51
|
Castillo-Ordóñez WO, Tamarozzi ER, da Silva GM, Aristizabal-Pachón AF, Sakamoto-Hojo ET, Takahashi CS, Giuliatti S. Exploration of the Acetylcholinesterase Inhibitory Activity of Some Alkaloids from Amaryllidaceae Family by Molecular Docking In Silico. Neurochem Res 2017; 42:2826-2830. [DOI: 10.1007/s11064-017-2295-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 01/24/2023]
|
52
|
Cespedes CL, Balbontin C, Avila JG, Dominguez M, Alarcon J, Paz C, Burgos V, Ortiz L, Peñaloza-Castro I, Seigler DS, Kubo I. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem Toxicol 2017; 109:984-995. [PMID: 28501487 DOI: 10.1016/j.fct.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 02/02/2023]
Abstract
It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves.
Collapse
Affiliation(s)
- Carlos L Cespedes
- Biochemistry and Phytochemical-Ecology Lab, Department of Basic Science, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile.
| | - Cristian Balbontin
- Plant Production Department, Instituto Nacional de Investigaciones Agropecuarias, Quilamapu, Chillan, Chile
| | - Jose G Avila
- Laboratorio de Fitoquimica, Unidad UBIPRO-FES-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, DF, Mexico
| | - Mariana Dominguez
- Departamento de Biologia Celular y Desarrollo, Laboratorio 305-Sur, Instituto de Fisiologia Celular, UNAM, Ciudad Universitaria, Coyoacan 04510, Mexico, DF, Mexico
| | - Julio Alarcon
- Synthesis and Biotransformation Lab., Department of Basic Science, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Cristian Paz
- Departamento de Química y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 1011, Temuco, Chile
| | - Viviana Burgos
- Departamento de Química y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 1011, Temuco, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Química, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Peñaloza-Castro
- Laboratorio de Fisiologia Vegetal, Unidad UBIPRO-FES-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, DF, Mexico
| | - David S Seigler
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Isao Kubo
- Natural Products Chemistry Lab., ESPM Department, University of California, Berkeley, USA
| |
Collapse
|
53
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
54
|
Heller L, Kahnt M, Loesche A, Grabandt P, Schwarz S, Brandt W, Csuk R. Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase. Eur J Med Chem 2016; 126:652-668. [PMID: 27936444 DOI: 10.1016/j.ejmech.2016.11.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
A set of thirtyfive 30-norlupan derivatives (2-36) was prepared from the natural triterpenoid platanic acid (PA), and the hydroxyl group at C-3, the carboxyl group at C-17 and the carbonyl group at C-20 were modified. These derivatives were tested for their inhibitory activity for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) using Ellman's assay. Extra enzyme kinetic studies were performed. The most active compound was (3β, 20R)-3-acetyloxy-20-amino-30-norlupan-28-oate (32) showing a Ki value of 0.01 ± 0.003 μM for BChE. This compound proved to be a selective (FB = 851), mixed-type inhibitor for BChE.
Collapse
Affiliation(s)
- Lucie Heller
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Michael Kahnt
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Patricia Grabandt
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Stefan Schwarz
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
55
|
Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase. Amino Acids 2016; 48:2755-2763. [PMID: 27522651 DOI: 10.1007/s00726-016-2310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer's and Huntington's disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer's disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (K I value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower K I value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding.
