51
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
52
|
Abstract
The delivery of intracellular material within cells is crucial for maintaining normal function. Myosins transport a wide variety of cargo, ranging from vesicles to ribonuclear protein particles (RNPs), in plants, fungi, and metazoa. The properties of a given myosin transporter are adapted to move on different actin filament tracks, either on the disordered actin networks at the cell cortex or along highly organized actin bundles to distribute their cargo in a localized manner or move it across long distances in the cell. Transport is controlled by selective recruitment of the myosin to its cargo that also plays a role in activation of the motor.
Collapse
Affiliation(s)
- Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
53
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
54
|
Kazmirchuk T, Dick K, Burnside DJ, Barnes B, Moteshareie H, Hajikarimlou M, Omidi K, Ahmed D, Low A, Lettl C, Hooshyar M, Schoenrock A, Pitre S, Babu M, Cassol E, Samanfar B, Wong A, Dehne F, Green JR, Golshani A. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput Biol Chem 2017; 71:180-187. [DOI: 10.1016/j.compbiolchem.2017.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023]
|
55
|
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 2017. [PMID: 28632484 PMCID: PMC5902227 DOI: 10.1080/21541248.2017.1336191] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab molecular switches are key players in defining membrane identity and regulating intracellular trafficking events in eukaryotic cells. In spite of their global structural similarity, Rab-family members acquired particular features that allow them to perform specific cellular functions. The overall fold and local sequence conservations enable them to utilize a common machinery for prenylation and recycling; while individual Rab structural differences determine interactions with specific partners such as GEFs, GAPs and effector proteins. These interactions orchestrate the spatiotemporal regulation of Rab localization and their turning ON and OFF, leading to tightly controlled Rab-specific functionalities such as membrane composition modifications, recruitment of molecular motors for intracellular trafficking, or recruitment of scaffold proteins that mediate interactions with downstream partners, as well as actin cytoskeleton regulation. In this review we summarize structural information on Rab GTPases and their complexes with protein partners in the context of partner binding specificity and functional outcomes of their interactions in the cell.
Collapse
Affiliation(s)
- Olena Pylypenko
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Hussein Hammich
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France.,b Sorbonne Universités , UPMC Univ Paris 06, Sorbonne Universités, IFD , Paris , France
| | - I-Mei Yu
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| | - Anne Houdusse
- a Structural Motility, Institut Curie , PSL Research University, CNRS, UMR 144 , Paris , France
| |
Collapse
|
56
|
Ohbayashi N, Fukuda M, Kanaho Y. Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking. J Biochem 2017; 162:65-71. [DOI: 10.1093/jb/mvx027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
|
57
|
Welz T, Kerkhoff E. Exploring the iceberg: Prospects of coordinated myosin V and actin assembly functions in transport processes. Small GTPases 2017; 10:111-121. [PMID: 28394692 DOI: 10.1080/21541248.2017.1281863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Spir actin nucleators and myosin V motor proteins were recently discovered to coexist in a protein complex. The direct interaction allows the coordinated activation of actin motor proteins and actin filament track generation at vesicle membranes. By now the cooperation of myosin V (MyoV) motors and Spir actin nucleation function has only been shown in the exocytic transport of Rab11 vesicles in metaphase mouse oocytes. Next to Rab11, myosin V motors however interact with a variety of Rab GTPases including Rab3, Rab8 and Rab10. As a common theme most of the MyoV interacting Rab GTPases function at different steps along the exocytic transport routes. We here summarize the different transport functions of class V myosins and provide as proof of principle data showing a colocalization of Spir actin nucleators and MyoVa at Rab8a vesicles. This suggests that besides Rab11/MyoV transport also the Rab8/MyoV and possibly other MyoV transport processes recruit Spir actin filament nucleation function.
Collapse
Affiliation(s)
- Tobias Welz
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| | - Eugen Kerkhoff
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| |
Collapse
|
58
|
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2017; 9:95-106. [PMID: 28135905 PMCID: PMC5902209 DOI: 10.1080/21541248.2016.1264352] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades, extracellular vesicle-mediated communication between cells has become a major field in cell biology. However, the function of extracellular vesicles is far from clear, especially due to the disparity of released vesicles by cells. Basically, one must consider vesicles budding from the cell plasma membrane (ectosomes) and vesicles released upon fusion of an endosomal multivesicular compartment (exosomes). Moreover, even for exosomes, we report and discuss here the possibility that different routes regulated by specific Rab GTPases might produce exosomes having various biologic functions.
Collapse
Affiliation(s)
- Lionel Blanc
- a Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research Hofstra Northwell School of Medicine , Manhasset , NY , USA
| | - Michel Vidal
- b UMR 5235, CNRS, Université Montpellier , cc107, Montpellier , France
| |
Collapse
|
59
|
Katoulis AC, Daskari D, Liakou AI, Bozi E, Lianou D, Rigopoulos D. "Road-Dividing Line"-Like Pigmentation of Hair as a Diagnostic Clue for Griscelli Syndrome. Skin Appendage Disord 2017; 2:143-145. [PMID: 28232922 PMCID: PMC5264357 DOI: 10.1159/000452165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
We report a case of a 5-year-old girl with physical and psychomotor retardation, acquired microcephaly, and history of recurrent infections. Dermoscopic and microscopic hair examination revealed a "road-dividing line"-like pigmentation of hair shafts. The combination of history, clinical findings, and hair examination led to the diagnosis of Griscelli syndrome type II. The picture of "road-dividing line" on hair microscopic and dermoscopic examination is highly characteristic for Griscelli syndrome, and in this framework, dermatologic examination may be of high importance for the diagnosis.
Collapse
Affiliation(s)
| | | | - Aikaterini I. Liakou
- 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens Medical School, “Attikon” University General Hospital, Athens, Greece
| | | | | | | |
Collapse
|
60
|
Lemmelä S, Solovieva S, Shiri R, Benner C, Heliövaara M, Kettunen J, Anttila V, Ripatti S, Perola M, Seppälä I, Juonala M, Kähönen M, Salomaa V, Viikari J, Raitakari OT, Lehtimäki T, Palotie A, Viikari-Juntura E, Husgafvel-Pursiainen K. Genome-Wide Meta-Analysis of Sciatica in Finnish Population. PLoS One 2016; 11:e0163877. [PMID: 27764105 PMCID: PMC5072673 DOI: 10.1371/journal.pone.0163877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS) and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (p<1x10-6) were replicated in 776 Finnish sciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981) at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08) and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively). The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04). Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6–7%) than in other European populations (1–2%). Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109) were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB), which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate.
