51
|
Molecular Aspects of MicroRNAs and Phytohormonal Signaling in Response to Drought Stress: A Review. Curr Issues Mol Biol 2022; 44:3695-3710. [PMID: 36005149 PMCID: PMC9406886 DOI: 10.3390/cimb44080253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Phytohormones play an essential role in plant growth and development in response to environmental stresses. However, plant hormones require a complex signaling network combined with other signaling pathways to perform their proper functions. Thus, multiple phytohormonal signaling pathways are a prerequisite for understanding plant defense mechanism against stressful conditions. MicroRNAs (miRNAs) are master regulators of eukaryotic gene expression and are also influenced by a wide range of plant development events by suppressing their target genes. In recent decades, the mechanisms of phytohormone biosynthesis, signaling, pathways of miRNA biosynthesis and regulation were profoundly characterized. Recent findings have shown that miRNAs and plant hormones are integrated with the regulation of environmental stress. miRNAs target several components of phytohormone pathways, and plant hormones also regulate the expression of miRNAs or their target genes inversely. In this article, recent developments related to molecular linkages between miRNAs and phytohormones were reviewed, focusing on drought stress.
Collapse
|
52
|
Yang Y, Wassie M, Liu NF, Deng H, Zeng YB, Xu Q, Hu LX. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ( Cynodon dactylon). FRONTIERS IN PLANT SCIENCE 2022; 13:956410. [PMID: 35991415 PMCID: PMC9386360 DOI: 10.3389/fpls.2022.956410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.
Collapse
Affiliation(s)
- Yong Yang
- College of Physical Education, Changsha University, Changsha, China
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ning-fang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hui Deng
- College of Physical Education, Changsha University, Changsha, China
| | - Yi-bing Zeng
- College of Physical Education, Changsha University, Changsha, China
| | - Qian Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| | - Long-xing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| |
Collapse
|
53
|
Wei H, He W, Li Z, Ge L, Zhang J, Liu T. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. FRONTIERS IN PLANT SCIENCE 2022; 13:959427. [PMID: 35982708 PMCID: PMC9380843 DOI: 10.3389/fpls.2022.959427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Osmotic and ionic induced salt stress suppresses plant growth. In a previous study, Enterobacter ludwigii B30, isolated from Paspalum vaginatum, improved seed germination, root length, and seedling length of bermudagrass (Cynodon dactylon) under salt stress. In this study, E. ludwigii B30 application improved fresh weight and dry weight, carotenoid and chlorophyll levels, catalase and superoxide dismutase activities, indole acetic acid content and K+ concentration. Without E. ludwigii B30 treatment, bermudagrass under salt stress decreased malondialdehyde and proline content, Y(NO) and Y(NPQ), Na+ concentration, 1-aminocyclopropane-1-carboxylate, and abscisic acid content. After E. ludwigii B30 inoculation, bacterial community richness and diversity in the rhizosphere increased compared with the rhizosphere adjacent to roots under salt stress. Turf quality and carotenoid content were positively correlated with the incidence of the phyla Chloroflexi and Fibrobacteres in rhizosphere soil, and indole acetic acid (IAA) level was positively correlated with the phyla Actinobacteria and Chloroflexi in the roots. Our results suggest that E. ludwigii B30 can improve the ability of bermudagrass to accumulate biomass, adjust osmosis, improve photosynthetic efficiency and selectively absorb ions for reducing salt stress-induced injury, while changing the bacterial community structure of the rhizosphere and bermudagrass roots. They also provide a foundation for understanding how the bermudagrass rhizosphere and root microorganisms respond to endophyte inoculation.
Collapse
Affiliation(s)
- Hongjian Wei
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Wenyuan He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ziji Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Juming Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| | - Tianzeng Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
54
|
CkREV Enhances the Drought Resistance of Caragana korshinskii through Regulating the Expression of Auxin Synthetase Gene CkYUC5. Int J Mol Sci 2022; 23:ijms23115902. [PMID: 35682582 PMCID: PMC9180416 DOI: 10.3390/ijms23115902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
As a common abiotic stress, drought severely impairs the growth, development, and even survival of plants. Here we report a transcription factor, Caragana korshinskii REVOLUTA(CkREV), which can bidirectionally regulate the expression of the critical enzyme gene CkYUC5 in auxin synthesis according to external environment changes, so as to control the biosynthesis of auxin and further enhance the drought resistance of plants. Quantitative analysis reveals that the expression level of both CkYUC5 and AtYUC5 is down-regulated after C. korshinskii and Arabidopsis thaliana are exposed to drought. Functional verification of CkREV reveals that CkREV up-regulates the expression of AtYUC5 in transgenic A. thaliana under common conditions, while down-regulating it under drought conditions. Meanwhile, the expression of CkYUC5 is also down-regulated in C. korshinskii leaves instantaneously overexpressing CkREV. We apply a dual-luciferase reporter system to discover that CkREV can bind to the promoter of CkYUC5 to regulate its expression, which is further proved by EMSA and Y1H esxperiments. Functional verification of CkREV in C. korshinskii and transgenic A. thaliana shows that CkREV can regulate the expression of CkYUC5 and AtYUC5 in a contrary way, maintaining the equilibrium of plants between growth and drought resisting. CkREV can positively regulate the expression of CkYUC5 to promote auxin synthesis in favor of growth under normal development. However, CkREV can also respond to external signals and negatively regulate the expression of CkYUC5, which inhibits auxin synthesis in order to reduce growth rate, lower water demands, and eventually improve the drought resistance of plants.
Collapse
|
55
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
56
|
Zaheer MS, Ali HH, Erinle KO, Wani SH, Okon OG, Nadeem MA, Nawaz M, Bodlah MA, Waqas MM, Iqbal J, Raza A. Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33909-33919. [PMID: 35031990 DOI: 10.1007/s11356-021-18106-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Due to increased industrialization, arsenic (As) in the soil has become a serious issue for wheat production since past few decades. We investigated the role of Azospirillum brasilense and trans-zeatin riboside (tZR) in the mitigation of arsenic toxicity in wheat for 2 years (2018-2019 and 2019-2020) in pot experiments. Wheat plants grown in soil artificially spiked with arsenic (50, 70, and 100 μM) was left alone or amended with A. brasilense, tZR, or their combination as mitigation strategies. A treatment without arsenic or amendments was maintained as control. Arsenic-induced physiological damages were noticed in the wheat plants. Detrimental effects on the plant physiological functions, such as disruption of cell membrane stability, reduced water uptake, and stomatal functions, were noticed with increase in As toxicity. Application of biological amendments reversed the effects of As toxicity by increasing wheat plant growth rate, leaf area, and photosynthesis and also yield. Therefore, application of tZR and wheat seed inoculation with A. brasilense could be a sustainable and environmentally friendly strategy to mitigate arsenic-induced crop physiological damages.
Collapse
Affiliation(s)
- Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Hafiz Haider Ali
- Sustainable Development Study Center (SDSC), Government College University, Katchery Road, Lahore, Pakistan.
| | - Kehinde O Erinle
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Khudwani, Anantnag, 192101, India
| | - Okon Godwin Okon
- Department of Botany, Akwa Ibom State University, Ikot Akpaden, Nigeria
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Adnan Bodlah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Javaid Iqbal
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ali Raza
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
| |
Collapse
|
57
|
Zheng S, Su M, Shi Z, Gao H, Ma C, Zhu S, Zhang L, Wu G, Wu W, Wang J, Zhang J, Zhang T. Exogenous sucrose influences KEA1 and KEA2 to regulate abscisic acid-mediated primary root growth in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111209. [PMID: 35193734 DOI: 10.1016/j.plantsci.2022.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis K+-efflux antiporter (KEA)1 and KEA2 are chloroplast inner envelope membrane K+/H+ antiporters that play an important role in plastid development and seedling growth. However, the function of KEA1 and KEA2 during early seedling development is poorly understood. In this work, we found that in Arabidopsis, KEA1 and KEA2 mediated primary root growth by regulating photosynthesis and the ABA signaling pathway. Phenotypic analyses revealed that in the absence of sucrose, the primary root length of the kea1kea2 mutant was significantly shorter than that of the wild-type Columbia-0 (Col-0) plant. However, this phenotype could be remedied by the external application of sucrose. Meanwhile, HPLC-MS/MS results showed that in sucrose-free medium, ABA accumulation in the kea1kea2 mutant was considerably lower than that in Col-0. Transcriptome analysis revealed that many key genes involved in ABA signals were repressed in the kea1kea2 mutant. We concluded that KEA1 and KEA2 deficiency not only affected photosynthesis but was also involved in primary root growth likely through an ABA-dependent manner. This study confirmed the new function of KEA1 and KEA2 in affecting primary root growth.
