51
|
Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS One 2019; 14:e0216753. [PMID: 31071168 PMCID: PMC6508646 DOI: 10.1371/journal.pone.0216753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae) is a forest insect pest that attacks several different pine (Pinus) species in its native range of distribution in western North America. MPB are exposed for most of their life cycle to the chemical defenses of their hosts. These defenses are dominated by oleoresin secretions containing mostly various monoterpenes and diterpene resin acids (DRAs). Cytochrome P450 enzymes (P450s) of the MPB are thought to be involved in the metabolism of at least some of these defense compounds. Here we describe the cloning and characterization of three MPB P450s, CYP6DJ1, CYP6BW1 and CYP6BW3, and their functions in the oxidation of various monoterpenes and diterpene resin acids. CYP6DJ1 oxidizes the monoterpenes (+)-(4R)-limonene, (-)-(4S)-limonene and terpinolene and produces (4R,8R)-limonene-8,9-epoxide, (4R,8S)-limonene-8,9-epoxide, (4S,8S)-limonene-8,9-epoxide, (4S,8R)-limonene-8,9-epoxide, perilla alcohol and several unidentified oxidized compounds. These products of CYP6DJ1 were also identified in extracts of MPB treated with the same monoterpenes. CYP6BW1 and CYP6BW3 both oxidize the DRAs abietic acid, dehydroabietic acid, neoabietic acid, levopimaric acid, palustric acid, and isopimaric acid, producing hydroxylated and epoxidized DRAs. CYP6DJ1, CYP6BW1 and CYP6BW3 appear to contribute to the metabolism of oleoresin terpenes as part of the MPB's ability to cope with host defenses.
Collapse
|
52
|
Zhao T, Ganji S, Schiebe C, Bohman B, Weinstein P, Krokene P, Borg-Karlson AK, Unelius CR. Convergent evolution of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. ISME JOURNAL 2019; 13:1535-1545. [PMID: 30770902 PMCID: PMC6776033 DOI: 10.1038/s41396-019-0370-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022]
Abstract
Convergent evolution of semiochemical use in organisms from different Kingdoms is a rarely described phenomenon. Tree-killing bark beetles vector numerous symbiotic blue-stain fungi that help the beetles colonize healthy trees. Here we show for the first time that some of these fungi are able to biosynthesize bicyclic ketals that are pheromones and other semiochemicals of bark beetles. Volatile emissions of five common bark beetle symbionts were investigated by gas chromatography-mass spectrometry. When grown on fresh Norway spruce bark the fungi emitted three well-known bark beetle aggregation pheromones and semiochemicals (exo-brevicomin, endo-brevicomin and trans-conophthorin) and two structurally related semiochemical candidates (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane and endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane) that elicited electroantennogram responses in the spruce bark beetle Ips typographus. When grown on malt agar with 13C d-Glucose, the fungus Grosmannia europhioides incorporated 13C into exo-brevicomin and trans-conophthorin. The enantiomeric compositions of the fungus-produced ketals closely matched those previously reported from bark beetles. The production of structurally complex bark beetle pheromones by symbiotic fungi indicates cross-kingdom convergent evolution of signal use in this system. This signaling is susceptible to disruption, providing potential new targets for pest control in conifer forests and plantations.
Collapse
Affiliation(s)
- Tao Zhao
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden. .,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, 100 44, Stockholm, Sweden. .,School of Science and Technology, Örebro University, 701 82, Örebro, Sweden.
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden
| | - Christian Schiebe
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden
| | - Björn Bohman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden.,School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Paal Krokene
- Department of Plant Molecular Biology, Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | - Anna-Karin Borg-Karlson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - C Rikard Unelius
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 382 91, Kalmar, Sweden
| |
Collapse
|
53
|
Chiu CC, Keeling CI, Bohlmann J. The cytochrome P450 CYP6DE1 catalyzes the conversion of α-pinene into the mountain pine beetle aggregation pheromone trans-verbenol. Sci Rep 2019; 9:1477. [PMID: 30728428 PMCID: PMC6365528 DOI: 10.1038/s41598-018-38047-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the mountain pine beetle (Dendroctonus ponderosae; MPB) has affected over 20 M hectares of pine forests in western North America. During the colonization of host trees, female MPB release the aggregation pheromone (-)-trans-verbenol. (-)-trans-Verbenol is thought to be produced from the pine defense compound (-)-α-pinene by cytochrome P450 (P450) dependent hydroxylation. MPB may also use P450s for the detoxification of other monoterpenes of the pine defense system. Here we describe the functional characterization of MPB CYP6DE1. CYP6DE1, but not the closely related CYP6DE2, used the bicyclic monoterpenes (-)-α-pinene, (+)-α-pinene, (-)-β-pinene, (+)-β-pinene and (+)-3-carene as substrates. CYP6DE1 was not active with other monoterpenes or diterpene resin acids that were tested as substrates. trans-Verbenol is the major product of CYP6DE1 activity with (-)-α-pinene or (+)-α-pinene as substrates. When tested with blends of different ratios of (-)-α-pinene and (+)-α-pinene, CYP6DE1 produced trans-verbenol with an enantiomeric profile that was similar to that produced by female MPB exposed to the α-pinene enantiomers.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada.,Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada.,Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada. .,Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada.
| |
Collapse
|
54
|
Ibarra Caballero JR, Jeon J, Lee YH, Fraedrich S, Klopfenstein NB, Kim MS, Stewart JE. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity related genes. Fungal Genet Biol 2019; 125:84-92. [PMID: 30716558 DOI: 10.1016/j.fgb.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022]
Abstract
Raffaelea lauricola is an invasive fungal pathogen and symbiont of the redbay ambrosia beetle (Xyleborus glabratus) that has caused widespread mortality to redbay (Persea borbonia) and other Lauraceae species in the southeastern USA. We compare two genomes of R. lauricola (C2646 and RL570) to seven other related Ophiostomatales species including R. aguacate (nonpathogenic close relative of R. lauricola), R. quercus-mongolicae (associated with mortality of oaks in Korea), R. quercivora (associated with mortality of oaks in Japan), Grosmannia clavigera (cause of blue stain in conifers), Ophiostoma novo-ulmi (extremely virulent causal agent of Dutch elm disease), O. ulmi (moderately virulent pathogen that cause of Dutch elm disease), and O. piceae (blue-stain saprophyte of conifer logs and lumber). Structural and functional annotations were performed to determine genes that are potentially associated with disease development. Raffaelea lauricola and R. aguacate had the largest genomes, along with the largest number of protein-coding genes, genes encoding secreted proteins, small-secreted proteins, ABC transporters, cytochrome P450 enzymes, CAZYmes, and proteases. Our results indicate that this large genome size was not related to pathogenicity but was likely lineage specific, as the other pathogens in Raffaelea (R. quercus-mongolicae and R. quercivora) had similar genome characteristics to the Ophiostoma species. A diverse repertoire of wood-decaying enzymes were identified in each of the genomes, likely used for toxin neutralization rather than wood degradation. Lastly, a larger number of species-specific, secondary metabolite, synthesis clusters were identified in R. lauricola suggesting that it is well equipped as a pathogen, which could explain its success as a pathogen of a wide range of lauraceous hosts.
