Biology/School of Biological SciencesMonash UniversityMelbourneVic.Australia
| | - Rebecca J Lawton
- MACRO—the Centre for Macroalgal Resources and BiotechnologyJames Cook UniversityTownsvilleQLDAustralia
- Bay of Plenty Regional CouncilMount MaunganuiNew Zealand
| | - Keyne Monro
- Centre for Geometric Biology/School of Biological SciencesMonash UniversityMelbourneVic.Australia
| | - Nicholas A Paul
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastMaroochydoreQLDAustralia
| |
Collapse
|
67
|
Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1096-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
68
|
Jones DK, Yates EK, Mattes BM, Hintz WD, Schuler MS, Relyea RA. Timing and frequency of sublethal exposure modifies the induction and retention of increased insecticide tolerance in wood frogs (Lithobates sylvaticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2188-2197. [PMID: 29786147 DOI: 10.1002/etc.4177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Although the paradigm for increased tolerance to pesticides has been by selection on constitutive (naïve) traits, recent research has shown it can also occur through phenotypic plasticity. However, the time period in which induction can occur, the duration of induced tolerance, and the influence of multiple induction events remain unknown. We hypothesized that the induction of increased pesticide tolerance is limited to early sensitive periods, the magnitude of induced tolerance depends on the number of exposures, and the retention of induced tolerance depends on the time elapsed after an exposure and the number of exposures. To test these hypotheses, we exposed wood frog tadpoles to either a no-carbaryl control (water) or 0.5 mg/L carbaryl at 4 time periods, and later tested their tolerance to carbaryl using time-to-death assays. We discovered that tadpoles induced increased tolerance early and midway but not late in our experiment and their constitutive tolerance increased with age. We found no difference in the magnitude of induced tolerance after a single or 2 exposures. Finally, induced pesticide tolerance was reversed within 6 d but was retained only when tadpoles experienced all 4 consecutive exposures. Phenotypic plasticity provides an immediate response for sensitive amphibian larvae to early pesticide exposures and reduces phenotypic mismatches in aquatic environments contaminated by agrochemicals. Environ Toxicol Chem 2018;37:2188-2197. © 2018 SETAC.
Collapse
Affiliation(s)
- Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Erika K Yates
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Brian M Mattes
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Matthew S Schuler
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
69
|
Pease JE, Grabowski TB, Pease AA, Bean PT. Changing environmental gradients over forty years alter ecomorphological variation in Guadalupe Bass Micropterus treculii throughout a river basin. Ecol Evol 2018; 8:8508-8522. [PMID: 30250719 PMCID: PMC6145027 DOI: 10.1002/ece3.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Understanding the degree of intraspecific variation within and among populations is a key aspect of predicting the capacity of a species to respond to anthropogenic disturbances. However, intraspecific variation is usually assessed at either limited temporal, but broad spatial scales or vice versa, which can make assessing changes in response to long-term disturbances challenging. We evaluated the relationship between the longitudinal gradient of changing flow regimes and land use/land cover patterns since 1980 and morphological variation of Guadalupe Bass Micropterus treculii throughout the Colorado River Basin of central Texas. The Colorado River Basin in Texas has experienced major alterations to the hydrologic regime due to changing land- and water-use patterns. Historical collections of Guadalupe Bass prior to rapid human-induced change present the unique opportunity to study the response of populations to varying environmental conditions through space and time. Morphological differentiation of Guadalupe Bass associated with temporal changes in flow regimes and land use/land cover patterns suggests that they are exhibiting intraspecific trait variability, with contemporary individuals showing increased body depth, in response to environmental alteration through time (specifically related to an increase in herbaceous land cover, maximum flows, and the number of low pulses and high pulses). Additionally, individuals from tributaries with increased hydrologic alteration associated with urbanization or agricultural withdrawals tended to have a greater distance between the anal and caudal fin. These results reveal trait variation that may help to buffer populations under conditions of increased urbanization and sprawl, human population growth, and climate risk, all of which impose novel selective pressures, especially on endemic species like Guadalupe Bass. Our results contribute an understanding of the adaptability and capacity of an endemic population to respond to expected future changes based on demographic or climatic projection.
Collapse
Affiliation(s)
- Jessica E. Pease
- Texas Cooperative Fish & Wildlife Research UnitTexas Tech UniversityLubbockTexas
| | - Timothy B. Grabowski
- U.S. Geological SurveyTexas Cooperative Fish & Wildlife Research UnitTexas Tech UniversityLubbockTexas
- Present address:
U.S. Geological SurveyHawaii Cooperative Fishery Research UnitUniversity of Hawaii at HiloHiloHawaii
| | - Allison A. Pease
- Department of Natural Resources ManagementTexas Tech UniversityLubbockTexas
| | - Preston T. Bean
- Heart of the Hills Fisheries Science CenterTexas Parks and WildlifeMountain HomeTexas
| |
Collapse
|
70
|
Kern EMA, Langerhans RB. Urbanization drives contemporary evolution in stream fish. GLOBAL CHANGE BIOLOGY 2018; 24:3791-3803. [PMID: 29700897 DOI: 10.1111/gcb.14115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/10/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Human activities reduce biodiversity but may also drive diversification by modifying selection. Urbanization alters stream hydrology by increasing peak water velocities, which should in turn alter selection on the body morphology of aquatic species. Here, we show how urbanization can generate evolutionary divergence in the body morphology of two species of stream fish, western blacknose dace (Rhinichthys obtusus) and creek chub (Semotilus atromaculatus). We predicted that fish should evolve more streamlined body shapes within urbanized streams. We found that in urban streams, dace consistently exhibited more streamlined bodies while chub consistently showed deeper bodies. Comparing modern creek chub populations with historical museum collections spanning 50 years, we found that creek chub (1) rapidly became deeper bodied in streams that experienced increasing urbanization over time, (2) had already achieved deepened bodies 50 years ago in streams that were then already urban (and showed no additional deepening over time), and (3) remained relatively shallow bodied in streams that stayed rural over time. By raising creek chub from five populations under common conditions in the laboratory, we found that morphological differences largely reflected genetically based differences, not velocity-induced phenotypic plasticity. We suggest that urbanization can drive rapid, adaptive evolutionary responses to disturbance, and that these responses may vary unpredictably in different species.
