51
|
Song Z, Lu Y, Liu X, Wei C, Oladipo A, Fan B. Evaluation of Pantoea eucalypti FBS135 for pine (Pinus massoniana) growth promotion and its genome analysis. J Appl Microbiol 2020; 129:958-970. [PMID: 32329126 DOI: 10.1111/jam.14673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
AIMS Pinus massoniana is one of the most widely distributed forest plants in China. In this study, we isolated a bacterial endophyte (designated FBS135) from apical buds and needles of P. massoniana. Investigations were performed to understand the effects of the strain on pine growth, its genomic features and the functions of the plasmids it carries. METHODS AND RESULTS Based on its morphological features and 16S rRNA sequence, strain FBS135 was primarily identified as Pantoea eucalypti. We found that FBS135 not only promoted the growth of P. massoniana seedlings, but also significantly increased the survival rate of pine seedlings. The whole genome of FBS135 was sequenced, which revealed that the bacterium carries one chromosome and four plasmids. Its chromosome is 4 023 751 bp in size and contains dozens of genes involved in plant symbiosis. Curing one of the four plasmids, pPant1, resulted in a decrease in the size of the FBS135 colonies and the loss of the ability to synthesize yellow pigment, indicating that this plasmid may be very important for FBS135. CONCLUSIONS Pantoea eucalypti FBS135 has a genomic basis to be implicated in plant-associated lifestyle and was established to have the capability to promote pine growth. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report that such a bacterial species, P. eucalypti, was isolated from pine trees and evidenced to have pine beneficial activities. Our results elucidate the ecological effects of endophytes on forest plants as well as endophyte-plant interaction mechanisms.
Collapse
Affiliation(s)
- Z Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Y Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - X Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - C Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - A Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - B Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
52
|
PQQ-GDH - Structure, function and application in bioelectrochemistry. Bioelectrochemistry 2020; 134:107496. [PMID: 32247165 DOI: 10.1016/j.bioelechem.2020.107496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes the basic features of the PQQ-GDH enzyme as one of the sugar converting biocatalysts. Focus is on the membrane -bound and the soluble form. Furthermore, the main principles of enzymatic catalysis as well as studies on the physiological importance are reviewed. A short overview is given on developments in protein engineering. The major part, however, deals with the different fields of application in bioelectrochemistry. This includes approaches for enzyme-electrode communication such as direct electron transfer, mediator-based systems, redox polymers or conducting polymers and holoenzyme reconstitution, and covers applied areas such as biosensing, biofuel cells, recycling schemes, enzyme competition, light-directed sensing, switchable detection schemes, logical operations by enzyme electrodes and immune sensing.
Collapse
|
53
|
Breitkreuz C, Buscot F, Tarkka M, Reitz T. Shifts Between and Among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllobacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages Under Abiotic Stress. Front Microbiol 2020; 10:3109. [PMID: 32038552 PMCID: PMC6987145 DOI: 10.3389/fmicb.2019.03109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Climate change models predict more frequent and prolonged drought events in Central Europe, which will exert extraordinary pressure on agroecosystems. One of the consequences is drought-related nutrient limitations for crops negatively affecting agricultural productivity. These effects can be mitigated by beneficial plant growth promoting rhizobacteria. In this study, we investigated the potential of cultivable bacterial species for phosphate solubilization in the rhizosphere of winter wheat at two relevant growth stages - stem elongation and grain filling stages. Rhizosphere samples were collected in the Global Change Experimental Facility in Central Germany, which comprises plots with conventional and organic farming systems under ambient and future climate. Phosphate-solubilizing bacteria were selectively isolated on Pikovskaya medium, phylogenetically classified by 16S rRNA sequencing, and tested for in vitro mineral phosphate solubilization and drought tolerance using plate assays. The culture isolates were dominated by members of the genera Phyllobacterium, Pseudomonas and Streptomyces. Cultivation-derived species richness and abundance of dominant taxa, especially within the genera Phyllobacterium and Pseudomonas, as well as composition of Pseudomonas species were affected by wheat growth stage. Pseudomonas was found to be more abundant at stem elongation than at grain filling, while for Phyllobacterium the opposite pattern was observed. The abundance of Streptomyces isolates remained stable throughout the studied growth stages. The temporal shifts in the cultivable fraction of the community along with considerable P solubilization potentials of Phyllobacterium and Pseudomonas species suggest functional redundancy between and among genera at different wheat growth stages. Phosphate-solubilizing Phyllobacterium species were assigned to Phyllobacterium ifriqiyense and Phyllobacterium sophorae. It is the first time that phosphate solubilization potential is described for these species. Since Phyllobacterium species showed the highest drought tolerance along all isolates, they may play an increasingly important role in phosphate solubilization in a future dryer climate.
Collapse
Affiliation(s)
- Claudia Breitkreuz
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thomas Reitz
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Halle/Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
54
|
Bharwad K, Rajkumar S. Modulation of PQQ-dependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting Acinetobacter sp. SK2. 3 Biotech 2020; 10:5. [PMID: 31824816 DOI: 10.1007/s13205-019-1991-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Prospective plant growth promoting rhizobacteria isolated from the rhizosphere of Vigna radiata was identified as Acinetobacter sp. SK2 that solubilized 682 μg ml-1 of tricalcium phosphate (TCP) and 86 μg ml-1 of rock phosphate (RP) with concomitant decrease in pH up to 4 due to the production of gluconate. The biochemical basis of the P solubilization suggested that the gluconate production was mediated by mGDH and sGDH enzymes. Our results illustrate the role of succinate in repression of P solubilization via suppression of mGDH and sGDH activity which correlated with repression of expression of respective genes, gdhA and gdhB. SK2 also produced IAA (117 μg ml-1), siderophore (87% units), HCN, ammonia and solubilized minerals of Zn and K. Our findings imply that it is important to understand the cause of failure of several phosphate solubilizing bacteria in field conditions where catabolite repression may control the expression of several genes and pathways including that of mineral phosphate solubilization. Furthermore, Acinetobacter sp. SK2 bearing two glucose dehydrogenase (gdhA and gdhB) genes was recognized as promising strain for P biofortification and enhanced plant growth promotion.