Collapse
Affiliation(s)
- Jorge R Ibarra Caballero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Jongbum Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Stephen Fraedrich
- USDA Forest Service, Southern Research Station, Athens, GA 30602, USA
| | - Ned B Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA
| | - Mee-Sook Kim
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| | - Jane E Stewart
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
55
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
56
|
Demissie ZA, Tarnowycz M, Adal AM, Sarker LS, Mahmoud SS. A lavender ABC transporter confers resistance to monoterpene toxicity in yeast. PLANTA 2019; 249:139-144. [PMID: 30535718 DOI: 10.1007/s00425-018-3064-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Functional expression of a multidrug resistance-type ABC transporter from Lavandulaangustifolia improved yeast resistance to geraniol, a monoterpene constituent of lavender essential oil. Plant ATP-binding cassette (ABC) transporters are a large family of membrane proteins involved in active and selective transport of structurally diverse compounds. In this study, we functionally evaluated LaABCB1, a multidrug resistance (MDR)-type ABC transporter strongly expressed in the secretory cells of lavender glandular trichomes, where monoterpene essential oil constituents are synthesized and secreted. We used LaABCB1 to complement a yeast knockout mutant in which 16 ABC transporters were deleted. Expression of LaABCB1 enhanced tolerance of yeast mutants to geraniol, a key constituent of essential oils in lavenders and numerous other plants. Our findings suggest a role for the MDR-type ABC transporters in the toxicity tolerance of at least certain essential oil constituents in lavender oil glands.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
- National Research Council of Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Mike Tarnowycz
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Lukman S Sarker
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
57
|
Cytochromes P450 Preferentially Expressed in Antennae of the Mountain Pine Beetle. J Chem Ecol 2018; 45:178-186. [DOI: 10.1007/s10886-018-0999-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023]
|
58
|
Davis TS, Horne FB, Yetter JC, Stewart JE. Engelmann Spruce Chemotypes in Colorado and their Effects on Symbiotic Fungi Associated with the North American Spruce Beetle. J Chem Ecol 2018; 44:601-610. [DOI: 10.1007/s10886-018-0961-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 02/01/2023]
|
59
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
60
|
Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ. Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv 2017; 35:1022-1031. [DOI: 10.1016/j.biotechadv.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
|
61
|
Trowbridge AM, Keefover-Ring K. Home on the (expanding) range: evaluating the effectiveness of a novel host's induced defenses against the mountain pine beetle-fungal complex. TREE PHYSIOLOGY 2017; 37:1593-1596. [PMID: 29036722 DOI: 10.1093/treephys/tpx122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Amy M Trowbridge
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
62
|
Cale JA, Muskens M, Najar A, Ishangulyyeva G, Hussain A, Kanekar SS, Klutsch JG, Taft S, Erbilgin N. Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi. TREE PHYSIOLOGY 2017; 37:1597-1610. [PMID: 28985375 DOI: 10.1093/treephys/tpx089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Chemical induction can drive tree susceptibility to and host range expansions of attacking insects and fungi. Recently, mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has expanded its host range from its historic host lodgepole pine (Pinus contorta var. latifolia Douglas ex Loudon) to jack pine (Pinus banksiana Lamb) in western Canada. Beetle success in jack pine forests likely depends upon the suitability of tree chemistry to MPB and its symbiotic phytopathogenic fungi. In particular, how rapid induced defenses of jack pine affect MPB colonization and the beetle's symbionts is unknown. In the field, we characterized and compared differences in rapid induced phloem monoterpenes between lodgepole and jack pines in response to various densities of Grosmannia clavigera (Robinson-Jeffery and Davidson)-a MPB symbiotic fungus used to simulate beetle attack-inoculations. Overall, lodgepole pine had higher limonene and myrcene, but lower α-pinene, concentrations than jack pine. However, myrcene concentrations in jack pine increased with inoculation density, while that in lodgepole pine did not respond to density treatments. We compared the growth and reproduction of MPB's symbiotic fungi, G. clavigera, Ophiostoma montium (Rumford) von Arx and Leptographium longiclavatum Lee, Kim and Breuil, grown on media amended with myrcene, α-pinene and limonene at concentrations reflecting two induction levels from each pine species. Myrcene and α-pinene amendments inhibited the growth but stimulated the reproduction of G. clavigera, whereas limonene stimulated its growth while inhibiting its reproduction. However, the growth and reproduction of the other fungi were generally stimulated by monoterpene amendments. Overall, our results suggest that jack pine rapid induction could promote MPB aggregation due to high levels of α-pinene (pheromone precursor), a positive feedback of myrcene (pheromone synergist) and low levels of limonene (resistance). Jack pine is likely as susceptible to MPB-vectored fungi as lodgepole pine, indicating that jack pine induction will likely not adversely affect symbiont activities enough to inhibit the invasion of MPB into jack pine forests.
Collapse
Affiliation(s)
- Jonathan A Cale
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Marlena Muskens
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Ahmed Najar
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Altaf Hussain
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Sanat S Kanekar
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Spencer Taft
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
63
|
Schuelke TA, Wu G, Westbrook A, Woeste K, Plachetzki DC, Broders K, MacManes MD. Comparative Genomics of Pathogenic and Nonpathogenic Beetle-Vectored Fungi in the Genus Geosmithia. Genome Biol Evol 2017; 9:3312-3327. [PMID: 29186370 PMCID: PMC5737690 DOI: 10.1093/gbe/evx242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.