Collapse
Affiliation(s)
- Susanna Lemmelä
- Health and Work Ability, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Svetlana Solovieva
- Health and Work Ability, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Rahman Shiri
- Health and Work Ability, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Department of Public Health, 00014 University of Helsinki, Helsinki, Finland
| | - Markku Heliövaara
- Population Health Unit, National Institute for Health and Welfare, 00251 Helsinki, Finland
| | - Johannes Kettunen
- Faculty of Medicine, Institute of Health Sciences, University of Oulu, 90220 Oulu, Finland
- NMR Metabolomics Laboratory, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Verneri Anttila
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States of America
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Department of Public Health, 00014 University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, 00271 Helsinki, Finland
- The Estonian Genome Center, University of Tartu, 51010 Tartu, Estonia
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere School of Medicine, 33520 Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital, 20521 Turku, Finland
- Department of Medicine, University of Turku, 20521 Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, 33521 Tampere, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, 00251 Helsinki, Finland
| | - Jorma Viikari
- Division of Medicine, Turku University Hospital, 20521 Turku, Finland
- Department of Medicine, University of Turku, 20521 Turku, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521 Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere School of Medicine, 33520 Tampere, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States of America
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
| | - Eira Viikari-Juntura
- Disability Prevention Centre, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | | |
Collapse
|
61
|
Inhibitory effect of 2-methyl-naphtho[1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation. Sci Rep 2016; 6:29189. [PMID: 27381646 PMCID: PMC4933902 DOI: 10.1038/srep29189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Melanosomes are lysosome-related organelles with specialized capabilities of melanin synthesis and movement mediated by the Rab27a-Melanophilin-MyosinVa protein complex. In this study, we found that 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO) induced melanosome aggregation around the nucleus in melan-a melanocytes and in melan-a melanocytes/SP-1 keratinocyte co-cultures without inducing toxicity or changing the melanin content. Western blot and real-time PCR analyses showed that MNQO decreased expression of the Rab27a, Melanophilin and MyosinVa proteins and mRNAs, respectively, in melan-a melanocytes. In a reconstituted human epidermis model, treatment with 0.001% MNQO reduced skin pigmentation. Also, MNQO reduced skin pigmentation in brown guinea pigs induced by UVB irradiation. These results indicated that regulation of melanosome transport may serve as a good target for new skin depigmenting agents and MNQO itself could be a candidate.
Collapse
|
62
|
Marubashi S, Ohbayashi N, Fukuda M. A Varp-Binding Protein, RACK1, Regulates Dendrite Outgrowth through Stabilization of Varp Protein in Mouse Melanocytes. J Invest Dermatol 2016; 136:1672-1680. [PMID: 27066885 DOI: 10.1016/j.jid.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
Varp (VPS9-ankyrin repeat protein) in melanocytes is thought to function as a key player in the pigmentation of mammals. Varp regulates two different melanocyte functions: (i) transport of melanogenic enzymes to melanosomes by functioning as a Rab32/38 effector and (ii) promotion of dendrite outgrowth by functioning as a Rab21-guanine nucleotide exchange factor. The Varp protein level has recently been shown to be negatively regulated by proteasomal degradation through interaction of the ankyrin repeat 2 (ANKR2) domain of Varp with Rab40C. However, the molecular mechanisms by which Varp escapes from Rab40C and retains its own expression level remain completely unknown. Here, we identified RACK1 (receptor of activated protein kinase C 1) as a Varp-ANKR2 binding partner and investigated its involvement in Varp stabilization in mouse melanocytes. The results showed that knockdown of endogenous RACK1 in melanocytes caused dramatic reduction of the Varp protein level and inhibition of dendrite outgrowth, and intriguingly, overexpression of RACK1 inhibited the interaction between Varp and Rab40C and counteracted the negative effect of Rab40C on dendrite outgrowth. These findings indicated that RACK1 competes with Rab40C for binding to the ANKR2 domain of Varp and regulates dendrite outgrowth through stabilization of Varp in mouse melanocytes.
Collapse
Affiliation(s)
- Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
63
|
Nouriel A, Zisquit J, Helfand AM, Anikster Y, Greenberger S. Griscelli Syndrome Type 3: Two New Cases and Review of the Literature. Pediatr Dermatol 2015; 32:e245-8. [PMID: 26337734 DOI: 10.1111/pde.12663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A 3-year-old Arab boy with a history of hypoplastic left heart syndrome was referred to the pediatric dermatology clinic at Sheba Medical Center for evaluation of hypomelanosis, manifested by fair skin pigmentation and silvery-grey hair, eyebrows, and eyelashes. The child had one older brother with similar hypopigmentation and another older brother who had died of congenital heart disease. The child had no history of neurologic deficits or immunodeficiency and no additional findings on clinical evaluation.
Collapse
Affiliation(s)
- Ariella Nouriel
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jonah Zisquit
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Alexander M Helfand
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yair Anikster
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Shoshana Greenberger
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
64
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
65
|
Murase D, Hachiya A, Kikuchi-Onoe M, Fullenkamp R, Ohuchi A, Kitahara T, Moriwaki S, Hase T, Takema Y. Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation. Biol Open 2015; 4:1213-21. [PMID: 26340945 PMCID: PMC4610214 DOI: 10.1242/bio.011973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022] Open
Abstract
Skin hyperpigmentation is characterized by increased melanin synthesis and deposition that can cause significant psychosocial and psychological distress. Although several cytokine-receptor signaling cascades contribute to the formation of ultraviolet B-induced cutaneous hyperpigmentation, their possible involvement in other types of skin hyperpigmentation has never been clearly addressed. Since our continuous studies using skin specimens from more than 30 subjects with ethnic skin diversity emphasized a consistent augmentation in the expression of endothelin-1 (ET-1) and its receptor (Endothelin B receptor, ET-B) in hyperpigmented lesions, including senile lentigos (SLs), the precise function of ET-1 signaling was investigated in the present study. In line with previous studies, ET-1 significantly induced melanogenesis followed by increases in melanosome transport in melanocytes and in its transfer to keratinocytes while inhibition of ET-B function substantially depressed melanogenic ability in tissue-cultured SLs. Additionally, in agreement with a previous report that the formation of autophagosomes rather than melanosomes is stimulated according to starvation or defective melanosome production, ET-1 was found to remarkably augment the expression of components necessary for early melanosome formation, indicating its counteraction against autophagy-targeting melanosome degradation in melanocytes. Despite the lack of substantial impact of ET-1 on keratinocyte melanogenic functions, the expression of ET-1 was enhanced following melanosome uptake by keratinocytes. Taken together, our data suggest that ET-1 plays a substantial role in the development and/or maintenance of skin hyperpigmentation in reciprocal cooperation with increased melanosome incorporation.