Collapse
|
55
|
Regulatory rewiring through global gene regulations by PhoB and alarmone (p)ppGpp under various stress conditions. Microbiol Res 2019; 227:126309. [PMID: 31421713 DOI: 10.1016/j.micres.2019.126309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
The phosphorus availability in soil ranged from <0.01 to 1 ppm and found limiting for the utilization by plants. Hence, phosphate solubilizing bacteria (PSB) proficiently fulfill the phosphorus requirement of plants in an eco-friendly manner. The PSB encounter dynamic and challenging environmental conditions viz., high temperature, osmotic, acid, and climatic changes often hamper their activity and proficiency. The modern trend is shifting from isolation of the PSB to their genetic potentials and genome annotation not only for their better performance in the field trials but also to study their ability to cope up with stresses. In order to withstand environmental stress, bacteria need to restructure its metabolic network to ensure its survival. Pi starving condition response regulator (PhoB) and the mediator of stringent stress response alarmone (p)ppGpp known to regulate the global regulatory network of bacteria to provide balanced physiology under various stress condition. The current review discusses the global regulation and crosstalk of genes involved in phosphorus homeostasis, solubilization, and various stress response to fine tune the bacterial physiology. The knowledge of these network crosstalk help bacteria to respond efficiently to the challenging environmental parameters, and their physiological plasticity lead us to develop proficient long-lasting consortia for plant growth promotion.
Collapse
|
56
|
Maheshwari R, Bhutani N, Bhardwaj A, Suneja P. Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: Bioprospecting their plant growth potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
El Attar I, Taha K, El Bekkay B, El Khadir M, Thami Alami I, Aurag J. Screening of stress tolerant bacterial strains possessing interesting multi-plant growth promoting traits isolated from root nodules of Phaseolus vulgaris L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
58
|
Chen X, Jiang N, Condron LM, Dunfield KE, Chen Z, Wang J, Chen L. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:1011-1018. [PMID: 30970450 DOI: 10.1016/j.scitotenv.2019.03.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The bacterial phoD gene encodes alkaline phosphomonoesterase, an enzyme which plays an important role in the release of plant-available inorganic phosphorus (P) from organic P in soil. However, the relationships between phoD gene community, alkaline phosphomonoesterase activity, and P availability in soil are poorly understood. In this study, we investigated how alkaline phosphomonoesterase activity, phoD gene abundance, and community structure are influenced by plant-available P using soils (0-10, 10-20 and 20-40 cm) from a long-term field trial in which a continuous maize (Zea mays L.) crop had received different levels of P fertilizer inputs (30, 60 kg P ha-1 year-1) for 28 years. Quantitative PCR and high-throughput sequencing were used to analyze phoD gene abundance and community composition. Alkaline phosphomonoesterase enzyme activity was negatively correlated with soil available P, which was reflected in corresponding data for phoD gene abundance. On the other hand, positive correlations were determined between phoD gene α-diversity and available P, while shifts in phoD gene community structure were related to changes in soil pH and P availability. The relative abundance of Pseudomonas was negatively correlated with P availability and positively correlated with alkaline phosphomonoesterase activity, suggesting that Pseudomonas may play an important role in soil organic P mineralization. The findings of this study demonstrated that changes of soil P availability as a result of long-term P fertilizer inputs significantly affected alkaline phosphomonoesterase activity by regulating phoD gene abundance, diversity, as well as altering the phoD gene community composition.
Collapse
Affiliation(s)
- Xiaodong Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Leo M Condron
- Faculty of Agriculture and Life Sciences, Lincoln University, P. O. Box 85084, 7647 Christchurch, New Zealand
| | - Kari E Dunfield
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Zhenhua Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jingkuan Wang
- Land and Environment College, Shenyang Agricultural University, Shenyang 110866, China
| | - Lijun Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
59
|
Joshi E, Iyer B, Rajkumar S. Glucose and arabinose dependent mineral phosphate solubilization and its succinate-mediated catabolite repression in Rhizobium sp. RM and RS. J Biosci Bioeng 2019; 128:551-557. [PMID: 31147219 DOI: 10.1016/j.jbiosc.2019.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/27/2022]
Abstract
Rhizobium sp. RM and RS are Vigna radiata root nodule isolates with the ability to solubilize tricalcium phosphate and rock phosphate under 50 mM Tris-Cl buffering conditions. Rhizobium sp. RM and RS were unique as they could produce two different organic acids, gluconic acid and oxalic acid using glucose and arabinose, respectively, which are two of the most prominent sugars present in the rhizospheric soil. However, P solubilization in these isolates was repressed in the presence of succinate resembling the phenomenon of catabolite repression. RM and RS produced 24 mM and 20 mM gluconic acid in presence of glucose which was repressed to 10 mM and 8 mM, respectively, in glucose + succinate conditions. Similarly, RM and RS produced 28 mM and 23 mM oxalic acid in arabinose containing media which was repressed to 9 mM and 8 mM, respectively, in the presence of arabinose + succinate. Results of enzyme activities indicated 66% repression of quinoprotein glucose dehydrogenase in glucose + succinate compared to glucose grown cells and 84% repression of glyoxylate oxidase in arabinose + succinate compared to arabinose grown cells. This is perhaps the first report on mechanism of P solubilization in rhizobia through utilization of two different sugars, glucose and arabinose and its repression by succinate. Succinate-mediated catabolite repression of arabinose is the unique aspect of this study.
Collapse
Affiliation(s)
- Ekta Joshi
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Bhagya Iyer
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Shalini Rajkumar
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
60
|
Liu C, Mou L, Yi J, Wang J, Liu A, Yu J. The Eno Gene of Burkholderia cenocepacia Strain 71-2 is Involved in Phosphate Solubilization. Curr Microbiol 2019; 76:495-502. [PMID: 30798378 DOI: 10.1007/s00284-019-01642-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Bacterial strain 71-2 with phosphate-solubilizing activity was isolated from tobacco rhizosphere and classified as Burkholderia cenocepacia based on sequence analyses of 16S rRNA and recA genes. To learn phosphate-solubilizing mechanisms of 71-2, mutants showing reduced solubilizing phosphate activity were obtained using the EZ-Tn5 transposon. Mutant 71-2-MT51 was reduced in the solubilizing phosphate content to 34.36% as compared with the wild-type strain 71-2. The disrupted gene in 71-2-MT51 was cloned and sequenced, and the putative protein from the gene shared 65.26% identity to protein sequences of enolase from Escherichia coli, which suggests the gene encodes an enzyme of enolase. Complementation analyzing showed that Eno was responsible for phosphate solubilizing for B. cenocepacia strain 71-2. To our knowledge, this is the first report of Eno involved in phosphate solubilizing in B. cenocepacia as well as in other bacteria.
