51
|
Xiang X, Niu YR, Wang ZH, Ye LL, Peng WB, Zhou Q. Cancer-associated fibroblasts: Vital suppressors of the immune response in the tumor microenvironment. Cytokine Growth Factor Rev 2022; 67:35-48. [DOI: 10.1016/j.cytogfr.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/17/2022]
|
52
|
Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers (Basel) 2022; 14:cancers14112751. [PMID: 35681731 PMCID: PMC9179584 DOI: 10.3390/cancers14112751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor β (TGFβ) plays a paradoxical role in cancer, first inhibiting then promoting its progression, a duality that poses a real challenge for the development of effective TGFβ-targeted therapies. The major TGFβ downstream effectors, SMAD2 and SMAD3, display both distinct and overlapping functions and accumulating evidence suggests that their activation ratio may contribute to the dual effect of TGFβ. However, the mechanisms responsible for their selective activation remain poorly understood. Here, we provide experimental evidence that hypoxia induces the pro-invasive arm of TGFβ signaling through a selective increase in SMAD3 interaction with SMAD-Anchor for Receptor Activation (SARA). This event relies on HDAC6-dependent SMAD3 bioavailability, as well as increased SARA recruitment to EEA1+ endosomes. A motility gene expression study indicated that SMAD3 selectively increased the expression of ITGB2 and VIM, two genes that were found to be implicated in hypoxia-induced cell invasion and associated with tumor progression and metastasis in cohorts of cancer patients. Furthermore, CAM xenograft assays show the significant benefit of selective inhibition of the SMAD3 signaling pathway as opposed to global TGFβ inhibition in preventing tumor progression. Overall, these results suggest that fine-tuning of the pro-invasive HDAC6-SARA-SMAD3 axis could be a better strategy towards effective cancer treatments.
Collapse
|
53
|
Bévant K, Desoteux M, Angenard G, Pineau R, Caruso S, Louis C, Papoutsoglou P, Sulpice L, Gilot D, Zucman‐Rossi J, Coulouarn C. TGFβ-induced FOXS1 controls epithelial-mesenchymal transition and predicts a poor prognosis in liver cancer. Hepatol Commun 2022; 6:1157-1171. [PMID: 34825776 PMCID: PMC9035581 DOI: 10.1002/hep4.1866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor beta (TGF-β) plays a key role in tumor progression, notably as a potent inducer of epithelial-mesenchymal transition (EMT). However, all of the molecular effectors driving TGFβ-induced EMT are not fully characterized. Here, we report that forkhead box S1 (FOXS1) is a SMAD (mothers against decapentaplegic)-dependent TGFβ-induced transcription factor, which regulates the expression of genes required for the initial steps of EMT (e.g., snail family transcription repressor 1) and to maintain a mesenchymal phenotype in hepatocellular carcinoma (HCC) cells. In human HCC, we report that FOXS1 is a biomarker of poorly differentiated and aggressive tumor subtypes. Importantly, FOXS1 expression level and activity are associated with a poor prognosis (e.g., reduced patient survival), not only in HCC but also in colon, stomach, and kidney cancers. Conclusion: FOXS1 constitutes a clinically relevant biomarker for tumors in which the pro-metastatic arm of TGF-β is active (i.e., patients who may benefit from targeted therapies using inhibitors of the TGF-β pathway).
Collapse
Affiliation(s)
- Kevin Bévant
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Matthis Desoteux
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Gaëlle Angenard
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Raphaël Pineau
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
| | - Stefano Caruso
- Centre de Recherche des CordeliersInsermSorbonne UniversitéUniversité de ParisUniversité Paris 13Functional Genomics of Solid Tumors LaboratoryParisFrance
| | - Corentin Louis
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Panagiotis Papoutsoglou
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Laurent Sulpice
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - David Gilot
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
| | - Jessica Zucman‐Rossi
- Centre de Recherche des CordeliersInsermSorbonne UniversitéUniversité de ParisUniversité Paris 13Functional Genomics of Solid Tumors LaboratoryParisFrance
- European Hospital Georges PompidouAP‐HPParisFrance
| | - Cédric Coulouarn
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| |
Collapse
|
54
|
Fan Y, Xue H, Zheng H. Systemic Therapy for Hepatocellular Carcinoma: Current Updates and Outlook. J Hepatocell Carcinoma 2022; 9:233-263. [PMID: 35388357 PMCID: PMC8977221 DOI: 10.2147/jhc.s358082] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged the culprit of cancer-related mortality worldwide with its dismal prognosis climbing. In recent years, ground-breaking progress has been made in systemic therapy for HCC. Targeted therapy based on specific signaling molecules, including sorafenib, lenvatinib, regorafenib, cabozantinib, and ramucirumab, has been widely used for advanced HCC (aHCC). Immunotherapies such as pembrolizumab and nivolumab greatly improve the survival of aHCC patients. More recently, synergistic combination therapy has boosted first-line (atezolizumab in combination with bevacizumab) and second-line (ipilimumab in combination with nivolumab) therapeutic modalities for aHCC. This review aims to summarize recent updates of systemic therapy relying on the biological mechanisms of HCC, particularly highlighting the approved agents for aHCC. Adjuvant and neoadjuvant therapy, as well as a combination with locoregional therapies (LRTs), are also discussed. Additionally, we describe the promising effect of traditional Chinese medicine (TCM) as systemic therapy on HCC. In this setting, the challenges and future directions of systemic therapy for HCC are also explored.
Collapse
Affiliation(s)
- Yinjie Fan
- College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, People’s Republic of China
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Hang Xue
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Huachuan Zheng
- Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
- Correspondence: Huachuan Zheng, Department of Oncology and Experimental Center, the Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China, Tel +86-0314-2279458, Fax +86-0314-2279458, Email
| |
Collapse
|
55
|
Tschernia NP, Gulley JL. Tumor in the Crossfire: Inhibiting TGF-β to Enhance Cancer Immunotherapy. BioDrugs 2022; 36:153-180. [PMID: 35353346 PMCID: PMC8986721 DOI: 10.1007/s40259-022-00521-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Cancer immunotherapy using monoclonal antibodies targeting immune checkpoints has undoubtedly revolutionized the cancer treatment landscape in the last decade. Immune checkpoint inhibitors can elicit long-lasting, previously unheard-of responses in a number of tumor entities. Yet, even in such tumors as metastatic melanoma and non-small cell-lung cancer, in which immune checkpoint inhibition has become the first-line treatment of choice, only a minority of patients will benefit considerably from these treatments. This has been attributed to a number of factors, including an immune-suppressive tumor microenvironment (TME). Using different modalities to break these barriers is of utmost importance to expand the population of patients that benefit from immune checkpoint inhibition. The multifunctional cytokine transforming growth factor-β (TGF-β) has long been recognized as an immune-suppressive factor in the TME. A considerable number of drugs have been developed to target TGF-β, yet most of these have since been discontinued. The combination of anti-TGF-β agents with immune checkpoint inhibitors now has the potential to revive this target as a viable immunomodulatory therapeutic approach. Currently, a limited number of small molecular inhibitor and monoclonal antibody candidates that target TGF-β are in clinical development in combination with the following immune checkpoint inhibitors: SRK 181, an antibody inhibiting the activation of latent TGF-β1; NIS 793, a monoclonal antibody targeting TGF-β; and SHR 1701, a fusion protein consisting of an anti-PD-L1 monoclonal antibody fused with the extracellular domain of human TGF-β receptor II. Several small molecular inhibitors are also in development and are briefly reviewed: LY364947, a pyrazole-based small molecular inhibitor of the serine-threonine kinase activity of TGFβRI; SB-431542, an inhibitor targeting several TGF-β superfamily Type I activin receptor-like kinases as well as TGF-β1-induced nuclear Smad3 localization; and galunisertib, an oral small molecular inhibitor of the TGFβRI kinase. One of the most advanced agents in this area is bintrafusp alfa, a bifunctional fusion protein composed of the extracellular domain of TGF-β receptor II fused to a human IgG1 mAb blocking PD-L1. Bintrafusp alfa is currently in advanced clinical development and as an agent in this space with the most clinical experience, is a focused highlight of this review.