Collapse
Affiliation(s)
- Taruna A Schuelke
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| | - Guangxi Wu
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | | | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources, Purdue University
| | - David C Plachetzki
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| | - Kirk Broders
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Matthew D MacManes
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| |
Collapse
|
64
|
Vanderpool D, Bracewell RR, McCutcheon JP. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol Ecol 2017; 27:2077-2094. [PMID: 29087025 DOI: 10.1111/mec.14394] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Bark and ambrosia beetles are highly specialized weevils (Curculionidae) that have established diverse symbioses with fungi, most often from the order Ophiostomatales (Ascomycota, Sordariomycetes). The two types of beetles are distinguished by their feeding habits and intimacy of interactions with their symbiotic fungi. The tree tissue diet of bark beetles is facilitated by fungi, while ambrosia beetles feed solely on fungi that they farm. The farming life history strategy requires domestication of a fungus, which the beetles consume as their sole food source. Ambrosia beetles in the subfamily Platypodinae originated in the mid-Cretaceous (119-88 Ma) and are the oldest known group of farming insects. However, attempts to resolve phylogenetic relationships and the timing of domestication events for fungal cultivars have been largely inconclusive. We sequenced the genomes of 12 ambrosia beetle fungal cultivars and bark beetle associates, including the devastating laurel wilt pathogen, Raffaelea lauricola, to estimate a robust phylogeny of the Ophiostomatales. We find evidence for contemporaneous diversification of the beetles and their associated fungi, followed by three independent domestication events of the ambrosia fungi genus Raffaelea. We estimate the first domestication of an Ophiostomatales fungus occurred ~86 Ma, 25 million years earlier than prior estimates and in close agreement with the estimated age of farming in the Platypodinae (96 Ma). Comparisons of the timing of fungal domestication events with the timing of beetle radiations support the hypothesis that the first large beetle radiations may have spread domesticated "ambrosia" fungi to other fungi-associated beetle groups, perhaps facilitating the evolution of new farming lineages.
Collapse
Affiliation(s)
- Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ryan R Bracewell
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
65
|
Chiu CC, Keeling CI, Bohlmann J. Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Sci Rep 2017; 7:8858. [PMID: 28821756 PMCID: PMC5562797 DOI: 10.1038/s41598-017-08983-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
The mountain pine beetle (Dendroctonus ponderosae; MPB) is an eruptive bark beetle species affecting pine forests of western North America. MPB are exposed to volatile monoterpenes, which are important host defense chemicals. We assessed the toxicity of the ten most abundant monoterpenes of lodgepole pine (Pinus contorta), a major host in the current MPB epidemic, against adult MPB from two locations in British Columbia, Canada. Monoterpenes were tested as individual volatiles and included (-)-β-phellandrene, (+)-3-carene, myrcene, terpinolene, and both enantiomers of α-pinene, β-pinene and limonene. Dose-mortality experiments identified (-)-limonene as the most toxic (LC50: 32 μL/L), and (-)-α-pinene (LC50: 290 μL/L) and terpinolene (LC50: >500 μL/L) as the least toxic. MPB body weight had a significant positive effect on the ability to survive most monoterpene volatiles, while sex did not have a significant effect with most monoterpenes. This study helps to quantitatively define the effects of individual monoterpenes towards MPB mortality, which is critical when assessing the variable monoterpene chemical defense profiles of its host species.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada
- Botany Department, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada
- Laurentian Forestry Centre, Natural Resources Canada, P.O. Box 10380, Stn. Sainte-Foy, 1055 du P.E.P.S., Quebec City, QC, G1V 4C7, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada.
- Botany Department, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada.
| |
Collapse
|
66
|
Baral B. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters. ADVANCES IN GENETICS 2017; 98:117-154. [PMID: 28942792 DOI: 10.1016/bs.adgen.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases.
Collapse
|
67
|
Klutsch JG, Najar A, Sherwood P, Bonello P, Erbilgin N. A Native Parasitic Plant Systemically Induces Resistance in Jack Pine to a Fungal Symbiont of Invasive Mountain Pine Beetle. J Chem Ecol 2017; 43:506-518. [PMID: 28466378 DOI: 10.1007/s10886-017-0845-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/26/2017] [Accepted: 04/24/2017] [Indexed: 01/28/2023]
Abstract
Conifer trees resist pest and pathogen attacks by complex defense responses involving different classes of defense compounds. However, it is unknown whether prior infection by biotrophic pathogens can lead to subsequent resistance to necrotrophic pathogens in conifers. We used the infection of jack pine, Pinus banksiana, by a common biotrophic pathogen dwarf mistletoe, Arceuthobium americanum, to investigate induced resistance to a necrotrophic fungus, Grosmannia clavigera, associated with the mountain pine beetle, Dendroctonus ponderosae. Dwarf mistletoe infection had a non-linear, systemic effect on monoterpene production, with increasing concentrations at moderate infection levels and decreasing concentrations at high infection levels. Inoculation with G. clavigera resulted in 33 times higher monoterpene concentrations and half the level of phenolics in the necrotic lesions compared to uninoculated control trees. Monoterpene production following dwarf mistletoe infection seemed to result in systemic induced resistance, as trees with moderate disease severity were most resistant to G. clavigera, as evident from shorter lesion lengths. Furthermore, trees with moderate disease severity had the highest systemic but lowest local induction of α-pinene after G. clavigera inoculation, suggesting a possible tradeoff between systemically- and locally-induced defenses. The opposing effects to inoculation by G. clavigera on monoterpene and phenolic levels may indicate the potential for biosynthetic tradeoffs by the tree between these two major defense classes. Our results demonstrate that interactions between a biotrophic parasitic plant and a necrotrophic fungus may impact mountain pine beetle establishment in novel jack pine forests through systemic effects mediated by the coordination of jack pine defense chemicals.
Collapse
Affiliation(s)
- Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Ahmed Najar
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Patrick Sherwood
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.,The James Hutton Institute, Craigiebuckler Aberdeen, Scotland, AB15 8QH, UK
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
68
|
Ojeda Alayon DI, Tsui CKM, Feau N, Capron A, Dhillon B, Zhang Y, Massoumi Alamouti S, Boone CK, Carroll AL, Cooke JEK, Roe AD, Sperling FAH, Hamelin RC. Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Mol Ecol 2017; 26:2077-2091. [PMID: 28231417 DOI: 10.1111/mec.14074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.
Collapse
Affiliation(s)
- Dario I Ojeda Alayon
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Clement K M Tsui
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Arnaud Capron
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Yiyuan Zhang
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Sepideh Massoumi Alamouti
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Celia K Boone
- Ecosystem Science and Management Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada, V2N 4Z9
| | - Allan L Carroll
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Amanda D Roe
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3.,Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St E, Sault Ste. Marie, ON, Canada, P6A 2E5
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2R3
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4.,Institut de Biologie Intégrative des Systèmes, Université Laval, 1030 Avenue de la Médecine, Québec City, QC, Canada, G1V 0A6
| |
Collapse
|
69
|
Khadempour L, Burnum-Johnson KE, Baker ES, Nicora CD, Webb-Robertson BJM, White RA, Monroe ME, Huang EL, Smith RD, Currie CR. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates. Mol Ecol 2016; 25:5795-5805. [PMID: 27696597 DOI: 10.1111/mec.13872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/20/2023]
Abstract
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores.