Collapse
Affiliation(s)
- Chunju Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
- Weifang Tobacco Co., Ltd, Weifang, 261205, Shandong, China
| | - Lei Mou
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Jingli Yi
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Jing Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - Aixin Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| | - Jinfeng Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
61
|
Zheng BX, Ding K, Yang XR, Wadaan MAM, Hozzein WN, Peñuelas J, Zhu YG. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1113-1120. [PMID: 30180320 DOI: 10.1016/j.scitotenv.2018.07.454] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
The direct application of inorganic-phosphate-solubilizing bacteria (iPSBs) for improving the efficiency of phosphorus (P) use leads to a low rate of bacterial survival. Biochar is a good inoculum carrier for microbial survival, and diverse feedstocks can have different effects. We generated an iPSB community using seven selected iPSB strains with various phylogenic taxonomies and P-solubilizing abilities. Biochar was then inoculated with the iPSB community and applied to soil in pots seeded with rape (Brassica napus). Growth of the rape for four weeks and the effects of biochars produced from six raw feedstocks, rice straw, rice husks, soybean straw, peanut shells, corn cobs and wood, were compared. The synthetic iPSB community had a larger capacity to solubilize inorganic P and exude organic anions than any of the individual strains. The structure of the iPSB community was analyzed by high-throughput sequencing four weeks after inoculation. All seven iPSB strains were detected, dominated by Arthrobacter defluvii 06-OD12. The abundance of the iPSB community was significantly correlated with rape biomass, P content and P uptake (P < 0.05). The biochar amendments conferred 6.86-24.24% survival of the iPSB community, with the straw biochars conferring the highest survival. The available-P content of the biochar rather than soil pH was the dominant factor for iPSB community structure, suggesting that the biochar material was critical for the survival and functioning of the iPSB community. Our study demonstrates the feasibility of biochar-assisted iPSB improvement of crop growth and P uptake.
Collapse
Affiliation(s)
- Bang-Xiao Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit, Centre for Ecological Research and Forestry Applications (CREAF)-CSIC-Universitat Autonoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit, Centre for Ecological Research and Forestry Applications (CREAF)-CSIC-Universitat Autonoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
62
|
Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. MOLECULAR PLANT PATHOLOGY 2018; 19:2349-2359. [PMID: 29676842 PMCID: PMC6638116 DOI: 10.1111/mpp.12693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This article illustrates how the probiotic pseudomonads, nurtured by the carbon (C) and nitrogen (N) sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production.
Collapse
Affiliation(s)
- Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju 61186South Korea
| | - Anne J. Anderson
- Department of Biological EngineeringUtah State UniversityLoganUT 84322‐4105USA
| |
Collapse
|
63
|
Li Z, Su M, Duan X, Tian D, Yang M, Guo J, Wang S, Hu S. Induced biotransformation of lead (II) by Enterobacter sp. in SO 4-PO 4-Cl solution. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:491-497. [PMID: 29940467 DOI: 10.1016/j.jhazmat.2018.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Pb is a toxic heavy metal in contaminated soil and water, resulted from industrial activities, mine exploration, etc. Phosphate solubilizing bacteria are able to secrete organic acids and further to enhance the solubility of phosphates. Enterobacter. sp and geological fluorapatite (FAp) were applied to investigate the biotransformation of Pb2+ in solution with SO42-, PO43-, and Cl- species by ICP-OES, ATR-IR, XRD, and SEM. Enterobacter. sp can lower pH of the medium to ∼4. Meanwhile, >90% mobile Pb (declining from 1000 to 30 ppm) was immobilized via the combination of Enterobacter. sp and FAp. With the addition of FAp and Pb, pyromorphite was precipitated, but with relatively low content. In contrast, abundant anglesite mineral was formed in such weakly acidic system. These anglesite crystals can even absorb phosphates particles onto their surface. Additionally, geochemical modeling confirms the formation of anglesite and cerussite under weekly acidic and alkalic condition respectively, especially when H2PO4- concentration <10-8 mM. Furthermore, the presence of Cl- in solution leads to the formation of chloropyromorphite when H2PO4- concentration >10-12 mM, especially under neutral environment. This study explored the biotransformation of Pb in SO4-PO4-Cl aqueous system and hence provided guidance on bioremediation of Pb by bacteria and FAp.
Collapse
Affiliation(s)
- Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing, Jiangsu 210046, China.
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaofang Duan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mengying Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jieyun Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shimei Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
64
|
Sun X, Zhou Y, Tan Y, Wu Z, Lu P, Zhang G, Yu F. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22106-22119. [PMID: 29802615 DOI: 10.1007/s11356-018-2244-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
To unravel the ecological function played by pioneer plants in the practical restoration of mine tailings, it is vital to explore changes of soil characteristics and microbial communities in rhizosphere and bulk soil following the adaptation and survival of plants. In the present study, the diversity and structure of rhizospheric bacterial communities of three pioneer plants in copper mine tailings were investigated by Illumina MiSeq sequencing, and the effects of pioneer plants on soil properties were also evaluated. Significant soil improvement was detected in rhizospheric samples, and Alnus cremastogyne showed higher total organic matter, total nitrogen, and available phosphorus than two other herbaceous plants. Microbial diversity indices in rhizosphere and bulk soil of reclaimed tailings were significantly higher than bare tailings, even the soil properties of bulk soil in reclaimed tailings were not significantly different from those of bare tailings. A detailed taxonomic composition analysis demonstrated that Alphaproteobacteria and Deltaproteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes showed significantly higher relative abundance in rhizosphere and bulk soil. In contrast, Gammaproteobacteria and Firmicutes were abundant in bare tailings, in which Bacillus, Pseudomonas, and Lactococcus made up the majority of the bacterial community (63.04%). Many species within known heavy metal resistance and nutrient regulatory microorganism were identified in reclaimed tailings, and were more abundant among rhizospheric microbes. Hierarchical clustering and principal coordinate analysis (PCoA) analysis demonstrated that the bacterial profiles in the rhizosphere clustered strictly together according to plant types, and were distinguishable from bulk soil. However, we also identified a large shared OTUs that occurred repeatedly and was unaffected by highly diverse soil properties in rhizosphere and bulk samples. Redundancy analysis indicated that water content and Cu and As concentrations were the main environmental regulators of microbial composition. These results suggest that the interactive effect of pioneer plants and harsh soil environmental conditions remodel the specific bacterial communities in rhizosphere and bulk soil in mine tailings. And A. cremastogyne might be approximate candidate for phytoremediation of mine tailings for better soil amelioration effect and relative higher diversity of bacterial community in rhizosphere.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China.
| | - Yanling Zhou
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Yinjing Tan
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Zhaoxiang Wu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Ping Lu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Guohua Zhang
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Faxin Yu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| |
Collapse
|
65
|
De Mandal S, Singh SS, Kumar NS. Analyzing plant growth promoting Bacillus sp. and related genera in Mizoram, Indo-Burma biodiversity Hotspot. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Draft Genome Sequence of Rhodococcus opacus Strain 04-OD7, Which Can Mobilize Phosphate. GENOME ANNOUNCEMENTS 2018; 6:6/23/e00494-18. [PMID: 29880596 PMCID: PMC5992359 DOI: 10.1128/genomea.00494-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhodococcus opacus strain 04-OD7 (=CCTCC AB 2017148) is a Gram-positive bacterium showing inorganic phosphate solubilization capacity for the first time in the genus Rhodococcus We present here the draft genome description of R. opacus 04-OD7 along with multiple phosphorus (P) mobilization-related genes, supporting its inorganic phosphate solubilization.