Collapse
|
56
|
Ortiz JE, Pigni NB, Andujar SA, Roitman G, Suvire FD, Enriz RD, Tapia A, Bastida J, Feresin GE. Alkaloids from Hippeastrum argentinum and Their Cholinesterase-Inhibitory Activities: An in Vitro and in Silico Study. JOURNAL OF NATURAL PRODUCTS 2016; 79:1241-8. [PMID: 27096334 DOI: 10.1021/acs.jnatprod.5b00785] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two new alkaloids, 4-O-methylnangustine (1) and 7-hydroxyclivonine (2) (montanine and homolycorine types, respectively), and four known alkaloids were isolated from the bulbs of Hippeastrum argentinum, and their cholinesterase-inhibitory activities were evaluated. These compounds were identified using GC-MS, and their structures were defined by physical data analysis. Compound 2 showed weak butyrylcholinesterase (BuChE)-inhibitory activity, with a half-maximal inhibitory concentration (IC50) value of 67.3 ± 0.09 μM. To better understand the experimental results, a molecular modeling study was also performed. The combination of a docking study, molecular dynamics simulations, and quantum theory of atoms in molecules calculations provides new insight into the molecular interactions of compound 2 with BuChE, which were compared to those of galantamine.
Collapse
Affiliation(s)
- Javier E Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan , Avenida Libertador General San Martín 1109 (O), 5400 San Juan, Argentina
| | - Natalia B Pigni
- Departament de Productes Naturals, Biologia Vegetal i Edafologia, Facultat de Farmàcia, Universitat de Barcelona , Avenida Joan XXIII s/n, 08028 Barcelona, Spain
- ICYTAC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , 5000 Córdoba, Argentina
| | - Sebastián A Andujar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 915, 5700 San Luis, Argentina
| | - German Roitman
- Cátedra de Jardinería, Facultad de Agronomía, Universidad de Buenos Aires , Avenida San Martín 4453, 1417 Buenos Aires, Argentina
| | - Fernando D Suvire
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 915, 5700 San Luis, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 915, 5700 San Luis, Argentina
| | - Alejandro Tapia
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan , Avenida Libertador General San Martín 1109 (O), 5400 San Juan, Argentina
| | - Jaume Bastida
- Departament de Productes Naturals, Biologia Vegetal i Edafologia, Facultat de Farmàcia, Universitat de Barcelona , Avenida Joan XXIII s/n, 08028 Barcelona, Spain
| | - Gabriela E Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan , Avenida Libertador General San Martín 1109 (O), 5400 San Juan, Argentina
| |
Collapse
|
57
|
Yılmaz S, Akbaba Y, Özgeriş B, Köse LP, Göksu S, Gülçin İ, Alwasel SH, Supuran CT. Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholine esterase. J Enzyme Inhib Med Chem 2016; 31:1484-91. [PMID: 26985691 DOI: 10.3109/14756366.2016.1149477] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of carbamate derivatives were synthesized and their carbonic anhydrase I and II isoenzymes and acetylcholinesterase enzyme (AChE) inhibitory effects were investigated. All carbamates were synthesized from the corresponding carboxylic acids via the Curtius reactions of the acids with diphenyl phosphoryl azide followed by addition of benzyl alcohol. The carbamates were determined to be very good inhibitors against for AChE and hCA I, and II isoenzymes. AChE inhibition was determined in the range 0.209-0.291 nM. On the other hand, tacrine, which is used in the treatment of Alzheimer's disease possessed lower inhibition effect (Ki: 0.398 nM). Also, hCA I and II isoenzymes were effectively inhibited by the carbamates, with inhibition constants (Ki) in the range of 4.49-5.61 nM for hCA I, and 4.94-7.66 nM for hCA II, respectively. Acetazolamide, which was clinically used carbonic anhydrase (CA) inhibitor demonstrated Ki values of 281.33 nM for hCA I and 9.07 nM for hCA II. The results clearly showed that AChE and both CA isoenzymes were effectively inhibited by carbamates at the low nanomolar levels.