Collapse
Affiliation(s)
- Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China.
| | - Min Su
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Zhongfei Shi
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Haixia Gao
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Cheng Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Shan Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lina Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Jinping Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Tengguo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
58
|
Sukiran NA, Pollastri S, Steel PG, Knight MR. Plant growth promotion by the interaction of a novel synthetic small molecule with GA-DELLA function. PLANT DIRECT 2022; 6:e398. [PMID: 35492684 PMCID: PMC9039627 DOI: 10.1002/pld3.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 05/14/2023]
Abstract
Synthesized small molecules are useful as tools to investigate hormonal signaling involved in plant growth and development. They are also important as agrochemicals to promote beneficial properties of crops in the field. We describe here the synthesis and mode of action of a novel growth-promoting chemical, A1. A1 stimulates enhanced growth in both shoot and root tissues of plants, acting by increasing both dry and fresh weight. This suggests that A1 not only promotes uptake of water but also increases production of cellular material. A1 treatment of Arabidopsisleads to the degradation of DELLA growth-inhibitory proteins suggesting that A1-mediated growth promotion is dependent upon this mechanism. We performed genetic analysis to confirm this and further dissect the mechanism of A1 action upon growth in Arabidopsis. A quintuple dellamutant was insensitive to A1, confirming that the mode of action was indeed via a DELLA-dependent mechanism. The ga1-5gibberellin synthesis mutant was similarly insensitive, suggesting that to promote growth in ArabidopsisA1 requires the presence of endogenous gibberellins. This was further suggested by the observation that double mutants of GID1 gibberellin receptor genes were insensitive to A1. Taken together, our data suggest that A1 acts to enhance sensitivity to endogenous gibberellins thus leading to observed enhanced growth via DELLA degradation. A1 and related compounds will be useful to identify novel signaling components involved in plant growth and development, and as agrochemicals suitable for a wide range of crop species.
Collapse
Affiliation(s)
- Nur Afiqah Sukiran
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | - Susanna Pollastri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyFlorenceItaly
| | | | | |
Collapse
|
59
|
Zhou Y, Sun M, Sun P, Gao H, Yang H, Jing Y, Hussain MA, Saxena RK, Carther FI, Wang Q, Li H. Tonoplast inositol transporters: Roles in plant abiotic stress response and crosstalk with other signals. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153660. [PMID: 35240513 DOI: 10.1016/j.jplph.2022.153660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Inositol transporters (INT) are thought to be the pivotal transporters for vital metabolites, in particular lipids, minerals, and sugars. These transporters play an important role in transitional metabolism and various signaling pathways in plants through regulating the transduction of messages from hormones, neurotransmitters, and immunologic and growth factors. Extensive studies have been conducted on animal INT, with promising outcomes. However, only few recent studies have highlighted the importance and complexity of INT genes in the regulation of plant physiology stages, including growth and tolerance to stress conditions. The present review summarizes the most recent findings concerning the role of INT or inositol genes in plant metabolism and the response mechanisms triggered by external stressors. Moreover, we highlight the emerging role of vacuoles and vacuolar INT in plant molecular transition and their related roles in plant growth and development. INTs are the essential mediators of inositol uptake and its intracellular broadcasting for various metabolic pathways where they play crucial roles. Additionally, we report evidence on Na+/inositol transporters, which until now have only been characterized in animals, as well as H+/inositol symporters and their kinetic functions and physiological role and suggest their roles and operating mode in plants. A more comprehensive understanding of the INT functioning system, in particular the coordinated movement of inositol and the relation between inositol generation and other important plant signaling pathways, would greatly advance the study of plant stress adaptation.
Collapse
Affiliation(s)
- Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Monan Sun
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Pengyu Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - He Yang
- RDFZ Sanya School, Sanya, 572025, China.
| | - Yan Jing
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Foka Idrice Carther
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| |
Collapse
|
60
|
Ranjan A, Sinha R, Singla-Pareek SL, Pareek A, Singh AK. Shaping the root system architecture in plants for adaptation to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13651. [PMID: 35174506 DOI: 10.1111/ppl.13651] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root system architecture plays an important role in plant adaptation to drought stress. The root system architecture (RSA) consists of several structural features, which includes number and length of main and lateral roots along with the density and length of root hairs. These features exhibit plasticity under water-limited environments and could be critical to developing crops with efficient root systems for adaptation under drought. Recent advances in the omics approaches have significantly improved our understanding of the regulatory mechanisms of RSA remodeling under drought and the identification of genes and other regulatory elements. Plant response to drought stress at physiological, morphological, biochemical, and molecular levels in root cells is regulated by various phytohormones and their crosstalk. Stress-induced reactive oxygen species play a significant role in regulating root growth and development under drought stress. Several transcription factors responsible for the regulation of RSA under drought have proven to be beneficial for developing drought tolerant crops. Molecular breeding programs for developing drought-tolerant crops have been greatly benefitted by the availability of quantitative trait loci (QTLs) associated with the RSA regulation. In the present review, we have discussed the role of various QTLs, signaling components, transcription factors, microRNAs and crosstalk among various phytohormones in shaping RSA and present future research directions to better understand various factors involved in RSA remodeling for adaptation to drought stress. We believe that the information provided herein may be helpful in devising strategies to develop crops with better RSA for efficient uptake and utilization of water and nutrients under drought conditions.
Collapse
Affiliation(s)
- Alok Ranjan
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Ragini Sinha
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| |
Collapse
|
61
|
Zhang Q, Yuan W, Wang Q, Cao Y, Xu F, Dodd IC, Xu W. ABA regulation of root growth during soil drying and recovery can involve auxin response. PLANT, CELL & ENVIRONMENT 2022; 45:871-883. [PMID: 34176142 DOI: 10.1111/pce.14137] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) plays an important role in plant adaptation to water deficits, but its role in regulating root growth (primary root elongation and lateral root number) during different drought-phases remains unclear. Here, we exposed wild-type (WT) and ABA-deficient (not) tomato plants to three continuous drought-phases (moderate drying: day 0-21; severe drying: day 22-47 and re-watering: day 48-51). It was found that WT increased primary root growth during moderate drying; maintained more lateral roots, and greater primary root and total root length under severe drying; and produced more roots after re-watering. After RNA-Seq analysis, we found that the auxin-related genes in root showed different expression patterns between WT and not under drying or re-watering. Further, exogenous supply of IAA partially recovered the root growth of ABA-deficient not plants under three continuous drought-phases. Our results suggested that ABA regulation of tomato root growth during soil drying and recovery can involve auxin response.
Collapse
Affiliation(s)
- Qian Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Yuan
- Fujian Provincial Key Laboratory of Plant Functional Biology and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianwen Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiying Cao
- Fujian Provincial Key Laboratory of Plant Functional Biology and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Fujian Provincial Key Laboratory of Plant Functional Biology and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Weifeng Xu
- Fujian Provincial Key Laboratory of Plant Functional Biology and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
62
|
Feng Z, Kong D, Kong Y, Zhang B, Yang X. Coordination of root growth with root morphology, physiology and defense functions in response to root pruning in Platycladus orientalis. J Adv Res 2022; 36:187-199. [PMID: 35127173 PMCID: PMC8799911 DOI: 10.1016/j.jare.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022] Open
Abstract
A growth‒defense tradeoff following root pruning. Root growth lagged behind root physiology after root pruning. The growth–defense tradeoff was induced by indole-3-acetic acid. Proteomic analysis supported a growth–defense tradeoff. Root pruning altered the expression of genes at the protein and mRNA levels.