Collapse
Affiliation(s)
- Lily Khadempour
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Richard A White
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Eric L Huang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
70
|
Kandasamy D, Gershenzon J, Hammerbacher A. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control. J Chem Ecol 2016; 42:952-969. [PMID: 27687998 PMCID: PMC5101256 DOI: 10.1007/s10886-016-0768-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/14/2016] [Accepted: 09/07/2016] [Indexed: 11/06/2022]
Abstract
Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized.
Collapse
Affiliation(s)
- Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany.
| | - Almuth Hammerbacher
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
71
|
Berasategui A, Axelsson K, Nordlander G, Schmidt A, Borg-Karlson AK, Gershenzon J, Terenius O, Kaltenpoth M. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Mol Ecol 2016; 25:4014-31. [DOI: 10.1111/mec.13702] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 03/23/2016] [Accepted: 04/27/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Aileen Berasategui
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Hans Knöll Straβe, 07745 Jena Germany
- Insect Symbiosis Research Group; Max Planck Institute for Chemical Ecology; Hans Knöll Straβe, 07745 Jena Germany
| | - Karolin Axelsson
- Department of Organic Chemistry; KTH (Royal Institute of Technology); AlbaNova University Center, 106 91 Stockholm Sweden
| | - Göran Nordlander
- Department of Ecology; Swedish University of Agricultural Sciences; Lägerhyddsvägen 1, 751 21 Uppsala Sweden
| | - Axel Schmidt
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Hans Knöll Straβe, 07745 Jena Germany
| | - Anna-Karin Borg-Karlson
- Department of Organic Chemistry; KTH (Royal Institute of Technology); AlbaNova University Center, 106 91 Stockholm Sweden
| | - Jonathan Gershenzon
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Hans Knöll Straβe, 07745 Jena Germany
| | - Olle Terenius
- Department of Ecology; Swedish University of Agricultural Sciences; Lägerhyddsvägen 1, 751 21 Uppsala Sweden
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group; Max Planck Institute for Chemical Ecology; Hans Knöll Straβe, 07745 Jena Germany
| |
Collapse
|
72
|
Oghenekaro AO, Raffaello T, Kovalchuk A, Asiegbu FO. De novo transcriptomic assembly and profiling of Rigidoporus microporus during saprotrophic growth on rubber wood. BMC Genomics 2016; 17:234. [PMID: 26980399 PMCID: PMC4791870 DOI: 10.1186/s12864-016-2574-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The basidiomycete Rigidoporus microporus is a fungus that causes the white rot disease of the tropical rubber tree, Hevea brasiliensis, the major source of commercial natural rubber. Besides its lifestyle as a pathogen, the fungus is known to switch to saprotrophic growth on wood with the ability to degrade both lignin and cellulose. There is almost no genomic or transcriptomic information on the saprotrophic abilities of this fungus. In this study, we present the fungal transcriptomic profiles during saprotrophic growth on rubber wood. RESULTS A total of 266.6 million RNA-Seq reads were generated from six libraries of the fungus growing either on rubber wood or without wood. De novo assembly produced 34, 518 unigenes with an average length of 2179 bp. Annotation of unigenes using public databases; GenBank, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO) produced 25, 880 annotated unigenes. Transcriptomic profiling analysis revealed that the fungus expressed over 300 genes encoding lignocellulolytic enzymes. Among these, 175 genes were up-regulated in rubber wood. These include three members of the glycoside hydrolase family 43, as well as various glycosyl transferases, carbohydrate esterases and polysaccharide lyases. A large number of oxidoreductases which includes nine manganese peroxidases were also significantly up-regulated in rubber wood. Several genes involved in fatty acid metabolism and degradation as well as natural rubber degradation were expressed in the transcriptome. Four genes (acyl-CoA synthetase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA acetyltransferase) potentially involved in rubber latex degradation pathway were also induced. A number of ATP binding cassette (ABC) transporters and hydrophobin genes were significantly expressed in the transcriptome during saprotrophic growth. Some genes related to energy metabolism were also induced. CONCLUSIONS The analysed data gives an insight into the activation of lignocellulose breakdown machinery of R. microporus. This study also revealed genes with relevance in antibiotic metabolism (e.g. cephalosporin esterase) as well as those with potential applications in fatty acid degradation. This is the first study on the transcriptomic analysis of R. microporus on rubber wood and should serve as a pioneering resource for future studies of the fungus at the genomic or transcriptomic level.
Collapse
Affiliation(s)
- Abbot O Oghenekaro
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland.
| | - Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| |
Collapse
|
73
|
Baral B, Kovalchuk A, Asiegbu FO. Genome organisation and expression profiling of ABC protein-encoding genes in Heterobasidion annosum s.l. complex. Fungal Biol 2016; 120:376-84. [DOI: 10.1016/j.funbio.2015.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022]
|
74
|
Jongedijk E, Cankar K, Buchhaupt M, Schrader J, Bouwmeester H, Beekwilder J. Biotechnological production of limonene in microorganisms. Appl Microbiol Biotechnol 2016; 100:2927-38. [PMID: 26915992 PMCID: PMC4786606 DOI: 10.1007/s00253-016-7337-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 11/25/2022]
Abstract
This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.
Collapse
Affiliation(s)
- Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708, PB, The Netherlands
| | - Katarina Cankar
- Plant Research International, PO Box 16, 6700, AA, Wageningen, The Netherlands
| | - Markus Buchhaupt
- DECHEMA Research Institute, Biochemical Engineering, Theodor Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jens Schrader
- DECHEMA Research Institute, Biochemical Engineering, Theodor Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708, PB, The Netherlands
| | - Jules Beekwilder
- Plant Research International, PO Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
75
|
Achotegui-Castells A, Della Rocca G, Llusià J, Danti R, Barberini S, Bouneb M, Simoni S, Michelozzi M, Peñuelas J. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem. Sci Rep 2016; 6:18954. [PMID: 26796122 PMCID: PMC4726198 DOI: 10.1038/srep18954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023] Open
Abstract
The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.
Collapse
Affiliation(s)
- Ander Achotegui-Castells
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Gianni Della Rocca
- IPSP-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Joan Llusià
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Roberto Danti
- IPSP-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Sara Barberini
- IPSP-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Mabrouk Bouneb
- CRA-ABP, Via Lanciola 12, Cascine del Riccio 50125 (FI), Italy
| | - Sauro Simoni
- CRA-ABP, Via Lanciola 12, Cascine del Riccio 50125 (FI), Italy
| | - Marco Michelozzi
- IBBR-CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallès 08193, Catalonia, Spain
| |
Collapse
|
76
|
Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, Nicot PC. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? FRONTIERS IN PLANT SCIENCE 2015; 6:566. [PMID: 26284088 PMCID: PMC4515547 DOI: 10.3389/fpls.2015.00566] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/09/2015] [Indexed: 05/18/2023]
Abstract
The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents.
