51
|
Pacheco-Huh J, Carmona D, Dzib G, Chávez-Pesqueira M. Mutualistic and antagonistic interactions differ in wild and domesticated papaya (Carica papaya) in its centre of origin. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:250-258. [PMID: 33188722 DOI: 10.1111/plb.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Shifts in phenotypes derived from the domestication syndromes impact plant performance but may also affect interactions with other species in the community (e.g. mutualists and antagonists). Moreover, plantations often differ from the natural conditions experienced by the wild relatives of cultivated plants, potentially altering the nature of ecological interactions. However, apart from herbivory, little is known about how domestication and cultivation practices (e.g. insecticide application) can modify multiple ecological interactions simultaneously in wild and domesticated plants. In four sites on the Yucatan Peninsula, we compared the diversity of mutualists (e.g. moths) and antagonists (e.g. viruses) in wild and domesticated plants of papaya. For each individual, we recorded floral visitors and rates of visitation at three time periods during the day. We recorded type and percentage of damage by antagonists in three leaves of all individuals. Finally, we explored if plant sex had an effect on the interaction with floral visitors. The main floral visitors were ants and Trigona species, whereas viruses caused the main type of foliar damage. Wild individuals had a higher diversity and visitation rate of floral visitors, and less foliar damage from antagonists. Wild male individuals were more visited, but we observed a similar amount and diversity of damage in both sexes. The time of day did not have an effect on diversity of floral visitors. Together, cultivation practices and domestication appear to have an effect on the reduction in diversity of floral visitors in domesticated papaya, as well as an increase in foliar damage.
Collapse
Affiliation(s)
| | - D Carmona
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Yucatán, México
| | - G Dzib
- Centro de Investigación Científica de Yucatán AC, Unidad de Recursos Naturales, Yucatán, México
| | - M Chávez-Pesqueira
- Centro de Investigación Científica de Yucatán AC, Unidad de Recursos Naturales, Yucatán, México
| |
Collapse
|
52
|
Gilbert SF. Evolutionary developmental biology and sustainability: A biology of resilience. Evol Dev 2021; 23:273-291. [PMID: 33400344 DOI: 10.1111/ede.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary developmental biology, and especially ecological developmental biology, is essential for discussions of sustainability and the responses to global climate change. First, this paper explores examples of animals that have successfully altered their development to accommodate human-made changes to their environments. We next document the ability of global warming to disrupt the development of those organisms with temperature-dependent sex-determination or with phenologies coordinating that organism's development with those of other species. The thermotolerance of Homo sapiens is also related to key developmental factors concerning brain development and maintenance, and the development of corals, the keystone organisms of tropical reefs, is discussed in relation to global warming as well as to other anthropogenic changes. While teratogenic and endocrine-disrupting compounds are not discussed in this essay, the ability of glyphosate herbicides to block insect development is highlighted. Last, the paper discusses the need to creatively integrate developmental biology with ecological, political, religious, and economic perspectives, as the flourishing of contemporary species may require altering the ways that Western science has considered the categories of nature, culture, and self.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
53
|
Liu A, Ku YS, Contador CA, Lam HM. The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi. Front Genet 2020; 11:583954. [PMID: 33193716 PMCID: PMC7554533 DOI: 10.3389/fgene.2020.583954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
Legumes are unique among plants as they can obtain nitrogen through symbiosis with nitrogen-fixing rhizobia that form root nodules in the host plants. Therefore they are valuable crops for sustainable agriculture. Increasing nitrogen fixation efficiency is not only important for achieving better plant growth and yield, but it is also crucial for reducing the use of nitrogen fertilizer. Arbuscular mycorrhizal fungi (AMF) are another group of important beneficial microorganisms that form symbiotic relationships with legumes. AMF can promote host plant growth by providing mineral nutrients and improving the soil ecosystem. The trilateral legume-rhizobia-AMF symbiotic relationships also enhance plant development and tolerance against biotic and abiotic stresses. It is known that domestication and agricultural activities have led to the reduced genetic diversity of cultivated germplasms and higher sensitivity to nutrient deficiencies in crop plants, but how domestication has impacted the capability of legumes to establish beneficial associations with rhizospheric microbes (including rhizobia and fungi) is not well-studied. In this review, we will discuss the impacts of domestication and agricultural practices on the interactions between legumes and soil microbes, focusing on the effects on AMF and rhizobial symbioses and hence nutrient acquisition by host legumes. In addition, we will summarize the genes involved in legume-microbe interactions and studies that have contributed to a better understanding of legume symbiotic associations using metabolic modeling.