Collapse
|
67
|
Vacheron J, Desbrosses G, Renoud S, Padilla R, Walker V, Muller D, Prigent-Combaret C. Differential Contribution of Plant-Beneficial Functions from Pseudomonas kilonensis F113 to Root System Architecture Alterations in Arabidopsis thaliana and Zea mays. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:212-223. [PMID: 28971723 DOI: 10.1094/mpmi-07-17-0185-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescent pseudomonads are playing key roles in plant-bacteria symbiotic interactions due to the multiple plant-beneficial functions (PBFs) they are harboring. The relative contributions of PBFs to plant-stimulatory effects of the well-known plant growth-promoting rhizobacteria Pseudomonas kilonensis F113 (formerly P. fluorescens F113) were investigated using a genetic approach. To this end, several deletion mutants were constructed, simple mutants ΔphlD (impaired in the biosynthesis of 2,4-diacetylphloroglucinol [DAPG]), ΔacdS (deficient in 1-aminocyclopropane-1-carboxylate deaminase activity), Δgcd (glucose dehydrogenase deficient, impaired in phosphate solubilization), and ΔnirS (nitrite reductase deficient), and a quadruple mutant (deficient in the four PBFs mentioned above). Every PBF activity was quantified in the wild-type strain and the five deletion mutants. This approach revealed few functional interactions between PBFs in vitro. In particular, biosynthesis of glucose dehydrogenase severely reduced the production of DAPG. Contrariwise, the DAPG production impacted positively, but to a lesser extent, phosphate solubilization. Inoculation of the F113 wild-type strain on Arabidopsis thaliana Col-0 and maize seedlings modified the root architecture of both plants. Mutant strain inoculations revealed that the relative contribution of each PBF differed according to the measured plant traits and that F113 plant-stimulatory effects did not correspond to the sum of each PBF relative contribution. Indeed, two PBF genes (ΔacdS and ΔnirS) had a significant impact on root-system architecture from both model plants, in in vitro and in vivo conditions. The current work underscored that few F113 PBFs seem to interact between each other in the free-living bacterial cells, whereas they control in concert Arabidopsis thaliana and maize growth and development.
Collapse
Affiliation(s)
- Jordan Vacheron
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Guilhem Desbrosses
- 2 CNRS, INRA, UMR5004, Biochimie & Physiologie Moléculaire des Plantes, Montpellier, France
| | - Sébastien Renoud
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Rosa Padilla
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Vincent Walker
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Daniel Muller
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Claire Prigent-Combaret
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| |
Collapse
|
68
|
Wei Y, Zhao Y, Shi M, Cao Z, Lu Q, Yang T, Fan Y, Wei Z. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. BIORESOURCE TECHNOLOGY 2018; 247:190-199. [PMID: 28950126 DOI: 10.1016/j.biortech.2017.09.092] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 05/22/2023]
Abstract
Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhenyu Cao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianxue Yang
- Laboratory of Water Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yuying Fan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
69
|
Kumar A, Saini HS, Kumar S. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility. Curr Microbiol 2017; 75:194-201. [PMID: 29027582 DOI: 10.1007/s00284-017-1365-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023]
Abstract
Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sudhir Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India.
| |
Collapse
|
70
|
Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME. Comparative Genomics of Bacillus amyloliquefaciens Strains Reveals a Core Genome with Traits for Habitat Adaptation and a Secondary Metabolites Rich Accessory Genome. Front Microbiol 2017; 8:1438. [PMID: 28824571 PMCID: PMC5541019 DOI: 10.3389/fmicb.2017.01438] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Gram positive, non-pathogenic endospore-forming soil inhabiting prokaryote Bacillus amyloliquefaciens is a plant growth-promoting rhizobacterium. Bacillus amyloliquefaciens processes wide biocontrol abilities and numerous strains have been reported to suppress diverse bacterial, fungal and fungal-like pathogens. Knowledge about strain level biocontrol abilities is warranted to translate this knowledge into developing more efficient biocontrol agents and bio-fertilizers. Ever-expanding genome studies of B. amyloliquefaciens are showing tremendous increase in strain-specific new secondary metabolite clusters which play key roles in the suppression of pathogens and plant growth promotion. In this report, we have used genome mining of all sequenced B. amyloliquefaciens genomes to highlight species boundaries, the diverse strategies used by different strains to promote plant growth and the diversity of their secondary metabolites. Genome composition of the targeted strains suggest regions of genomic plasticity that shape the structure and function of these genomes and govern strain adaptation to different niches. Our results indicated that B. amyloliquefaciens: (i) suffer taxonomic imprecision that blurs the debate over inter-strain genome diversity and dynamics, (ii) have diverse strategies to promote plant growth and development, (iii) have an unlocked, yet to be delimited impressive arsenal of secondary metabolites and products, (iv) have large number of so-called orphan gene clusters, i.e., biosynthetic clusters for which the corresponding metabolites are yet unknown, and (v) have a dynamic pan genome with a secondary metabolite rich accessory genome.
Collapse
Affiliation(s)
- Lassaad Belbahri
- Laboratory of Soil Biology, University of NeuchatelNeuchatel, Switzerland.,NextBiotechAgareb, Tunisia
| | - Ali Chenari Bouket
- NextBiotechAgareb, Tunisia.,Graduate School of Life and Environmental Sciences, Osaka Prefecture UniversitySakai, Japan.,Young Researchers and Elite Club, Tabriz Branch, Islamic Azad UniversityTabriz, Iran
| | | | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Lenka Luptakova
- NextBiotechAgareb, Tunisia.,Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and PharmacyKosice, Slovakia
| | - Eva Petrovova
- Institute of Anatomy, University of Veterinary Medicine and PharmacyKosice, Slovakia
| | | | | | | | - Mostafa E Rateb
- School of Science and Sport, University of the West of ScotlandPaisley, United Kingdom
| |
Collapse
|
71
|
The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
72
|
Anzuay MS, Ciancio MGR, Ludueña LM, Angelini JG, Barros G, Pastor N, Taurian T. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiol Res 2017; 199:98-109. [PMID: 28454714 DOI: 10.1016/j.micres.2017.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 01/13/2023]
Abstract
The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO4 and AlPO4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO4 and AlPO4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize.