Collapse
Affiliation(s)
- Süleyman Yılmaz
- a Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Yusuf Akbaba
- a Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey .,b Department of Basic Science , Faculty of Science, Erzurum Technical University , Erzurum , Turkey
| | - Bünyamin Özgeriş
- a Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey .,b Department of Basic Science , Faculty of Science, Erzurum Technical University , Erzurum , Turkey
| | - Leyla Polat Köse
- a Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Süleyman Göksu
- a Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - İlhami Gülçin
- a Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey .,c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Saleh H Alwasel
- c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- d Dipartimento di Chimica Ugo Schiff, Universita Degli Studi di Firenze , Sesto Fiorentino , Firenze , Italy , and.,e Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Universita Degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| |
Collapse
|
58
|
Seo SM, Jung CS, Kang J, Lee HR, Kim SW, Hyun J, Park IK. Larvicidal and acetylcholinesterase inhibitory activities of apiaceae plant essential oils and their constituents against aedes albopictus and formulation development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9977-9986. [PMID: 26500081 DOI: 10.1021/acs.jafc.5b03586] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study evaluated the larvicidal activity of 12 Apiaceae plant essential oils and their components against the Asian tiger mosquito, Aedes albopictus, and the inhibition of acetylcholine esterase with their components. Of the 12 plant essential oils tested, ajowan (Trachyspermum ammi), caraway seed (Carum carvi), carrot seed (Daucus carota), celery (Apium graveolens), cumin (Cuminum cyminum), dill (Anethum graveolens), and parsley (Petroselinum sativum) resulted in >90% larval mortality when used at 0.1 mg/mL. Of the compounds identified, α-phellandrene, α-terpinene, p-cymene, (-)-limonene, (+)-limonene, γ-terpinene, cuminaldehyde, neral, (S)-+-carvone, trans-anethole, thymol, carvacrol, myristicin, apiol, and carotol resulted in >80% larval mortality when used at 0.1 mg/mL. Two days after treatment, 24.69, 3.64, and 12.43% of the original amounts of the celery, cumin, and parsley oils, respectively, remained in the water. Less than 50% of the original amounts of α-phellandrene, 1,8-cineole, terpinen-4-ol, cuminaldehyde, and trans-antheole were detected in the water at 2 days after treatment. Carvacrol, α-pinene, and β-pinene inhibited the activity of Ae. albopictus acetylcholinesterase with IC50 values of 0.057, 0.062, and 0.190 mg/mL, respectively. A spherical microemulsion of parsley essential oil-loaded poly(vinyl alcohol) (PVA) was prepared, and the larvicidal activity of this formulation was shown to be similar to that of parsley oil.
Collapse
Affiliation(s)
- Seon-Mi Seo
- Lifetree Biotech Company, Ltd., Maesonggosaek-ro, Kwonsun-gu, Suwon, Gyeonggido 441-813, Republic of Korea
| | - Chan-Sik Jung
- Division of Forest Insect Pests and Diseases, Korea Forest Research Institute , Seoul 130-712, Republic of Korea
| | - Jaesoon Kang
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology , Jin-Ju 660-844, Gyeongnam, Republic of Korea
| | | | - Sung-Woong Kim
- Division of Forest Insect Pests and Diseases, Korea Forest Research Institute , Seoul 130-712, Republic of Korea
| | | | | |
Collapse
|
59
|
Schuck F, Schmitt U, Reinhardt S, Freese C, Lee IS, Thines E, Efferth T, Endres K. Extract of Caragana sinica as a potential therapeutic option for increasing alpha-secretase gene expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1027-1036. [PMID: 26407945 DOI: 10.1016/j.phymed.2015.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Alzheimer's disease represents one of the main neurological disorders in the aging population. Treatment options so far are only of symptomatic nature and efforts in developing disease modifying drugs by targeting amyloid beta peptide-generating enzymes remain fruitless in the majority of human studies. During the last years, an alternative approach emerged to target the physiological alpha-secretase ADAM10, which is not only able to prevent formation of toxic amyloid beta peptides but also provides a neuroprotective fragment of the amyloid precursor protein - sAPPalpha. PURPOSE To identify novel alpha-secretase enhancers from a library of 313 extracts of medicinal plants indigenous to Korea, a screening approach was used and hits were further evaluated for their therapeutic value. METHODS The extract library was screened for selective enhancers of ADAM10 gene expression using a luciferase-based promoter reporter gene assay in the human neuroblastoma cell line SH-SY5Y. Candidate extracts were then tested in wild type mice for acute behavioral effects using an open field paradigm. Brain and liver tissue from treated mice was biochemically analyzed for ADAM10 gene expression in vivo. An in vitro blood-brain barrier model and an in vitro ATPase assay were used to unravel transport properties of bioactive compounds from extract candidates. Finally, fractionation of the most promising extract was performed to identify biologically active components. RESULTS The extract of Caragana sinica (Buc'hoz) Rehder was identified as the best candidate from our screening approach. We were able to demonstrate that the extract is acutely applicable in mice without obvious side effects and induces ADAM10 gene expression in peripheral tissue. A hindered passage across the blood-brain barrier was detected explaining lack of cerebral induction of ADAM10 gene expression in treated mice. By fractionating C. sinica extract we identified alpha-viniferin as one of the biologically active components. CONCLUSION The extract of C. sinica and alpha-viniferin as one of its bioactive constituents might serve as novel therapeutic options for treating Alzheimer's disease by increasing ADAM10 gene expression. The identification of alpha-viniferin represents a promising starting point to achieve blood-brain barrier penetrance in the future.