Introduction Root pruning is commonly used to facilitate seedling transplantation for the restoration of degraded or damaged ecosystems. However, little is known about how root growth coordinates morphology, physiology and defense functions following root pruning. Objectives We aim to elucidate whether and how root growth trades off with defense functioning after pruning. Methods Seedlings of Platycladus orientalis, a tree species widely used in forest restoration, were subjected to root pruning treatment. A suite of root growth, morphological and physiological traits were measured after pruning in combination with proteomic analysis. Results Root growth was insensitive to pruning until at 504 h with a significant increase of 16.8%, whereas root physiology was activated rapidly after pruning. Key root morphological traits, such as root diameter, specific root length and root tissue density, showed no response to the pruning treatment. Plant defense syndromes such as reactive oxygen species-scavenging enzymes and defensive phytohormones such as jasmonic acid and abscisic acid, were recruited at six hours after pruning and recovered to the unpruned levels at 504 h. Compared with the controls, 271, 360 and 106 proteins were differentially expressed at 6, 72 and 504 h after root pruning, respectively. These proteins, associated with defense function, showed temporal patterns similar to the above defense syndromes. Conclusion Our results suggest a root growth-defense tradeoff following root pruning in P. orientalis. This tradeoff was potentially due to the significant increase of indole-3-acetic acid, the phytohormone stimulating root branching, which occurred soon after pruning. Together, these results provide a holistic understanding of how root growth is coordinated with root morphology, physiology, and defense in response to root pruning.
Collapse
Affiliation(s)
- Zhipei Feng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Xitian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Corresponding author.
| |
Collapse
|
63
|
BrPARP1, a Poly (ADP-Ribose) Polymerase Gene, Is Involved in Root Development in Brassica rapa under Drought Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PARP proteins are highly conserved homologs among the eukaryotic poly (ADP-ribose) polymerases. After activation, ADP-ribose polymers are synthesized on a series of ribozymes that use NAD+ as a substrate. PARPs participate in the regulation of various important biological processes, such as plant growth, development, and stress response. In this study, we characterized the homologue of PARP1 in B. rapa using RNA interference (RNAi) to reveal the underlying mechanism responding to drought stress. Bioinformatics and expression pattern analyses demonstrated that two copy numbers of PARP1 genes (BrPARP1.A03 and BrPARP1.A05) in B. rapa following a whole-genome triplication (WGT) event were retained compared with Arabidopsis, but only BrPARP1.A03 was predominantly transcribed in plant roots. Silencing of BrPARP1 could markedly promote root growth and development, probably via regulating cell division, and the transgenic Brassica lines showed more tolerance under drought treatment, accompanied with substantial alterations including accumulated proline contents, significantly reduced malondialdehyde, and increased antioxidative enzyme activity. In addition, the findings showed that the expression of stress-responsive genes, as well as reactive oxygen species (ROS)-scavenging related genes, was largely reinforced in the transgenic lines under drought stress. In general, these results indicated that BrPARP1 likely responds to drought stress by regulating root growth and the expression of stress-related genes to cope with adverse conditions in B. rapa.
Collapse
|
64
|
Wu Y, Chang Y, Luo L, Tian W, Gong Q, Liu X. Abscisic acid employs NRP-dependent PIN2 vacuolar degradation to suppress auxin-mediated primary root elongation in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:297-312. [PMID: 34618941 DOI: 10.1111/nph.17783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
How plants balance growth and stress adaptation is a long-standing topic in plant biology. Abscisic acid (ABA) induces the expression of the stress-responsive Asparagine Rich Protein (NRP), which promotes the vacuolar degradation of PP6 phosphatase FyPP3, releasing ABI5 transcription factor to initiate transcription. Whether NRP is required for growth remains unknown. We generated an nrp1 nrp2 double mutant, which had a dwarf phenotype that can be rescued by inhibiting auxin transport. Insufficient auxin in the transition zone and over-accumulation of auxin at the root tip was responsible for the short elongation zone and short-root phenotype of nrp1 nrp2. The auxin efflux carrier PIN2 over-accumulated in nrp1 nrp2 and became de-polarized at the plasma membrane, leading to slower root basipetal auxin transport. Knock-out of PIN2 suppressed the dwarf phenotype of nrp1 nrp2. Furthermore, ABA can induce NRP-dependent vacuolar degradation of PIN2 to inhibit primary root elongation. FyPP3 also is required for NRP-mediated PIN2 turnover. In summary, in growth condition, NRP promotes PIN2 vacuolar degradation to help maintain PIN2 protein concentration and polarity, facilitating the establishment of the elongation zone and primary root elongation. When stressed, ABA employs this pathway to inhibit root elongation for stress adaptation.
Collapse
Affiliation(s)
- Yanying Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Chang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liming Luo
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqi Tian
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
65
|
Nagar P, Sharma N, Jain M, Sharma G, Prasad M, Mustafiz A. OsPSKR15, a phytosulfokine receptor from rice enhances abscisic acid response and drought stress tolerance. PHYSIOLOGIA PLANTARUM 2022; 174:e13569. [PMID: 34549425 DOI: 10.1111/ppl.13569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that acts as stimuli and plays an important role in plant growth, development, and environmental stress responses. Membrane-localized receptor-like kinases (RLKs) help to detect extracellular stimuli and activate downstream signaling responses to modulate a variety of biological processes. Phytosulfokine receptor (PSKR), a Leu-rich repeat (LRR)-RLK, has been characterized for its role in growth, development and biotic stress. Here, we observed that OsPSKR15, a rice PSKR, was upregulated by ABA in Oryza sativa. We demonstrated OsPSKR15 is a positive regulator in plant response to ABA. Ectopic expression of OsPSKR15 in Arabidopsis thaliana increased the sensitivity to ABA during germination, growth and stomatal closure. Consistently, the expression of ABA-inducible genes was significantly upregulated in these plants. OsPSKR15 also regulated reactive oxygen species (ROS)-mediated ABA signaling in guard cells, thereby governing stomatal closure. Furthermore, the constitutive expression of OsPSKR15 enhanced drought tolerance by reducing the transpirational water loss in Arabidopsis. We also reported that OsPSKR15 directly interacts with AtPYL9 and its orthologue OsPYL11 of rice through its kinase domain in the plasma membrane and nucleus. Altogether, these results reveal an important role of OsPSKR15 in plant response toward abiotic stress in an ABA-dependent manner.
Collapse
Affiliation(s)
- Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gauri Sharma
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
66
|
Abhilasha A, Roy Choudhury S. Molecular and Physiological Perspectives of Abscisic Acid Mediated Drought Adjustment Strategies. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122769. [PMID: 34961239 PMCID: PMC8708728 DOI: 10.3390/plants10122769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
Drought is the most prevalent unfavorable condition that impairs plant growth and development by altering morphological, physiological, and biochemical functions, thereby impeding plant biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimulation of several signaling cascades. Predominantly, water deficit signals cause the increase in the level of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable information, and a comprehensive understanding of the resistance mechanisms will help researchers design ways to improve crop performance under water limiting conditions. This review deals with the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to cope with the challenges of drought stress.
Collapse
|
67
|
Kościelniak P, Glazińska P, Kȩsy J, Zadworny M. Formation and Development of Taproots in Deciduous Tree Species. FRONTIERS IN PLANT SCIENCE 2021; 12:772567. [PMID: 34925417 PMCID: PMC8675582 DOI: 10.3389/fpls.2021.772567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Trees are generally long-lived and are therefore exposed to numerous episodes of external stimuli and adverse environmental conditions. In certain trees e.g., oaks, taproots evolved to increase the tree's ability to acquire water from deeper soil layers. Despite the significant role of taproots, little is known about the growth regulation through internal factors (genes, phytohormones, and micro-RNAs), regulating taproot formation and growth, or the effect of external factors, e.g., drought. The interaction of internal and external stimuli, involving complex signaling pathways, regulates taproot growth during tip formation and the regulation of cell division in the root apical meristem (RAM). Assuming that the RAM is the primary regulatory center responsible for taproot growth, factors affecting the RAM function provide fundamental information on the mechanisms affecting taproot development.