Collapse
Affiliation(s)
- Daiki Murase
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan Biological Science Americas Laboratory, Kao Corporation, Cincinnati, OH 45214, USA
| | - Akira Hachiya
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Mamiko Kikuchi-Onoe
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Rachel Fullenkamp
- Biological Science Americas Laboratory, Kao Corporation, Cincinnati, OH 45214, USA
| | - Atsushi Ohuchi
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Takashi Kitahara
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Shigeru Moriwaki
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Yoshinori Takema
- Research and Development Global, Kao Corporation, Sumida-ku, Tokyo 131-8501, Japan
| |
Collapse
|
66
|
Shi C, Yang X, Ni Y, Hou N, Xu L, Zhan F, Zhu H, Xiong L, Chen P. High Rab27A expression indicates favorable prognosis in CRC. Diagn Pathol 2015; 10:68. [PMID: 26070933 PMCID: PMC4465473 DOI: 10.1186/s13000-015-0303-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Rab27A is a peculiar member in Rab family and has been suggested to play essential roles in the development of human cancers. However, the association between Rab27A expression and clinicopathological characteristics of colorectal cancer (CRC) has not been elucidated yet. Methods One-step quantitative real-time polymerase chain reaction (qPCR) test with 18 fresh-frozen CRC samples and immunohistochemistry (IHC) analysis in 112 CRC cases were executed to evaluate the relationship between Rab27A expression and the clinicopathological features of CRC. Cox regression and Kaplan-Meier survival analyses were performed to identify the prognostic factors for 112 CRC patients. Results The results specified that the expression levels of Rab27A mRNA and protein were significantly higher in CRC tissues than that in matched non-cancerous tissues, in both qPCR test (p = 0.029) and IHC analysis (p = 0.020). The IHC data indicated that the Rab27A protein expression in CRC was statistically correlated with lymph node metastasis (p = 0.022) and TNM stage (p = 0.026). Cox multi-factor analysis and Kaplan-Meier method suggested Rab27A protein expression (p = 0.012) and tumor differentiation (p = 0.004) were significantly associated with the overall survival of CRC patients. Conclusion The data indicated the differentiate expression of Rab27A in CRC tissues and matched non-cancerous tissues. Rab27A may be used as a valuable prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Chuanbing Shi
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaojun Yang
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yijiang Ni
- Department of Traumatic Surgery, Changzhou No. 2 People's Hospital Affiliated with Nanjing Medical University, Changzhou, 213000, China
| | - Ning Hou
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, 210000, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, 210000, China
| | - Feng Zhan
- Department of Hepatobiliary and Laparoscopic Surgery, YiXing People's Hospital, the Affiliated YiXing Hospital of Jiangsu University, Yixing, 214200, China
| | - Huijun Zhu
- Department of Pathology and Laboratory Medicine, the Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Lin Xiong
- Department of Pathology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,The Key Laboratory of Cancer Biomarkers, Prevention & Treatment Cancer Center and The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 210029, China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
67
|
Yang C, Zhang X, Guo Y, Meng F, Sachs F, Guo J. Mechanical dynamics in live cells and fluorescence-based force/tension sensors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1889-904. [PMID: 25958335 DOI: 10.1016/j.bbamcr.2015.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
Abstract
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Xiaohan Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Yichen Guo
- The University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Fanjie Meng
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Frederick Sachs
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
68
|
Abstract
For over a century, researchers have observed similar neurodegenerative hallmarks in brains of people affected by rare early-onset lysosomal storage diseases and late-onset neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Increasing evidence suggests these apparently disparate diseases share a common underlying feature, namely, a dysfunctional clearance of cellular cargo through the secretory-endosomal-autophagic-lysosomal-exocytic (SEALE) network. By providing examples of rare and common neurodegenerative diseases known to have pathologically altered cargo flux through the SEALE network, we explore the unifying hypothesis that impaired catabolism or exocytosis of SEALE cargo, places a burden of stress on neurons that initiates pathogenesis. We also describe how a growing understanding of genetic, epigenetic and age-related modifications of the SEALE network, has inspired a number of novel disease-modifying therapeutic approaches aimed at alleviating SEALE storage and providing therapeutic benefit to people affected by these devastating diseases across the age spectrum.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| |
Collapse
|
69
|
Yatsu A, Shimada H, Ohbayashi N, Fukuda M. Rab40C is a novel Varp-binding protein that promotes proteasomal degradation of Varp in melanocytes. Biol Open 2015; 4:267-75. [PMID: 25661869 PMCID: PMC4359733 DOI: 10.1242/bio.201411114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Varp (VPS9-ankyrin repeat protein) was originally identified as an activator of small GTPase Rab21 through its VPS9 domain, but it has subsequently been shown to function as a Rab32/38 effector through its first ANKR1 domain. Although these functions of Varp are important for melanogenesis, Varp contains a second ANKR2 domain, whose function remained completely unknown. Here we identified Rab40C, an atypical Rab containing a SOCS box that recruits a ubiquitin ligase complex, as a novel ANKR2-binding protein and investigated its involvement in melanogenic enzyme trafficking in melanocytes. The results showed that overexpression of Rab40C in melanocytes caused a dramatic reduction in melanogenic enzyme Tyrp1 signals by promoting proteasomal degradation of Varp in a SOCS-box-dependent manner and that knockdown of Rab40C in melanocytes caused an increase in the amount of Varp. Intriguingly, Rab40C knockdown also caused a dramatic reduction in Tyrp1 signals, the same as Varp overexpression did. These findings indicated that Rab40C is a previously unexpected regulator of Tyrp1 trafficking in melanocytes through controlling the proteasomal degradation of Varp.