Collapse
Affiliation(s)
- Nicholas P Tschernia
- Genitourinary Malignancies Branch, Medical Oncology Service, National Cancer Institute, Building 10, Room 13N240, Bethesda, MD, 20892, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Medical Oncology Service, National Cancer Institute, Building 10, Room 13N240, Bethesda, MD, 20892, USA.
| |
Collapse
|
56
|
Radiosensitizing effect of galunisertib, a TGF-ß receptor I inhibitor, on head and neck squamous cell carcinoma in vitro. Invest New Drugs 2022; 40:478-486. [PMID: 34985593 PMCID: PMC9098568 DOI: 10.1007/s10637-021-01207-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Background. Resistance to radiation therapy poses a major clinical problem for patients suffering from head and neck squamous cell carcinoma (HNSCC). Transforming growth factor ß (TGF-ß) has emerged as a potential target. This study aimed to investigate the radiosensitizing effect of galunisertib, a small molecule TGF-ß receptor kinase I inhibitor, on HNSCC cells in vitro. Methods. Three HNSCC cell lines were treated with galunisertib alone, or in combination with radiation. Of those three cell lines, one has a known inactivating mutation of the TGF-ß pathway (Cal27), one has a TGF-ß pathway deficiency (FaDu) and one has no known alteration (SCC-25). The effect on metabolic activity was evaluated by a resazurin-based reduction assay. Cell migration was evaluated by wound-healing assay, clonogenic survival by colony formation assay and cell cycle by FACS analysis. Results. Galunisertib reduced metabolic activity in FaDu, increased in SCC-25 and had no effect on CAL27. Migration was significantly reduced by galunisertib in all three cell lines and showed additive effects in combination with radiation in CAL27 and SCC-25. Colony-forming capabilities were reduced in SCC-25 by galunisertib and also showed an additive effect with adjuvant radiation treatment. Cell cycle analysis showed a reduction of cells in G1 phase in response to galunisertib treatment. Conclusion. Our results indicate a potential antineoplastic effect of galunisertib in HNSCC with intact TGF-ß signaling in combination with radiation.
Collapse
|
57
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
58
|
Neutrophils: Driving inflammation during the development of hepatocellular carcinoma. Cancer Lett 2021; 522:22-31. [PMID: 34517084 DOI: 10.1016/j.canlet.2021.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
The relationship between immune and inflammatory responses in hepatocellular carcinoma (HCC) has garnered significant interest. In the peripheral blood and tumour microenvironment (TME), neutrophils, which are innate immune cells, crucially respond to various inflammatory factors, leading to tumour progression. To some extent, they affect the clinical treatment strategy and survival among HCC patients. A high circulating neutrophil-to-lymphocyte ratio is a reliable factor that can be used to predict poor outcomes in HCC patients. However, the mechanisms underlying the protumoural effects of circulating neutrophils remain poorly understood. Besides, the distinct role and function of neutrophils at the site of HCC remain relatively unclear, which is partially attributed to their substantial heterogeneity compared with other immune cells. In this review, we firstly discuss the current information available, detailing distinct subsets, functional phenotypes, and the impact of circulating and tumour-infiltrating neutrophils on tumourigenesis in HCC. Furthermore, we describe recent pre-clinical and clinical studies concerning neutrophils for evaluating the feasibility of targeting diverse protumoural aspects to improve therapeutic efficacy, thus paving the way for neutrophil-based treatment, especially in combination with immunotherapy.
Collapse
|
59
|
Mortezaee K, Majidpoor J. Key promoters of tumor hallmarks. Int J Clin Oncol 2021; 27:45-58. [PMID: 34773527 DOI: 10.1007/s10147-021-02074-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Evolution of tumor hallmarks is a result of accommodation of tumor cells with their nearby milieu called tumor microenvironment (TME). Accommodation or adaptive responses is highly important for a cell to survive, without which no cell is allowed to take any further steps in tumorigenesis. Metabolism of cancer cells is largely depended on stroma. Composition and plasticity of cells within the stroma is highly affected from inflammatory setting of TME. Hypoxia which is a common event in many solid cancers, is known as one of the key hallmarks of chronic inflammation and the master regulator of metastasis. Transforming growth factor (TGF)-β is produced in the chronic inflammatory and chronic hypoxic settings, and it is considered as a cardinal factor for induction of all tumor hallmarks. Aging, obesity and smoking are the main predisposing factors of cancer, acting mainly through modulation of TME.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
60
|
Direct and Indirect Effect of TGFβ on Treg Transendothelial Recruitment in HCC Tissue Microenvironment. Int J Mol Sci 2021; 22:ijms222111765. [PMID: 34769191 PMCID: PMC8583957 DOI: 10.3390/ijms222111765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFβ on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFβ receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFβ-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFβ-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFβ as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFβ signaling as a therapeutic target in HCC patients.
Collapse
|
61
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1220] [Impact Index Per Article: 305.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
62
|
Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, Xie X, Li Y. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res 2021; 9:72. [PMID: 34625124 PMCID: PMC8501632 DOI: 10.1186/s40364-021-00327-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs), at the core of immunosuppressive cells and cytokines networks, play a crucial role in tumor immune evasion. Increasing evidences suggest that potential mechanisms of macrophage-mediated tumor immune escape imply interpretation and breakthrough to bottleneck of current tumor immunotherapy. Therefore, it is pivotal to understand the interactions between macrophages and other immune cells and factors for enhancing existing anti-cancer treatments. In this review, we focus on the specific signaling pathways through which TAMs involve in tumor antigen recognition disorders, recruitment and function of immunosuppressive cells, secretion of immunosuppressive cytokines, crosstalk with immune checkpoints and formation of immune privileged sites. Furthermore, we summarize correlative pre-clinical and clinical studies to provide new ideas for immunotherapy. From our perspective, macrophage-targeted therapy is expected to be the next frontier of cancer immunotherapy.
Collapse
Affiliation(s)
- Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China
| | - Ruiyi Zhu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Chujun Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Yingchen Ruan
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China.,The Second School of Clinical Medicine, Southern Medical University, No. 1838 GuangzhongDadaoBei, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoling Xie
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongyeDadaoZhong, Guangzhou, Guangdong, 510280, P. R. China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, P. R. China.
| |
Collapse
|
63
|
Sun H, Hu W, Yan Y, Zhang Z, Chen Y, Yao X, Teng L, Wang X, Chai D, Zheng J, Wang G. Using PAMPs and DAMPs as adjuvants in cancer vaccines. Hum Vaccin Immunother 2021; 17:5546-5557. [PMID: 34520322 DOI: 10.1080/21645515.2021.1964316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy for cancer has attracted considerable attention. As one of the immunotherapeutics, tumor vaccines exert great potential for cancer immunotherapy. The most important components in tumor vaccines are antigens and adjuvants, which determine the therapeutic safety and efficacy, respectively. After decades of research, many types of adjuvants have been developed. Although these adjuvants can induce strong and long-lasting immune responses in tumor immunity, they also cause more severe toxic side effects and are therefore not suitable for use in humans. With the development of innate immunity research, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are receiving more attention in vaccine design. However, whether they have the potential to become new adjuvants remains to be elucidated. The purpose of this review is to provide newideas for the research and development of new adjuvants by discussing the mechanisms and related functions of PAMPs and DAMPs.
Collapse
Affiliation(s)
- Huanyou Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Wenwen Hu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yinan Yan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xuefan Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ling Teng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xinyuan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Junnian Zheng
- Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
64
|
Lind H, Gameiro SR, Jochems C, Donahue RN, Strauss J, Gulley JL, Palena C, Schlom J. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J Immunother Cancer 2021; 8:jitc-2019-000433. [PMID: 32079617 PMCID: PMC7057416 DOI: 10.1136/jitc-2019-000433] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Immunosuppressive entities in the tumor microenvironment (TME) remain a major impediment to immunotherapeutic approaches for a majority of patients with cancer. While the immunosuppressive role of transforming growth factor-β (TGF-β) in the TME is well known, clinical studies to date with anti-TGF-β agents have led to limited success. The bifunctional agent bintrafusp alfa (previously designated M7824) has been developed in an attempt to address this issue. Bintrafusp alfa consists of an IgG1 targeting programmed death ligand 1 (PD-L1) moiety fused via peptide linkers to the extracellular domain of two TGF-β receptor II molecules designed to ‘trap’ TGF-β in the TME. This agent is able to bring the TGF-β trap to the TME via its anti-PD-L1 component, thus simultaneously attacking both the immunosuppressive PD-L1 and TGF-β entities. A number of preclinical studies have shown bintrafusp alfa capable of (1) preventing or reverting TGF-β-induced epithelial-mesenchymal transition in human carcinoma cells; this alteration in tumor cell plasticity was shown to render human tumor cells more susceptible to immune-mediated attack as well as to several chemotherapeutic agents; (2) altering the phenotype of natural killer and T cells, thus enhancing their cytolytic ability against tumor cells; (3) mediating enhanced lysis of human tumor cells via the antibody-dependent cell-mediated cytotoxicity mechanism; (4) reducing the suppressive activity of Treg cells; (5) mediating antitumor activity in numerous preclinical models and (6) enhancing antitumor activity in combination with radiation, chemotherapy and several other immunotherapeutic agents. A phase I clinical trial demonstrated a safety profile similar to other programmed cell death protein 1 (PD-1)/PD-L1 checkpoint inhibitors, with objective and durable clinical responses. We summarize here preclinical and emerging clinical data in the use of this bispecific and potentially multifunctional agent.