Collapse
Affiliation(s)
- María Soledad Anzuay
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - María Gabriela Ruiz Ciancio
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - Liliana Mercedes Ludueña
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - Jorge Guillermo Angelini
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - Germán Barros
- Departamento de Microbiología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - Nicolás Pastor
- Departamento de Microbiología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| | - Tania Taurian
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
73
|
Mosimann C, Oberhänsli T, Ziegler D, Nassal D, Kandeler E, Boller T, Mäder P, Thonar C. Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Front Microbiol 2017; 7:2150. [PMID: 28119675 PMCID: PMC5222796 DOI: 10.3389/fmicb.2016.02150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
TaqMan-based quantitative PCR (qPCR) assays were developed to study the persistence of two well-characterized strains of plant growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens Pf153 and Pseudomonas sp. DSMZ 13134, in the root and rhizoplane of inoculated maize plants. This was performed in pot experiments with three contrasting field soils (Buus, Le Caron and DOK-M). Potential cross-reactivity of the qPCR assays was assessed with indigenous Pseudomonas and related bacterial species, which had been isolated from the rhizoplane of maize roots grown in the three soils and then characterized by Matrix-Assisted Laser Desorption Ionization (MALDI) Time-of-Flight (TOF) mass spectrometry (MS). Sensitivity of the qPCR expressed as detection limit of bacterial cells spiked into a rhizoplane matrix was 1.4 × 102 CFU and 1.3 × 104 CFU per gram root fresh weight for strain Pf153 and DSMZ 13134, respectively. Four weeks after planting and inoculation, both strains could readily be detected in root and rhizoplane, whereas only Pf153 could be detected after 8 weeks. The colonization rate of maize roots by strain Pf153 was significantly influenced by the soil type, with a higher colonization rate in the well fertile and organic soil of Buus. Inoculation with strain DSMZ 13134, which colonized roots and rhizoplane to the same degree, independently of the soil type, increased yield of maize, in terms of biomass accumulation, only in the acidic soil of Le Caron, whereas inoculation with strain Pf153 reduced yield in the soil Buus, despite of its high colonization rate and persistence. These results indicate that the colonization rate and persistence of inoculated Pseudomonas strains can be quantitatively assessed by the TaqMan-based qPCR technique, but that it cannot be taken for granted that inoculation with a well-colonizing and persistent Pseudomonas strain has a positive effect on yield of maize.
Collapse
Affiliation(s)
- Carla Mosimann
- Department of Environmental Sciences, Botany, Zürich-Basel Plant Science Center, University of BaselBasel, Switzerland; Research Institute of Organic Agriculture (FIBL)Frick, Switzerland
| | | | | | - Dinah Nassal
- Institute of Soil Science and Land Evaluation, University of Hohenheim Stuttgart, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, University of Hohenheim Stuttgart, Germany
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zürich-Basel Plant Science Center, University of Basel Basel, Switzerland
| | - Paul Mäder
- Research Institute of Organic Agriculture (FIBL) Frick, Switzerland
| | - Cécile Thonar
- Research Institute of Organic Agriculture (FIBL) Frick, Switzerland
| |
Collapse
|
74
|
Diedhiou AG, Mbaye FK, Mbodj D, Faye MN, Pignoly S, Ndoye I, Djaman K, Gaye S, Kane A, Laplaze L, Manneh B, Champion A. Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLoS One 2016; 11:e0167014. [PMID: 27907023 PMCID: PMC5132163 DOI: 10.1371/journal.pone.0167014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials.
Collapse
Affiliation(s)
- Abdala Gamby Diedhiou
- Université Cheikh Anta Diop (UCAD), Faculté des Sciences et Techniques, Département de Biologie Végétale, Dakar-Fann, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Fatou Kine Mbaye
- Université Cheikh Anta Diop (UCAD), Faculté des Sciences et Techniques, Département de Biologie Végétale, Dakar-Fann, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Daouda Mbodj
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Mathieu Ndigue Faye
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Sarah Pignoly
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe CERES, Montpellier, France
| | - Ibrahima Ndoye
- Université Cheikh Anta Diop (UCAD), Faculté des Sciences et Techniques, Département de Biologie Végétale, Dakar-Fann, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Koffi Djaman
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Souleymane Gaye
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Aboubacry Kane
- Université Cheikh Anta Diop (UCAD), Faculté des Sciences et Techniques, Département de Biologie Végétale, Dakar-Fann, Sénégal
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe CERES, Montpellier, France
| | - Baboucarr Manneh
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Africa Rice Center (AfricaRice), Saint-Louis, Senegal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe CERES, Montpellier, France
| |
Collapse
|
75
|
Lidbury IDEA, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Hammond JP, Wellington EMH. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environ Microbiol 2016; 18:3535-3549. [PMID: 27233093 PMCID: PMC5082522 DOI: 10.1111/1462-2920.13390] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK.
| | - Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Alexandra M E Jones
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Jonathan D Moore
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Andrew Goodall
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, UK
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Elizabeth M H Wellington
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| |
Collapse
|
76
|
Regulation of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase Activity in the Model Rhizosphere-Dwelling Bacterium Pseudomonas putida KT2440. Appl Environ Microbiol 2016; 82:4955-64. [PMID: 27287323 DOI: 10.1128/aem.00813-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Soil-dwelling microbes solubilize mineral phosphates by secreting gluconic acid, which is produced from glucose by a periplasmic glucose dehydrogenase (GDH) that requires pyrroloquinoline quinone (PQQ) as a redox coenzyme. While GDH-dependent phosphate solubilization has been observed in numerous bacteria, little is known concerning the mechanism by which this process is regulated. Here we use the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440 to explore GDH activity and PQQ synthesis, as well as gene expression of the GDH-encoding gene (gcd) and PQQ biosynthesis genes (pqq operon) while under different growth conditions. We also use reverse transcription-PCR to identify transcripts from the pqq operon to more accurately map the operon structure. GDH specific activity and PQQ levels vary according to growth condition, with the highest levels of both occurring when glucose is used as the sole carbon source and under conditions of low soluble phosphate. Under these conditions, however, PQQ levels limit in vitro phosphate solubilization. GDH specific activity data correlate well with gcd gene expression data, and the levels of expression of the pqqF and pqqB genes mirror the levels of PQQ synthesized, suggesting that one or both of these genes may serve to modulate PQQ levels according to the growth conditions. The pqq gene cluster (pqqFABCDEG) encodes at least two independent transcripts, and expression of the pqqF gene appears to be under the control of an independent promoter and terminator. IMPORTANCE Plant growth promotion can be enhanced by soil- and rhizosphere-dwelling bacteria by a number of different methods. One method is by promoting nutrient acquisition from soil. Phosphorus is an essential nutrient that plants obtain through soil, but in many cases it is locked up in forms that are not available for plant uptake. Bacteria such as the model bacterium Pseudomonas putida KT2440 can solubilize insoluble soil phosphates by secreting gluconic acid. This chemical is produced from glucose by the activity of the bacterial enzyme glucose dehydrogenase, which requires a coenzyme called PQQ. Here we have studied how the glucose dehydrogenase enzyme and the PQQ coenzyme are regulated according to differences in bacterial growth conditions. We determined that glucose dehydrogenase activity and PQQ production are optimal under conditions when the bacterium is grown with glucose as the sole carbon source and under conditions of low soluble phosphate.