Collapse
Affiliation(s)
- Ayaka Yatsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hikaru Shimada
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
70
|
Ishida M, Ohbayashi N, Fukuda M. Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP. Sci Rep 2015; 5:8238. [PMID: 25649263 PMCID: PMC4316160 DOI: 10.1038/srep08238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/13/2015] [Indexed: 01/01/2023] Open
Abstract
Melanosomes are lysosome-related organelles in melanocytes that are transported from the perinucleus to the cell periphery by coordination between bidirectional (anterograde and retrograde) microtubule-dependent transport and unidirectional actin-dependent transport. Although the molecular machineries that mediate retrograde transport and actin-dependent transport have already been identified, little is known about the anterograde transport complex on microtubules in mammalian cells. Here we discovered that small GTPase Rab1A on melanosomes recruits SKIP/PLEKHM2 as a Rab1A-specific effector and that Rab1A, SKIP, and a kinesin-1/(Kif5b+KLC2) motor form a transport complex that mediates anterograde melanosome transport in melanocytes. Interestingly, Arl8, Arf-like small GTPase that also interacts with SKIP, is specifically localized at lysosomes and regulates their anterograde transport in melanocytes. Our findings suggest that the anterograde microtubule-dependent transport of melanosomes and lysosomes are differently regulated by independent cargo receptors, i.e., Rab1A and Arl8, respectively, but that a SKIP–kinesin-1 mechanism is responsible for the transport of both.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
71
|
Liu L, Mellerio JE, Martinez AE, McMillan JR, Aristodemou S, Parsons M, McGrath JA. Mutations in EXPH5 result in autosomal recessive inherited skin fragility. Br J Dermatol 2015; 170:196-9. [PMID: 24443915 DOI: 10.1111/bjd.12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2013] [Indexed: 12/15/2022]
Abstract
Several different genes have been implicated in the pathophysiology of inherited blistering skin diseases. Recently, autosomal recessive loss-of-function mutations in EXPH5 (encoding exophilin-5, also known as Slac2-b, a protein involved in intracellular vesicle transport) were identified in a new mechanobullous disease resembling a form of epidermolysis bullosa simplex (EBS). Here, we searched for mutations in EXPH5 in a 4-year-old white boy with EBS in whom initial Sanger sequencing of known genes implicated in intraepidermal skin fragility failed to identify pathogenic mutations. Transmission electron microscopy of rubbed nonlesional patient skin revealed disruption of keratinocytes in the lower epidermis with cytolysis and acantholysis, keratin filament clumping and prominent perinuclear cytoplasmic vesicles, and provided the clue to the candidate gene pathology. Sanger sequencing of genomic DNA showed compound heterozygosity for two new mutations in EXPH5, c.1947dupC (p.Pro649fsPro*11) and c.2249C>A (p.Ser750*). Immunofluorescence microscopy of patient skin showed a complete absence of exophilin-5 labelling. This case represents the third pedigree with EXPH5 mutations resulting in inherited skin fragility. The clinical and molecular data expand genotype-phenotype correlation in this new form of EBS and demonstrate the important role of exophilin-5 in keratinocyte cell biology.
Collapse
Affiliation(s)
- L Liu
- The Robin Eady National Diagnostic Epidermolysis Bullosa Laboratory, GSTS Pathology, St Thomas' Hospital, London, U.K
| | | | | | | | | | | | | |
Collapse
|
72
|
Henkes M, Finke J, Warnatz K, Ammann S, Stadt UZ, Janka G, Brugger W. Late-onset hemophagocytic lymphohistiocytosis (HLH) in an adult female with Griscelli syndrome type 2 (GS2). Ann Hematol 2014; 94:1057-60. [PMID: 25544030 DOI: 10.1007/s00277-014-2284-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/14/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Martin Henkes
- Department of Hematology and Oncology, Schwarzwald-Baar Clinic, Academic Teaching Hospital University of Freiburg, Klinikstr. 11, 78052, Villingen-Schwenningen, Germany,
| | | | | | | | | | | | | |
Collapse
|
73
|
Wang Q, Ni Q, Wang X, Zhu H, Wang Z, Huang J. High expression of RAB27A and TP53 in pancreatic cancer predicts poor survival. Med Oncol 2014; 32:372. [PMID: 25428385 DOI: 10.1007/s12032-014-0372-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
RAB27A is a member of Rab family GTPases involved in cellular vesicle trafficking, and TP53 has recently been implicated in regulating the exosome secretion pathway. Because exosome secretion plays an important role in modulating tumor microenvironment and invasive growth, we hypothesized that RAB27A and TP53 expression might be associated with aggressive behavior in pancreatic ductal adenocarcinoma (PDAC), one of the most deadly human malignancies. We determined protein expression of RAB27A and TP53 in 265 pancreatic tissues (186 carcinomas and 79 normal or benign tissues) by immunohistochemistry analysis on tissue microarray and found their expression was correlated with patients' clinical parameters and overall survival. We found that RAB27A and TP53 protein expression was significantly higher in cancerous tissues compared to normal and benign tissues. High RAB27A protein expression (RAB27A+) was significantly associated with tumor stage and vascular invasion. No correlation between RAB27A and TP53 expression was observed. Patients with high RAB27A expression and high TP53 expression had a poor overall survival. Our data indicate that RAB27A expression is an independent prognostic marker for PDAC, and RAB27A-regulated exosome secretion pathway may represent a novel therapeutic target in pancreatic cancer .