Collapse
Affiliation(s)
- Hanne Lind
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
65
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
66
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
67
|
Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clin Sci (Lond) 2021; 135:35-52. [PMID: 33399850 PMCID: PMC7796313 DOI: 10.1042/cs20201236] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Cancers may escape elimination by the host immune system by rewiring the tumour microenvironment towards an immune suppressive state. Transforming growth factor-β (TGF-β) is a secreted multifunctional cytokine that strongly regulates the activity of immune cells while, in parallel, can promote malignant features such as cancer cell invasion and migration, angiogenesis, and the emergence of cancer-associated fibroblasts. TGF-β is abundantly expressed in cancers and, most often, its abundance associated with poor clinical outcomes. Immunotherapeutic strategies, particularly T cell checkpoint blockade therapies, so far, only produce clinical benefit in a minority of cancer patients. The inhibition of TGF-β activity is a promising approach to increase the efficacy of T cell checkpoint blockade therapies. In this review, we briefly outline the immunoregulatory functions of TGF-β in physiological and malignant contexts. We then deliberate on how the therapeutic targeting of TGF-β may lead to a broadened applicability and success of state-of-the-art immunotherapies.
Collapse
|
68
|
The TGF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma? Cancers (Basel) 2021; 13:cancers13133248. [PMID: 34209646 PMCID: PMC8268320 DOI: 10.3390/cancers13133248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Transforming Growth Factor-beta (TGF-β) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-β signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-β plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-β can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-β pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-β inhibitory therapies. Here we review the functions of TGF-β on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-β signaling for cancer therapy. We also summarize the clinical impact of TGF-β inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.
Collapse
|
69
|
Ni H, Xue J, Wang F, Sun X, Niu M. Nanomedicine Approach to Immunotherapy of Hepatocellular Carcinoma. J Biomed Nanotechnol 2021; 17:771-792. [PMID: 34082866 DOI: 10.1166/jbn.2021.3055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Hongbo Ni
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Jian Xue
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Fan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaohan Sun
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
70
|
Hess JB, Sutherland KD, Best SA. Exploring natural killer cell immunology as a therapeutic strategy in lung cancer. Transl Lung Cancer Res 2021; 10:2788-2805. [PMID: 34295678 PMCID: PMC8264324 DOI: 10.21037/tlcr-20-765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
Cytotoxic immune cells are key in the control of tumor development and progression. Natural killer (NK) cells are the cytotoxic arm of the innate immune system with the capability to kill tumor cells and surveil tumor cell dissemination. As such, the interest in harnessing NK cells in tumor control is increasing in many solid tumor types, including lung cancer. Here, we review the pre-clinical models used to unveil the role of NK cells in immunosurveillance of solid tumors and highlight measures to enhance NK cell activity. Importantly, the development of NK immunotherapy is rapidly evolving. Enhancing the NK cell response can be achieved using two broad modalities: enhancing endogenous NK cell activity, or performing adoptive transfer of pre-activated NK cells to patients. Numerous clinical trials are evaluating the efficacy of NK cell immunotherapy in isolation or in combination with standard treatments, with encouraging initial results. Pre-clinical studies and early phase clinical trials suggest that patients with solid tumors, including lung cancer, have the potential to benefit from recent developments in NK cell immunotherapy.
Collapse
Affiliation(s)
- Jonas B Hess
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A Best
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
71
|
Luo XY, Wu KM, He XX. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. J Exp Clin Cancer Res 2021; 40:172. [PMID: 34006331 PMCID: PMC8130401 DOI: 10.1186/s13046-021-01968-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the deadliest health burdens worldwide, few drugs are available for its clinical treatment. However, in recent years, major breakthroughs have been made in the development of new drugs due to intensive fundamental research and numerous clinical trials in HCC. Traditional systemic therapy schemes and emerging immunotherapy strategies have both advanced. Between 2017 and 2020, the United States Food and Drug Administration (FDA) approved a variety of drugs for the treatment of HCC, including multikinase inhibitors (regorafenib, lenvatinib, cabozantinib, and ramucirumab), immune checkpoint inhibitors (nivolumab and pembrolizumab), and bevacizumab combined with atezolizumab. Currently, there are more than 1000 ongoing clinical trials involving HCC, which represents a vibrant atmosphere in the HCC drug research and development field. Additionally, traditional Chinese medicine approaches are being gradually optimized. This review summarizes FDA-approved agents for HCC, elucidates promising agents evaluated in clinical phase I/II/III trials and identifies emerging targets for HCC treatment. In addition, we introduce the development of HCC drugs in China. Finally, we discuss potential problems in HCC drug therapy and possible future solutions and indicate future directions for the development of drugs for HCC treatment.
Collapse
Affiliation(s)
- Xiang-Yuan Luo
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kong-Ming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
72
|
Chen H, Nio K, Yamashita T, Okada H, Li R, Suda T, Li Y, Doan PTB, Seki A, Nakagawa H, Toyama T, Terashima T, Iida N, Shimakami T, Takatori H, Kawaguchi K, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. BMP9-ID1 signaling promotes EpCAM-positive cancer stem cell properties in hepatocellular carcinoma. Mol Oncol 2021; 15:2203-2218. [PMID: 33834612 PMCID: PMC8333780 DOI: 10.1002/1878-0261.12963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The malignant nature of hepatocellular carcinoma (HCC) is closely related to the presence of cancer stem cells (CSCs). Bone morphologic protein 9 (BMP9), a member of the transforming growth factor‐beta (TGF‐β) superfamily, was recently reported to be involved in liver diseases including cancer. We aimed to elucidate the role of BMP9 signaling in HCC‐CSC properties and to assess the therapeutic effect of BMP receptor inhibitors in HCC. We have identified that high BMP9 expression in tumor tissues or serum from patients with HCC leads to poorer outcome. BMP9 promoted CSC properties in epithelial cell adhesion molecule (EpCAM)‐positive HCC subtype via enhancing inhibitor of DNA‐binding protein 1 (ID1) expression in vitro. Additionally, ID1 knockdown significantly repressed BMP9‐promoted HCC‐CSC properties by suppressing Wnt/β‐catenin signaling. Interestingly, cells treated with BMP receptor inhibitors K02288 and LDN‐212854 blocked HCC‐CSC activation by inhibiting BMP9‐ID1 signaling, in contrast to cells treated with the TGF‐β receptor inhibitor galunisertib. Treatment with LDN‐212854 suppressed HCC tumor growth by repressing ID1 and EpCAM in vivo. Our study demonstrates the pivotal role of BMP9‐ID1 signaling in promoting HCC‐CSC properties and the therapeutic potential of BMP receptor inhibitors in treating EpCAM‐positive HCC. Therefore, targeting BMP9‐ID1 signaling could offer novel therapeutic options for patients with malignant HCC.