Collapse
Affiliation(s)
- Elizabeth M A Kern
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
71
|
Vimercati G, Davies SJ, Measey J. Rapid adaptive response to a Mediterranean environment reduces phenotypic mismatch in a recent amphibian invader. ACTA ACUST UNITED AC 2018; 221:jeb.174797. [PMID: 29615531 DOI: 10.1242/jeb.174797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Invasive species frequently cope with ecological conditions that are different from those to which they adapted, presenting an opportunity to investigate how phenotypes change across short time scales. In 2000, the guttural toad Sclerophrys gutturalis was first detected in a peri-urban area of Cape Town, where it is now invasive. The ability of the species to invade Cape Town is surprising as the area is characterized by a Mediterranean climate significantly drier and colder than that of the native source area. We measured field hydration state of guttural toads from the invasive Cape Town population and a native source population from Durban. We also obtained from laboratory trials: rates of evaporative water loss and water uptake, sensitivity of locomotor endurance to hydration state, critical thermal minimum (CTmin) and sensitivity of CTmin to hydration state. Field hydration state of invasive toads was significantly lower than that of native toads. Although the two populations had similar rates of water loss and uptake, invasive toads were more efficient in minimizing water loss through postural adjustments. In locomotor trials, invasive individuals noticeably outperformed native individuals when dehydrated but not when fully hydrated. CTmin was lower in invasive individuals than in native individuals, independent of hydration state. Our results indicate that an invasive population that is only 20 years old shows adaptive responses that reduce phenotypic mismatch with the novel environment. The invasion potential of the species in Cape Town is higher than we could infer from its characteristics in the native source population.
Collapse
Affiliation(s)
- Giovanni Vimercati
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Sarah J Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
72
|
Patel S, Cortez MH, Schreiber SJ. Partitioning the Effects of Eco-Evolutionary Feedbacks on Community Stability. Am Nat 2018. [DOI: 10.1086/695834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
73
|
Sorby KL, Green MP, Dempster TD, Jessop TS. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events? J Exp Biol 2018; 221:jeb.174672. [DOI: 10.1242/jeb.174672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/22/2018] [Indexed: 02/02/2023]
Abstract
Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia, subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml−1), heat hardening plus methionine (0.79 mg ml−1), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events.
Collapse
Affiliation(s)
- Kris L. Sorby
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Mark P. Green
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Tim D. Dempster
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Tim S. Jessop
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
74
|
Bleuven C, Landry CR. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc Biol Sci 2017; 283:rspb.2016.1458. [PMID: 27798299 DOI: 10.1098/rspb.2016.1458] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection.
Collapse
Affiliation(s)
- Clara Bleuven
- Département de Biologie, Université Laval, Québec, Québec, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, Québec, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Big Data Research Center, Université Laval, Québec, Québec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Québec, Canada
| |
Collapse
|
75
|
Jones DK, Hintz WD, Schuler MS, Yates EK, Mattes BM, Relyea RA. Inducible Tolerance to Agrochemicals Was Paved by Evolutionary Responses to Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13913-13919. [PMID: 29087697 DOI: 10.1021/acs.est.7b03816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent research has reported increased tolerance to agrochemicals in target and nontarget organisms following acute physiological changes induced through phenotypic plasticity. Moreover, the most inducible populations are those from more pristine locations, far from agrochemical use. We asked why do populations with no known history of pesticide exposure have the ability to induce adaptive responses to novel agrochemicals? We hypothesized that increased pesticide tolerance results from a generalized stressor response in organisms, and would be induced following sublethal exposure to natural and anthropogenic stressors. We exposed larval wood frogs (Lithobates sylvaticus) to one of seven natural or anthropogenic stressors (predator cue (Anax spp.), 0.5 or 1.0 mg carbaryl/L, road salt (200 or 1000 mg Cl-/L), ethanol-vehicle control, or no-stressor control) and subsequently tested their tolerance to a lethal carbaryl concentration using time-to-death assays. We observed induced carbaryl tolerance in tadpoles exposed to 0.5 mg/L carbaryl and also in tadpoles exposed to predator cues. Our results suggest that the ability to induce pesticide tolerance likely arose through evolved antipredator responses. Given that antipredator responses are widespread among species, many animals might possess inducible pesticide tolerance, buffering them from agrochemical exposure.
Collapse
Affiliation(s)
- Devin K Jones
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - William D Hintz
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Matthew S Schuler
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Erika K Yates
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Brian M Mattes
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Rick A Relyea
- Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
76
|
Augustyniak M, Tarnawska M, Babczyńska A, Kafel A, Zawisza-Raszka A, Adamek B, Płachetka-Bożek A. Cross tolerance in beet armyworm: long-term selection by cadmium broadens tolerance to other stressors. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1408-1418. [PMID: 29058177 DOI: 10.1007/s10646-017-1865-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Long lasting exposure of animals to stressing factor may lead to the selection of population able to cope with the stressor at lower cost than unexposed individuals. The aim of this study was to assess whether 130-generational selection of a beet armyworm to cadmium in food might have induced tolerance also to other stressors. The potential tolerance was assessed by means of unspecific stress markers: HSP70 concentration, DNA damage level, and energy budget indices in L5 larval instars of beet armyworm. The animals originated from Cd-exposed and control strains exposed additionally in a short-term experiment to high/low temperature or pesticide-spinosad. The application of the additional stressors caused, in general, an increase in the levels of studied parameters, in a strain-dependent manner. The most significant increase was found in HSP70 level in the individuals from the Cd-strain exposed to various spinosad concentration. Therefore, multigenerational contact with cadmium caused several changes that enable the insect to survive under a chronic stress, preparing the organism to the contact with an additional, new stressor. This relationship may be described as a sort of cross tolerance. This may, possibly, increase the probability of population survivorship and, at the same time, decrease the efficiency of pesticide-based plant protection efforts.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland.