Collapse
Affiliation(s)
- Marc Bardin
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| | - Sakhr Ajouz
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| | - Morgane Comby
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| | - Miguel Lopez-Ferber
- Laboratoire de Génie de l’Environnement Industriel, Ecole des Mines d’Alès, Institut Mines-Telecom, Alès, France
| | - Benoît Graillot
- Laboratoire de Génie de l’Environnement Industriel, Ecole des Mines d’Alès, Institut Mines-Telecom, Alès, France
- Natural Plant Protection,Arysta LifeScience Group, Pau, France
| | - Myriam Siegwart
- Plantes et Systèmes de Culture Horticoles Unit, Institut National de la Recherche Agronomique, UR1115, Avignon, France
| | - Philippe C. Nicot
- Plant Pathology Unit, Institut National de la Recherche Agronomique, UR407, Montfavet, France
| |
Collapse
|
77
|
Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera. Appl Environ Microbiol 2015; 80:4566-76. [PMID: 24837377 DOI: 10.1128/aem.00670-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.
Collapse
|
78
|
Morales-Cruz A, Amrine KCH, Blanco-Ulate B, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genomics 2015; 16:469. [PMID: 26084502 PMCID: PMC4472170 DOI: 10.1186/s12864-015-1624-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development. RESULTS The integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution. CONCLUSIONS This study describes the repertoires of putative virulence functions in the genomes of ubiquitous grapevine trunk pathogens. Gene families with significantly faster rates of gene gain can now provide a basis for further studies of in planta gene expression, diversity by genome re-sequencing, and targeted reverse genetic approaches. The functional validation of potential virulence factors will lead to a more comprehensive understanding of the mechanisms of pathogenesis and virulence, which ultimately will enable the development of accurate diagnostic tools and effective disease management.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| | - Katherine C H Amrine
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| | - Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| | - Renaud Travadon
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA.
| | - Kendra Baumgartner
- United States Department of Agriculture - Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA.
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
79
|
Sang H, Hulvey J, Popko JT, Lopes J, Swaminathan A, Chang T, Jung G. A pleiotropic drug resistance transporter is involved in reduced sensitivity to multiple fungicide classes in Sclerotinia homoeocarpa (F.T. Bennett). MOLECULAR PLANT PATHOLOGY 2015; 16:251-61. [PMID: 25040464 PMCID: PMC6638355 DOI: 10.1111/mpp.12174] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dollar spot, caused by Sclerotinia homoeocarpa, is a prevalent turfgrass disease, and the fungus exhibits widespread fungicide resistance in North America. In a previous study, an ABC-G transporter, ShatrD, was associated with practical field resistance to demethylation inhibitor (DMI) fungicides. Mining of ABC-G transporters, also known as pleiotropic drug resistance (PDR) transporters, from RNA-Seq data gave an assortment of transcripts, several with high sequence similarity to functionally characterized transporters from Botrytis cinerea, and others with closest blastx hits from Aspergillus and Monilinia. In addition to ShatrD, another PDR transporter showed significant over-expression in replicated RNA-Seq data, and in a collection of field-resistant isolates, as measured by quantitative polymerase chain reaction. These isolates also showed reduced sensitivity to unrelated fungicide classes. Using a yeast complementation system, we sought to test the hypothesis that this PDR transporter effluxes DMI as well as chemically unrelated fungicides. The transporter (ShPDR1) was cloned into the Gal1 expression vector and transformed into a yeast PDR transporter deletion mutant, AD12345678. Complementation assays indicated that ShPDR1 complemented the mutant in the presence of propiconazole (DMI), iprodione (dicarboximide) and boscalid (SDHI, succinate dehydrogenase inhibitor). Our results indicate that the over-expression of ShPDR1 is correlated with practical field resistance to DMI fungicides and reduced sensitivity to dicarboximide and SDHI fungicides. These findings highlight the potential for the eventual development of a multidrug resistance phenotype in this pathogen. In addition, this study presents a pipeline for the discovery and validation of fungicide resistance genes using de novo next-generation sequencing and molecular biology techniques in an unsequenced plant pathogenic fungus.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Stockbridge School of Agriculture, University of Massachusetts, 230 Stockbridge Rd., Amherst, MA, 01003-9320, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Novak M, Lah L, Šala M, Stojan J, Bohlmann J, Komel R. Oleic acid metabolism via a conserved cytochrome P450 system-mediated ω-hydroxylation in the bark beetle-associated fungus Grosmannia clavigera. PLoS One 2015; 10:e0120119. [PMID: 25794012 PMCID: PMC4368105 DOI: 10.1371/journal.pone.0120119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/22/2015] [Indexed: 12/27/2022] Open
Abstract
The bark beetle-associated fungus Grosmannia clavigera participates in the large-scale destruction of pine forests. In the tree, it must tolerate saturating levels of toxic conifer defense chemicals (e.g. monoterpenes). The fungus can metabolize some of these compounds through the ß-oxidation pathway and use them as a source of carbon. It also uses carbon from pine triglycerides, where oleic acid is the most common fatty acid. High levels of free fatty acids, however, are toxic and can cause additional stress during host colonization. Fatty acids induce expression of neighboring genes encoding a cytochrome P450 (CYP630B18) and its redox partner, cytochrome P450 reductase (CPR2). The aim of this work was to study the function of this novel P450 system. Using LC/MS, we biochemically characterized CYP630 as a highly specific oleic acid ω-hydroxylase. We explain oleic acid specificity using protein interaction modeling. Our results underscore the importance of ω-oxidation when the main ß-oxidation pathway may be overwhelmed by other substrates such as host terpenoid compounds. Because this CYP-CPR gene cluster is evolutionarily conserved, our work has implications for metabolism studies in other fungi.
Collapse
Affiliation(s)
- Metka Novak
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ljerka Lah
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- * E-mail: (LL); (RK)
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Radovan Komel
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- * E-mail: (LL); (RK)
| |
Collapse
|
81
|
Strong Induction of Minor Terpenes in Italian Cypress, Cupressus sempervirens, in Response to Infection by the Fungus Seiridium cardinale. J Chem Ecol 2015; 41:224-43. [DOI: 10.1007/s10886-015-0554-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/30/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
|
82
|
Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:251-86. [PMID: 25893480 DOI: 10.1007/10_2015_321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isoprenoids represent a natural product class essential to living organisms. Moreover, industrially relevant isoprenoid molecules cover a wide range of products such as pharmaceuticals, flavors and fragrances, or even biofuels. Their often complex structure makes chemical synthesis a difficult and expensive task and extraction from natural sources is typically low yielding. This has led to intense research for biotechnological production of isoprenoids by microbial de novo synthesis or biotransformation. Here, metabolic engineering, including synthetic biology approaches, is the key technology to develop efficient production strains in the first place. Bioprocess engineering, particularly in situ product removal (ISPR), is the second essential technology for the development of industrial-scale bioprocesses. A number of elaborate bioreactor and ISPR designs have been published to target the problems of isoprenoid synthesis and conversion, such as toxicity and product inhibition. However, despite the many exciting applications of isoprenoids, research on isoprenoid-specific bioprocesses has mostly been, and still is, limited to small-scale proof-of-concept approaches. This review presents and categorizes different ISPR solutions for biotechnological isoprenoid production and also addresses the main challenges en route towards industrial application.