Collapse
|
77
|
Plant-Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:1-67. [PMID: 27261781 DOI: 10.1016/bs.aambs.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A major challenge facing agriculture in the 21st century is the need to increase the productivity of cultivated land while reducing the environmentally harmful consequences of mineral fertilization. The microorganisms thriving in association and interacting with plant roots, the plant microbiota, represent a potential resource of plant probiotic function, capable of conjugating crop productivity with sustainable management in agroecosystems. However, a limited knowledge of the organismal interactions occurring at the root-soil interface is currently hampering the development and use of beneficial plant-microbiota interactions in agriculture. Therefore, a comprehensive understanding of the recruitment cues of the plant microbiota and the molecular basis of nutrient turnover in the rhizosphere will be required to move toward efficient and sustainable crop nutrition. In this chapter, we will discuss recent insights into plant-microbiota interactions at the root-soil interface, illustrate the processes driving mineral dynamics in soil, and propose experimental avenues to further integrate the metabolic potential of the plant microbiota into crop management and breeding strategies for sustainable agricultural production.
Collapse
|
78
|
Tribelli PM, Solar Venero EC, Ricardi MM, Gómez-Lozano M, Raiger Iustman LJ, Molin S, López NI. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis. PLoS One 2015; 10:e0145353. [PMID: 26671564 PMCID: PMC4686015 DOI: 10.1371/journal.pone.0145353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deep-sequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, p-rosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved in cold adaptation mechanisms in this bacterium, suggesting for the first time a role of the ethanol oxidation pathway for bacterial growth at low temperatures.
Collapse
Affiliation(s)
- Paula M. Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | | | - Martiniano M. Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Maria Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Laura J. Raiger Iustman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nancy I. López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
79
|
de Souza R, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401-19. [PMID: 26537605 PMCID: PMC4763327 DOI: 10.1590/s1415-475738420150053] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
Collapse
Affiliation(s)
- Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
80
|
Giles CD, Hsu PCL, Richardson AE, Hurst MRH, Hill JE. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum. Can J Microbiol 2015; 61:885-97. [PMID: 26435508 DOI: 10.1139/cjm-2015-0206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.
Collapse
Affiliation(s)
- Courtney D Giles
- a The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA, UK
| | - Pei-Chun Lisa Hsu
- b AgResearch Lincoln, Innovative Farm Systems, Christchurch 8140, New Zealand
| | | | - Mark R H Hurst
- b AgResearch Lincoln, Innovative Farm Systems, Christchurch 8140, New Zealand
| | - Jane E Hill
- d Dartmouth College, Thayer School of Engineering, Hanover, NH 037553, USA
| |
Collapse
|
81
|
Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 2015; 183:26-41. [PMID: 26805616 DOI: 10.1016/j.micres.2015.11.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/16/2015] [Accepted: 11/21/2015] [Indexed: 11/28/2022]
Abstract
Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100, Vehari, Pakistan.
| | - Liyakat Hamid Mujawar
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, 38000, Faisalabad, Pakistan
| | - Talal Almeelbi
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, King Abdulaziz University, Jeddah 2158, Saudi Arabia
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, Jeddah 2158, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
82
|
Cho ST, Chang HH, Egamberdieva D, Kamilova F, Lugtenberg B, Kuo CH. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host. PLoS One 2015; 10:e0140231. [PMID: 26452056 PMCID: PMC4599888 DOI: 10.1371/journal.pone.0140231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding that this strain achieves biological control of pathogens through effective competition for nutrients and niches.
Collapse
Affiliation(s)
- Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsing-Hua Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Dilfuza Egamberdieva
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder str. 84, Müncheberg, Germany
| | - Faina Kamilova
- Koppert Biological Systems, Veilingweg 14, 2651 BE Berkel en Rodenrijs, the Netherlands
| | - Ben Lugtenberg
- Institute of Biology, Sylvius Laboratory, Leiden University, Leiden, the Netherlands
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
83
|
Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 2015; 6:745. [PMID: 26257721 PMCID: PMC4510416 DOI: 10.3389/fmicb.2015.00745] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/06/2015] [Indexed: 12/02/2022] Open
Abstract
The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects.