Collapse
Affiliation(s)
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kȩsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|
68
|
Yuan TT, Xiang ZX, Li W, Gao X, Lu YT. Osmotic stress represses root growth by modulating the transcriptional regulation of PIN-FORMED3. THE NEW PHYTOLOGIST 2021; 232:1661-1673. [PMID: 34420215 DOI: 10.1111/nph.17687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress influences root system architecture, and polar auxin transport (PAT) is well established to regulate root growth and development. However, how PAT responds to osmotic stress at the molecular level remains poorly understood. In this study, we explored whether and how the auxin efflux carrier PIN-FORMED3 (PIN3) participates in osmotic stress-induced root growth inhibition in Arabidopsis (Arabidopsis thaliana). We observed that osmotic stress induces a HD-ZIP II transcription factor-encoding gene HOMEODOMAIN ARABIDOPSIS THALIANA2 (HAT2) expression in roots. The hat2 loss-of-function mutant is less sensitive to osmotic stress in terms of root meristem growth. Consistent with this phenotype, whereas the auxin response is downregulated in wild-type roots under osmotic stress, the inhibition of auxin response by osmotic stress was alleviated in hat2 roots. Conversely, transgenic lines overexpressing HAT2 (Pro35S::HAT2) had shorter roots and reduced auxin accumulation compared with wild-type plants. PIN3 expression was significantly reduced in the Pro35S::HAT2 lines. We determined that osmotic stress-mediated repression of PIN3 was alleviated in the hat2 mutant because HAT2 normally binds to the promoter of PIN3 and inhibits its expression. Taken together, our data revealed that osmotic stress inhibits root growth via HAT2, which regulates auxin activity by directly repressing PIN3 transcription.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
69
|
Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators. Genes (Basel) 2021; 12:genes12111742. [PMID: 34828346 PMCID: PMC8623834 DOI: 10.3390/genes12111742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Drought stress requires plants to adjust their water balance to maintain tissue water levels. Isohydric plants (‘water-savers’) typically achieve this through stomatal closure, while anisohydric plants (‘water-wasters’) use osmotic adjustment and maintain stomatal conductance. Isohydry or anisohydry allows plant species to adapt to different environments. In this paper we show that both mechanisms occur in bread wheat (Triticum aestivum L.). Wheat lines with reproductive drought-tolerance delay stomatal closure and are temporarily anisohydric, before closing stomata and become isohydric at higher threshold levels of drought stress. Drought-sensitive wheat is isohydric from the start of the drought treatment. The capacity of the drought-tolerant line to maintain stomatal conductance correlates with repression of ABA synthesis in spikes and flag leaves. Gene expression profiling revealed major differences in the drought response in spikes and flag leaves of both wheat lines. While the isohydric drought-sensitive line enters a passive growth mode (arrest of photosynthesis, protein translation), the tolerant line mounts a stronger stress defence response (ROS protection, LEA proteins, cuticle synthesis). The drought response of the tolerant line is characterised by a strong response in the spike, displaying enrichment of genes involved in auxin, cytokinin and ethylene metabolism/signalling. While isohydry may offer advantages for longer term drought stress, anisohydry may be more beneficial when drought stress occurs during the critical stages of wheat spike development, ultimately improving grain yield.
Collapse
|
70
|
Ubogoeva EV, Zemlyanskaya EV, Xu J, Mironova V. Mechanisms of stress response in the root stem cell niche. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6746-6754. [PMID: 34111279 PMCID: PMC8513250 DOI: 10.1093/jxb/erab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/25/2023]
Abstract
As plants are sessile organisms unable to escape from environmental hazards, they need to adapt for survival. The stem cell niche in the root apical meristem is particularly sensitive to DNA damage induced by environmental stresses such as chilling, flooding, wounding, UV, and irradiation. DNA damage has been proven to cause stem cell death, with stele stem cells being the most vulnerable. Stress also induces the division of quiescent center cells. Both reactions disturb the structure and activity of the root stem cell niche temporarily; however, this preserves root meristem integrity and function in the long term. Plants have evolved many mechanisms that ensure stem cell niche maintenance, recovery, and acclimation, allowing them to survive in a changing environment. Here, we provide an overview of the cellular and molecular aspects of stress responses in the root stem cell niche.
Collapse
Affiliation(s)
| | - Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
71
|
Rowe JH, Jones AM. Focus on biosensors: Looking through the lens of quantitative biology. QUANTITATIVE PLANT BIOLOGY 2021; 2:e12. [PMID: 37077214 PMCID: PMC10095858 DOI: 10.1017/qpb.2021.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.
Collapse
Affiliation(s)
- James H. Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | | |
Collapse
|
72
|
Huang Y, Zhou J, Li Y, Quan R, Wang J, Huang R, Qin H. Salt Stress Promotes Abscisic Acid Accumulation to Affect Cell Proliferation and Expansion of Primary Roots in Rice. Int J Mol Sci 2021; 22:ijms221910892. [PMID: 34639232 PMCID: PMC8509385 DOI: 10.3390/ijms221910892] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
The primary root is the basic component of the root system and plays a key role in early seedling growth in rice. Its growth is easily affected by environmental cues, such as salt stress. Abscisic acid (ABA) plays an essential role in root development, but the molecular mechanism underlying ABA-regulated root growth in response to salt stress remains poorly understood. In this study, we report that salt stress inhibits primary root elongation and promotes primary root swelling. Moreover, salt stress induces the expression of ABA-responsive genes and ABA accumulation in the primary root, revealing that ABA plays an essential role in salt-modulated root growth. Transgenic lines of OsSAPK10-OE and OsABIL2-OE, which constitutively express OsSAPK10 or OsABIL2, with enhanced or attenuated ABA signaling, show increased and decreased sensitivity to salt, correspondingly. Microscopic analysis indicates that salt and ABA inhibits cell proliferation and promotes cell expansion in the root apical meristem. Transcriptome analysis showed that ABA induces the expression of EXPANSIN genes. Further investigations indicate that ABA exerts these effects largely through ABA signaling. Thus, our findings deepen our understanding of the role of ABA in controlling primary root growth in response to salt stress, and this knowledge can be used by breeders to cultivate rice varieties suitable for saline–alkali land.
Collapse
Affiliation(s)
- Yingying Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (J.Z.); (Y.L.); (R.Q.); (J.W.); (R.H.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Correspondence:
| |
Collapse
|
73
|
Ge S, Dupuy LX, MacDonald MP. In situ laser manipulation of root tissues in transparent soil. PLANT AND SOIL 2021; 468:475-489. [PMID: 34789948 PMCID: PMC8580905 DOI: 10.1007/s11104-021-05133-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
AIMS Laser micromanipulation such as dissection or optical trapping enables remote physical modification of the activity of tissues, cells and organelles. To date, applications of laser manipulation to plant roots grown in soil have been limited. Here, we show laser manipulation can be applied in situ when plant roots are grown in transparent soil. METHODS We have developed a Q-switched laser manipulation and imaging instrument to perform controlled dissection of roots and to study light-induced root growth responses. We performed a detailed characterisation of the properties of the cutting beams through the soil, studying dissection and optical ablation. Furthermore, we also studied the use of low light doses to control the root elongation rate of lettuce seedlings (Lactuca sativa) in air, agar, gel and transparent soil. RESULTS We show that whilst soil inhomogeneities affect the thickness and circularity of the beam, those distortions are not inherently limiting. The ability to induce changes in root elongation or complete dissection of microscopic regions of the root is robust to substrate heterogeneity and microscopy set up and is maintained following the limited distortions induced by the transparent soil environment. CONCLUSIONS Our findings show that controlled in situ laser dissection of root tissues is possible with a simple and low-cost optical set-up. We also show that, in the absence of dissection, a reduced laser light power density can provide reversible control of root growth, achieving a precise "point and shoot" method for root manipulation.