Collapse
Affiliation(s)
- Qingqing Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
74
|
Lu Q, Li J, Zhang M. Cargo recognition and cargo-mediated regulation of unconventional myosins. Acc Chem Res 2014; 47:3061-70. [PMID: 25230296 DOI: 10.1021/ar500216z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Organized motions are hallmarks of living organisms. Such motions range from collective cell movements during development and muscle contractions at the macroscopic scale all the way down to cellular cargo (e.g., various biomolecules and organelles) transportation and mechanoforce sensing at more microscopic scales. Energy required for these biological motions is almost invariably provided by cellular chemical fuels in the form of nucleotide triphosphate. Biological systems have designed a group of nanoscale engines, known as molecular motors, to convert cellular chemical fuels into mechanical energy. Molecular motors come in various forms including cytoskeleton motors (myosin, kinesin, and dynein), nucleic-acid-based motors, cellular membrane-based rotary motors, and so on. The main focus of this Account is one subfamily of actin filament-based motors called unconventional myosins (other than muscle myosin II, the remaining myosins are collectively referred to as unconventional myosins). In general, myosins can use ATP to fuel two types of mechanomotions: dynamic tethering actin filaments with various cellular compartments or structures and actin filament-based intracellular transport. In contrast to rich knowledge accumulated over many decades on ATP hydrolyzing motor heads and their interactions with actin filaments, how various myosins recognize their specific cargoes and whether and how cargoes can in return regulate functions of motors are less understood. Nonetheless, a series of biochemical and structural investigations in the past few years, including works from our own laboratory, begin to shed lights on these latter questions. Some myosins (e.g., myosin-VI) can function both as cellular transporters and as mechanical tethers. To function as a processive transporter, myosins need to form dimers or multimers. To be a mechanical tether, a monomeric myosin is sufficient. It has been shown for myosin-VI that its cellular cargo proteins can play critical roles in determining the motor properties. Dab2, an adaptor protein linking endocytic vesicles with actin-filament-bound myosin-VI, can induce the motor to form a transport competent dimer. Such a cargo-mediated dimerization mechanism has also been observed in other myosins including myosin-V and myosin-VIIa. The tail domains of myosins are very diverse both in their lengths and protein domain compositions and thus enable motors to engage a broad range of different cellular cargoes. Remarkably, the cargo binding tail of one myosin alone often can bind to multiple distinct target proteins. A series of atomic structures of myosin-V/cargo complexes solved recently reveals that the globular cargo binding tail of the motor contains a number of nonoverlapping target recognition sites for binding to its cargoes including melanophilin, vesicle adaptors RILPL2, and vesicle-bound GTPase Rab11. The structures of the MyTH4-FERM tandems from myosin-VIIa and myosin-X in complex with their respective targets reveal that MyTH4 and FERM domains extensively interact with each other forming structural and functional supramodules in both motors and demonstrate that the structurally similar MyTH4-FERM tandems of the two motors display totally different target binding modes. These structural studies have also shed light on why numerous mutations found in these myosins can cause devastating human diseases such as deafness and blindness, intellectual disabilities, immune disorders, and diabetes.
Collapse
Affiliation(s)
- Qing Lu
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jianchao Li
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mingjie Zhang
- Division
of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Center of Systems Biology and Human Health, School of
Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
75
|
Prognostic value of Rab27B nuclear expression in gastrointestinal stromal tumors. DISEASE MARKERS 2014; 2014:942181. [PMID: 25382899 PMCID: PMC4213986 DOI: 10.1155/2014/942181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/22/2014] [Indexed: 12/31/2022]
Abstract
Rab proteins of the endocytosis and exocytosis pathways both play critical roles in cancer progression, and Rab27B has a significant relationship with several types of human cancer. However, the association between Rab27B expression and clinical features to determine its clinicopathological significance in gastrointestinal tumor (GIST) has not been investigated. To examine the expression of Rab27B in GIST and investigate the association between its expression and patient prognosis, immunohistochemistry analysis with tissue microarray was used to evaluate expression of Rab27B in 162 patients with GIST. The relationship between Rab27B expression and patient prognosis was analyzed. High nuclear staining of Rab27B was detected in 88 of 162 (54.32%) GIST tissues. Positive staining of Rab27B was significantly associated with tumor size (P = 0.006), mitotic index (P = 0.013), Armed Forces Institute of Pathology Miettinen risk classification (P = 0.002), and tumor grade (P = 0.021). Kaplan-Meier survival curves showed that GIST patients with low Rab27B nuclear expression (P = 0.038) and mitotic index <5 per 50 high-power fields (P = 0.029) had a more favorable prognosis. These findings indicate that Rab27B nuclear expression is correlated with several clinicopathological features of GIST patients, and it may serve as an unfavorable prognostic marker.
Collapse
|
76
|
Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis. PLoS Genet 2014; 10:e1004614. [PMID: 25233349 PMCID: PMC4169241 DOI: 10.1371/journal.pgen.1004614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 07/18/2014] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.
Collapse
|
77
|
Li W, Hu Y, Jiang T, Han Y, Han G, Chen J, Li X. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64. APMIS 2014; 122:1080-7. [PMID: 24673604 DOI: 10.1111/apm.12261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/18/2014] [Indexed: 12/11/2022]
Abstract
Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.
Collapse
Affiliation(s)
- Wenhai Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | | | |
Collapse
|
78
|
Speeckaert R, Van Gele M, Speeckaert MM, Lambert J, van Geel N. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res 2014; 27:512-24. [DOI: 10.1111/pcmr.12235] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 02/19/2014] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | - Jo Lambert
- Department of Dermatology; Ghent University Hospital; Gent Belgium
| | - Nanja van Geel
- Department of Dermatology; Ghent University Hospital; Gent Belgium
| |
Collapse
|
79
|
Lehner S, Gähle M, Dierks C, Stelter R, Gerber J, Brehm R, Distl O. Two-exon skipping within MLPH is associated with coat color dilution in rabbits. PLoS One 2013; 8:e84525. [PMID: 24376820 PMCID: PMC3869861 DOI: 10.1371/journal.pone.0084525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Coat color dilution turns black coat color to blue and red color to cream and is a characteristic in many mammalian species. Matings among Netherland Dwarf, Loh, and Lionhead Dwarf rabbits over two generations gave evidence for a monogenic autosomal recessive inheritance of coat colour dilution. Histological analyses showed non-uniformly distributed, large, agglomerating melanin granules in the hair bulbs of coat color diluted rabbits. We sequenced the cDNA of MLPH in two dilute and one black rabbit for polymorphism detection. In both color diluted rabbits, skipping of exons 3 and 4 was present resulting in altered amino acids at p.QGL[37-39]QWA and a premature stop codon at p.K40*. Sequencing of genomic DNA revealed a c.111-5C>A splice acceptor mutation within the polypyrimidine tract of intron 2 within MLPH. This mutation presumably causes skipping of exons 3 and 4. In 14/15 dilute rabbits, the c.111-5C>A mutation was homozygous and in a further dilute rabbit, heterozygous and in combination with a homozygous frame shift mutation within exon 6 (c.585delG). In conclusion, our results demonstrated a colour dilution associated MLPH splice variant causing a strongly truncated protein (p.Q37QfsX4). An involvement of further MLPH-associated mutations needs further investigations.
