51
|
Scafaro AP, Xiang S, Long BM, Bahar NHA, Weerasinghe LK, Creek D, Evans JR, Reich PB, Atkin OK. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. GLOBAL CHANGE BIOLOGY 2017; 23:2783-2800. [PMID: 27859952 DOI: 10.1111/gcb.13566] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/16/2016] [Indexed: 05/09/2023]
Abstract
Understanding of the extent of acclimation of light-saturated net photosynthesis (An ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax ) and electron transport (Jmax ) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth , An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth . Similarly, area-based rates of Vcmax at a measurement T of 25 °C (Vcmax25 ) linearly declined with increasing Tgrowth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth -mediated declines in Vcmax25 on An , complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25 .
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Shuang Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu, Sichuan, 610041, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Benedict M Long
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Nur H A Bahar
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | | | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, 1540 Cleveland Avenue North, St. Paul, MN, 55108, USA
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
52
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
53
|
Slot M, Winter K. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. THE NEW PHYTOLOGIST 2017; 214:1103-1117. [PMID: 28211583 DOI: 10.1111/nph.14469] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
Tropical forests contribute significantly to the global carbon cycle, but little is known about the temperature response of photosynthetic carbon uptake in tropical species, and how this varies within and across forests. We determined in situ photosynthetic temperature-response curves for upper canopy leaves of 42 tree and liana species from two tropical forests in Panama with contrasting rainfall regimes. On the basis of seedling studies, we hypothesized that species with high photosynthetic capacity - light-demanding, fast-growing species - would have a higher temperature optimum of photosynthesis (TOpt ) than species with low photosynthetic capacity - shade-tolerant, slow-growing species - and that, therefore, TOpt would scale with the position of a species on the slow-fast continuum of plant functional traits. TOpt was remarkably similar across species, regardless of their photosynthetic capacity and other plant functional traits. Community-average TOpt was almost identical to mean maximum daytime temperature, which was higher in the dry forest. Photosynthesis above TOpt appeared to be more strongly limited by stomatal conductance in the dry forest than in the wet forest. The observation that all species in a community shared similar TOpt values suggests that photosynthetic performance is optimized under current temperature regimes. These results should facilitate the scaling up of photosynthesis in relation to temperature from leaf to stand level in species-rich tropical forests.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
54
|
Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J. Rubisco and Rubisco Activase Play an Important Role in the Biochemical Limitations of Photosynthesis in Rice, Wheat, and Maize under High Temperature and Water Deficit. FRONTIERS IN PLANT SCIENCE 2017; 8:490. [PMID: 28450871 PMCID: PMC5390490 DOI: 10.3389/fpls.2017.00490] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/21/2017] [Indexed: 05/19/2023]
Abstract
To understand the effect of heat and drought on three major cereal crops, the physiological and biochemical (i.e., metabolic) factors affecting photosynthesis were examined in rice, wheat, and maize plants grown under long-term water deficit (WD), high temperature (HT) and the combination of both stresses (HT-WD). Diffusional limitations to photosynthesis prevailed under WD for the C3 species, rice and wheat. Conversely, biochemical limitations prevailed under WD for the C4 species, maize, under HT for all three species, and under HT-WD in rice and maize. These biochemical limitations to photosynthesis were associated with Rubisco activity that was highly impaired at HT and under HT-WD in the three species. Decreases in Rubisco activation were unrelated to the amount of Rubisco and Rubisco activase (Rca), but were probably caused by inhibition of Rca activity, as suggested by the mutual decrease and positive correlation between Rubisco activation state and the rate of electron transport. Decreased Rubisco activation at HT was associated with biochemical limitation of net CO2 assimilation rate (AN). Overall, the results highlight the importance of Rubisco as a target for improving the photosynthetic performance of these C3 (wheat and rice) and C4 (maize) cereal crops under increasingly variable and warmer climates.
Collapse
Affiliation(s)
- Juan A. Perdomo
- Plant Biology and Crop Science, Rothamsted Research (BBSRC)Harpenden, UK
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEAPalma de Mallorca, Spain
| | | | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEAPalma de Mallorca, Spain
| |
Collapse
|
55
|
Characterization of the heterooligomeric red-type rubisco activase from red algae. Proc Natl Acad Sci U S A 2016; 113:14019-14024. [PMID: 27872295 DOI: 10.1073/pnas.1610758113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis-powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red plastid lineage contain so-called red-type rubiscos, some of which have been shown to possess superior kinetic properties to green-type rubiscos found in higher plants. These organisms are known to encode multiple homologs of CbbX, the α-proteobacterial red-type activase. Here we show that the gene products of two cbbX genes encoded by the nuclear and plastid genomes of the red algae Cyanidioschyzon merolae are nonfunctional in isolation, but together form a thermostable heterooligomeric Rca that can use both α-proteobacterial and red algal-inhibited rubisco complexes as a substrate. The mechanism of rubisco activation appears conserved between the bacterial and the algal systems and involves threading of the rubisco large subunit C terminus. Whereas binding of the allosteric regulator RuBP induces oligomeric transitions to the bacterial activase, it merely enhances the kinetics of ATP hydrolysis in the algal enzyme. Mutational analysis of nuclear and plastid isoforms demonstrates strong coordination between the subunits and implicates the nuclear-encoded subunit as being functionally dominant. The plastid-encoded subunit may be catalytically inert. Efforts to enhance crop photosynthesis by transplanting red algal rubiscos with enhanced kinetics will need to take into account the requirement for a compatible Rca.
Collapse
|