Collapse
Affiliation(s)
- Nicholas Oteino
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| | - Richard D Lally
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| | - Samuel Kiwanuka
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| | - Andrew Lloyd
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| | - David Ryan
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| | - Kieran J Germaine
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| | - David N Dowling
- Department of Science and Health, EnviroCore. The Dargan Research Centre, Institute of Technology Carlow Carlow, Ireland
| |
Collapse
|
84
|
Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M. Chemotactic Motility of Pseudomonas fluorescens F113 under Aerobic and Denitrification Conditions. PLoS One 2015; 10:e0132242. [PMID: 26161531 PMCID: PMC4498747 DOI: 10.1371/journal.pone.0132242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023] Open
Abstract
The sequence of the genome of Pseudomonas fluorescens F113 has shown the presence of multiple traits relevant for rhizosphere colonization and plant growth promotion. Among these traits are denitrification and chemotactic motility. Besides aerobic growth, F113 is able to grow anaerobically using nitrate and nitrite as final electron acceptors. F113 is able to perform swimming motility under aerobic conditions and under anaerobic conditions when nitrate is used as the electron acceptor. However, nitrite can not support swimming motility. Regulation of swimming motility is similar under aerobic and anaerobic conditions, since mutants that are hypermotile under aerobic conditions, such as gacS, sadB, kinB, algU and wspR, are also hypermotile under anaerobic conditions. However, chemotactic behavior is different under aerobic and denitrification conditions. Unlike most pseudomonads, the F113 genome encode three complete chemotaxis systems, Che1, Che2 and Che3. Mutations in each of the cheA genes of the three Che systems has shown that the three systems are functional and independent. Mutation of the cheA1 gene completely abolished swimming motility both under aerobic and denitrification conditions. Mutation of the cheA2 gene, showed only a decrease in swimming motility under both conditions, indicating that this system is not essential for chemotactic motility but is necessary for optimal motility. Mutation of the cheA3 gene abolished motility under denitrification conditions but only produced a decrease in motility under aerobic conditions. The three Che systems proved to be implicated in competitive rhizosphere colonization, being the cheA1 mutant the most affected.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Jalvo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
85
|
Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 2015; 112:104-17. [DOI: 10.1016/j.mimet.2015.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
86
|
Complete genome sequence of Pseudomonas rhizosphaerae IH5T (=DSM 16299T), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer. J Biotechnol 2015; 193:137-8. [DOI: 10.1016/j.jbiotec.2014.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 02/01/2023]
|
87
|
Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y. Analysis of genes contributing to plant-beneficial functions in Plant Growth-Promoting Rhizobacteria and related Proteobacteria. Sci Rep 2014; 4:6261. [PMID: 25179219 PMCID: PMC4151105 DOI: 10.1038/srep06261] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/11/2014] [Indexed: 01/22/2023] Open
Abstract
The positive effects of root-colonizing bacteria cooperating with plants lead to improved growth and/or health of their eukaryotic hosts. Some of these Plant Growth-Promoting Rhizobacteria (PGPR) display several plant-beneficial properties, suggesting that the accumulation of the corresponding genes could have been selected in these bacteria. Here, this issue was targeted using 23 genes contributing directly or indirectly to established PGPR effects, based on genome sequence analysis of 304 contrasted Alpha- Beta- and Gammaproteobacteria. Most of the 23 genes studied were also found in non-PGPR Proteobacteria and none of them were common to all 25 PGPR genomes studied. However, ancestral character reconstruction indicated that gene transfers -predominantly ancient- resulted in characteristic gene combinations according to taxonomic subgroups of PGPR strains. This suggests that the PGPR-plant cooperation could have established separately in various taxa, yielding PGPR strains that use different gene assortments. The number of genes contributing to plant-beneficial functions increased along the continuum -animal pathogens, phytopathogens, saprophytes, endophytes/symbionts, PGPR- indicating that the accumulation of these genes (and possibly of different plant-beneficial traits) might be an intrinsic PGPR feature. This work uncovered preferential associations occurring between certain genes contributing to phytobeneficial traits and provides new insights into the emergence of PGPR bacteria.
Collapse
Affiliation(s)
- Maxime Bruto
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | - Daniel Muller
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- 1] Université de Lyon, F-69622, Lyon, France [2] Université Lyon 1, Villeurbanne, France [3] CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
88
|
Galet J, Deveau A, Hôtel L, Leblond P, Frey-Klett P, Aigle B. Gluconic acid-producing Pseudomonas sp. prevent γ-actinorhodin biosynthesis by Streptomyces coelicolor A3(2). Arch Microbiol 2014; 196:619-27. [DOI: 10.1007/s00203-014-1000-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/06/2014] [Accepted: 05/24/2014] [Indexed: 01/19/2023]
|
89
|
Behera B, Singdevsachan S, Mishra R, Dutta S, Thatoi H. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.09.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Sindhu SS, Phour M, Choudhary SR, Chaudhary D. Phosphorus Cycling: Prospects of Using Rhizosphere Microorganisms for Improving Phosphorus Nutrition of Plants. GEOMICROBIOLOGY AND BIOGEOCHEMISTRY 2014. [DOI: 10.1007/978-3-642-41837-2_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
91
|
Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. FRONTIERS IN PLANT SCIENCE 2013; 4:356. [PMID: 24062756 PMCID: PMC3775148 DOI: 10.3389/fpls.2013.00356] [Citation(s) in RCA: 538] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/23/2013] [Indexed: 05/18/2023]
Abstract
The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Jordan Vacheron
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Guilhem Desbrosses
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, Université Montpellier 2/Institut de Recherche Pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/SupAgro/Institut National de la Recherche AgronomiqueMontpellier, France
| | - Marie-Lara Bouffaud
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
- Institut National de la Recherche Agronomique, UMR 1347, Agroécologie, Interactions Plantes-MicroorganismesDijon, France
| | - Bruno Touraine
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113, Université Montpellier 2/Institut de Recherche Pour le Développement/Centre de Coopération Internationale en Recherche Agronomique pour le Développement/SupAgro/Institut National de la Recherche AgronomiqueMontpellier, France
| | - Yvan Moënne-Loccoz
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Daniel Muller
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Laurent Legendre
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Claire Prigent-Combaret
- Université de LyonLyon, France
- Université Claude Bernard Lyon 1Villeurbanne, France
- Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
- *Correspondence: Claire Prigent-Combaret, Centre National de la Recherche Scientifique, UMR 5557, Ecologie Microbienne, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France e-mail:
| |
Collapse
|
92
|
Du J, Bai W, Song H, Yuan YJ. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metab Eng 2013; 19:50-6. [PMID: 23747604 DOI: 10.1016/j.ymben.2013.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
The expression levels of sorbose/sorbosone dehydrogenase genes (sdh and sndh) and the synthesis genes (pqqABCDEN) of the adjoint cofactor pyrroloquinoline quinone (PQQ) were genetically manipulated in Ketogulonigenium vulgare to increase the production of 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, in the consortium of K. vulgare and Bacillus cereus. We found that overexpression of sdh-sndh alone in K. vulgare could not significantly enhance the production of 2-KLG, revealing the cofactor PQQ was required for the biosynthesis of 2-KLG. Various expression levels of PQQ were achieved by differential expression of pqqA, pqqABCDE and pqqABCDEN, respectively. The combinatorial expression of sdh/sndh and pqqABCDEN in K. vulgare enabled a 20% increase in the production of 2-KLG (79.1±0.6gl(-1)) than that of the parental K. vulgare (65.9±0.4gl(-1)) in shaking flasks. Our results demonstrated the balanced co-expression of both the key enzymes and the related cofactors was an efficient strategy to increase chemicals' biosynthesis.