Collapse
Affiliation(s)
- Stefanie Lehner
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marion Gähle
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Dierks
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ricarda Stelter
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Pets, Reptiles and Pet and Feral Birds, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jonathan Gerber
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
80
|
Fontanesi L, Scotti E, Allain D, Dall'Olio S. A frameshift mutation in themelanophilingene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim Genet 2013; 45:248-55. [DOI: 10.1111/age.12104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- L. Fontanesi
- Division of Animal Sciences; Department of Agricultural and Food Sciences (DISTAL); University of Bologna; Viale Fanin 46 40127 Bologna Italy
- Centre for Genome Biology; University of Bologna; 40126 Bologna Italy
| | - E. Scotti
- Division of Animal Sciences; Department of Agricultural and Food Sciences (DISTAL); University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - D. Allain
- INRA; UR631; SAGA; CS52627 31326 Castanet Tolosan France
- INRA; UE 1372; GenESI; Le Magneraud; BP52 17700 Surgères France
| | - S. Dall'Olio
- Division of Animal Sciences; Department of Agricultural and Food Sciences (DISTAL); University of Bologna; Viale Fanin 46 40127 Bologna Italy
| |
Collapse
|
81
|
Pathogenic mechanisms and clinical implications of congenital neutropenia syndromes. Curr Opin Allergy Clin Immunol 2013; 13:596-606. [DOI: 10.1097/aci.0000000000000014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
82
|
Montoliu L, Grønskov K, Wei AH, Martínez-García M, Fernández A, Arveiler B, Morice-Picard F, Riazuddin S, Suzuki T, Ahmed ZM, Rosenberg T, Li W. Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res 2013; 27:11-8. [PMID: 24066960 DOI: 10.1111/pcmr.12167] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/08/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
Abstract
Albinism is a rare genetic condition globally characterized by a number of specific deficits in the visual system, resulting in poor vision, in association with a variable hypopigmentation phenotype. This lack or reduction in pigment might affect the eyes, skin, and hair (oculocutaneous albinism, OCA), or only the eyes (ocular albinism, OA). In addition, there are several syndromic forms of albinism (e.g. Hermansky-Pudlak and Chediak-Higashi syndromes, HPS and CHS, respectively) in which the described hypopigmented and visual phenotypes coexist with more severe pathological alterations. Recently, a locus has been mapped to the 4q24 human chromosomal region and thus represents an additional genetic cause of OCA, termed OCA5, while the gene is eventually identified. In addition, two new genes have been identified as causing OCA when mutated: SLC24A5 and C10orf11, and hence designated as OCA6 and OCA7, respectively. This consensus review, involving all laboratories that have reported these new genes, aims to update and agree upon the current gene nomenclature and types of albinism, while providing additional insights from the function of these new genes in pigment cells.
Collapse
Affiliation(s)
- Lluís Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain; CIBERER, ISCIII, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Tornieri K, Zlatic SA, Mullin AP, Werner E, Harrison R, L'hernault SW, Faundez V. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes. Hum Mol Genet 2013; 22:5215-28. [PMID: 23918659 DOI: 10.1093/hmg/ddt378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.
Collapse
|
84
|
Hamidieh AA, Pourpak Z, Yari K, Fazlollahi MR, Hashemi S, Behfar M, Moin M, Ghavamzadeh A. Hematopoietic stem cell transplantation with a reduced-intensity conditioning regimen in pediatric patients with Griscelli syndrome type 2. Pediatr Transplant 2013; 17:487-91. [PMID: 23714271 DOI: 10.1111/petr.12092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Partial albinism with variable immunodeficiency are the two major characteristics of Griscelli syndrome type 2 (GS-2). This syndrome is usually associated with a high mortality rate and commonly results in early childhood death. Patients suffer from different infections and experience crisis of HLH. HSCT remains the sole curative treatment for GS-2. We prospectively analyzed the outcomes of transplantation with RIC regimen in five patients. The median age at transplantation was 21.6 months (range: 12-30). All of the patients underwent HSCT from HLA-matched related donors. Currently, four patients are cured, and symptoms of recurrent infections and HLH crisis are not seen in them. The only patient who died had undergone HSCT in the accelerated phase of HLH. One patient who developed acute GvHD had a favorable response to therapy. No chronic GvHD occurred in patients. It seems that the use of RIC regimen as a method of transplant preparation is effective and tolerable in this group of patients with various comorbidities. It is recommended to carry out HSCT in these patients at lower ages, before presentations of different infections and HLH crisis.
Collapse
Affiliation(s)
- Amir Ali Hamidieh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Abramovits W, Oquendo M. Introduction to Autoinflammatory Syndromes and Diseases. Dermatol Clin 2013; 31:363-85. [DOI: 10.1016/j.det.2013.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
86
|
Abstract
Class V myosins (MyoV), the most studied unconventional myosins, recognize numerous cargos mainly via the motor's globular tail domain (GTD). Little is known regarding how MyoV-GTD recognizes such a diverse array of cargos specifically. Here, we solved the crystal structures of MyoVa-GTD in its apo-form and in complex with two distinct cargos, melanophilin and Rab interacting lysosomal protein-like 2. The apo-MyoVa-GTD structure indicates that most mutations found in patients with Griscelli syndrome, microvillus inclusion disease, or cancers or in "dilute" rodents likely impair the folding of GTD. The MyoVa-GTD/cargo complex structure reveals two distinct cargo-binding surfaces, one primarily via charge-charge interaction and the other mainly via hydrophobic interactions. Structural and biochemical analysis reveal the specific cargo-binding specificities of various isoforms of mammalian MyoV as well as very different cargo recognition mechanisms of MyoV between yeast and higher eukaryotes. The MyoVa-GTD structures resolved here provide a framework for future functional studies of vertebrate class V myosins.
Collapse
|
87
|
Victorino F, Alper S. Identifying novel spatiotemporal regulators of innate immunity. Immunol Res 2013; 55:3-9. [PMID: 22926826 DOI: 10.1007/s12026-012-8344-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The innate immune response plays a critical role in pathogen clearance. However, dysregulation of innate immunity contributes to acute inflammatory diseases such as sepsis and many chronic inflammatory diseases including asthma, arthritis, and Crohn's disease. Pathogen recognition receptors including the Toll-like family of receptors play a pivotal role in the initiation of inflammation and in the pathogenesis of many diseases with an inflammatory component. Studies over the last 15 years have identified complex innate immune signal transduction pathways involved in inflammation that have provided many new potential therapeutic targets to treat disease. We are investigating several novel genes that exert spatial and in some cases temporal regulation on innate immunity signaling pathways. These novel genes include Tbc1d23, a RAB-GAP that inhibits innate immunity. In this review, we will discuss inflammation, the role of inflammation in disease, innate immune signal transduction pathways, and the use of spatiotemporal regulators of innate immunity as potential targets for discovery and therapeutics.