Collapse
Affiliation(s)
- Sisi Ge
- School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN UK
| | - Lionel X. Dupuy
- Neiker, Department of Conservation of Natural Resources, Berreaga 1, 48.160, Derio, Spain
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Michael P. MacDonald
- School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN UK
| |
Collapse
|
74
|
Karanja JK, Aslam MM, Qian Z, Yankey R, Dodd IC, Weifeng X. Abscisic Acid Mediates Drought-Enhanced Rhizosheath Formation in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:658787. [PMID: 34421937 PMCID: PMC8378331 DOI: 10.3389/fpls.2021.658787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
The rhizosheath, commonly defined as soil adhering to the root surface, may confer drought tolerance in various crop species by enhancing access to water and nutrients under drying stress conditions. Since the role of phytohormones in establishing this trait remains largely unexplored, we investigated the role of ABA in rhizosheath formation of wild-type (WT) and ABA-deficient (notabilis, not) tomatoes. Both genotypes had similar rhizosheath weight, root length, and root ABA concentration in well-watered soil. Drying stress treatment decreased root length similarly in both genotypes, but substantially increased root ABA concentration and rhizosheath weight of WT plants, indicating an important role for ABA in rhizosheath formation. Neither genotype nor drying stress treatment affected root hair length, but drying stress treatment decreased root hair density of not. Under drying stress conditions, root hair length was positively correlated with rhizosheath weight in both genotypes, while root hair density was positively correlated with rhizosheath weight in well-watered not plants. Root transcriptome analysis revealed that drought stress increased the expression of ABA-responsive transcription factors, such as AP2-like ER TF, alongside other drought-regulatory genes associated with ABA (ABA 8'-hydroxylase and protein phosphatase 2C). Thus, root ABA status modulated the expression of specific gene expression pathways. Taken together, drought-induced rhizosheath enhancement was ABA-dependent, but independent of root hair length.
Collapse
Affiliation(s)
- Joseph K. Karanja
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mehtab Muhammad Aslam
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhang Qian
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Richard Yankey
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Xu Weifeng
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
75
|
Jacobsen AGR, Jervis G, Xu J, Topping JF, Lindsey K. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:225-242. [PMID: 33428776 PMCID: PMC8651006 DOI: 10.1111/nph.17180] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/05/2021] [Indexed: 05/21/2023]
Abstract
The growth and development of root systems is influenced by mechanical properties of the substrate in which the plants grow. Mechanical impedance, such as by compacted soil, can reduce root elongation and limit crop productivity. To understand better the mechanisms involved in plant root responses to mechanical impedance stress, we investigated changes in the root transcriptome and hormone signalling responses of Arabidopsis to artificial root barrier systems in vitro. We demonstrate that upon encountering a barrier, reduced Arabidopsis root growth and a characteristic 'step-like' growth pattern is due to a reduction in cell elongation associated with changes in signalling gene expression. Data from RNA-sequencing combined with reporter line and mutant studies identified essential roles for reactive oxygen species, ethylene and auxin signalling during the barrier response. We propose a model in which early responses to mechanical impedance include reactive oxygen signalling integrated with ethylene and auxin responses to mediate root growth changes. Inhibition of ethylene responses allows improved growth in response to root impedance, an observation that may inform future crop breeding programmes.
Collapse
Affiliation(s)
| | - George Jervis
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Jian Xu
- Department of Plant Systems PhysiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJthe Netherlands
- Department of Biological Sciences and Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
| | | | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| |
Collapse
|
76
|
Urban MO, Planchon S, Hoštičková I, Vanková R, Dobrev P, Renaut J, Klíma M, Vítámvás P. The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:628167. [PMID: 34177973 PMCID: PMC8231708 DOI: 10.3389/fpls.2021.628167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
Collapse
Affiliation(s)
- Milan O. Urban
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Irena Hoštičková
- Department of Plant Production and Agroecology, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Miroslav Klíma
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Pavel Vítámvás
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| |
Collapse
|
77
|
Zhang Y, Xu F, Ding Y, Du H, Zhang Q, Dang X, Cao Y, Dodd IC, Xu W. Abscisic acid mediates barley rhizosheath formation under mild soil drying by promoting root hair growth and auxin response. PLANT, CELL & ENVIRONMENT 2021; 44:1935-1945. [PMID: 33629760 DOI: 10.1111/pce.14036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 05/22/2023]
Abstract
Soil drying enhances root ABA accumulation and rhizosheath formation, but whether ABA mediates rhizosheath formation is unclear. Here, we used the ABA-deficient mutant Az34 to investigate molecular and morphological changes by which ABA could affect rhizosheath formation. Mild soil drying with intermittent watering increased rhizosheath formation by promoting root and root hair elongation. Attenuated root ABA accumulation in Az34 barley constrained the promotion of root length and root hair length by drying soil, such that Az34 had a smaller rhizosheath. Pharmacological experiments of adding fluridone (an ABA biosynthesis inhibitor) and ABA to drying soil restricted and enhanced rhizosheath formation respectively in Az34 and wild-type Steptoe barley. RNA sequencing suggested that ABA accumulation mediates auxin synthesis and responses and root and root hair elongation in drying soil. In addition, adding indole-3-acetic acid (IAA) to drying soil increased rhizosheath formation by promoting root and root hair elongation in Steptoe and Az34 barley. Together, these results show that ABA accumulation induced by mild soil drying enhance barley rhizosheath formation, which may be achieved through promoting auxin response.
Collapse
Affiliation(s)
- Yingjiao Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yexin Ding
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Du
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiying Cao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
78
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
79
|
Hu L, Wang P, Long X, Wu W, Zhang J, Pan Y, Cheng T, Shi J, Chen J. The PIN gene family in relic plant L. chinense: Genome-wide identification and gene expression profiling in different organizations and abiotic stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:634-646. [PMID: 33774468 DOI: 10.1016/j.plaphy.2021.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The auxin efflux carrier PIN-FORMED (PIN) proteins are required for the polar transport of auxin between cells through their asymmetric distribution on the plasma membrane, thus mediating the differential distribution of auxin in plants, finally, affecting plant growth and developmental processes. In this study, 11 LcPIN genes were identified. The structural characteristics and evolutionary status of LcPIN genes were thoroughly investigated and interpreted combining physicochemical property analysis, evolutionary analysis, gene structure analysis, chromosomal localization, etc. Multi-species protein sequence analysis showed that angiosperm PIN genes have strong purification options and some functional sites were predicted about PIN protein polarity, trafficking and activity in L. chinense. Further qRT-PCR and transcriptome data analysis indicated that the long LcPINs have highly expressed from globular embryo to plantlet, and the LcPIN6a started upregulated in cotyledon embryo. The LcPIN3 and LcPIN6a are both highly expressed during the development of stamens and petals and the expression of LcPIN2 is related to root elongation, suggesting that they may play an important role in these processes. Experiment data indicates that LcPIN5 and LcPIN8 might play a key role in auxin transport in Liriodendron stems and leaves under abiotic stress. Analyzed the response of LcPIN genes to abiotic stress and as a basis for uncovering the biological role of LcPIN genes in development and adaption to adverse environments. This study provides a foundation for further genetic and functional analyses.
Collapse
Affiliation(s)
- Lingfeng Hu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengkai Wang
- College of Horticulture Technology, Suzhou Agricultural Vocational and Technical College, Suzhou, 215000, China
| | - Xiaofei Long
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaji Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Pan
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tielong Cheng
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
80
|
Hetherington FM, Kakkar M, Topping JF, Lindsey K. Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. PLANT PHYSIOLOGY 2021; 185:1198-1215. [PMID: 33793923 PMCID: PMC8133588 DOI: 10.1093/plphys/kiaa093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 05/16/2023]
Abstract
The potassium ion (K+) is vital for plant growth and development, and K+-deprivation leads to reduced crop yields. Here we describe phenotypic, transcriptomic, and mutant analyses to investigate the signaling mechanisms mediating root architectural changes in Arabidopsis (Arabidopsis thaliana) Columbia. We showed effects on root architecture are mediated through a reduction in cell division in the lateral root (LR) meristems, the rate of LR initiation is reduced but LR density is unaffected, and primary root growth is reduced only slightly. This was primarily regulated through gibberellic acid (GA) signaling, which leads to the accumulation of growth-inhibitory DELLA proteins. The short LR phenotype was rescued by exogenous application of GA but not of auxin or by the inhibition of ethylene signaling. RNA-seq analysis showed upregulation by K+-deprivation of the transcription factors JUNGBRUNNEN1 (JUB1) and the C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor 1 regulon, which are known to regulate GA signaling and levels that regulate DELLAs. Transgenic overexpression of JUB1 and CBF1 enhanced responses to K+ stress. Attenuation of the reduced LR growth response occurred in mutants of the CBF1 target gene SFR6, implicating a role for JUB1, CBF1, and SFR6 in the regulation of LR growth in response to K+-deprivation via DELLAs. We propose this represents a mechanism to limit horizontal root growth in conditions where K+ is available deeper in the soil.