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Agnieszka Zawisza-Raszka
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Bogumiła Adamek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| | - Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia in Katowice, Bankowa 9, Katowice, PL, 40-007, Poland
| |
Collapse
|
77
|
Tejeda MT, Arredondo‐Gordillo J, Orozco‐Dávila D, Quintero‐Fong L, Díaz‐Fleischer F. Directional selection to improve the sterile insect technique: Survival and sexual performance of desiccation resistant Anastrepha ludens strains. Evol Appl 2017; 10:1020-1030. [PMID: 29151857 PMCID: PMC5680626 DOI: 10.1111/eva.12506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
The sterile insect technique (SIT) is an effective, environmentally friendly method for insect control whose success depends on the sexual performance and survival of sterile males. These two parameters are influenced by environmental conditions of target areas, and releasing insects with a higher tolerance to stressful environments can improve SIT efficiency. Directional selection can be used to produce insect strains with higher tolerance to extreme environmental conditions, such as low humidity, for extended periods. We evaluated, under field cage conditions, the sexual competitiveness, sexual compatibility, and survival of strains of Anastrepha ludens (Loew) selected for desiccation resistance to determine the value of directional selection as a possible approach to enhance SIT efficiency. Fly strains (selected and unselected and those mass-reared) were exposed to stressful conditions of low humidity and food and water deprivation for 24 hr before test. As a control, mild conditions without the stressors were used. No differences in sexual competitiveness and sexual compatibility between selected, nonselected, and mass-reared strains were observed when previously exposed to mild conditions. Thus, selection for desiccation resistance does not modified negatively the sexual performance. However, when insects were exposed to stressful conditions, males of selected strains sexually outperform mass-reared males. Additionally, selected strains presented higher survival than mass-reared flies. The approach to integrate directional selection with other technologies in the SIT as well as the implications of using a desiccation-selected strain in the current pest management program is discussed.
Collapse
Affiliation(s)
- Marco T. Tejeda
- INBIOTECAUniversidad VeracruzanaXalapaMéxico
- Departamento de Filtrado GenéticoPrograma Moscamed acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | - José Arredondo‐Gordillo
- Departamento de Biología, Ecología y Comportamiento, Desarrollo de MétodosPrograma Moscafrut Acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | - Dina Orozco‐Dávila
- Subdirección de ProducciónPrograma Moscafrut Acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | - Luis Quintero‐Fong
- Departamento de Validación Tecnológica, Desarrollo de MétodosPrograma Moscafrut Acuerdo SAGARPA‐IICAMetapa de DomínguezMéxico
| | | |
Collapse
|
78
|
Hendry AP, Gotanda KM, Svensson EI. Human influences on evolution, and the ecological and societal consequences. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0028. [PMID: 27920373 DOI: 10.1098/rstb.2016.0028] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Humans have dramatic, diverse and far-reaching influences on the evolution of other organisms. Numerous examples of this human-induced contemporary evolution have been reported in a number of 'contexts', including hunting, harvesting, fishing, agriculture, medicine, climate change, pollution, eutrophication, urbanization, habitat fragmentation, biological invasions and emerging/disappearing diseases. Although numerous papers, journal special issues and books have addressed each of these contexts individually, the time has come to consider them together and thereby seek important similarities and differences. The goal of this special issue, and this introductory paper, is to promote and expand this nascent integration. We first develop predictions as to which human contexts might cause the strongest and most consistent directional selection, the greatest changes in evolutionary potential, the greatest genetic (as opposed to plastic) changes and the greatest effects on evolutionary diversification We then develop predictions as to the contexts where human-induced evolutionary changes might have the strongest effects on the population dynamics of the focal evolving species, the structure of their communities, the functions of their ecosystems and the benefits and costs for human societies. These qualitative predictions are intended as a rallying point for broader and more detailed future discussions of how human influences shape evolution, and how that evolution then influences species traits, biodiversity, ecosystems and humans.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, 859 Sherbrooke Street West, Montréal, Québec, Canada H3A OC4
| | - Kiyoko M Gotanda
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Erik I Svensson
- Evolutionary Ecology Unit, Department of Biology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
79
|
Webber QMR, Vander Wal E. An evolutionary framework outlining the integration of individual social and spatial ecology. J Anim Ecol 2017; 87:113-127. [PMID: 29055050 DOI: 10.1111/1365-2656.12773] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Behaviour is the interface between an organism and its environment, and behavioural plasticity is important for organisms to cope with environmental change. Social behaviour is particularly important because sociality is a dynamic process, where environmental variation influences group dynamics and social plasticity can mediate resource acquisition. Heterogeneity in the ecological environment can therefore influence the social environment. The combination of the ecological and social environments may be interpreted collectively as the "socioecological environment," which could explain variation in fitness. Our objective was to outline a framework through which individual social and spatial phenotypes can be integrated and interpreted as phenotypes that covary as a function of changes in the socioecological environment. We propose the socioecological environment is composed of individual behavioural traits, including sociality and habitat selection, both of which are repeatable, potentially heritable and may reflect animal personality traits. We also highlight how ecological and social niche theory can be applied to the socioecological environment framework, where individuals occupy different socioecological niches. Individual sociality and habitat selection are also density-dependent, and theory predicts that density-dependent traits should affect reproduction, survival, and therefore fitness and population dynamics. We then illustrate the proximate links between sociality, habitat selection and fitness as well as the ultimate, and possibly adaptive, consequences associated with changes in population density. The ecological, evolutionary and applied implications of our proposed socioecological environment framework are broad and changes in density could influence individual fitness and population dynamics. For instance, human-induced environmental changes can influence population density, which can affect the distribution of social and spatial phenotypes within a population. In summary, we outline a conceptual framework that incorporates individual social and spatial behavioural traits with fitness and we highlight a range of ecological and evolutionary processes that are likely associated with the socioecological environment.