Collapse
Affiliation(s)
- Hendrik Schewe
- DECHEMA Research Institute, Biochemical Engineering, Frankfurt, Germany
| | | | | |
Collapse
|
83
|
Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, Larrondo LF, Schmoll M, Druzhinina IS, Kubicek CP, Gaskell JA, Kersten P, St. John F, Glasner J, Sabat G, Splinter BonDurant S, Syed K, Yadav J, Mgbeahuruike AC, Kovalchuk A, Asiegbu FO, Lackner G, Hoffmeister D, Rencoret J, Gutiérrez A, Sun H, Lindquist E, Barry K, Riley R, Grigoriev IV, Henrissat B, Kües U, Berka RM, Martínez AT, Covert SF, Blanchette RA, Cullen D. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet 2014; 10:e1004759. [PMID: 25474575 PMCID: PMC4256170 DOI: 10.1371/journal.pgen.1004759] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. The wood decay fungus Phlebiopsis gigantea degrades all components of plant cell walls and is uniquely able to rapidly colonize freshly exposed conifer sapwood. However, mechanisms underlying its conversion of lignocellulose and resinous extractives have not been explored. We report here analyses of the genetic repertoire, transcriptome and secretome of P. gigantea. Numerous highly expressed hydrolases, together with lytic polysaccharide monooxygenases were implicated in P. gigantea's attack on cellulose, and an array of ligninolytic peroxidases and auxiliary enzymes were also identified. Comparisons of woody substrates with and without extractives revealed differentially expressed genes predicted to be involved in the transformation of resin. These expression patterns are likely key to the pioneer colonization of conifers by P. gigantea.
Collapse
Affiliation(s)
- Chiaki Hori
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Takuya Ishida
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Masahiro Samejima
- Department of Biomaterials Sciences, University of Tokyo, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Emma Master
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology and Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Francisco J. Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Benjamin Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Paulo Canessa
- Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology and Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Monika Schmoll
- Health and Environment Department, Austrian Institute of Technology GmbH, Tulin, Austria
| | - Irina S. Druzhinina
- Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Christian P. Kubicek
- Austrian Center of Industrial Biotechnology and Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Jill A. Gaskell
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Phil Kersten
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Franz St. John
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
| | - Jeremy Glasner
- University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America
| | - Grzegorz Sabat
- University of Wisconsin Biotechnology Center, Madison, Wisconsin, United States of America
| | | | - Khajamohiddin Syed
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jagjit Yadav
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Gerald Lackner
- Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Biology at the Hans-Knöll-Institute, Friedrich-Schiller-University, Jena, Germany
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Seville, Spain
| | - Hui Sun
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Göttingen, Germany
| | - Randy M. Berka
- Novozymes, Inc., Davis, California, United States of America
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Sarah F. Covert
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Daniel Cullen
- USDA, Forest Products Laboratory, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
84
|
Marmulla R, Harder J. Microbial monoterpene transformations-a review. Front Microbiol 2014; 5:346. [PMID: 25076942 PMCID: PMC4097962 DOI: 10.3389/fmicb.2014.00346] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/21/2014] [Indexed: 11/17/2022] Open
Abstract
Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes, and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic concentrations, the compounds can serve as carbon and energy source for aerobic and anaerobic microorganisms. Besides these catabolic reactions, transformations may occur as part of detoxification processes. Initial transformations of monoterpenes involve the introduction of functional groups, oxidation reactions, and molecular rearrangements catalyzed by various enzymes. Pseudomonas and Rhodococcus strains and members of the genera Castellaniella and Thauera have become model organisms for the elucidation of biochemical pathways. We review here the enzymes and their genes together with microorganisms known for a monoterpene metabolism, with a strong focus on microorganisms that are taxonomically validly described and currently available from culture collections. Metagenomes of microbiomes with a monoterpene-rich diet confirmed the ecological relevance of monoterpene metabolism and raised concerns on the quality of our insights based on the limited biochemical knowledge.
Collapse
Affiliation(s)
- Robert Marmulla
- Department of Microbiology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
85
|
Strauss AS, Wang D, Stock M, Gretscher RR, Groth M, Boland W, Burse A. Tissue-specific transcript profiling for ABC transporters in the sequestering larvae of the phytophagous leaf beetle Chrysomela populi. PLoS One 2014; 9:e98637. [PMID: 24887102 PMCID: PMC4041752 DOI: 10.1371/journal.pone.0098637] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insects evolved ingenious adaptations to use extraordinary food sources. Particularly, the diet of herbivores enriched with noxious plant secondary metabolites requires detoxification mechanisms. Sequestration, which involves the uptake, transfer, and concentration of occasionally modified phytochemicals into specialized tissues or hemolymph, is one of the most successful detoxification strategies found in most insect orders. Due to the ability of ATP-binding cassette (ABC) carriers to transport a wide range of molecules including phytochemicals and xenobiotics, it is highly likely that they play a role in this sequestration process. To shed light on the role of ABC proteins in sequestration, we describe an inventory of putative ABC transporters in various tissues in the sequestering juvenile poplar leaf beetle, Chrysomela populi. RESULTS In the transcriptome of C. populi, we predicted 65 ABC transporters. To link the proteins with a possible function, we performed comparative phylogenetic analyses with ABC transporters of other insects and of humans. While tissue-specific profiling of each ABC transporter subfamily suggests that ABCB, C and G influence the plant metabolite absorption in the gut, ABCC with 14 members is the preferred subfamily responsible for the excretion of these metabolites via Malpighian tubules. Moreover, salicin, which is sequestered from poplar plants, is translocated into the defensive glands for further deterrent production. In these glands and among all identified ABC transporters, an exceptionally high transcript level was observed only for Cpabc35 (Cpmrp). RNAi revealed the deficiency of other ABC pumps to compensate the function of CpABC35, demonstrating its key role during sequestration. CONCLUSION We provide the first comprehensive phylogenetic study of the ABC family in a phytophagous beetle species. RNA-seq data from different larval tissues propose the importance of ABC pumps to achieve a homeostasis of plant-derived compounds and offer a basis for future analyses of their physiological function in sequestration processes.