Collapse
Affiliation(s)
- Han Chen
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Kouki Nio
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Taro Yamashita
- Department of General MedicineKanazawa University HospitalJapan
| | - Hikari Okada
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Ru Li
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Tsuyoshi Suda
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Yingyi Li
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Akihiro Seki
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Tadashi Toyama
- Innovative Clinical Research CenterKanazawa UniversityJapan
| | | | - Noriho Iida
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Hajime Takatori
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Yoshio Sakai
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | | | - Masao Honda
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Shuichi Kaneko
- Department of GastroenterologyKanazawa University HospitalJapan
| |
Collapse
|
73
|
Harding JJ, Do RK, Yaqubie A, Cleverly A, Zhao Y, Gueorguieva I, Lahn M, Benhadji KA, Kelley RK, Abou‐Alfa GK. Phase 1b study of galunisertib and ramucirumab in patients with advanced hepatocellular carcinoma. Cancer Med 2021; 10:3059-3067. [PMID: 33811482 PMCID: PMC8085979 DOI: 10.1002/cam4.3880] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Preclinical data suggest that vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β signaling interact to stimulate angiogenesis and suppress antitumor immune responses. Thus, combined inhibition of both pathways may offer greater antitumor activity compared with VEGF-targeted antiangiogenic monotherapy against hepatocellular carcinoma (HCC). METHODS This is a multicenter, open-label, phase 1b study of galunisertib, an inhibitor of TGF-β receptor 1, and ramucirumab, an anti-VEGF receptor 2 antibody, in patients with advanced HCC aiming to define the maximum tolerated dose (MTD). Secondary objectives included safety, pharmacokinetics (PK), antitumor efficacy, and plasma alpha-fetoprotein and TGF-β kinetics. Dose escalation employed a 3 + 3 design. Patients received galunisertib at 80 mg (cohort 1) or 150 mg (cohort 2) orally twice a day on days 1-14 of a 28-day cycle combined with ramucirumab 8 mg/kg intravenously every 2 weeks. RESULTS Eight patients were enrolled: three in cohort 1 and five in cohort 2 (two patients were unevaluable due to rapid disease progression and replaced). No dose-limiting toxicities were observed. Treatment-related adverse events (AEs) of any grade in ≥2 patients included nausea (25%) and vomiting (25%). There was one Grade 3 treatment-related AE, a cerebrovascular accident possibly related to ramucirumab. Galunisertib exposure was dose-proportional and not affected by ramucirumab. The RECIST version 1.1 objective response rate and disease control rate were 0% and 12.5%, respectively. CONCLUSION Combination therapy was safe and tolerable and displayed favorable PK. The MTD was established at galunisertib at 150 mg orally twice a day and ramucirumab 8 mg/kg intravenously every 2 weeks. The results do not support the preclinical hypothesis that blocking TGFβ signaling enhances efficacy of VEGF-targeted therapy; thus further clinical development was halted for the combination of galunisertib and ramucirumab.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Female
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Maximum Tolerated Dose
- Middle Aged
- Nausea/chemically induced
- Prospective Studies
- Pyrazoles/administration & dosage
- Pyrazoles/adverse effects
- Pyrazoles/pharmacokinetics
- Quinolines/administration & dosage
- Quinolines/adverse effects
- Quinolines/pharmacokinetics
- Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors
- Response Evaluation Criteria in Solid Tumors
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
- Vomiting/chemically induced
- alpha-Fetoproteins/analysis
- Ramucirumab
Collapse
Affiliation(s)
- James J. Harding
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Weill Cornell Medical CollegeNew YorkNYUSA
| | - Richard K. Do
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Weill Cornell Medical CollegeNew YorkNYUSA
| | - Amin Yaqubie
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | | | | | | | | | - Robin K. Kelley
- Helen Diller Cancer CenterUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ghassan K. Abou‐Alfa
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Weill Cornell Medical CollegeNew YorkNYUSA
| |
Collapse
|
74
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
75
|
Anti-PD-1/PD-L1 Based Combination Immunotherapy to Boost Antigen-Specific CD8 + T Cell Response in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13081922. [PMID: 33923463 PMCID: PMC8073815 DOI: 10.3390/cancers13081922] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The cytotoxic T cell response against hepatocellular carcinoma antigens is exhausted and fails in its task of deleting tumoral cells. These cells are featured by the expression of negative immune checkpoints that can be modulated to restore T cell function. The blockade of the PD-1/PD-L1 pathway has shown promising results in rescuing hepatocellular carcinoma-specific CD8 T cells but only a reduced group of cases is sensitive to this treatment and the effect is usually temporary. Therefore, new anti-PD-1 based combinatory strategies are underway to increase the response by adding the effect of blocking neo-angiogenesis and other negative immune checkpoints, boosting positive immune checkpoints, blocking suppressive cytokines, or inducing the expression of tumoral neoantigens. The restoration of T cell responses with these anti-PD-1 based combinatory therapies will change the outcome of advanced hepatocellular carcinoma. Abstract Thirty to fifty percent of hepatocellular carcinomas (HCC) display an immune class genetic signature. In this type of tumor, HCC-specific CD8 T cells carry out a key role in HCC control. Those potential reactive HCC-specific CD8 T cells recognize either HCC immunogenic neoantigens or aberrantly expressed host’s antigens, but they become progressively exhausted or deleted. These cells express the negative immunoregulatory checkpoint programmed cell death protein 1 (PD-1) which impairs T cell receptor signaling by blocking the CD28 positive co-stimulatory signal. The pool of CD8 cells sensitive to anti-PD-1/PD-L1 treatment is the PD-1dim memory-like precursor pool that gives rise to the effector subset involved in HCC control. Due to the epigenetic imprints that are transmitted to the next generation, the effect of PD-1 blockade is transient, and repeated treatments lead to tumor resistance. During long-lasting disease, besides the TCR signaling impairment, T cells develop other failures that should be also set-up to increase T cell reactivity. Therefore, several PD-1 blockade-based combinatory therapies are currently under investigation such as adding antiangiogenics, anti-TGFβ1, blockade of other negative immune checkpoints, or increasing HCC antigen presentation. The effect of these combinations on CD8+ T cells is discussed in this review.
Collapse
|
76
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
77
|
Hwang HS, An J, Kang HJ, Oh B, Oh YJ, Oh JH, Kim W, Sung CO, Shim JH, Yu E. Prognostic Molecular Indices of Resectable Hepatocellular Carcinoma: Implications of S100P for Early Recurrence. Ann Surg Oncol 2021; 28:6466-6478. [PMID: 33786678 DOI: 10.1245/s10434-021-09825-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although hepatocellular carcinomas (HCCs) often recur in patients undergoing hepatectomy, there are no reliable biomarkers of this undesirable event. Recent RNA-based efforts have developed valuable genetic indices prognostic of cancer outcomes. We aimed to identify molecular predictors of early recurrence after resection of HCC, and reveal the genomolecular structure of the resected tumors. METHOD Based on the transcriptomic and genomic datasets of 206 HCC samples surgically resected in the Asan Medical Center (AMC), we performed a differential gene expression analysis to identify quantitative markers associated with early recurrence and used the unsupervised clustering method to classify genomolecular subtypes. RESULTS Differential gene expression profiling revealed that S100P was the highest-ranked overexpressed gene in HCCs that recurred within 2 years of surgery. This trend was reproduced in immunohistochemical studies of the original cohort and an independent AMC cohort. S100P expression also independently predicted HCC-specific mortality post-resection (adjusted hazard ratio 1.09, 95% confidence interval 1.01-1.19; p = 0.042). Validation in a Chinese cohort and in in vitro experiments confirmed the prognostic value of S100P in HCC. We further identified five discrete molecular subtypes of HCC; a subtype with stem cell features ('AMC-C4') was associated with the worst prognosis, both in our series and another two Asian datasets, and S100P was most strongly upregulated in that subtype. CONCLUSION We identified a promising prognostic biomolecule, S100P, associated with early recurrence after HCC resection, and established the genomolecular architecture of tumors affecting clinical outcomes, particularly in Asian patients. These new insights into molecular mediators should contribute to effective care for affected patients.
Collapse
Affiliation(s)
- Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University College of Medicine, Guri, Gyeonggi, Republic of Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bora Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yoo Jin Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Wonkyung Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Ju Hyun Shim
- Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
78
|
Sharma R, Motedayen Aval L. Beyond First-Line Immune Checkpoint Inhibitor Therapy in Patients With Hepatocellular Carcinoma. Front Immunol 2021; 12:652007. [PMID: 33790915 PMCID: PMC8005707 DOI: 10.3389/fimmu.2021.652007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Until recently, the treatment landscape for hepatocellular cancer (HCC) was dominated by tyrosine kinase inhibitors (TKIs) which offered an overall survival (OS) benefit when used both in the first-and second-line setting compared to best supportive care. However, the treatment landscape has changed with the introduction of immune checkpoint inhibitors (ICIs) for the treatment of HCC with significant improvement in OS and progression free survival reported with combination atezolizumab and bevacizumab compared to sorafenib in the first-line setting. Nonetheless, the response to ICIs is 20–30% and invariably patients will progress. What remains unclear is which therapeutics should be used following ICI exposure. Extrapolating from the evidence base in renal cell carcinoma, subsequent therapy with TKIs offers both a response and survival benefit and are recommended by European guidelines. However, there are a number of novel therapies emerging that target mechanisms of ICI resistance that hold promise both in combination with ICI or as subsequent therapy. This paper will discuss the evidence for ICIs in HCC, the position of second-line therapies following ICIs and research strategies moving forward.
Collapse
Affiliation(s)
- Rohini Sharma
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Leila Motedayen Aval
- Department of Surgery & Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
79
|
Mao D, Mi J, Pan X, Li F, Rui Y. Suppression of TGF-beta activity with remobilization attenuates immobilization-induced joint contracture in rats. Injury 2021; 52:434-442. [PMID: 33408055 DOI: 10.1016/j.injury.2020.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Joint contracture is a common complication of joint injury. This study aimed to assess the effect of inhibiting the transforming growth factor-β (TGF-β) signaling during joint immobilization and remobilization on immobilization-induced joint contracture in rats. METHODS The knees of rats were immobilized using Kirschner wires following trauma to the femoral condyles to generate joint contracture. After immobilization, levels of TGF-β and passive extension range of motion (ROM) were measured at different time points, joints were histologically analyzed by hematoxylin and eosin (H&E) and Masson trichrome staining, and the expression of inflammatory or fibrosis-related mediators, including interleukin-1β (IL-1β), phosphorylated Smad2/3 (p-Smad2/3), α-smooth muscle actin (α-SMA) and collagen types I (Col 1) and III (Col 3), were examined in joint capsules using immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Rats were also treated with LY2157299, a TGF-β receptor I kinase inhibitor, at different stages of immobilization and remobilization. RESULTS TGF-β1 levels in the serum and the number of p-Smad2/3+ cells in the joint capsule were significantly elevated after immobilization. ROM decreased during the 6 weeks of immobilization and partly recovered after remobilization. After treatment with LY2157299 during immobilization, the restricted ROM moderately increased, but this effect was stronger when combined with active motion. Mechanistically, the expression of IL-1β, TGF-β, fibrosis-related factors, and the density of collagen significantly decreased after treatment with LY2157299. CONCLUSIONS Inhibiting TGF-β signaling paired with active motion effectively attenuated the formation of immobilization-induced joint contracture in rats.