Collapse
Affiliation(s)
- Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
80
|
Can acclimation of thermal tolerance, in adults and across generations, act as a buffer against climate change in tropical marine ectotherms? J Therm Biol 2017; 68:195-199. [DOI: 10.1016/j.jtherbio.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022]
|
81
|
Stewart GS, Morris MR, Genis AB, Szűcs M, Melbourne BA, Tavener SJ, Hufbauer RA. The power of evolutionary rescue is constrained by genetic load. Evol Appl 2017; 10:731-741. [PMID: 28717392 PMCID: PMC5511356 DOI: 10.1111/eva.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
The risk of extinction faced by small isolated populations in changing environments can be reduced by rapid adaptation and subsequent growth to larger, less vulnerable sizes. Whether this process, called evolutionary rescue, is able to reduce extinction risk and sustain population growth over multiple generations is largely unknown. To understand the consequences of adaptive evolution as well as maladaptive processes in small isolated populations, we subjected experimental Tribolium castaneum populations founded with 10 or 40 individuals to novel environments, one more favorable, and one resource poor, and either allowed evolution, or constrained it by replacing individuals one-for-one each generation with those from a large population maintained in the natal environment. Replacement individuals spent one generation in the target novel environment before use to standardize effects due to the parental environment. After eight generations we mixed a subset of surviving populations to facilitate admixture, allowing us to estimate drift load by comparing performance of mixed to unmixed groups. Evolving populations had reduced extinction rates, and increased population sizes in the first four to five generations compared to populations where evolution was constrained. Performance of evolving populations subsequently declined. Admixture restored their performance, indicating high drift load that may have overwhelmed the beneficial effects of adaptation in evolving populations. Our results indicate that evolution may quickly reduce extinction risk and increase population sizes, but suggest that relying solely on adaptation from standing genetic variation may not provide long-term benefits to small isolated populations of diploid sexual species, and that active management facilitating gene flow may be necessary for longer term persistence.
Collapse
Affiliation(s)
- Gavin S. Stewart
- Department of MathematicsColorado State UniversityFort CollinsCOUSA
- Department of MathematicsCourant Institute of Mathematical SciencesNew YorkNYUSA
| | - Madeline R. Morris
- Department of Biomedical SciencesColorado State UniversityFort CollinsCOUSA
| | | | - Marianna Szűcs
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsCOUSA
| | - Brett A. Melbourne
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Simon J. Tavener
- Department of MathematicsColorado State UniversityFort CollinsCOUSA
| | - Ruth A. Hufbauer
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsCOUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsCOUSA
- Centre de Biologie pour la Gestion des Populations (INRA, Montpellier SupAgro)Montferrier‐sur‐Lez CedexFrance
| |
Collapse
|
82
|
Kelley JL, Davies PM, Collin SP, Grierson PF. Morphological plasticity in a native freshwater fish from semiarid Australia in response to variable water flows. Ecol Evol 2017; 7:6595-6605. [PMID: 28861260 PMCID: PMC5574804 DOI: 10.1002/ece3.3167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/28/2017] [Accepted: 05/25/2017] [Indexed: 11/12/2022] Open
Abstract
In fishes, alterations to the natural flow regime are associated with divergence in body shape morphology compared with individuals from unaltered habitats. However, it is unclear whether this morphological divergence is attributable to evolutionary responses to modified flows, or is a result of phenotypic plasticity. Fishes inhabiting arid regions are ideal candidates for studying morphological plasticity as they are frequently exposed to extreme natural hydrological variability. We examined the effect of early exposure to flows on the development of body shape morphology in the western rainbowfish (Melanotaenia australis), a freshwater fish that is native to semiarid northwest Australia. Wild fish were collected from a region (the Hamersley Ranges) where fish in some habitats are subject to altered water flows due to mining activity. The offspring of wild-caught fish were reared in replicated fast-flow or slow-flow channels, and geometric morphometric analyses were used to evaluate variation in fish body shape following 3, 6, 9, and 12 months of exposure. Water flows influenced fish morphology after 6 and 9 months of flow exposure, with fish in fast-flow environments displaying a more robust body shape than those in slow-flow habitats. No effect of flow exposure was observed at 3 and 12 months. Fishes also showed significant morphological variation within flow treatments, perhaps due to subtle differences in water flow among the replicate channels. Our findings suggest that early exposure to water flows can induce shifts in body shape morphology in arid zone freshwater fishes. Morphological plasticity may act to buffer arid zone populations from the impacts of anthropogenic activities, but further studies are required to link body shape plasticity with behavioral performance in habitats with modified flows.