Collapse
Affiliation(s)
- Francisco Victorino
- Integrated Department of Immunology, National Jewish Health and the University of Colorado School of Medicine, Denver, CO 80206, USA
| | | |
Collapse
|
88
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
89
|
Seixas E, Barros M, Seabra MC, Barral DC. Rab and Arf proteins in genetic diseases. Traffic 2013; 14:871-85. [PMID: 23565987 DOI: 10.1111/tra.12072] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/29/2023]
Abstract
Rab and ADP-ribosylation factor (Arf) family proteins are master regulators of membrane trafficking and are involved in all steps of vesicular transport. These families of small guanine-nucleotide-binding (G) proteins are well suited to regulate membrane trafficking processes since their nucleotide state determines their conformation and the capacity to bind to a multitude of effectors, which mediate their functions. In recent years, several inherited diseases have been associated with mutations in genes encoding proteins belonging to these two families or in proteins that regulate their GTP-binding cycle. The genetic diseases that are caused by defects in Rabs, Arfs or their regulatory proteins are heterogeneous and display diverse symptoms. However, these diseases mainly affect two types of subcellular compartments, namely lysosome-related organelles and cilia. Also, several of these diseases affect the nervous system. Thus, the study of these diseases represents an opportunity to understand their etiology and the molecular mechanisms involved, as well as to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Elsa Seixas
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | | | | | | |
Collapse
|
90
|
Affiliation(s)
- M Amanda Hartman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
91
|
Dynoodt P, Mestdagh P, Van Peer G, Vandesompele J, Goossens K, Peelman LJ, Geusens B, Speeckaert RM, Lambert JLW, Van Gele MJL. Identification of miR-145 as a key regulator of the pigmentary process. J Invest Dermatol 2013; 133:201-9. [PMID: 22895360 DOI: 10.1038/jid.2012.266] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current treatments for hyperpigmentation are often associated with a lack of efficacy and adverse side effects. We hypothesized that microRNA (miRNA)-based treatments may offer an attractive alternative by specifically targeting key genes in melanogenesis. The aim of this study was to identify miRNAs interfering with the pigmentary process and to assess their functional role. miRNA profiling was performed on mouse melanocytes after three consecutive treatments involving forskolin and solar-simulated UV (ssUV) irradiation. Sixteen miRNAs were identified as differentially expressed in treated melan-a cells versus untreated cells. Remarkably, a 15-fold downregulation of miR-145 was detected. Overexpression or downregulation of miR-145 in melan-a cells revealed reduced or increased expression of Sox9, Mitf, Tyr, Trp1, Myo5a, Rab27a, and Fscn1, respectively. Moreover, a luciferase reporter assay demonstrated direct targeting of Myo5a by miR-145 in mouse and human melanocytes. Immunofluorescence tagging of melanosomes in miR-145-transfected human melanocytes displayed perinuclear accumulation of melanosomes with additional hypopigmentation of harvested cell pellets. In conclusion, this study has established an miRNA signature associated with forskolin and ssUV treatment. The significant down- or upregulation of major pigmentation genes, after modulating miR-145 expression, suggests a key role for miR-145 in regulating melanogenesis.
Collapse
Affiliation(s)
- Peter Dynoodt
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Germline Mutation in EXPH5 Implicates the Rab27B Effector Protein Slac2-b in Inherited Skin Fragility. Am J Hum Genet 2012. [PMID: 23176819 DOI: 10.1016/j.ajhg.2012.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Rab GTPase Rab27B and one of its effector proteins, Slac2-b (also known as EXPH5, exophilin-5), have putative roles in intracellular vesicle trafficking but their relevance to human disease is not known. By using whole-exome sequencing, we identified a homozygous frameshift mutation in EXPH5 in three siblings with inherited skin fragility born to consanguineous Iraqi parents. All three individuals harbor the mutation c.5786delC (p.Pro1929Leufs(∗)8) in EXPH5, which truncates the 1,989 amino acid Slac2-b protein by 52 residues. The clinical features comprised generalized scale-crusts and occasional blisters, mostly induced by trauma, as well as mild diffuse pigmentary mottling on the trunk and proximal limbs. There was no increased bleeding tendency, no neurologic abnormalities, and no increased incidence of infection. Analysis of an affected person's skin showed loss of Slac2-b immunostaining (C-terminal antibody), disruption of keratinocyte adhesion within the lower epidermis, and an increased number of perinuclear vesicles. A role for Slac2-b in keratinocyte biology was supported by findings of cytoskeletal disruption (mainly keratin intermediate filaments) and decreased keratinocyte adhesion in both keratinocytes from an affected subject and after shRNA knockdown of Slac2-b in normal keratinocytes. Slac2-b was also shown to colocalize with Rab27B and β4 integrin to early adhesion initiation sites in spreading normal keratinocytes. Collectively, our findings identify an unexpected role for Slac2-b in inherited skin fragility and expand the clinical spectrum of human disorders of GTPase effector proteins.
Collapse
|
93
|
Pohler E, Mamai O, Hirst J, Zamiri M, Horn H, Nomura T, Irvine AD, Moran B, Wilson NJ, Smith FJD, Goh CSM, Sandilands A, Cole C, Barton GJ, Evans AT, Shimizu H, Akiyama M, Suehiro M, Konohana I, Shboul M, Teissier S, Boussofara L, Denguezli M, Saad A, Gribaa M, Dopping-Hepenstal PJ, McGrath JA, Brown SJ, Goudie DR, Reversade B, Munro CS, McLean WHI. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat Genet 2012; 44:1272-6. [PMID: 23064416 PMCID: PMC3836166 DOI: 10.1038/ng.2444] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/21/2012] [Indexed: 01/28/2023]
Abstract
Palmoplantar keratodermas (PPKs) are a group of disorders that are diagnostically and therapeutically problematic in dermatogenetics. Punctate PPKs are characterized by circumscribed hyperkeratotic lesions on the palms and soles with considerable heterogeneity. In 18 families with autosomal dominant punctate PPK, we report heterozygous loss-of-function mutations in AAGAB, encoding α- and γ-adaptin-binding protein p34, located at a previously linked locus at 15q22. α- and γ-adaptin-binding protein p34, a cytosolic protein with a Rab-like GTPase domain, was shown to bind both clathrin adaptor protein complexes, indicating a role in membrane trafficking. Ultrastructurally, lesional epidermis showed abnormalities in intracellular vesicle biology. Immunohistochemistry showed hyperproliferation within the punctate lesions. Knockdown of AAGAB in keratinocytes led to increased cell division, which was linked to greatly elevated epidermal growth factor receptor (EGFR) protein expression and tyrosine phosphorylation. We hypothesize that p34 deficiency may impair endocytic recycling of growth factor receptors such as EGFR, leading to increased signaling and cellular proliferation.