Collapse
Affiliation(s)
- Florian Schuck
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | - Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | - Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany.
| |
Collapse
|
60
|
Lomarat P, Chancharunee S, Anantachoke N, Kitphati W, Sripha K, Bunyapraphatsara N. Bioactivity-guided Separation of the Active Compounds in Acacia Pennata Responsible for the Prevention of Alzheimer's Disease. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the health benefits of plants used in Thai food, specifically Acacia pennata Willd., in Alzheimer's prevention. A. pennata twigs strongly inhibited β-amyloid aggregation. Bioactivity-guided separation of the active fractions yielded six known compounds, tetracosane (1), 1-(heptyloxy)-octadecane (2), methyl tridecanoate (3), arborinone (4), confertamide A (5) and 4-hydroxy-1-methyl-pyrrolidin-2-carboxylic acid (6). The structures were determined by spectroscopic analysis. Biological testing revealed that tetracosane (1) was the most potent inhibitor of β-amyloid aggregation, followed by 1-(heptyloxy)-octadecane (2) with IC50 values of 0.4 and 12.3 μM. Methyl tridecanoate (3), arborinone (4) and 4-hydroxy-1-methyl-pyrrolidin-2-carboxylic acid (6) moderately inhibited β-amyloid aggregation. In addition, tetracosane (1) and methyl tridecanoate (3) weakly inhibited acetylcholinesterase (AChE). These results suggested that the effect of A pennata on Alzheimer's disease was likely due to the inhibition of β-amyloid aggregation. Thus A. pennata may be beneficial for Alzheimer's prevention.
Collapse
Affiliation(s)
- Pattamapan Lomarat
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Sirirat Chancharunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natthinee Anantachoke
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
61
|
Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther 2015; 152:83-97. [PMID: 25956464 DOI: 10.1016/j.pharmthera.2015.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Monoterpenes are a structurally diverse group of phytochemicals and a major constituent of plant-derived 'essential oils'. Monoterpenes such as menthol, carvacrol, and eugenol have been utilized for therapeutical purposes and food additives for centuries and have been reported to have anti-inflammatory, antioxidant and analgesic actions. In recent years there has been increasing interest in understanding the pharmacological actions of these molecules. There is evidence indicating that monoterpenes can modulate the functional properties of several types of voltage and ligand-gated ion channels, suggesting that some of their pharmacological actions may be mediated by modulations of ion channel function. In this report, we review the literature concerning the interaction of monoterpenes with various ion channels.