Collapse
Affiliation(s)
| | - Medhavi Kakkar
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Keith Lindsey
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Author for communication:
| |
Collapse
|
81
|
Gu X, Fonseka K, Agneessens J, Casson SA, Smertenko A, Guo G, Topping JF, Hussey PJ, Lindsey K. The Arabidopsis R-SNARE VAMP714 is essential for polarisation of PIN proteins and auxin responses. THE NEW PHYTOLOGIST 2021; 230:550-566. [PMID: 33454983 PMCID: PMC8651015 DOI: 10.1111/nph.17205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
The plant hormone auxin and its directional intercellular transport play a major role in diverse aspects of plant growth and development. The establishment of auxin gradients requires the asymmetric distribution of members of the auxin efflux carrier PIN-FORMED (PIN) protein family to the plasma membrane. An endocytic pathway regulates the recycling of PIN proteins between the plasma membrane and endosomes, providing a mechanism for dynamic localisation. N-Ethylmaleimide-sensitive factor adaptor protein receptors (SNAP receptors, SNAREs) mediate fusion between vesicles and target membranes and are classed as Q- or R-SNAREs based on their sequence. We analysed gain- and loss-of-function mutants, dominant-negative transgenics and localisation of the Arabidopsis R-SNARE VAMP714 protein to understand its function. We demonstrate that VAMP714 is essential for the insertion of PINs into the plasma membrane, for polar auxin transport, root gravitropism and morphogenesis. VAMP714 gene expression is upregulated by auxin, and the VAMP714 protein co-localises with endoplasmic reticulum and Golgi vesicles and with PIN proteins at the plasma membrane. It is proposed that VAMP714 mediates the delivery of PIN-carrying vesicles to the plasma membrane, and that this forms part of a positive regulatory loop in which auxin activates a VAMP714-dependent PIN/auxin transport system to control development.
Collapse
Affiliation(s)
- Xiaoyan Gu
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Kumari Fonseka
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Stuart A. Casson
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Andrei Smertenko
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Guangqin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | | | | | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
82
|
He A, Niu S, Yang D, Ren W, Zhao L, Sun Y, Meng L, Zhao Q, Paré PW, Zhang J. Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:74-85. [PMID: 33578287 DOI: 10.1016/j.plaphy.2021.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Haloxylon ammodendron, a typical xerophyte, tolerates various abiotic stresses and is widely distributed in desert areas. Two PGPR strains, Bacillus sp. WM13-24 and Pseudomonas sp. M30-35, were previously isolated from the rhizosphere of H. ammodendron in Tengger Desert, Gansu province, northwest China. The aim of this study was to investigate the role of M30-35 and WM13-24 in drought stress alleviation of ryegrass (Lolium perenne L.). Under normal condition, both M30-35 and WM13-24 increased shoot fresh and dry weight, chlorophyll content, total nitrogen and phosphorus contents and altered phytohormone distribution compared to control. Moreover, after 7 days of drought stress, WM13-24 and M30-35 enhanced photosynthetic capacity, relative water content, the activities of catalase (CAT) and peroxidase (POD) and proline content, resulted in decreased malondialdehyde (MDA) content, relative membrane permeability (RMP) and H2O2 accumulation; interestingly, the two strains decreased ABA content in leaves. This study demonstrated that the two PGPR strains promoted ryegrass growth and root development via regulating plant hormone distribution and enhanced drought tolerance of ryegrass through improving the activities of antioxidant enzymes, regulating ABA signaling and maintaining plant growth. Our results indicated that PGPR strains from rhizosphere of the desert plant species could be considered as promising bioinoculants for grass plants.
Collapse
Affiliation(s)
- Aolei He
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuqi Niu
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Di Yang
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Wei Ren
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Lingyu Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yunya Sun
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Laisheng Meng
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Paul W Paré
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Center of Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
83
|
Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021; 9:microorganisms9040687. [PMID: 33810405 PMCID: PMC8066330 DOI: 10.3390/microorganisms9040687] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
In the coming century, climate change and the increasing human population are likely leading agriculture to face multiple challenges. Agricultural production has to increase while preserving natural resources and protecting the environment. Drought is one of the major abiotic problems, which limits the growth and productivity of crops and impacts 1–3% of all land.To cope with unfavorable water-deficit conditions, plants use through sophisticated and complex mechanisms that help to perceive the stress signal and enable optimal crop yield are required. Among crop production, wheat is estimated to feed about one-fifth of humanity, but faces more and more drought stress periods, partially due to climate change. Plant growth promoting rhizobacteria are a promising and interesting way to develop productive and sustainable agriculture despite environmental stress. The current review focuses on drought stress effects on wheat and how plant growth-promoting rhizobacteria trigger drought stress tolerance of wheat by highlighting several mechanisms. These bacteria can lead to better growth and higher yield through the production of phytohormones, osmolytes, antioxidants, volatile compounds, exopolysaccharides and 1-aminocyclopropane-1-carboxylate deaminase. Based on the available literature, we provide a comprehensive review of mechanisms involved in drought resilience and how bacteria may alleviate this constraint
Collapse
|
84
|
Xu D, Lu Z, Qiao G, Qiu W, Wu L, Han X, Zhuo R. Auxin-Induced SaARF4 Downregulates SaACO4 to Inhibit Lateral Root Formation in Sedum alfredii Hance. Int J Mol Sci 2021; 22:1297. [PMID: 33525549 PMCID: PMC7865351 DOI: 10.3390/ijms22031297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.
Collapse
Affiliation(s)
- Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
85
|
Li Y, Yuan W, Li L, Dai H, Dang X, Miao R, Baluška F, Kronzucker HJ, Lu C, Zhang J, Xu W. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7316-7330. [PMID: 32905588 DOI: 10.1093/jxb/eraa409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear. In this study, we found that an air system and an agar-sorbitol system induced only oblique water-potential gradients; an agar-glycerol system induced only vertical water-potential gradients; and a sand system established both oblique and vertical water-potential gradients. We employed obliquely oriented and vertically oriented experimental systems to study hydrotropism in Arabidopsis and tomato plants. Comparative analyses using different hydrotropic systems showed that gravity hindered the ability of roots to search for obliquely oriented water, whilst facilitating roots' search for vertically oriented water. We found that the gravitropism-deficient mutant aux1 showed enhanced hydrotropism in the oblique orientation but impaired root elongation towards water in the vertical orientation. The miz1 mutant exhibited deficient hydrotropism in the oblique orientation but normal root elongation towards water in the vertical orientation. Importantly, in contrast to miz1, the miz1/aux1 double mutant exhibited hydrotropic bending in the oblique orientation and attenuated root elongation towards water in the vertical orientation. Our results suggest that gravitropism is required for MIZ1-regulated root hydrotropism in both the oblique orientation and the vertical orientation, providing further insight into the role of gravity in root hydrotropism.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Wei Yuan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Luocheng Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Hui Dai
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Rui Miao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| |
Collapse
|
86
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
87
|
Wang R, Wang HL, Tang RP, Sun MY, Chen TM, Duan XC, Lu XF, Liu D, Shi XC, Laborda P, Wang SY. Pseudomonas putida Represses JA- and SA-Mediated Defense Pathways in Rice and Promotes an Alternative Defense Mechanism Possibly through ABA Signaling. PLANTS 2020; 9:plants9121641. [PMID: 33255501 PMCID: PMC7760693 DOI: 10.3390/plants9121641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/05/2022]
Abstract
The signaling pathways induced by Pseudomonas putida in rice plants at the early plant–rhizobacteria interaction stages, with and without inoculation of Xanthomonas oryzae pv. oryzae, were studied. In the absence of pathogen, P. putida reduced ethylene (ET) production, and promoted root and stem elongation. Interestingly, gene OsHDA702, which plays an important role in root formation, was found significantly up-regulated in the presence of the rhizobacterium. Although X. oryzae pv. oryzae inoculation enhanced ET production in rice plants, P. putida treatment repressed ET-, jasmonic acid (JA)- and salicylic acid (SA)-mediated defense pathways, and induced the biosynthesis of abscisic acid (ABA), and the overexpression of OsHDA705 and some pathogenesis-related proteins (PRs), which in turn increased the susceptibility of the rice plants against the pathogen. Collectively, this is the first work on the defense signaling induced by plant growth-promoting rhizobacteria in plants at the early interaction stages, and suggests that rhizobacteria stimulate an alternative defense mechanism in plants based on ABA accumulation and OsHDA705 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xin-Chi Shi
- Correspondence: (X.-C.S.); (P.L.); (S.-Y.W.)
| | | | - Su-Yan Wang
- Correspondence: (X.-C.S.); (P.L.); (S.-Y.W.)
| |
Collapse
|
88
|
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int J Mol Sci 2020; 21:ijms21218258. [PMID: 33158156 PMCID: PMC7662356 DOI: 10.3390/ijms21218258] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.