Collapse
Affiliation(s)
- Anja S. Strauss
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, D-07745 Jena, Thuringia, Germany
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, D-07745 Jena, Thuringia, Germany
| | - Magdalena Stock
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, D-07745 Jena, Thuringia, Germany
| | - René R. Gretscher
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, D-07745 Jena, Thuringia, Germany
| | - Marco Groth
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Thuringia, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, D-07745 Jena, Thuringia, Germany
| | - Antje Burse
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Str. 8, D-07745 Jena, Thuringia, Germany
- * E-mail:
| |
Collapse
|
86
|
Massoumi Alamouti S, Haridas S, Feau N, Robertson G, Bohlmann J, Breuil C. Comparative Genomics of the Pine Pathogens and Beetle Symbionts in the Genus Grosmannia. Mol Biol Evol 2014; 31:1454-74. [DOI: 10.1093/molbev/msu102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
87
|
Terpenes tell different tales at different scales: glimpses into the Chemical Ecology of conifer - bark beetle - microbial interactions. J Chem Ecol 2013; 40:1-20. [PMID: 24337719 DOI: 10.1007/s10886-013-0368-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/09/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022]
Abstract
Chemical signaling mediates nearly all aspects of species interactions. Our knowledge of these signals has progressed dramatically, and now includes good characterizations of the bioactivities, modes of action, biosynthesis, and genetic programming of numerous compounds affecting a wide range of species. A major challenge now is to integrate this information so as to better understand actual selective pressures under natural conditions, make meaningful predictions about how organisms and ecosystems will respond to a changing environment, and provide useful guidance to managers who must contend with difficult trade-offs among competing socioeconomic values. One approach is to place stronger emphasis on cross-scale interactions, an understanding of which can help us better connect pattern with process, and improve our ability to make mechanistically grounded predictions over large areas and time frames. The opportunity to achieve such progress has been heightened by the rapid development of new scientific and technological tools. There are significant difficulties, however: Attempts to extend arrays of lower-scale processes into higher scale functioning can generate overly diffuse patterns. Conversely, attempts to infer process from pattern can miss critically important lower-scale drivers in systems where their biological and statistical significance is negated after critical thresholds are breached. Chemical signaling in bark beetle - conifer interactions has been explored for several decades, including by the two pioneers after whom this award is named. The strong knowledge base developed by many researchers, the importance of bark beetles in ecosystem functioning, and the socioeconomic challenges they pose, establish these insects as an ideal model for studying chemical signaling within a cross-scale context. This report describes our recent work at three levels of scale: interactions of bacteria with host plant compounds and symbiotic fungi (tree level, biochemical time), relationships among inducible and constitutive defenses, population dynamics, and plastic host-selection behavior (stand level, ecological time), and climate-driven range expansion of a native eruptive species into semi-naïve and potentially naïve habitats (geographical level, evolutionary time). I approach this problem by focusing primarily on one chemical group, terpenes, by emphasizing the curvilinear and threshold-structured basis of most underlying relationships, and by focusing on the system's feedback structure, which can either buffer or amplify relationships across scales.
Collapse
|
88
|
May B, Lange BM, Wüst M. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. PHYTOCHEMISTRY 2013; 95:135-44. [PMID: 23954075 PMCID: PMC3838315 DOI: 10.1016/j.phytochem.2013.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 05/20/2023]
Abstract
The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries.
Collapse
Affiliation(s)
- Bianca May
- University of Bonn, Department of Nutrition and Food Sciences, Bioanalytics, Endenicher Allee 11-13, D-53115 Bonn, Germany
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Matthias Wüst
- University of Bonn, Department of Nutrition and Food Sciences, Bioanalytics, Endenicher Allee 11-13, D-53115 Bonn, Germany
| |
Collapse
|
89
|
Robert JA, Pitt C, Bonnett TR, Yuen MMS, Keeling CI, Bohlmann J, Huber DPW. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms. PLoS One 2013; 8:e77777. [PMID: 24223726 PMCID: PMC3815198 DOI: 10.1371/journal.pone.0077777] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022] Open
Abstract
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.
Collapse
Affiliation(s)
- Jeanne A. Robert
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
- * E-mail:
| | - Caitlin Pitt
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Tiffany R. Bonnett
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Macaire M. S. Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P. W. Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
90
|
Gardiner DM, Stephens AE, Munn AL, Manners JM. An ABC pleiotropic drug resistance transporter ofFusarium graminearumwith a role in crown and root diseases of wheat. FEMS Microbiol Lett 2013; 348:36-45. [DOI: 10.1111/1574-6968.12240] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Donald M. Gardiner
- CSIRO Plant Industry; Queensland Bioscience Precinct; Brisbane; Qld; Australia
| | | | | | - John M. Manners
- CSIRO Plant Industry; Black Mountain; Canberra; ACT; Australia
| |
Collapse
|
91
|
Lusebrink I, Erbilgin N, Evenden ML. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest? J Chem Ecol 2013; 39:1209-20. [PMID: 23955061 DOI: 10.1007/s10886-013-0334-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 12/14/2022]
Abstract
Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.
Collapse
Affiliation(s)
- Inka Lusebrink
- Department of Biological Sciences, University of Alberta, CW405 Biological Science Building, Edmonton, Alberta, Canada, T6G 2E9,
| | | | | |
Collapse
|
92
|
The bark beetle holobiont: why microbes matter. J Chem Ecol 2013; 39:989-1002. [PMID: 23846183 DOI: 10.1007/s10886-013-0318-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023]
Abstract
All higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods. Insects rely on microbes to perform basic life functions and to exploit resources and habitats. By "partnering" with microbes, insects access new genomic variation instantaneously allowing the exploitation of new adaptive zones, influencing not only outcomes in ecological time, but the degree of innovation and change that occurs over evolutionary time. In this review, I present a brief overview of the importance of insect-microbe holobionts to illustrate how critical an understanding of the holobiont is to understanding the insect host and it interactions with its environment. I then review what is known about the most influential insect holobionts in many forest ecosystems-bark beetles and their microbes-and how new approaches and technologies are allowing us to illuminate how these symbioses function. Finally, I discuss why it will be critical to study bark beetles as a holobiont to understand the ramifications and extent of anthropogenic change in forest ecosystems.