Collapse
Affiliation(s)
- Elizabeth Pohler
- Centre for Dermatology and Genetic Medicine, College of Life Sciences and College of Medicine, Dentistry & Nursing, University of Dundee, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Griscelli syndrome types 1 and 3: analysis of four new cases and long-term evaluation of previously diagnosed patients. Eur J Pediatr 2012; 171:1527-31. [PMID: 22711375 DOI: 10.1007/s00431-012-1765-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder characterized by partial albinism. Three different types are caused by defects in three different genes. Patients with GS type 1 have primary central nervous system dysfunction, type 2 patients commonly develop hemophagocytic lymphohistiocytosis, and type 3 patients have only partial albinism. While hematopoietic stem cell transplantation is life saving in type 2, no specific therapy is required for types 1 and 3. Patients with GS types 1 and 3 are very rare. To date, only 2 patients with type 3 and about 20 GS type 1 patients, including the patients described as Elejalde syndrome, have been reported. The neurological deficits in Elejalde syndrome were reported as severe neurodevelopmental delay, seizures, hypotonia, and ophthalmological problems including nystagmus, diplopia, and retinal problems. However, none of these patients' clinical progresses were reported. We described here our two new type 1 and two type 3 patients along with the progresses of our previously diagnosed patients with GS types 1 and 3. Our previous patient with GS type I is alive at age 21 without any other problems except severe mental and motor retardation, patients with type 3 are healthy at ages 21 and 24 years having only pigmentary dilution; silvery gray hair, eye brows, and eyelashes. Since prognosis, treatment options, and genetic counseling markedly differ among different types, molecular characterization has utmost importance in GS.
Collapse
|
95
|
Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker. PLoS One 2012; 7:e43465. [PMID: 22927970 PMCID: PMC3425493 DOI: 10.1371/journal.pone.0043465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.
Collapse
|
96
|
Ishida M, Ohbayashi N, Maruta Y, Ebata Y, Fukuda M. Functional involvement of Rab1A in microtubule-dependent anterograde melanosome transport in melanocytes. J Cell Sci 2012; 125:5177-87. [PMID: 22854043 DOI: 10.1242/jcs.109314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanosomes are transported to the cell periphery of melanocytes by coordination between bidirectional microtubule-dependent movements and unidirectional actin-dependent movement. Although both the mechanism of the actin-dependent melanosome transport and the mechanism of the microtubule-dependent retrograde melanosome transport in mammalian skin melanocytes have already been determined, almost nothing is known about the mechanism of the microtubule-dependent anterograde melanosome transport. Small GTPase Rab proteins are common regulators of membrane traffic in all eukaryotes, and in this study we performed genome-wide screening for Rab proteins that are involved in anterograde melanosome transport by expressing 60 different constitutive active (and negative) mutants, and succeeded in identifying Rab1A, originally described as a Golgi-resident Rab, as a prime candidate. Endogenous Rab1A protein was found to be localized to mature melanosomes in melanocytes, and its functional ablation either by siRNA-mediated knockdown or by overexpression of a cytosolic form of Rab1A-GTPase-activating protein/TBC1D20 induced perinuclear melanosome aggregation. The results of time-lapse imaging further revealed that long-range anterograde melanosome movements were specifically suppressed in Rab1A-deficient melanocytes, whereas retrograde melanosome transport occurred normally. Taken together, these findings indicate that Rab1A is the first crucial component of the anterograde melanosome transport machinery to be identified in mammalian skin melanocytes.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | |
Collapse
|
97
|
Yoshida-Amano Y, Hachiya A, Ohuchi A, Kobinger GP, Kitahara T, Takema Y, Fukuda M. Essential role of RAB27A in determining constitutive human skin color. PLoS One 2012; 7:e41160. [PMID: 22844437 PMCID: PMC3402535 DOI: 10.1371/journal.pone.0041160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation.
Collapse
Affiliation(s)
| | - Akira Hachiya
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan
- * E-mail:
| | - Atsushi Ohuchi
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Gary P. Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Department of Medical Microbiology, Public Health Agency of Canada, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Takashi Kitahara
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Yoshinori Takema
- Research and Development Global, Kao Corporation, Sumida-ku, Tokyo, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
98
|
Bell RE, Levy C. The three M's: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment Cell Melanoma Res 2012; 24:1088-106. [PMID: 22004179 DOI: 10.1111/j.1755-148x.2011.00931.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies examining intratumor heterogeneity have indicated that several cancer types, including melanoma, can display phenotypic plasticity, corresponding to their capacity to undergo transient reversible cellular changes. Conceptual models constructed to explain the process of cancer propagation differ in their treatment of intratumor heterogeneity. Recent observations of reversible phenotypic heterogeneity in melanoma have led to the proposal of a novel 'phenotypic plasticity' model of cancer propagation. Microphthalmia-associated transcription factor (MITF), the melanocyte 'lineage-specific' transcription factor, has emerged as one of the central players in melanoma phenotypic plasticity. Here we discuss the conceptual models suggested to explain the relations between MITF and melanoma plasticity, in addition to the complex regulatory roles that MITF plays in melanocytes and melanoma development. Finally, we provide an in-depth literature survey of microRNAs (miRNAs) involved in MITF activity, melanoma propagation and metastasis, in addition to their potential use as agents of personalized therapy.
Collapse
Affiliation(s)
- Rachel E Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
99
|
Kumar P, Wittmann T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol 2012; 22:418-28. [PMID: 22748381 DOI: 10.1016/j.tcb.2012.05.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
+TIPs are a heterogeneous class of proteins that specifically bind to growing microtubule ends. Because dynamic microtubules are essential for many intracellular processes, +TIPs play important roles in regulating microtubule dynamics and microtubule interactions with other intracellular structures. End-binding proteins (EBs) recognize a structural cap at growing microtubule ends, and have emerged as central adaptors that mediate microtubule plus-end tracking of potentially all other +TIPs. The majority of these +TIPs bind to EBs through a short hydrophobic (S/T)x(I/L)P sequence motif (SxIP) and surrounding electrostatic interactions. These recent discoveries have resulted in a rapid expansion of the number of possible +TIPs. In this review, we outline our current understanding of the molecular mechanism of plus-end tracking and provide an overview of SxIP-recruited +TIPs.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | |
Collapse
|
100
|
Gutkowska M, Swiezewska E. Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol Membr Biol 2012; 29:243-56. [DOI: 10.3109/09687688.2012.693211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|