Collapse
|
62
|
Huang G, Nimczick M, Decker M. Rational Modification of the Biological Profile of GPCR Ligands through Combination with Other Biologically Active Moieties. Arch Pharm (Weinheim) 2015; 348:531-40. [DOI: 10.1002/ardp.201500079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Guozheng Huang
- Pharmazeutische und Medizinische Chemie; Institut für Pharmazie und Lebensmittelchemie; Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Martin Nimczick
- Pharmazeutische und Medizinische Chemie; Institut für Pharmazie und Lebensmittelchemie; Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie; Institut für Pharmazie und Lebensmittelchemie; Julius-Maximilians-Universität Würzburg; Würzburg Germany
| |
Collapse
|
63
|
Bhattacharya S, Montag D. Acetylcholinesterase inhibitor modifications: a promising strategy to delay the progression of Alzheimer's disease. Neural Regen Res 2015; 10:43-5. [PMID: 25788916 PMCID: PMC4357112 DOI: 10.4103/1673-5374.150648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 11/21/2022] Open
Affiliation(s)
- Soumee Bhattacharya
- Leibniz Institute for Neurobiology, Neurogenetics Special Laboratory, Magdeburg, Germany
| | - Dirk Montag
- Leibniz Institute for Neurobiology, Neurogenetics Special Laboratory, Magdeburg, Germany
| |
Collapse
|
64
|
Song Z, Han S, Pan X, Gong Y, Wang M. Pterostilbene mediates neuroprotection against oxidative toxicity via oestrogen receptor α signalling pathways. J Pharm Pharmacol 2015; 67:720-30. [DOI: 10.1111/jphp.12360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/02/2014] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
Accumulating evidence indicated protective role of phytoestrogens against neuronal damage induced by various insults, such as amyloid beta, oxygen deprivation and mitochondrial toxins. Hydrogen peroxide (H2O2) influences the mitochondrial membrane potential, which eventually results in cell apoptosis. In this study, we investigated the effects and possible mechanisms of a phytoestrogen, pterostilbene (PTER), in cell apoptosis induced by H2O2 in human neuronal SH-SY5Y cells. We also analysed the involvement of oestrogen receptors, oestrogen receptor-α and -β (ER-α and ER-β) in the protective role of PTER.
Methods
The effects of PTER on H2O2-stimulated cell were examined using MTT and FACS analysis. The signal pathways and estrogen receptors involved in PTER's effects were investigated using MTT and Western blot analysis.
Key findings
The results showed that H2O2 treatment significantly reduced cell viability in SY5Y cells, which was protected by PTER treatment. We also found that H2O2 inhibited the PI3K/AKT and MAPK/ERK signalling pathways, whereas PTER treatment restored these signalling pathways. We also found that the PTER effect could be largely blocked by an ER-α antagonist, 3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP), but not by an ER-β antagonist, 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a] pyrimidin-3-yl]phenol (PHTPP), suggesting that ER-α is a major player in the neuroprotective activity of PTER.
Conclusion
Our study thus demonstrates that PTER is an effective neuroprotective agent presumably through ER-α-mediated signalling pathways.
Collapse
Affiliation(s)
- Zhen Song
- Department of Genetics, Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Shuai Han
- Department of Genetics, Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Department of Genetics, Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Molin Wang
- Department of Genetics, Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong, China
| |
Collapse
|
65
|
Vandeput M, Parsajoo C, Vanheuverzwijn J, Patris S, Yardim Y, le Jeune A, Sarakbi A, Mertens D, Kauffmann JM. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis. J Pharm Biomed Anal 2015; 102:267-75. [DOI: 10.1016/j.jpba.2014.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
|
66
|
Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Arch Toxicol 2014; 88:2213-32. [PMID: 25344023 DOI: 10.1007/s00204-014-1386-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 01/10/2023]
Abstract
Resveratrol, a natural compound endowed with multiple health-promoting effects, has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer.