Collapse
Affiliation(s)
- Vishvanathan Marthandan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Rathnavel Geetha
- Department of Seed Science and Technology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Karunanandham Kumutha
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
- Correspondence:
| |
Collapse
|
89
|
A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance. Mol Genet Genomics 2020; 296:179-192. [PMID: 33130909 DOI: 10.1007/s00438-020-01738-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Ethylene response factors (ERFs) widely exist in plants and have been reported to be an important regulator of plant abiotic stress. Celery, a common economic vegetable of Apiaceae, contains lots of ERF transcription factors (TFs) with various functions. AP2/ERF TFs play positive or negative roles in plant growth and stress response. Here, AgERF8, a gene encoding EAR-type AP2/ERF TF, was identified. The AgERF8 mRNA accumulated in response to both abscisic acid (ABA) signaling and salt treatment. AgERF8 was proving to be a nucleus-located protein and could bind to GCC-box. The overexpression of AgERF8 in Arabidopsis repressed the transcription of downstream genes, AtBGL and AtBCH. Arabidopsis overexpressing AgERF8 gene showed inhibited root growth under ABA and NaCl treatments. AgERF8 transgenic lines showed low tolerance to ABA and salt stress than wild-type plants. Low increment in SOD and POD activities, increased accumulation of MDA, and significantly decreased plant fresh weights and chlorophyll levels were detected in AgERF8 hosting lines after treated with ABA and NaCl. Furthermore, the overexpression of AgERF8 also inhibited the levels of ascorbic acid and antioxidant-related genes (AtCAT1, AtSOD1, AtPOD, AtSOS1, AtAPX1, and AtP5CS1) expression in transgenic Arabidopsis. This finding indicated that AgERF8 negatively affected the resistance of transgenic Arabidopsis to ABA and salt stress through regulating downstream genes expression and relevant physiological changes. It will provide a potential sight to further understand the functions of ERF TFs in celery.
Collapse
|
90
|
Abstract
Drought is a severe environmental constraint, which significantly affects plant growth, productivity, and quality. Plants have developed specific mechanisms that perceive the stress signals and respond to external environmental changes via different mitigation strategies. Abscisic acid (ABA), being one of the phytohormones, serves as an important signaling mediator for plants’ adaptive response to a variety of environmental stresses. ABA triggers many physiological processes, including bud dormancy, seed germination, stomatal closure, and transcriptional and post-transcriptional regulation of stress-responsive gene expression. The site of its biosynthesis and action must be clarified to understand the signaling network of ABA. Various studies have documented multiple sites for ABA biosynthesis, their transporter proteins in the plasma membrane, and several components of ABA-dependent signaling pathways, suggesting that the ABA response to external stresses is a complex networking mechanism. Knowing about stress signals and responses will increase our ability to enhance crop stress tolerance through the use of various advanced techniques. This review will elaborate on the ABA biosynthesis, transportation, and signaling pathways at the molecular level in response to drought stress, which will add a new insight for future studies.
Collapse
|
91
|
Chen L, Czechowski T, Graham IA, Hartley SE. Impact of osmotic stress on the growth and root architecture of introgression lines derived from a wild ancestor of rice and a modern cultivar. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:122-133. [PMID: 37283730 PMCID: PMC10168093 DOI: 10.1002/pei3.10026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 06/08/2023]
Abstract
Many modern rice varieties have been intensively selected for high-yielding performance under irrigated conditions, reducing their genetic diversity and potentially increasing their susceptibility to abiotic stresses such as drought. In this study, we tested benefits for stress tolerance of introducing DNA segments from wild ancestor Oryza rufipogon to the modern cultivar O. sativa cv Curinga (CUR) by applying a gradient of osmotic stress to both parents and seven introgressed lines. Shoot growth of O. rufipogon had a high tolerance to osmotic stress, and the number of total root tips increased under mild osmotic stress. One introgression line showed greater shoot growth, root growth, and higher number of total root tips than the parent line CUR under osmotic stress. Abscisic acid (ABA) is a key hormone mediating plant responses to abiotic stresses. Both root and shoot growth of O. rufipogon were much more sensitive to ABA than CUR. Introgression lines varied in the extent to which the sensitivity of their growth responses to ABA and some lines correlated with their sensitivity to osmotic stress. Our results suggest that rice responses to ABA and osmotic stress are genotype dependent, and growth responses of rice to ABA are not a consistent indicator of resilience to abiotic stress in introgression lines.
Collapse
Affiliation(s)
- Lin Chen
- Department of BiologyUniversity of YorkYorkUK
| | | | | | - Sue E. Hartley
- Department of BiologyUniversity of YorkYorkUK
- Present address:
Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
92
|
Miao J, Li X, Li X, Tan W, You A, Wu S, Tao Y, Chen C, Wang J, Zhang D, Gong Z, Yi C, Yang Z, Gu M, Liang G, Zhou Y. OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. THE NEW PHYTOLOGIST 2020; 227:1417-1433. [PMID: 32433775 DOI: 10.1111/nph.16670] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/19/2020] [Indexed: 05/29/2023]
Abstract
Plants maintain a dynamic balance between plant growth and stress tolerance to optimise their fitness and ensure survival. Here, we investigated the roles of a clade A type 2C protein phosphatase (PP2C)-encoding gene, OsPP2C09, in regulating the trade-off between plant growth and drought tolerance in rice (Oryza sativa L.). The OsPP2C09 protein interacted with the core components of abscisic acid (ABA) signalling and showed PP2C phosphatase activity in vitro. OsPP2C09 positively affected plant growth but acted as a negative regulator of drought tolerance through ABA signalling. Transcript and protein levels of OsPP2C09 were rapidly induced by exogenous ABA treatments, which suppressed excessive ABA signalling and plant growth arrest. OsPP2C09 transcript levels in roots were much higher than those in shoots under normal conditions. After ABA, polyethylene glycol and dehydration treatments, the accumulation rate of OsPP2C09 transcripts in roots was more rapid and greater than that in shoots. This differential expression between the roots and shoots may increase the plant's root-to-shoot ratio under drought-stress conditions. This study sheds new light on the roles of OsPP2C09 in coordinating plant growth and drought tolerance. In particular, we propose that OsPP2C09-mediated ABA desensitisation contributes to root elongation under drought-stress conditions in rice.
Collapse
Affiliation(s)
- Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xianfeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiangbo Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wenchen Tan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Shujun Wu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yajun Tao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chuandeng Yi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
93
|
Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122661. [PMID: 32305720 DOI: 10.1016/j.jhazmat.2020.122661] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/17/2020] [Accepted: 04/04/2020] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting bacteria (PGPB) that inhabit hyperaccumulating plants assist cadmium (Cd) absorption, but the underlying mechanism has not been comprehensively studied. For this reason, we combined the fluorescence imaging, and transcriptomic and metabolomic methods in a Cd hyperaccumulator, Sedum alfredii, inoculated or not with PGPB Pseudomonas fluorescens. The results showed that the newly emerged lateral roots, that were heavily colonized by P. fluorescens, are the main entry for Cd influx in S. alfredii. Inoculation with P. fluorescens promoted a lateral root formation of its host plant, leading to a higher Cd phytoremediation efficiency. Furthermore, the plant transcriptome revealed that 146 plant hormone related genes were significantly up-regulated by the bacterial inoculation, with 119 of them showing a complex interaction, which suggests that a hormonal crosstalk participated root development. The targeted metabolomics analysis showed that P. fluorescens inoculation significantly increased indole acetic acid concentration and significantly decreased concentrations of abscisic acid, brassinolide, trans-zeatin, ethylene and jasmonic acid in S. alfredii roots, thereby inducing lateral root emergence. Altogether, our results highlight the importance of PGPB-induced lateral root formation for the increased Cd uptake in a hyperaccumulating plant.