Collapse
Affiliation(s)
- Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Jingyi Mi
- Department of Sports Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Xiaoyun Pan
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Fengfeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Yongjun Rui
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| |
Collapse
|
80
|
Wang H, Wang P, Xu M, Song X, Wu H, Evert M, Calvisi DF, Zeng Y, Chen X. Distinct functions of transforming growth factor-β signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death Dis 2021; 12:200. [PMID: 33608500 PMCID: PMC7895828 DOI: 10.1038/s41419-021-03488-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of transforming growth factor-beta (TGFβ) signaling has been implicated in liver carcinogenesis with both tumor promoting and inhibiting activities. Activation of the c-MYC protooncogene is another critical genetic event in hepatocellular carcinoma (HCC). However, the precise functional crosstalk between c-MYC and TGFβ signaling pathways remains unclear. In the present investigation, we investigated the expression of TGFβ signaling in c-MYC amplified human HCC samples as well as the mechanisms whereby TGFβ modulates c-Myc driven hepatocarcinogenesis during initiation and progression. We found that several TGFβ target genes are overexpressed in human HCCs with c-MYC amplification. In vivo, activation of TGFβ1 impaired c-Myc murine HCC initiation, whereas inhibition of TGFβ pathway accelerated this process. In contrast, overexpression of TGFβ1 enhanced c-Myc HCC progression by promoting tumor cell metastasis. Mechanistically, activation of TGFβ promoted tumor microenvironment reprogramming rather than inducing epithelial-to-mesenchymal transition during HCC progression. Moreover, we identified PMEPA1 as a potential TGFβ1 target. Altogether, our data underline the divergent roles of TGFβ signaling during c-MYC induced HCC initiation and progression.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Hong Wu
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
81
|
Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, Goggin C, MacEochagain C, Kennedy J, Lucas S, Finlay DK, Gardiner CM. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002044. [PMID: 33568351 PMCID: PMC7878131 DOI: 10.1136/jitc-2020-002044] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background Natural killer (NK) cells provide important immune protection from cancer and are a key requirement for particular immunotherapies. There is accumulating evidence that NK cells become dysfunctional during cancer. Overcoming NK cell exhaustion would be an important step to allow them to function optimally in a range of NK cell therapies, including those that depend on autologos circulating NK cells. We have previously demonstrated that NK cells undergo a normal metabolic reprogramming in response to cytokine activation and that this is required for optimal function. The objective of this work was to investigate if cellular metabolism of circulating NK cells is dysregulated in patients with metastatic breast cancer and if so, to gain insights into potential mechanisms underpinning this. Such discoveries would provide important insights into how to unleash the full activity of NK cells for maximum immunotherapy output. Methods Single-cell analysis, metabolic flux and confocal analysis of NK cells from patients with metastatic breast cancer and healthy controls Results In addition to reduced interferon-γ production and cytotoxicity, peripheral blood NK cells from patients had clear metabolic deficits including reduced glycolysis and oxidative phosphorylation. There were also distinct morphologically alterations in the mitochondria with increased mitochondrial fragmentation observed. Transforminggrowth factor-β (TGFβ) was identified as a key driver of this phenotype as blocking its activity reversed many metabolic and functional readouts. Expression of glycoprotein-A repetitions predominant (GARP) and latency associated peptide (LAP), which are involved with a novel TGFβ processing pathway, was increased on NK cells from some patients. Blocking the GARP–TGFβ axis recapitulated the effects of TGFβ neutralization, highlighting GARP as a novel NK cell immunotherapy target for the first time. Conclusions TGFβ contributes to metabolic dysfunction of circulating NK cells in patients with metastatic breast cancer. Blocking TGFβ and/or GARP can restore NK cell metabolism and function and is an important target for improving NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elena Woods
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Sam Marks
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sonya Chew
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Michael Conroy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | | | | | - John Kennedy
- Medical Oncology Service, St. James's Hospital, Dublin, Ireland
| | - Sophie Lucas
- Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
82
|
Gómez-Gil V. Therapeutic Implications of TGFβ in Cancer Treatment: A Systematic Review. Cancers (Basel) 2021; 13:379. [PMID: 33498521 PMCID: PMC7864190 DOI: 10.3390/cancers13030379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a pleiotropic cytokine that participates in a wide range of biological functions. The alterations in the expression levels of this factor, or the deregulation of its signaling cascade, can lead to different pathologies, including cancer. A great variety of therapeutic strategies targeting TGFβ, or the members included in its signaling pathway, are currently being researched in cancer treatment. However, the dual role of TGFβ, as a tumor suppressor or a tumor-promoter, together with its crosstalk with other signaling pathways, has hampered the development of safe and effective treatments aimed at halting the cancer progression. This systematic literature review aims to provide insight into the different approaches available to regulate TGFβ and/or the molecules involved in its synthesis, activation, or signaling, as a cancer treatment. The therapeutic strategies most commonly investigated include antisense oligonucleotides, which prevent TGFβ synthesis, to molecules that block the interaction between TGFβ and its signaling receptors, together with inhibitors of the TGFβ signaling cascade-effectors. The effectiveness and possible complications of the different potential therapies available are also discussed.
Collapse
Affiliation(s)
- Verónica Gómez-Gil
- Department of Biomedical Sciences (Area of Pharmacology), School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
83
|
Pinter M, Jain RK, Duda DG. The Current Landscape of Immune Checkpoint Blockade in Hepatocellular Carcinoma: A Review. JAMA Oncol 2021; 7:113-123. [PMID: 33090190 DOI: 10.1001/jamaoncol.2020.3381] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance For more than a decade, sorafenib has been the only systemic treatment option for patients with advanced hepatocellular carcinoma (HCC). However, rapid progress over the past few years led to approval of other angiogenesis inhibitors and several immune checkpoint blockers (ICBs) that have been added to the treatment armamentarium for advanced HCC. Moreover, the recent success of a combination of bevacizumab with atezolizumab signals an important change in the front-line treatment of HCC. Observations This review summarizes rapidly emerging clinical data on the promise and challenges of implementing ICBs in HCC and discusses the unmet need of biomarkers to predict response or resistance to therapy. Two strategies to target immunosuppression in tumors are also discussed: one proven (vascular endothelial growth factor pathway inhibition) and one currently under investigation (transforming growth factor-β pathway inhibition). The rationale and preliminary evidence on how their inhibition may reprogram the immunosuppressive milieu and enhance the efficacy of ICBs in HCC are reviewed. Conclusion and Relevance The recent successes and failures of angiogenesis inhibitors and ICBs, alone and in combination, have provided important insights into how to implement this novel systemic therapy in HCC and led to new avenues to enhance immunotherapy efficacy in this disease.
Collapse
Affiliation(s)
- Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dan G Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
84
|
Goulet CR, Pouliot F. TGFβ Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:89-105. [PMID: 33123995 DOI: 10.1007/978-3-030-47189-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic growth factor. Under normal physiological conditions, TGFβ maintains homeostasis in mammalian tissues by restraining the growth of cells and stimulating apoptosis. However, the role of TGFβ signaling in the carcinogenesis is complex. TGFβ acts as a tumor suppressor in the early stages of disease and as a tumor promoter in its later stages where cancer cells have been relieved from TGFβ growth controls. Overproduction of TGFβ by cancer cells lead to a local fibrotic and immune-suppressive microenvironment that fosters tumor growth and correlates with invasive and metastatic behavior of the cancer cells. Here, we present an overview of the complex biology of the TGFβ family, and we discuss the roles of TGFβ signaling in carcinogenesis and how this knowledge is being leveraged to develop TGFβ inhibition therapies against the tumor.
Collapse
Affiliation(s)
- Cassandra Ringuette Goulet
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Pouliot
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada.
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada.
- Department of surgery, CHU de Québec Research Center - Laval University, Quebec City, QC, Canada.
| |
Collapse
|
85
|
Girardi DM, Pacífico JPM, Guedes de Amorim FPL, dos Santos Fernandes G, Teixeira MC, Pereira AAL. Immunotherapy and Targeted Therapy for Hepatocellular Carcinoma: A Literature Review and Treatment Perspectives. Pharmaceuticals (Basel) 2020; 14:28. [PMID: 33396181 PMCID: PMC7824026 DOI: 10.3390/ph14010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced hepatocellular carcinoma is a prevalent and potentially aggressive disease. For more than a decade, treatment with sorafenib has been the only approved therapeutic approach. Moreover, no agent has been proven to prolong survival following the progression of disease after sorafenib treatment. However, in recent years, this scenario has changed substantially with several trials being conducted to examine the effects of immunotherapy and novel targeting agents. Several immune checkpoint inhibitors have shown promising results in early-stage clinical trials. Moreover, phase III trials with large cohorts have demonstrated remarkable improvement in survival with the use of new targeted therapies in second-line treatment. Treatment regimens involving the combination of two immune checkpoint inhibitors as well as immune checkpoint inhibitors and anti-angiogenic targeted therapies have shown potential to act synergistically in clinical trials. Recently, the combination of atezolizumab and bevacizumab evaluated in a phase III clinical trial has demonstrated survival superiority in the first-line treatment; it is the new considered standard of care. In this manuscript, we aimed to review the latest advances in the systemic treatment of advanced hepatocellular carcinoma focusing on immunotherapy and targeted therapies.