Collapse
|
67
|
Darras FH, Wehle S, Huang G, Sotriffer CA, Decker M. Amine substitution of quinazolinones leads to selective nanomolar AChE inhibitors with ‘inverted’ binding mode. Bioorg Med Chem 2014; 22:4867-81. [DOI: 10.1016/j.bmc.2014.06.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/18/2014] [Accepted: 06/22/2014] [Indexed: 02/02/2023]
|
68
|
Heller L, Schwarz S, Weber BA, Csuk R. Gypsogenin derivatives: an unexpected class of inhibitors of cholinesterases. Arch Pharm (Weinheim) 2014; 347:707-16. [PMID: 25042600 DOI: 10.1002/ardp.201400103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/06/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Gypsogenin (1) was obtained by acidic hydrolysis from its saponin. While the parent compound 1 acted as a selective inhibitor for butyrylcholinesterase (from equus) possessing a moderate mixed-type inhibition of the enzyme, Ki values as low as 2.67 ± 0.59 μM were determined for (3β,4α) 3-O-acetyl-olean-12-ene-23,28-dinitrile (11) and acetylcholinesterase (AChE, from electric eel). Thus, 11 possesses one-fifth of the inhibitory activity of the "gold standard" galantamine hydrobromide; this compound is one of the first pentacyclic triterpenoids described as a potent AChE-selective inhibitor.
Collapse
Affiliation(s)
- Lucie Heller
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
69
|
Céspedes CL, Salazar JR, Ariza-Castolo A, Yamaguchi L, Avila JG, Aqueveque P, Kubo I, Alarcón J. Biopesticides from plants: Calceolaria integrifolia s.l. ENVIRONMENTAL RESEARCH 2014; 132:391-406. [PMID: 24893349 DOI: 10.1016/j.envres.2014.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 μg/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 µg/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maximum activity is obtained when the balance between hydrophilic and hydrophobic portions of the molecules of the mixtures becomes the most appropriate. Diterpenes, flavonoids, phenylpropanoids, iridoids and phenolic acids were identified by chromatographic procedures (HPLC-DAD), ESI-MS, and NMR hyphenated techniques.
Collapse
Affiliation(s)
- Carlos L Céspedes
- Basic Science Department, Faculty of Sciences, University of Bío Bío, Andres Bello Av, s/n, Chillán, P.O. Box 447, Ñuble 3780000, Chile.
| | - Juan R Salazar
- Facultad de Ciencias Químicas, Universidad La Salle, México DF, México
| | | | - Lydia Yamaguchi
- Instituto de Química, Universidad de São Paulo, São Paulo, Brazil
| | - José G Avila
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, UNAM, México DF, México
| | - Pedro Aqueveque
- Laboratorio de Microbiología y Micología Aplicada, Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Isao Kubo
- ESPM Department, University of California at Berkeley, USA
| | - Julio Alarcón
- Basic Science Department, Faculty of Sciences, University of Bío Bío, Andres Bello Av, s/n, Chillán, P.O. Box 447, Ñuble 3780000, Chile
| |
Collapse
|
70
|
Lee SR, Pronto JRD, Sarankhuu BE, Ko KS, Rhee BD, Kim N, Mishchenko NP, Fedoreyev SA, Stonik VA, Han J. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis. Mar Drugs 2014; 12:3560-73. [PMID: 24918454 PMCID: PMC4071590 DOI: 10.3390/md12063560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/10/2014] [Accepted: 05/29/2014] [Indexed: 11/16/2022] Open
Abstract
Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer's disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/ reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors.
Collapse
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Julius Ryan D Pronto
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Bolor-Erdene Sarankhuu
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| | - Natalia P Mishchenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Sergey A Fedoreyev
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690022, Russia.
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea.
| |
Collapse
|
71
|
Cespedes CL, Muñoz E, Salazar JR, Yamaguchi L, Werner E, Alarcon J, Kubo I. Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae). Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2013.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
72
|
Xiao J, Tundis R. Natural products for Alzheimer's disease therapy: basic and application. J Pharm Pharmacol 2013; 65:1679-1680. [PMID: 24236979 DOI: 10.1111/jphp.12186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jianbo Xiao
- Research Center of Bio-separation Engineering Technology, Anhui Institute of Applied Technology, Hefei, Anhui, 230031, China; Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, 97074, Würzburg, Germany
| | | |
Collapse
|