Collapse
Affiliation(s)
- Jennifer L Kelley
- School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Peter M Davies
- Centre of Excellence in Natural Resource Management The University of Western Australia Albany WA Australia
| | - Shaun P Collin
- School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia.,UWA Oceans Institute (M470) The University of Western Australia Crawley WA Australia
| | - Pauline F Grierson
- School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| |
Collapse
|
83
|
Rodewald AD, Arcese P. Reproductive Contributions of Cardinals Are Consistent with a Hypothesis of Relaxed Selection in Urban Landscapes. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
84
|
Engen S, Sæther BE. Extinction Risk and Lack of Evolutionary Rescue under Resource Depletion or Area Reduction. Am Nat 2017; 190:73-82. [DOI: 10.1086/692011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
85
|
Coexistence between Javan Slow Lorises (Nycticebus javanicus) and Humans in a Dynamic Agroforestry Landscape in West Java, Indonesia. INT J PRIMATOL 2017. [DOI: 10.1007/s10764-017-9960-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
86
|
Apgar TM, Pearse DE, Palkovacs EP. Evolutionary restoration potential evaluated through the use of a trait-linked genetic marker. Evol Appl 2017; 10:485-497. [PMID: 28515781 PMCID: PMC5427673 DOI: 10.1111/eva.12471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/12/2017] [Indexed: 12/31/2022] Open
Abstract
Human‐driven evolution can impact the ecological role and conservation value of impacted populations. Most evolutionary restoration approaches focus on manipulating gene flow, but an alternative approach is to manipulate the selection regime to restore historical or desired trait values. Here we examined the potential utility of this approach to restore anadromous migratory behavior in coastal California steelhead trout (Oncorhynchus mykiss) populations. We evaluated the effects of natural and anthropogenic environmental variables on the observed frequency of alleles at a genomic marker tightly associated with migratory behavior across 39 steelhead populations from across California, USA. We then modeled the potential for evolutionary restoration at sites that have been impacted by anthropogenic barriers. We found that complete barriers such as dams are associated with major reductions in the frequency of anadromy‐associated alleles. The removal of dams is therefore expected to restore anadromy significantly. Interestingly, accumulations of large numbers of partial barriers (passable under at least some flow conditions) were also associated with significant reductions in migratory allele frequencies. Restoration involving the removal of partial barriers could be evaluated alongside dam removal and fishway construction as a cost‐effective tool to restore anadromous fish migrations. Results encourage broader consideration of in situ evolution during the development of habitat restoration projects.
Collapse
Affiliation(s)
- Travis M Apgar
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Devon E Pearse
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA.,Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| |
Collapse
|
87
|
Evans MJ, Banks SC, Driscoll DA, Hicks AJ, Melbourne BA, Davies KF. Short- and long-term effects of habitat fragmentation differ but are predicted by response to the matrix. Ecology 2017; 98:807-819. [PMID: 27987325 DOI: 10.1002/ecy.1704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022]
Abstract
Habitat loss and fragmentation are major threats to biodiversity and ecosystem processes. Our current understanding of the impacts of habitat loss and fragmentation is based largely on studies that focus on either short-term or long-term responses. Short-term responses are often used to predict long-term responses and make management decisions. The lack of studies comparing short- and long-term responses to fragmentation means we do not adequately understand when and how well short-term responses can be extrapolated to predict long-term responses, and when or why they cannot. To address this gap, we used data from one of the world's longest-running fragmentation experiments, The Wog Wog Habitat Fragmentation Experiment. Using data for carabid beetles, we found that responses in the long term (more than 22 yr post-fragmentation ≈22 generations) often contrasted markedly with those in the short term (5 yr post-fragmentation). The total abundance of all carabids, species richness and the occurrence of six species declined in the short term in the fragments but increased over the long term. The occurrence of three species declined initially and continued to decline, whilst another species was positively affected initially but decreased in the long term. Species' responses to the matrix that surrounds the fragments strongly predicted both the direction (increase/decline in occurrence) and magnitude of their responses to fragmentation. Additionally, species' responses to the matrix were somewhat predicted by their preferences for different types of native habitat (open vs. shaded). Our study highlights the degree of the matrix's influence in fragmented landscapes, and how this influence can change over time. We urge caution in using short-term responses to forecast long-term responses in cases where the matrix (1) impacts species' responses to fragmentation (by isolating them, creating new habitat or altering fragment habitat) and (2) is likely to change through time.
Collapse
Affiliation(s)
- Maldwyn J Evans
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Don A Driscoll
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia
| | - Andrew J Hicks
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
88
|
Mimura M, Yahara T, Faith DP, Vázquez‐Domínguez E, Colautti RI, Araki H, Javadi F, Núñez‐Farfán J, Mori AS, Zhou S, Hollingsworth PM, Neaves LE, Fukano Y, Smith GF, Sato Y, Tachida H, Hendry AP. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 2017; 10:121-139. [PMID: 28127389 PMCID: PMC5253428 DOI: 10.1111/eva.12436] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolutionary processes, including responses to environmental change, the maintenance of species diversity, and ecological stability and resilience. At the same time, environmental changes associated with many human activities, such as land use and climate change, have dramatic and often negative impacts on intraspecific variation. We argue for the need for local, regional, and global programs to monitor intraspecific genetic variation. We suggest that such monitoring should include two main strategies: (i) intensive monitoring of multiple types of genetic variation in selected species and (ii) broad-brush modeling for representative species for predicting changes in variation as a function of changes in population size and range extent. Overall, we call for collaborative efforts to initiate the urgently needed monitoring of intraspecific variation.
Collapse
Affiliation(s)
- Makiko Mimura
- Department of Bioenvironmental SystemsTamagawa UniversityTokyoJapan
| | - Tetsukazu Yahara
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Daniel P. Faith
- The Australian Museum Research InstituteThe Australian MuseumSydneyNSWAustralia
| | | | | | - Hitoshi Araki
- Research Faculty of AgricultureHokkaido UniversitySapporoHokkaidoJapan
| | - Firouzeh Javadi
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Juan Núñez‐Farfán
- Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
| | - Akira S. Mori
- Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | | | - Linda E. Neaves
- Royal Botanic Garden EdinburghEdinburghUK
- Australian Centre for Wildlife Genomics, Australian Museum Research InstituteAustralian MuseumSydneyNSWAustralia
| | - Yuya Fukano
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Gideon F. Smith
- Department of BotanyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
- Departamento de Ciências da VidaCentre for Functional EcologyUniversidade de CoimbraCoimbraPortugal
| | | | - Hidenori Tachida
- Department of Biology and Institute of Decision Science for a Sustainable SocietyKyushu UniversityFukuokaJapan
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
89
|
The Eco-Evolutionary Imperative: Revisiting Weed Management in the Midst of an Herbicide Resistance Crisis. SUSTAINABILITY 2016. [DOI: 10.3390/su8121297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
90
|
Pearse DE. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. JOURNAL OF FISH BIOLOGY 2016; 89:2697-2716. [PMID: 27723095 DOI: 10.1111/jfb.13168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago.