Collapse
Affiliation(s)
- Daniel M. Girardi
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil; (G.d.S.F.); (A.A.L.P.)
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil;
| | - Jana Priscila M. Pacífico
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil; (J.P.M.P.); (F.P.L.G.d.A.)
| | - Fernanda P. L. Guedes de Amorim
- Escola Superior de Ciências em Saúde, SMHN Conjunto A Bloco 01 Edifício Fepecs-Asa Norte, Brasília 70710-907, Brazil; (J.P.M.P.); (F.P.L.G.d.A.)
| | - Gustavo dos Santos Fernandes
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil; (G.d.S.F.); (A.A.L.P.)
| | - Marcela C. Teixeira
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil;
- Hospital DF Star, SGAS I SGAS 914-Asa Sul, Brasília 70390-140, Brazil
| | - Allan A. L. Pereira
- Hospital Sírio-Libanes, SGAS 613/614 Conjunto E Lote 95-Asa Sul, Brasília 70200-730, Brazil; (G.d.S.F.); (A.A.L.P.)
- Hospital de Base do Distrito Federal, SMHS-Área Especial, Q. 101-Asa Sul, Brasília 70330-150, Brazil;
| |
Collapse
|
86
|
Reiss KA, Wattenberg MM, Damjanov N, Prechtel Dunphy E, Jacobs-Small M, Lubas MJ, Robinson J, Dicicco L, Garcia-Marcano L, Giannone MA, Karasic TB, Furth EE, Carpenter EL, Wojcieszynski AP, Vonderheide RH, Beatty GL, Ben-Josef E. A Pilot Study of Galunisertib plus Stereotactic Body Radiotherapy in Patients with Advanced Hepatocellular Carcinoma. Mol Cancer Ther 2020; 20:389-397. [PMID: 33268571 DOI: 10.1158/1535-7163.mct-20-0632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
TGFβ is a pleiotropic cytokine with immunosuppressive activity. In preclinical models, blockade of TGFβ enhances the activity of radiation and invokes T-cell antitumor immunity. Here, we combined galunisertib, an oral TGFβ inhibitor, with stereotactic body radiotherapy (SBRT) in patients with advanced hepatocellular carcinoma (HCC) and assessed safety, efficacy, and immunologic correlatives. Patients (n = 15) with advanced HCC who progressed on, were intolerant of, or refused sorafenib were treated with galunisertib (150 mg orally twice a day) on days 1 to 14 of each 28-day cycle. A single dose of SBRT (18-Gy) was delivered between days 15 to 28 of cycle 1. Site of index lesions treated with SBRT included liver (9 patients), lymph node (4 patients), and lung (2 patients). Blood for high-dimensional single cell profiling was collected. The most common treatment-related adverse events were fatigue (53%), abdominal pain (46.6%), nausea (40%), and increased alkaline phosphatase (40%). There were two instances of grade 2 alkaline phosphatase increase and two instances of grade 2 bilirubin increase. One patient developed grade 3 achalasia, possibly related to treatment. Two patients achieved a partial response. Treatment with galunisertib was associated with a decrease in the frequency of activated T regulatory cells in the blood. Distinct peripheral blood leukocyte populations detected at baseline distinguished progressors from nonprogressors. Nonprogressors also had increased CD8+PD-1+TIGIT+ T cells in the blood after treatment. We found galunisertib combined with SBRT to be well tolerated and associated with antitumor activity in patients with HCC. Pre- and posttreatment immune profiling of the blood was able to distinguish patients with progression versus nonprogression.
Collapse
Affiliation(s)
- Kim A Reiss
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Max M Wattenberg
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nevena Damjanov
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Prechtel Dunphy
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mona Jacobs-Small
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Judy Lubas
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Robinson
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lisa Dicicco
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis Garcia-Marcano
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael A Giannone
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas B Karasic
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma E Furth
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrzej P Wojcieszynski
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory L Beatty
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edgar Ben-Josef
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
87
|
Manipulating dynamic tumor vessel permeability to enhance polymeric micelle accumulation. J Control Release 2020; 329:63-75. [PMID: 33278478 DOI: 10.1016/j.jconrel.2020.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023]
Abstract
Selectively delivering anticancer drugs to solid tumors while avoiding their accumulation in healthy tissues is a major goal in polymeric micelle research. We have recently discovered that the extravasation and permeation of polymeric micelles occur in a dynamic manner characterized by vascular bursts followed by a brief and vigorous outward flow of fluid (called "nano-eruptions"). Nano-eruptions allow delivery of polymeric micelle-associated drugs, though delivery can be heterogeneous both among tumors and within an individual tumor, leading to suboptimal intratumoral distribution. Manipulation of nano-eruptions is expected to improve the efficiency of drug delivery systems (DDSs). By using compounds that affect the intratumoral environment, i.e. a TGF-β inhibitor and chloroquine, the possibility of manipulating nano-eruptions to improve delivery efficiency was investigated. Both compounds were tested in a mouse xenograft model of GFP-labeled pancreatic tumor cells by tracing nano-eruption events and extravasation of size-modulated polymeric micelles in real-time through intravital confocal laser scanning microscopy. The TGF-β inhibitor increased the number of dynamic vents, extended duration time, and generated dynamic vents with a wide range of sizes. Chloroquine did not affect the frequency of nano-eruptions, but it increased tumor vessel diameter, maximum nano-eruption area, and maximum radial increase. Both the TGF-β inhibitor and chloroquine augmented nano-eruptions to diffuse polymeric micelles through tumor stroma, and these medications had a greater effect on the polymeric micelles with larger size, i.e. 70-nm, than on the smaller polymeric micelles having a 30-nm diameter. The results indicate that TGF-β inhibition and chloroquine refashion the intratumoral distribution of DDSs by different mechanisms.
Collapse
|
88
|
Han M, Liao Z, Liu F, Chen X, Zhang B. Modulation of the TGF-β signaling pathway by long noncoding RNA in hepatocellular carcinoma. Biomark Res 2020; 8:70. [PMID: 33292618 PMCID: PMC7709261 DOI: 10.1186/s40364-020-00252-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer with poor prognosis. There have been demonstrated to exist many possible mechanisms in HCC tumorigenesis, and recent investigations have provided some promising therapy targets. However, further mechanisms remain to be researched to improve the therapeutic strategy and diagnosis of HCC. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine which plays critical roles in networks of different cellular processes, and TGF-β signaling has been found to participate in tumor initiation and development of HCC in recent years. Moreover, among the molecules and signaling pathways, researchers paid more attention to lncRNAs (long non-coding RNAs), but the connection between lncRNAs and TGF-βremain poorly understood. In this review, we conclude the malignant procedure which lncRNAs and TGF-β involved in, and summarize the mechanisms of lncRNAs and TGF-βin HCC initiation and development. Furthermore, the interaction between lncRNA and TGF-β are paid more attention, and the potential therapy targets are mentioned.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
89
|
Dituri F, Scialpi R, Schmidt TA, Frusciante M, Mancarella S, Lupo LG, Villa E, Giannelli G. Proteoglycan-4 is correlated with longer survival in HCC patients and enhances sorafenib and regorafenib effectiveness via CD44 in vitro. Cell Death Dis 2020; 11:984. [PMID: 33199679 PMCID: PMC7669886 DOI: 10.1038/s41419-020-03180-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Sorafenib and regorafenib administration is among the preferential approaches to treat hepatocellular carcinoma (HCC), but does not provide satisfactory benefits. Intensive crosstalk occurring between cancer cells and other multiple non-cancerous cell subsets present in the surrounding microenvironment is assumed to affect tumor progression. This interplay is mediated by a number of soluble and structural extracellular matrix (ECM) proteins enriching the stromal milieu. Here we assess the HCC tumor expression of the ECM protein proteoglycan 4 (PRG4) and its potential pharmacologic activity either alone, or in combination with sorafenib and regorafenib. PRG4 mRNA levels resulted strongly correlated with increased survival rate of HCC patients (p = 0.000) in a prospective study involving 78 HCC subjects. We next showed that transforming growth factor beta stimulates PRG4 expression and secretion by primary human HCC cancer-associated fibroblasts, non-invasive HCC cell lines, and ex vivo specimens. By functional tests we found that recombinant human PRG4 (rhPRG4) impairs HCC cell migration. More importantly, the treatment of HCC cells expressing CD44 (the main PRG4 receptor) with rhPRG4 dramatically enhances the growth-limiting capacity of sorafenib and regorafenib, whereas not significantly affecting cell proliferation per se. Conversely, rhPRG4 only poorly potentiates drug effectiveness on low CD44-expressing or stably CD44-silenced HCC cells. Overall, these data suggest that the physiologically-produced compound PRG4 may function as a novel tumor-suppressive agent by strengthening sorafenib and regorafenib effects in the treatment of HCC.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy.
| | - Rosanna Scialpi
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Centre, Farmington, CT, USA
| | - Martina Frusciante
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| | - Luigi Giovanni Lupo
- University of Bari, Department of General Surgery and Liver Transplantation, Policlinico - piazza Giulio Cesare 14, 70125, Bari, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, 70013, Castellana Grotte, Italy
| |
Collapse
|
90
|
A Phase 2 Study of Galunisertib (TGF-β1 Receptor Type I Inhibitor) and Sorafenib in Patients With Advanced Hepatocellular Carcinoma. Clin Transl Gastroenterol 2020; 10:e00056. [PMID: 31295152 PMCID: PMC6708671 DOI: 10.14309/ctg.0000000000000056] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibition of tumor growth factor-β (TGF-β) receptor type I potentiated the activity of sorafenib in preclinical models of hepatocellular carcinoma (HCC). Galunisertib is a small-molecule selective inhibitor of TGF-β1 receptor type I, which demonstrated activity in a phase 2 trial as second-line HCC treatment.