Collapse
Affiliation(s)
- Yingjie Wu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Luyao Ma
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Olivera Topalovic
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Qiong Wang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Zhou
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
94
|
Maurel C, Nacry P. Root architecture and hydraulics converge for acclimation to changing water availability. NATURE PLANTS 2020; 6:744-749. [PMID: 32601421 DOI: 10.1038/s41477-020-0684-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 05/16/2023]
Abstract
Because of intense transpiration and growth, the needs of plants for water can be immense. Yet water in the soil is most often heterogeneous if not scarce due to more and more frequent and intense drought episodes. The converse context, flooding, is often associated with marked oxygen deficiency and can also challenge the plant water status. Under our feet, roots achieve an incredible challenge to meet the water demand of the plant's aerial parts under such dramatically different environmental conditions. For this, they continuously explore the soil, building a highly complex, branched architecture. On shorter time scales, roots keep adjusting their water transport capacity (their so-called hydraulics) locally or globally. While the mechanisms that directly underlie root growth and development as well as tissue hydraulics are being uncovered, the signalling mechanisms that govern their local and systemic adjustments as a function of water availability remain largely unknown. A comprehensive understanding of root architecture and hydraulics as a whole (in other terms, root hydraulic architecture) is needed to apprehend the strategies used by plants to optimize water uptake and possibly improve crops regarding this crucial trait.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Philippe Nacry
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
95
|
Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W, Xia X. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. THE NEW PHYTOLOGIST 2020; 227:407-426. [PMID: 32145071 DOI: 10.1111/nph.16524] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 05/21/2023]
Abstract
Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.
Collapse
Affiliation(s)
- Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shiwei Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - JiaLong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
96
|
Zlobin IE, Vankova R, Pashkovskiy PP, Dobrev P, Kartashov AV, Ivanov YV, Kuznetsov VV. Profiles of endogenous phytohormones and expression of some hormone-related genes in Scots pine and Norway spruce seedlings under water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:457-468. [PMID: 32289639 DOI: 10.1016/j.plaphy.2020.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Different plant hormones are involved in plant adaptation to water deficit. In comparison to angiosperms, little is known about the impact of drought on the pool of phytohormones in gymnosperms. Therefore, we studied the effect of polyethylene glycol-induced water deficit on the changes in content of different phytohormones in Scots pine and Norway spruce seedlings, which are known for their different strategies of adaptation to water deficit. The following hormone classes were analysed: cytokinins, auxins, jasmonates, salicylic and benzoic acids, and 1-aminocyclopropane-1-carboxylic acid (an ethylene precursor). No consistent reaction to water stress was observed for the content of well-known stress-related hormones - salicylic acid and jasmonates. In contrast, drought induced a dose-dependent accumulation of cytokinins in pine needles, with less profound changes in spruce needles. The most prominent changes were observed for 1-aminocyclopropane-1-carboxylic acid content, which increased several-fold in spruce roots and pine needles under water deficit. Water-deficit-induced changes in the contents of cytokinins and 1-aminocyclopropane-1-carboxylic acid were accompanied by the differential regulation of genes involved in the metabolism of these hormones. Possible links between changes in hormone pools and the adaptation of seedlings to water deficit are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Pavel P Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague 6, Lysolaje, Czech Republic
| | - Alexander V Kartashov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia
| | - Yury V Ivanov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia
| | - Vladimir V Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia
| |
Collapse
|
97
|
Ramachandran P, Augstein F, Nguyen V, Carlsbecker A. Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development. FRONTIERS IN PLANT SCIENCE 2020; 11:570. [PMID: 32499804 PMCID: PMC7243681 DOI: 10.3389/fpls.2020.00570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/17/2020] [Indexed: 05/23/2023]
Abstract
Periods of drought, that threaten crop production, are expected to become more prominent in large parts of the world, making it necessary to explore all aspects of plant growth and development, to breed, modify and select crops adapted to such conditions. One such aspect is the xylem, where influencing the size and number of the water-transporting xylem vessels, may impact on hydraulic conductance and drought tolerance. Here, we focus on how plants adjust their root xylem as a response to reduced water availability. While xylem response has been observed in a wide array of species, most of our knowledge on the molecular mechanisms underlying xylem plasticity comes from studies on the model plant Arabidopsis thaliana. When grown under water limiting conditions, Arabidopsis rapidly adjusts its development to produce more xylem strands with altered identity in an abscisic acid (ABA) dependent manner. Other hormones such as auxin and cytokinin are essential for vascular patterning and differentiation. Their balance can be perturbed by stress, as evidenced by the effects of enhanced jasmonic acid signaling, which results in similar xylem developmental alterations as enhanced ABA signaling. Furthermore, brassinosteroids and other signaling molecules involved in drought tolerance can also impact xylem development. Hence, a multitude of signals affect root xylem properties and, potentially, influence survival under water limiting conditions. Here, we review the likely entangled signals that govern root vascular development, and discuss the importance of taking root anatomical traits into account when breeding crops for enhanced resilience toward changes in water availability.
Collapse
|
98
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
99
|
Chandrasekaran U, Luo X, Zhou W, Shu K. Multifaceted Signaling Networks Mediated by Abscisic Acid Insensitive 4. PLANT COMMUNICATIONS 2020; 1:100040. [PMID: 33367237 PMCID: PMC7748004 DOI: 10.1016/j.xplc.2020.100040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 05/04/2023]
Abstract
Although ABSCISIC ACID INSENSITIVE 4 (ABI4) was initially demonstrated as a key positive regulator in the phytohormone abscisic acid (ABA) signaling cascade, multiple studies have now shown that it is actually involved in the regulation of several other cascades, including diverse phytohormone biogenesis and signaling pathways, various developmental processes (such as seed dormancy and germination, seedling establishment, and root development), disease resistance and lipid metabolism. Consistent with its versatile biological functions, ABI4 either activates or represses transcription of its target genes. The upstream regulators of ABI4 at both the transcription and post-transcription levels have also been documented in recent years. Consequently, a complicated network consisting of the direct target genes and upstream regulators of ABI4, through which ABI4 participates in several phytohormone crosstalk networks, has been generated. In this review, we summarize current understanding of the sophisticated ABI4-mediated molecular networks, mainly focusing on diverse phytohormone (including ABA, gibberellin, cytokinin, ethylene, auxin, and jasmonic acid) crosstalks. We also discuss the potential mechanisms through which ABI4 receives the ABA signal, focusing on protein phosphorylation modification events.
Collapse
Affiliation(s)
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China
| |
Collapse
|
100
|
Vissenberg K, Claeijs N, Balcerowicz D, Schoenaers S. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2412-2427. [PMID: 31993645 PMCID: PMC7178432 DOI: 10.1093/jxb/eraa048] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The main functions of plant roots are water and nutrient uptake, soil anchorage, and interaction with soil-living biota. Root hairs, single cell tubular extensions of root epidermal cells, facilitate or enhance these functions by drastically enlarging the absorptive surface. Root hair development is constantly adapted to changes in the root's surroundings, allowing for optimization of root functionality in heterogeneous soil environments. The underlying molecular pathway is the result of a complex interplay between position-dependent signalling and feedback loops. Phytohormone signalling interconnects this root hair signalling cascade with biotic and abiotic changes in the rhizosphere, enabling dynamic hormone-driven changes in root hair growth, density, length, and morphology. This review critically discusses the influence of the major plant hormones on root hair development, and how changes in rhizosphere properties impact on the latter.
Collapse
Affiliation(s)
- Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, Heraklion, Crete, Greece
| | - Naomi Claeijs
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|