Collapse
Affiliation(s)
- D E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA, 95060, U.S.A
| |
Collapse
|
91
|
Augustyniak M, Płachetka-Bożek A, Kafel A, Babczyńska A, Tarnawska M, Janiak A, Loba A, Dziewięcka M, Karpeta-Kaczmarek J, Zawisza-Raszka A. Phenotypic Plasticity, Epigenetic or Genetic Modifications in Relation to the Duration of Cd-Exposure within a Microevolution Time Range in the Beet Armyworm. PLoS One 2016; 11:e0167371. [PMID: 27907095 PMCID: PMC5131940 DOI: 10.1371/journal.pone.0167371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022] Open
Abstract
In the case of the pests inhabiting metal polluted or fields where the use of pesticides is common, a natural selection of resistant individuals can occur. This may pose serious problems for humans, agriculture, as well as the economies of many countries. In this study, the hypothesis that multigenerational (120 generations) exposure to cadmium of a beet armyworm population could be a selecting factor toward a more efficient DNA protection was verified. The hemocytes of individuals from two culture strains (control and Cd-exposed) were treated with H2O2 (a DNA-damaging agent) or PBS (reference). The level of DNA damage was assessed using the Comet assay immediately and 5, 15 and 30 min. after the treatment. The immediate result of the contact with H2O2 was that the level of DNA damage in the hemocytes of the insects from both strains increased significantly. However, in the cells of the Cd-exposed individuals, the level of DNA damage decreased over time, while in the cells from the control insects it remained at the same level with no evidence of repair. These results suggest that efficient defense mechanisms may exist in the cells of insects that have prolonged contact with cadmium. Some evolutionary and trade-off aspects of the phenomenon are discussed. In a wider context, comparing the results obtained in the laboratory with field studies may be beneficial for understanding basic mechanisms of the resistance of an organism. To summarize, the high potential for the repair of DNA damage that was observed in the insects from the cadmium strain may confirm the hypothesis that multigenerational exposure to that metal may possibly contribute to the selection of insects that have a wider tolerance to oxidative stress. However, our investigations of polymorphism using AFLP did not reveal differences between the two main insect strains.
Collapse
Affiliation(s)
- Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
- * E-mail:
| | - Anna Płachetka-Bożek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Alina Kafel
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Monika Tarnawska
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | - Anna Loba
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | - Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
92
|
Aykanat T, Lindqvist M, Pritchard VL, Primmer CR. From population genomics to conservation and management: a workflow for targeted analysis of markers identified using genome-wide approaches in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2016; 89:2658-2679. [PMID: 27709620 DOI: 10.1111/jfb.13149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
A genotyping assay for the Ion Torrent Ion PGM platform was developed for fast and cost-effective targeted genotyping of key single nucleotide polymorphisms (SNPs) earlier identified using a genome-wide SNP array in Atlantic salmon Salmo salar. The method comprised a simple primer design step for multiplex-polymerase chain reaction (PCR), followed by two rounds of Ion Torrent Ion PGM sequencing to empirically evaluate marker efficiency in large multiplexes and to optimise or exclude them when necessary. Of 282 primer pairs initially tested, 217 were successfully amplified, indicating good amplification success (>75%). These markers included the sdy partial gene product to determine genetic sex, as well as three additional modules comprising SNPs for assessing neutral genetic variation (NSNP = 150), examining functional genetic variation associated with sea age at maturity (NSNP = 5), and for performing genetic subpopulation assignment (NSNP = 61). The assay was primarily developed to monitor long-term genetic changes in S. salar from the Teno River, but modules are likely suitable for application in a wide range of S. salar populations. Furthermore, the fast and versatile assay development pipeline offers a strategy for developing targeted sequencing assays in any species.
Collapse
Affiliation(s)
- T Aykanat
- Department of Biology, University of Turku, Turku, 20014, Finland
| | - M Lindqvist
- Department of Biology, University of Turku, Turku, 20014, Finland
| | - V L Pritchard
- Department of Biology, University of Turku, Turku, 20014, Finland
| | - C R Primmer
- Department of Biology, University of Turku, Turku, 20014, Finland
| |
Collapse
|
93
|
An assessment of the reliability of quantitative genetics estimates in study systems with high rate of extra-pair reproduction and low recruitment. Heredity (Edinb) 2016; 118:229-238. [PMID: 27782118 DOI: 10.1038/hdy.2016.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2016] [Accepted: 08/19/2016] [Indexed: 01/26/2023] Open
Abstract
Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow (Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from one study system to another and the importance of reporting simulation analyses to evaluate these important issues.
Collapse
|
94
|
He X, Johansson ML, Heath DD. Role of genomics and transcriptomics in selection of reintroduction source populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2016; 30:1010-1018. [PMID: 26756292 DOI: 10.1111/cobi.12674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
The use and importance of reintroduction as a conservation tool to return a species to its historical range from which it has been extirpated will increase as climate change and human development accelerate habitat loss and population extinctions. Although the number of reintroduction attempts has increased rapidly over the past 2 decades, the success rate is generally low. As a result of population differences in fitness-related traits and divergent responses to environmental stresses, population performance upon reintroduction is highly variable, and it is generally agreed that selecting an appropriate source population is a critical component of a successful reintroduction. Conservation genomics is an emerging field that addresses long-standing challenges in conservation, and the potential for using novel molecular genetic approaches to inform and improve conservation efforts is high. Because the successful establishment and persistence of reintroduced populations is highly dependent on the functional genetic variation and environmental stress tolerance of the source population, we propose the application of conservation genomics and transcriptomics to guide reintroduction practices. Specifically, we propose using genome-wide functional loci to estimate genetic variation of source populations. This estimate can then be used to predict the potential for adaptation. We also propose using transcriptional profiling to measure the expression response of fitness-related genes to environmental stresses as a proxy for acclimation (tolerance) capacity. Appropriate application of conservation genomics and transcriptomics has the potential to dramatically enhance reintroduction success in a time of rapidly declining biodiversity and accelerating environmental change.