Collapse
|
91
|
Abstract
Primary liver cancer (PLC) is a fatal disease that affects millions of lives worldwide. PLC is the leading cause of cancer-related deaths and the incidence rate is predicted to rise in the coming decades. PLC can be categorized into three major histological subtypes: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined HCC-ICC. These subtypes are distinct with respect to epidemiology, clinicopathological features, genetic alterations, and clinical managements, which are thoroughly summarized in this review. The state of treatment strategies for each subtype, including the currently approved drugs and the potential novel therapies, are also discussed.
Collapse
Affiliation(s)
- Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yisheng Pan
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Shaokun Shu
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
- Peking University Cancer Hospital, Beijing 100142, China
| |
Collapse
|
92
|
Ciardiello D, Elez E, Tabernero J, Seoane J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann Oncol 2020; 31:1336-1349. [PMID: 32710930 DOI: 10.1016/j.annonc.2020.07.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic cytokine that plays a key role in both physiologic and pathologic conditions, including cancer. Importantly, TGFβ can exhibit both tumor-suppressive and oncogenic functions. In normal epithelial cells TGFβ acts as an antiproliferative and differentiating factor, whereas in advanced tumors TGFβ can act as an oncogenic factor by creating an immune-suppressive tumor microenvironment, and inducing cancer cell proliferation, angiogenesis, invasion, tumor progression, and metastatic spread. A wealth of preclinical findings have demonstrated that targeting TGFβ is a promising means of exerting antitumor activity. Based on this rationale, several classes of TGFβ inhibitors have been developed and tested in clinical trials, namely, monoclonal, neutralizing, and bifunctional antibodies; antisense oligonucleotides; TGFβ-related vaccines; and receptor kinase inhibitors. It is now >15 years since the first clinical trial testing an anti-TGFβ agent was engaged. Despite the promising preclinical studies, translation of the basic understanding of the TGFβ oncogenic response into the clinical setting has been slow and challenging. Here, we review the conclusions and status of all the completed and ongoing clinical trials that test compounds that inhibit the TGFβ pathway, and discuss the challenges that have arisen during their clinical development. With none of the TGFβ inhibitors evaluated in clinical trials approved for cancer therapy, clinical development for TGFβ blockade therapy is primarily oriented toward TGFβ inhibitor combinations. Immune checkpoint inhibitors are considered candidates, albeit with efficacy anticipated to be restricted to specific populations. In this context, we describe current efforts in the search for biomarkers for selecting the appropriate cancer patients who are likely to benefit from anti-TGFβ therapies. The knowledge accumulated during the last 15 years of clinical research in the context of the TGFβ pathway is crucial to design better, innovative, and more successful trials.
Collapse
Affiliation(s)
- D Ciardiello
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Department of Medicina di Precisione, Università degli studi della Campania, Luigi Vanvitelli, Naples, Italy
| | - E Elez
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - J Tabernero
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain
| | - J Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERONC, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
93
|
Zaidi S, Rao S, Mishra L. Reply. Gastroenterology 2020; 159:398-399. [PMID: 32289371 DOI: 10.1053/j.gastro.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Sobia Zaidi
- Center for Translational Medicine, George Washington University, Washington, DC
| | - Shuyun Rao
- Center for Translational Medicine, George Washington University, Washington, DC
| | - Lopa Mishra
- Center for Translational Medicine, George Washington University, Washington, DC
| |
Collapse
|
94
|
Kwon SM, Lee YK, Min S, Woo HG, Wang HJ, Yoon G. Mitoribosome Defect in Hepatocellular Carcinoma Promotes an Aggressive Phenotype with Suppressed Immune Reaction. iScience 2020; 23:101247. [PMID: 32629612 PMCID: PMC7306587 DOI: 10.1016/j.isci.2020.101247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial ribosomes (mitoribosomes), the specialized translational machinery for mitochondrial genes, exclusively encode the subunits of the oxidative phosphorylation (OXPHOS) system. Although OXPHOS dysfunctions are associated with hepatic disorders including hepatocellular carcinoma (HCC), their underlying mechanisms remain poorly elucidated. In this study, we aimed to investigate the effects of mitoribosome defects on OXPHOS and HCC progression. By generating a gene signature from HCC transcriptome data, we developed a scoring system, i.e., mitoribosome defect score (MDS), which represents the degree of mitoribosomal defects in cancers. The MDS showed close associations with the clinical outcomes of patients with HCC and with gene functions such as oxidative phosphorylation, cell-cycle activation, and epithelial-mesenchymal transition. By analyzing immune profiles, we observed that mitoribosomal defects are also associated with immunosuppression and evasion. Taken together, our results provide new insights into the roles of mitoribosome defects in HCC progression. A set of down-regulated MRPs in HCC cause mitoribosomal defects Mitoribosomal defects are linked to aggressive molecular features and poor prognosis Mitoribosomal defects in HCC are associated with immunosuppression and evasion TGF-β signaling pathway is a crucial mechanism to mediate mitoribosomal defects in HCC
Collapse
Affiliation(s)
- So Mee Kwon
- Departments of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea; Departments of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Young-Kyoung Lee
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea; Departments of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seongki Min
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea; Departments of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hyun Goo Woo
- Departments of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; Departments of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hee Jung Wang
- Departments of Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Gyesoon Yoon
- Departments of Biochemistry, Ajou University School of Medicine, Suwon 16499, Korea; Departments of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
95
|
Masuda A, Nakamura T, Abe M, Iwamoto H, Sakaue T, Tanaka T, Suzuki H, Koga H, Torimura T. Promotion of liver regeneration and anti‑fibrotic effects of the TGF‑β receptor kinase inhibitor galunisertib in CCl4‑treated mice. Int J Mol Med 2020; 46:427-438. [PMID: 32377696 DOI: 10.3892/ijmm.2020.4594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 11/05/2022] Open
Abstract
The cytokine transforming growth factor‑β (TGF‑β) serves a key role in hepatic fibrosis and has cytostatic effects on hepatocytes. The present study investigated the anti‑fibrogenic and regenerative effects of the TGF‑β receptor type I kinase inhibitor galunisertib (LY2157299) in mice with carbon tetrachloride (CCl4)‑induced liver cirrhosis and in vitro. Mice were intraperitoneally treated with CCl4 for 8 weeks. At week 5, the mice were divided randomly into four treatment groups: Vehicle‑treated; and treated with low‑; middle‑; and high‑dose galunisertib, which was administered from weeks 5‑8. The mice were sacrificed after 8 weeks of CCl4 treatment. Liver fibrosis, as evaluated by histology and determination of hydroxyproline content, progressed during week 4‑8 of CCl4 treatment in the vehicle‑treated mice. Galunisertib treatment dose‑dependently prevented liver fibrosis, as demonstrated by the direct inhibition of α‑smooth muscle actin‑positive activated hepatic stellate cells (HSCs) after 8 weeks of CCl4 treatment. The levels of active matrix metalloproteinase (MMP)‑9 in galunisertib‑treated livers were significantly increased compared with the vehicle‑treated livers. In the high‑dose group, the number of PCNA‑positive hepatocytes and endothelial cells markedly increased compared with the vehicle group. Reverse transcription‑quantitative PCR analysis verified that interleukin‑6 and epiregulin expression levels were significantly increased in livers from the group treated with high‑dose galunisertib compared with the vehicle‑treated group. Galunisertib inhibited the proliferation of activated HSCs and collagen synthesis in addition to restoring MMP activity. Moreover, galunisertib promoted liver remodeling by proliferating hepatocytes and vascular endothelial cells, while significantly increasing liver weight. These results are consistent with the cytostatic action of TGF‑β that negatively regulates liver regeneration, and demonstrated that galunisertib inhibited TGF‑β signaling, halted liver fibrosis progression and promoted hepatic regeneration. The results of the present study suggest that galunisertib may be an effective treatment for liver cirrhosis.