Collapse
Affiliation(s)
- Jin Du
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, P.O. Box 6888, Tianjin 300072, PR China
| | | | | | | |
Collapse
|
93
|
Marchi M, Boutin M, Gazengel K, Rispe C, Gauthier JP, Guillerm-Erckelboudt AY, Lebreton L, Barret M, Daval S, Sarniguet A. Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:393-403. [PMID: 23754720 DOI: 10.1111/1758-2229.12048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 05/05/2023]
Abstract
Several bacterial strains of the Pseudomonas genus provide plant growth stimulation, plant protection against pests or bioremediation. Among these bacteria, P. fluorescens Pf29Arp reduces the severity of take-all, a disease caused by the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In this study, we obtained a draft genome of Pf29Arp and subsequent comparative genomic analyses have revealed that this bacterial strain is closely related to strains of the 'P. brassicacearum-like' subgroup including P. brassicacearum ssp. brassicacearum NFM421 and P. fluorescens F113. Despite an overall chromosomal organization similar to these strains, a number of features including antibiotic synthesis gene clusters from secondary metabolism are not found in the Pf29Arp genome. But Pf29Arp possesses different protein secretion systems including type III (T3SS) and type VI (T6SS) secretion systems. Pf29Arp is the first Pseudomonas sp. strain described with four T6SS clusters (cluster I, II, III and IV). In addition, some protein-coding genes involved in the assembly of these secretion systems are basally expressed during Pf29Arp colonization of healthy wheat roots and display different expression patterns on necrotized roots caused by Ggt. These data suggest a role of T3SS and T6SS in the Pf29Arp adaptation to different root environments.
Collapse
|
94
|
Walker V, Bruto M, Bellvert F, Bally R, Muller D, Prigent-Combaret C, Moënne-Loccoz Y, Comte G. Unexpected phytostimulatory behavior for Escherichia coli and Agrobacterium tumefaciens model strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:495-502. [PMID: 23360460 DOI: 10.1094/mpmi-12-12-0298-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant-beneficial effects of bacteria are often underestimated, especially for well-studied strains associated with pathogenicity or originating from other environments. We assessed the impact of seed inoculation with the emblematic bacterial models Agrobacterium tumefaciens C58 (plasmid-cured) or Escherichia coli K-12 on maize seedlings in nonsterile soil. Compared with the noninoculated control, root biomass (with A. tumefaciens or E. coli) and shoot biomass (with A. tumefaciens) were enhanced at 10 days for 'PR37Y15' but not 'DK315', as found with the phytostimulator Azospirillum brasilense UAP-154 (positive control). In roots as well as in shoots, Agrobacterium tumefaciens and E. coli triggered similar (in PR37Y15) or different (in DK315) changes in the high-performance liquid chromatography profiles of secondary metabolites (especially benzoxazinoids), distinct from those of Azospirillum brasilense UAP-154. Genome sequence analysis revealed homologs of nitrite reductase genes nirK and nirBD and siderophore synthesis genes for Agrobacterium tumefaciens, as well as homologs of nitrite reductase genes nirBD and phosphatase genes phoA and appA in E. coli, whose contribution to phytostimulation will require experimental assessment. In conclusion, the two emblematic bacterial models had a systemic impact on maize secondary metabolism and resulted in unexpected phytostimulation of seedlings in the Azospirillum sp.-responsive cultivar.
Collapse
|
95
|
Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O'Gara F, Martín M, Rivilla R. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 2013; 14:54. [PMID: 23350846 PMCID: PMC3570484 DOI: 10.1186/1471-2164-14-54] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/23/2013] [Indexed: 01/04/2023] Open
Abstract
Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.
Collapse
Affiliation(s)
- Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin, 2, Madrid, 28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Roca A, Pizarro-Tobías P, Udaondo Z, Fernández M, Matilla MA, Molina-Henares MA, Molina L, Segura A, Duque E, Ramos JL. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol 2012. [PMID: 23206161 DOI: 10.1111/1462-2920.12037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pseudomonas putida BIRD-1 is a plant growth-promoting rhizobacterium whose genome size is 5.7 Mbp. It adheres to plant roots and colonizes the rhizosphere to high cell densities even in soils with low moisture. This property is linked to its ability to synthesize trehalose, since a mutant deficient in the synthesis of trehalose exhibited less tolerance to desiccation than the parental strain. The genome of BIRD-1 encodes a wide range of proteins that help it to deal with reactive oxygen stress generated in the plant rhizosphere. BIRD-1 plant growth-promoting rhizobacteria properties derive from its ability to enhance phosphorous and iron solubilization and to produce phytohormones. BIRD-1 is capable of solubilizing insoluble inorganic phosphate forms through acid production. The genome of BIRD-1 encodes at least five phosphatases related to phosphorous solubilization, one of them being a phytase that facilitates the utilization of phytic acid, the main storage form of phosphorous in plants. Pyoverdine is the siderophore produced by this strain, a mutant that in the FvpD siderophore synthase failed to grow on medium without supplementary iron, but the mutant was as competitive as the parental strain in soils because it captures the siderophores produced by other microbes. BIRD-1 overproduces indole-3-acetic acid through convergent pathways.
Collapse
Affiliation(s)
- Amalia Roca
- Polígono Industrial Juncaril, Bio-Iliberis R&D, 18210, Peligros, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Critical Evaluation of Phosphate Solubilizing Pseudomonads Isolated from a Partially Recultivated Potash Tailings Pile. Curr Microbiol 2012; 65:202-6. [DOI: 10.1007/s00284-012-0145-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
|
98
|
Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Appl Environ Microbiol 2011; 77:7345-54. [PMID: 21856827 DOI: 10.1128/aem.05434-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify the pqqC gene of the Pseudomonas genus, were designed. pqqC fragments were amplified and sequenced from a Pseudomonas strain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based on pqqC sequences were compared to trees obtained with the two concatenated housekeeping genes rpoD and gyrB. For both pqqC and rpoD-gyrB, similar main phylogenetic clusters were found. However, in the pqqC but not in the rpoD-gyrB tree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside the Pseudomonas fluorescens group. pqqC sequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups than pqqC sequences derived from the cultivation-independent approach. Comparing pqqC phylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the gene pqqC is a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.
Collapse
|
99
|
In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 2011; 111:683-92. [DOI: 10.1111/j.1365-2672.2011.05079.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
100
|
Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. PLANT PHYSIOLOGY 2011; 156:989-96. [PMID: 21606316 PMCID: PMC3135950 DOI: 10.1104/pp.111.175448] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/20/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Alan E Richardson
- CSIRO Sustainable Agriculture National Research Flagship/CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|