Collapse
Affiliation(s)
- Xiaoping He
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Mattias L Johansson
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
95
|
Evans JA, Lankau RA, Davis AS, Raghu S, Landis DA. Soil-mediated eco-evolutionary feedbacks in the invasive plant Alliaria petiolata. Funct Ecol 2016; 30:1053-1061. [PMID: 31423041 PMCID: PMC6686332 DOI: 10.1111/1365-2435.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Abstract
Ecological and evolutionary processes historically have been assumed to operate on significantly different time-scales. We know now from theory and work in experimental and model systems that these processes can feed back on each other on mutually relevant time-scales.Here, we present evidence of a soil-mediated eco-evolutionary feedback on the population dynamics of an invasive biennial plant, Alliaria petiolata.As populations age, natural selection drives down production of A. petiolata's important antimycorrhizal allelochemical, sinigrin. This occurs due to density-dependent selection on sinigrin, which is favoured under interspecific, but disfavoured under intraspecific, competition.We show that population stochastic growth rates (λS) and plant densities are positively related to sinigrin concentration measured in seedling roots. This interaction is mediated by sinigrin's positive effect on seedling and summer survival, which are important drivers of λS.Together, these illustrate how the evolution of a trait shaped by natural selection can influence the ecology of a species over a period of just years to decades, altering its trajectory of population growth and interactions with the species in the soil and plant communities it invades.Our findings confirm the predictions that eco-evolutionary feedbacks occur in natural populations. Furthermore, they improve our conceptual framework for projecting future population growth by linking the variation in plant demography to a critical competitive trait (sinigrin) whose selective advantages decrease as populations age.
Collapse
Affiliation(s)
- Jeffrey A Evans
- USDA-ARS Global Change and Photosynthesis Research Unit University of Illinois Turner Hall 1102 S. Goodwin Ave. Urbana-Champaign IL 61801 USA
| | - Richard A Lankau
- Department of Plant Biology 2502 Miller Plant Sciences The University of Georgia Athens GA 30602 USA
- Present address: Department of Plant Pathology University of Wisconsin-Madison Russell Labs Building 1630 Linden Drive Madison WI 53706 USA
| | - Adam S Davis
- USDA-ARS Global Change and Photosynthesis Research Unit University of Illinois Turner Hall 1102 S. Goodwin Ave. Urbana-Champaign IL 61801 USA
| | - S Raghu
- CSIRO & USDA-ARS Australian Biological Control Laboratory GPO Box 2583 Brisbane Qld 4001 Australia
| | - Douglas A Landis
- Center for Integrated Plant Systems Lab 578 Wilson Road, Room 204 East Lansing MI 48824 USA
| |
Collapse
|
96
|
Kvalnes T, Saether BE, Haanes H, Røed KH, Engen S, Solberg EJ. Harvest-induced phenotypic selection in an island population of moose, Alces alces. Evolution 2016; 70:1486-500. [PMID: 27174031 DOI: 10.1111/evo.12952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 04/29/2016] [Indexed: 01/20/2023]
Abstract
Empirical evidence strongly indicates that human exploitation has frequently led to rapid evolutionary changes in wild populations, yet the mechanisms involved are often poorly understood. Here, we applied a recently developed demographic framework for analyzing selection to data from a 20-year study of a wild population of moose, Alces alces. In this population, a genetic pedigree has been established all the way back to founders. We demonstrate harvest-induced directional selection for delayed birth dates in males and reduced body mass as calf in females. During the study period, birth date was delayed by 0.81 days per year for both sexes, whereas no significant changes occurred in calf body mass. Quantitative genetic analyses indicated that both traits harbored significant additive genetic variance. These results show that selective harvesting can induce strong selection that oppose natural selection. This may cause evolution of less favorable phenotypes that become maladaptive once harvesting ceases.
Collapse
Affiliation(s)
- Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Hallvard Haanes
- Norwegian Radiation Protection Authority, NO-1361 Østerås, Norway
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, PO-8146 Dep, NO-0033 Oslo, Norway
| | - Steinar Engen
- Centre for Biodiversity Dynamics (CBD), Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Erling J Solberg
- Norwegian Institute for Nature Research (NINA), NO-7485 Trondheim, Norway
| |
Collapse
|
97
|
Baltazar-Soares M, Bracamonte SE, Bayer T, Chain FJ, Hanel R, Harrod C, Eizaguirre C. Evaluating the adaptive potential of the European eel: is the immunogenetic status recovering? PeerJ 2016; 4:e1868. [PMID: 27077000 PMCID: PMC4830236 DOI: 10.7717/peerj.1868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/09/2016] [Indexed: 02/03/2023] Open
Abstract
The recent increased integration of evolutionary theory into conservation programs has greatly improved our ability to protect endangered species. A common application of such theory links population dynamics and indices of genetic diversity, usually estimated from neutrally evolving markers. However, some studies have suggested that highly polymorphic adaptive genes, such as the immune genes of the Major Histocompatibility Complex (MHC), might be more sensitive to fluctuations in population dynamics. As such, the combination of neutrally- and adaptively-evolving genes may be informative in populations where reductions in abundance have been documented. The European eel (Anguilla anguilla) underwent a drastic and well-reported decline in abundance in the late 20th century and still displays low recruitment. Here we compared genetic diversity indices estimated from neutral (mitochondrial DNA and microsatellites) and adaptive markers (MHC) between two distinct generations of European eels. Our results revealed a clear discrepancy between signatures obtained for each class of markers. Although mtDNA and microsatellites showed no changes in diversity between the older and the younger generations, MHC diversity revealed a contemporary drop followed by a recent increase. Our results suggest ongoing gain of MHC genetic diversity resulting from the interplay between drift and selection and ultimately increasing the adaptive potential of the species.