Collapse
|
93
|
Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J, Brand WA, Fenning TM, Gershenzon J, Paetz C. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. PLANT PHYSIOLOGY 2013; 162:1324-36. [PMID: 23729780 PMCID: PMC3707561 DOI: 10.1104/pp.113.218610] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/28/2013] [Indexed: 05/03/2023]
Abstract
Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host's chemical defenses that it is even able to use host phenolic compounds as its sole carbon source.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Namita Wadke
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Louwrance P. Wright
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Joerg Bohlmann
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Willi A. Brand
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | | | | | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| |
Collapse
|
94
|
Westbrook JW, Resende MFR, Munoz P, Walker AR, Wegrzyn JL, Nelson CD, Neale DB, Kirst M, Huber DA, Gezan SA, Peter GF, Davis JM. Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. THE NEW PHYTOLOGIST 2013; 199:89-100. [PMID: 23534834 DOI: 10.1111/nph.12240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/15/2013] [Indexed: 05/28/2023]
Abstract
Rapidly enhancing oleoresin production in conifer stems through genomic selection and genetic engineering may increase resistance to bark beetles and terpenoid yield for liquid biofuels. We integrated association genetic and genomic prediction analyses of oleoresin flow (g 24 h(-1)) using 4854 single nucleotide polymorphisms (SNPs) in expressed genes within a pedigreed population of loblolly pine (Pinus taeda) that was clonally replicated at three sites in the southeastern United States. Additive genetic variation in oleoresin flow (h(2) ≈ 0.12-0.30) was strongly correlated between years in which precipitation varied (r(a) ≈ 0.95), while the genetic correlation between sites declined from 0.8 to 0.37 with increasing differences in soil and climate among sites. A total of 231 SNPs were significantly associated with oleoresin flow, of which 81% were specific to individual sites. SNPs in sequences similar to ethylene signaling proteins, ABC transporters, and diterpenoid hydroxylases were associated with oleoresin flow across sites. Despite this complex genetic architecture, we developed a genomic prediction model to accelerate breeding for enhanced oleoresin flow that is robust to environmental variation. Results imply that breeding could increase oleoresin flow 1.5- to 2.4-fold in one generation.
Collapse
Affiliation(s)
- Jared W Westbrook
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
| | - Marcio F R Resende
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
| | - Patricio Munoz
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
| | - Alejandro R Walker
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Jill L Wegrzyn
- Department of Plant Sciences, University of California at Davis, Mail Stop 4, Davis, CA, 95616, USA
| | - C Dana Nelson
- Southern Institute of Forest Genetics, USDA Forest Service, Southern Research Station, 23332 Success Rd, Saucier, MS, 39574, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Mail Stop 4, Davis, CA, 95616, USA
| | - Matias Kirst
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Dudley A Huber
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - Gary F Peter
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| | - John M Davis
- Forest Genomics Laboratory, Genetics Institute, University of Florida, 1376 Mowry Rd, Rm 320, Gainesville, FL, 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL, 32611, USA
| |
Collapse
|
95
|
Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 2013; 39:1003-6. [PMID: 23807433 DOI: 10.1007/s10886-013-0313-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 01/19/2023]
Abstract
Bark beetles encounter a diverse array of constitutive and rapidly induced terpenes when attempting to colonize living conifers. Concentrations of these compounds at entry sites can rapidly reach levels toxic to beetles, their brood, and fungal symbionts. Large numbers of beetles can overwhelm tree defenses via pheromone-mediated mass attacks, but the mechanisms are poorly understood. We show that bacteria associated with mountain pine beetles can metabolize monoterpenes and diterpene acids. The abilities of different symbionts to reduce concentrations of different terpenes appear complementary. Serratia reduced concentrations of all monoterpenes applied to media by 55-75 %, except for α-pinene. Beetle-associated Rahnella reduced (-)- and (+)-α-pinene by 40 % and 45 %, respectively. Serratia and Brevundimonas reduced diterpene abietic acid levels by 100 % at low concentrations. However, high concentrations exhausted this ability, suggesting that opposing rates of bacterial metabolism and plant induction of terpenes are critical. The two major fungal symbionts of mountain pine beetle, Grosmannia clavigera and Ophiostoma montium were highly susceptible to abietic acid. Grosmannia clavigera did not reduce total monoterpene concentrations in lodgepole pine turpentine. We propose the ability of bark beetles to exert landscape-scale impacts may arise partly from micro-scale processes driven by bacterial symbionts.
Collapse
Affiliation(s)
- Celia K Boone
- Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA
| | | | | | | | | | | |
Collapse
|
96
|
Haridas S, Wang Y, Lim L, Massoumi Alamouti S, Jackman S, Docking R, Robertson G, Birol I, Bohlmann J, Breuil C. The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genomics 2013; 14:373. [PMID: 23725015 PMCID: PMC3680317 DOI: 10.1186/1471-2164-14-373] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/10/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ophiostoma piceae is a wood-staining fungus that grows in the sapwood of conifer logs and lumber. We sequenced its genome and analyzed its transcriptomes under a range of growth conditions. A comparison with the genome and transcriptomes of the mountain pine beetle-associated pathogen Grosmannia clavigera highlights differences between a pathogen that colonizes and kills living pine trees and a saprophyte that colonizes wood and the inner bark of dead trees. RESULTS We assembled a 33 Mbp genome in 45 scaffolds, and predicted approximately 8,884 genes. The genome size and gene content were similar to those of other ascomycetes. Despite having similar ecological niches, O. piceae and G. clavigera showed no large-scale synteny. We identified O. piceae genes involved in the biosynthesis of melanin, which causes wood discoloration and reduces the commercial value of wood products. We also identified genes and pathways involved in growth on simple carbon sources and in sapwood, O. piceae's natural substrate. Like the pathogen, the saprophyte is able to tolerate terpenes, which are a major class of pine tree defense compounds; unlike the pathogen, it cannot utilize monoterpenes as a carbon source. CONCLUSIONS This work makes available the second annotated genome of a softwood ophiostomatoid fungus, and suggests that O. piceae's tolerance to terpenes may be due in part to these chemicals being removed from the cells by an ABC transporter that is highly induced by terpenes. The data generated will provide the research community with resources for work on host-vector-fungus interactions for wood-inhabiting, beetle-associated saprophytes and pathogens.
Collapse
Affiliation(s)
- Sajeet Haridas
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Hall DE, Yuen MMS, Jancsik S, Quesada AL, Dullat HK, Li M, Henderson H, Arango-Velez A, Liao NY, Docking RT, Chan SK, Cooke JEK, Breuil C, Jones SJM, Keeling CI, Bohlmann J. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana). BMC PLANT BIOLOGY 2013; 13:80. [PMID: 23679205 PMCID: PMC3668260 DOI: 10.1186/1471-2229-13-80] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/02/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. RESULTS We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. CONCLUSION In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.
Collapse
Affiliation(s)
- Dawn E Hall
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sharon Jancsik
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alfonso Lara Quesada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harpreet K Dullat
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maria Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Adriana Arango-Velez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nancy Y Liao
- British Columbia Cancer Agency Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Roderick T Docking
- British Columbia Cancer Agency Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Simon K Chan
- British Columbia Cancer Agency Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Janice EK Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Colette Breuil
- Department of Wood Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Steven JM Jones
- British Columbia Cancer Agency Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|