Collapse
Affiliation(s)
- Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Mitsuhiko Abe
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, School of Medicine, Kurume University, Kurume, Fukuoka 830‑0011, Japan
| |
Collapse
|
96
|
Ozcan M, Altay O, Lam S, Turkez H, Aksoy Y, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Improvement in the Current Therapies for Hepatocellular Carcinoma Using a Systems Medicine Approach. ACTA ACUST UNITED AC 2020; 4:e2000030. [PMID: 32529800 DOI: 10.1002/adbi.202000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death primarily due to the lack of effective targeted therapies. Despite the distinct morphological and phenotypic patterns of HCC, treatment strategies are restricted to relatively homogeneous therapies, including multitargeted tyrosine kinase inhibitors and immune checkpoint inhibitors. Therefore, more effective therapy options are needed to target dysregulated metabolic and molecular pathways in HCC. Integrative genomic profiling of HCC patients provides insight into the most frequently mutated genes and molecular targets, including telomerase reverse transcriptase, the TP53 gene, and the Wnt/β-catenin signaling pathway oncogene (CTNNB1). Moreover, emerging techniques, such as genome-scale metabolic models may elucidate the underlying cancer-specific metabolism, which allows for the discovery of potential drug targets and identification of biomarkers. De novo lipogenesis has been revealed as consistently upregulated since it is required for cell proliferation in all HCC patients. The metabolic network-driven stratification of HCC patients in terms of redox responses, utilization of metabolites, and subtype-specific pathways may have clinical implications to drive the development of personalized medicine. In this review, the current and emerging therapeutic targets in light of molecular approaches and metabolic network-based strategies are summarized, prompting effective treatment of HCC patients.
Collapse
Affiliation(s)
- Mehmet Ozcan
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden.,Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Yasemin Aksoy
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Jens Nielsen
- Prof. J. Nielsen, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, SE-413 45, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE 17121, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
97
|
Giannelli G, Santoro A, Kelley RK, Gane E, Paradis V, Cleverly A, Smith C, Estrem ST, Man M, Wang S, Lahn MM, Raymond E, Benhadji KA, Faivre S. Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib. PLoS One 2020; 15:e0222259. [PMID: 32210440 PMCID: PMC7094874 DOI: 10.1371/journal.pone.0222259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background Transforming growth factor beta (TGF-β) signalling is involved in the development of hepatocellular carcinoma (HCC). We followed changes in biomarkers during treatment of patients with HCC with the TGF-βRI/ALK5 inhibitor galunisertib. Methods This phase 2 study (NCT01246986) enrolled second-line patients with advanced HCC into one of two cohorts of baseline serum alpha-fetoprotein (AFP): Part A (AFP ≥1.5x ULN) or Part B (AFP <1.5x ULN). Baseline and postbaseline levels of AFP, TGF-β1, E-cadherin, selected miRNAs, and other plasma proteins were monitored. Results The study enrolled 149 patients (Part A, 109; Part B, 40). Median OS was 7.3 months in Part A and 16.8 months in Part B. Baseline AFP, TGF-β1, E-cadherin, and an additional 16 plasma proteins (such as M-CSF, IL-6, ErbB3, ANG-2, neuropilin-1, MIP-3 alpha, KIM-1, uPA, IL-8, TIMP-1, ICAM-1, Apo A-1, CA-125, osteopontin, tetranectin, and IGFBP-1) were found to correlate with OS. In addition, a range of miRs were found to be associated with OS. In AFP responders (21% of patients in Part A with decrease of >20% from baseline) versus non-responders, median OS was 21.5 months versus 6.8 months (p = 0.0015). In TGF-β1 responders (51% of all patients) versus non-responders, median OS was 11.2 months versus 5.3 months (p = 0.0036). Conclusions Consistent with previous findings, both baseline levels and changes from baseline of circulating AFP and TGF-β1 function as prognostic indicators of survival. Future trials are needed to confirm and extend these results.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- National Institute of Gastroenterology, “s. De Bellis” Research Hospital, Castellana Grotte, Bari, Italy
- * E-mail:
| | | | - Robin K. Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - Ed Gane
- Auckland City Hospital, Auckland, New Zealand
| | | | - Ann Cleverly
- Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - Claire Smith
- Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - Shawn T. Estrem
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Michael Man
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Shuaicheng Wang
- BioStat Solutions, Inc., Frederick, Maryland, United States of America
| | - Michael M. Lahn
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Eric Raymond
- Paris Saint-Joseph Hospital Center, Paris, France
| | - Karim A. Benhadji
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | | |
Collapse
|
98
|
Park MS, Park HJ, An YJ, Choi JH, Cha G, Lee HJ, Park SJ, Dewang PM, Kim DK. Synthesis, biological evaluation and molecular modelling of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1 H-imidazoles as ALK5 inhibitors. J Enzyme Inhib Med Chem 2020; 35:702-712. [PMID: 32164459 PMCID: PMC7144182 DOI: 10.1080/14756366.2020.1734799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A series of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1H-imidazoles, 7a–c, 11a–h, and 16a–h has been synthesised and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. Incorporation of a quinoxalin-6-yl moiety and a methylene linker at the 4- and 2-position of the imidazole ring, respectively, and a m-CONH2 substituent in the phenyl ring generated a highly potent and selective ALK5 inhibitor 11e. Docking model of ALK5 in complex with 11e showed that it fitted well in the ATP-binding pocket with favourable interactions.
Collapse
Affiliation(s)
- Myoung-Soon Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young Jae An
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Joon Hun Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Geunyoung Cha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Hwa Jeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - So-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Purushottam M Dewang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Dae-Kee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
99
|
Wick A, Desjardins A, Suarez C, Forsyth P, Gueorguieva I, Burkholder T, Cleverly AL, Estrem ST, Wang S, Lahn MM, Guba SC, Capper D, Rodon J. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest New Drugs 2020; 38:1570-1579. [PMID: 32140889 PMCID: PMC7497674 DOI: 10.1007/s10637-020-00910-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023]
Abstract
Purpose Galunisertib, a TGF-β inhibitor, has demonstrated antitumor effects in preclinical and radiographic responses in some patients with malignant glioma. This Phase 1b/2a trial investigated the clinical benefit of combining galunisertib with temozolomide-based radiochemotherapy (TMZ/RTX) in patients with newly diagnosed malignant glioma (NCT01220271). Methods This is an open-label, 2-arm Phase 1b/2a study (N = 56) of galunisertib (intermittent dosing: 14 days on/14 days off per cycle of 28 days) in combination with TMZ/RTX (n = 40), versus a control arm (TMZ/RTX, n = 16). The primary objective of Phase 1b was to determine the safe and tolerable Phase 2 dose of galunisertib. The primary objective of Phase 2a was to confirm the tolerability and pharmacodynamic profile of galunisertib with TMZ/RTX, and the secondary objectives included determining the efficacy and pharmacokinetic (PK) profile of galunisertib with TMZ/RTX in patients with glioblastoma. This study also characterized the changes in the major T-cell subsets during TMZ/RTX plus galunisertib treatment. Results In the Phase 2a study, efficacy results for patients treated with galunisertib plus TMZ/RTX or TMZ/RTX were: median overall survival (18.2 vs 17.9 months), median progression-free survival (7.6 vs 11.5 months), and disease control rate (80% [32/40] vs 56% [9/16] patients) respectively. PK profile of galunisertib plus TMZ/RTX regimen was consistent with previously published PK data of galunisertib. The overall safety profile across treatment arms was comparable. Conclusion No differences in efficacy, safety or pharmacokinetic variables were observed between the two treatment arms.
Collapse
Affiliation(s)
- Antje Wick
- Clinical Cooperation Unit Neuro-oncology, German Cancer Research Center, Heidelberg University Medical Center, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Annick Desjardins
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University, Durham, NC, USA
| | - Cristina Suarez
- Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter Forsyth
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | | | | | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jordi Rodon
- Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, U. T. M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
100
|
Horn LA, Fousek K, Palena C. Tumor Plasticity and Resistance to Immunotherapy. Trends Cancer 2020; 6:432-441. [PMID: 32348738 DOI: 10.1016/j.trecan.2020.02.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Tumor cell plasticity exhibited as an epithelial-mesenchymal transition (EMT) has been identified as a major obstacle for the effective treatment of many cancers. This process, which involves the dedifferentiation of epithelial tumor cells towards a motile, metastatic, and mesenchymal tumor phenotype, mediates resistance to conventional therapies and small-molecule targeted therapies. In this review, we highlight current research correlating the role of tumor plasticity with resistance to current immunotherapy approaches and discuss future and ongoing combination immunotherapy strategies to reduce tumor cell plasticity-driven resistance in cancer.
Collapse
Affiliation(s)
- Lucas A Horn
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|