Collapse
Affiliation(s)
- Miguel Baltazar-Soares
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Seraina E. Bracamonte
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Till Bayer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Chris Harrod
- Universidad de Antofagasta, Instituto de Ciencias Naturales Alexander von Humboldt, Antofagasta, Chile
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
98
|
Torres‐Barceló C, Franzon B, Vasse M, Hochberg ME. Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol Appl 2016; 9:583-95. [PMID: 27099623 PMCID: PMC4831460 DOI: 10.1111/eva.12364] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022] Open
Abstract
With escalating resistance to antibiotics, there is an urgent need to develop alternative therapies against bacterial pathogens and pests. One of the most promising is the employment of bacteriophages (phages), which may be highly specific and evolve to counter antiphage resistance. Despite an increased understanding of how phages interact with bacteria, we know very little about how their interactions may be modified in antibiotic environments and, reciprocally, how phage may affect the evolution of antibiotic resistance. We experimentally evaluated the impacts of single and combined applications of antibiotics (different doses and different types) and phages on in vitro evolving populations of the opportunistic pathogen Pseudomonas aeruginosa PAO1. We also assessed the effects of past treatments on bacterial virulence in vivo, employing larvae of Galleria mellonella to survey the treatment consequences for the pathogen. We find a strong synergistic effect of combining antibiotics and phages on bacterial population density and in limiting their recovery rate. Our long-term study establishes that antibiotic dose is important, but that effects are relatively insensitive to antibiotic type. From an applied perspective, our results indicate that phages can contribute to managing antibiotic resistance levels, with limited consequences for the evolution of bacterial virulence.
Collapse
Affiliation(s)
| | - Blaise Franzon
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Marie Vasse
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Michael E. Hochberg
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
- Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
99
|
Reynolds A, Lindström J, Johnson PCD, Mable BK. Evolution of drug-tolerant nematode populations in response to density reduction. Evol Appl 2016; 9:726-38. [PMID: 27247622 PMCID: PMC4869413 DOI: 10.1111/eva.12376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/29/2016] [Indexed: 12/01/2022] Open
Abstract
Resistance to xenobiotics remains a pressing issue in parasite treatment and global agriculture. Multiple factors may affect the evolution of resistance, including interactions between life‐history traits and the strength of selection imposed by different drug doses. We experimentally created replicate selection lines of free‐living Caenorhabditis remanei exposed to Ivermectin at high and low doses to assess whether survivorship of lines selected in drug‐treated environments increased, and if this varied with dose. Additionally, we maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug‐treatment versus ecological processes due to changes in density‐dependent feedback. After 10 generations, we exposed all of the selected lines to high‐dose, low‐dose and drug‐free environments to evaluate evolutionary changes in survivorship as well as any costs to adaptation. Both adult and juvenile survival were measured to explore relationships between life‐history stage, selection regime and survival. Intriguingly, both drug‐selected and random‐mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life‐history stage. Our results suggest that interactions between density‐dependent processes and life history may mediate evolved changes in susceptibility to control measures.
Collapse
Affiliation(s)
- Alan Reynolds
- Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow UK
| | - Jan Lindström
- Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow UK
| | - Paul C D Johnson
- Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
100
|
King GD, Chapman JM, Cooke SJ, Suski CD. Stress in the neighborhood: Tissue glucocorticoids relative to stream quality for five species of fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:87-94. [PMID: 26780133 DOI: 10.1016/j.scitotenv.2015.12.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Anthropogenic alterations to terrestrial habitat (e.g., urbanization, deforestation, agriculture) can have a variety of negative effects on watercourses that flow through disturbed landscapes. Currently, the relationship between stream habitat quality and fish condition remains poorly understood. The use of physiological metrics such as glucocorticoids (GCs) provides a useful tool for quantifying these effects by relating the health of resident fishes to stream quality. To date, however, most studies that measure GC levels tend to focus on a single, large-bodied species, rather than evaluating how GCs may be influenced differently between species in a community. In this study, we measured cortisol, the glucocorticoid found in fishes, from fish tissues to quantify effects of habitat degradation on the glucocorticoid function of five species of juvenile and small-bodied stream fish which differ ecologically and phylogenetically. Largemouth bass Micropterus salmoides, brown bullhead Ameiurus nebulosus, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and logperch Percina caprodes were sampled from a reference and a degraded stream. Upon capture, fish were either euthanized immediately, to quantify baseline stress parameters, or following a standardized stressor, to quantify GC responsiveness. As a result of stream degradation largemouth bass possessed altered baseline GC concentrations and brown bullhead and logperch had altered GC responses to a stressor. White sucker and pumpkinseed did not demonstrate any alteration in baseline or post-stress GC concentrations. Together, our results show that different species residing in identical habitats can demonstrate a variety of responses to environmental stress, highlighting the variation in physiological ability to cope under poor environmental conditions, as well as the difficulty of predicting GC dynamics in wild animals. Understanding the relationships between GC function, habitat quality, and population-level processes will increase the ability of researchers and managers to predict how fish communities and aquatic ecosystems will be shaped by anthropogenic environmental change.
Collapse
Affiliation(s)
- Gregory D King
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, IL, USA, 61801.
| | - Jacqueline M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, IL, USA, 61801
| |
Collapse
|