Collapse
Affiliation(s)
| | | | | | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
54
|
Stefani F, Dupont S, Laterrière M, Knox R, Ruan Y, Hamel C, Hijri M. Similar Arbuscular Mycorrhizal Fungal Communities in 31 Durum Wheat Cultivars ( Triticum turgidum L. var. durum) Under Field Conditions in Eastern Canada. FRONTIERS IN PLANT SCIENCE 2020; 11:1206. [PMID: 32849748 PMCID: PMC7431883 DOI: 10.3389/fpls.2020.01206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Wheat is among the important crops harnessed by humans whose breeding efforts resulted in a diversity of genotypes with contrasting traits. The goal of this study was to determine whether different old and new cultivars of durum wheat (Triticum turgidum L. var. durum) recruit specific arbuscular mycorrhizal (AM) fungal communities from indigenous AM fungal populations of soil under field conditions. A historical set of five landraces and 26 durum wheat cultivars were field cultivated in a humid climate in Eastern Canada, under phosphorus-limiting conditions. To characterize the community of AMF inhabiting bulk soil, rhizosphere, and roots, MiSeq amplicon sequencing targeting the 18S rRNA gene (SSU) was performed on total DNAs using a nested PCR approach. Mycorrhizal colonization was estimated using root staining and microscope observations. A total of 317 amplicon sequence variants (ASVs) were identified as belonging to Glomeromycota. The core AM fungal community (i.e., ASVs present in > 50% of the samples) in the soil, rhizosphere, and root included 29, 30, and 29 ASVs, respectively. ASVs from the genera Funneliformis, Claroideoglomus, and Rhizophagus represented 37%, 18.6%, and 14.7% of the sequences recovered in the rarefied dataset, respectively. The two most abundant ASVs had sequence homology with the 18S sequences from well-identified herbarium cultures of Funneliformis mosseae BEG12 and Rhizophagus irregularis DAOM 197198, while the third most abundant ASV was assigned to the genus Paraglomus. Cultivars showed no significant difference of the percentage of root colonization ranging from 57.8% in Arnautka to 84.0% in AC Navigator. Cultivars were generally associated with similar soil, rhizosphere, and root communities, but the abundance of F. mosseae, R. irregularis, and Claroideoglomus sp. sequences varied in Eurostar, Golden Ball, and Wakooma. Although these results were obtained in one field trial using a non-restricted pool of durum wheat and at the time of sampling, that may have filtered the community in biotopes. The low genetic variation between durum wheat cultivars for the diversity of AM symbiosis at the species level suggests breeding resources need not be committed to leveraging plant selective influence through the use of traditional methods for genotype development.
Collapse
Affiliation(s)
- Franck Stefani
- Ottawa Research and Development Centre of Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sarah Dupont
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre of Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Ron Knox
- Swift Current Research and Development Centre of Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre of Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Chantal Hamel
- Quebec Research and Development Centre of Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
55
|
Howard MM, Muñoz CA, Kao-Kniffin J, Kessler A. Soil Microbiomes From Fallow Fields Have Species-Specific Effects on Crop Growth and Pest Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:1171. [PMID: 32849726 PMCID: PMC7419683 DOI: 10.3389/fpls.2020.01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Communities of microorganisms in the soil can affect plants' growth and interactions with aboveground herbivores. Thus, there is growing interest in utilizing soil microbiomes to improve plant performance in agriculture (e.g., for pest control), but little is known about the phenotypic responses of various crop species to different microbiomes. In this study, we inoculated four crop species from different botanical families, maize (Zea mays, Poaceae), cucumber (Cucumis sativus, Cucurbitaceae), tomato (Solanum lycopersicum, Solanaceae), and lettuce (Lactuca sativa, Asteraceae), with diverse soil microbiomes originating from actively-managed agricultural fields or fallow fields under varying stages of succession (1, 3, and 16-years post-agriculture) sourced from a large-scale field experiment. We compared the crops' responses to these different microbiomes by assessing their growth and resistance to two generalist insect pests, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda). These different microbiomes affected both plant growth and resistance, but the effects were species-specific. For instance, lettuce produced the largest leaves when inoculated with a 3-year fallow microbiome, the microbiome in which cucumber performed worst. Plants were generally more resistant to T. ni when inoculated with the later succession microbiomes, particularly in contrast to those treated with agricultural microbiomes. However, for tomato plants, the opposite pattern was observed with regard to S. frugiperda resistance. Collectively, these results indicate that plant responses to microbiomes are species-specific and emphasize the need to characterize the responses of taxonomically diverse plant species to different microbiomes.
Collapse
Affiliation(s)
- Mia M. Howard
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | | | - Jenny Kao-Kniffin
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
56
|
Gough EC, Owen KJ, Zwart RS, Thompson JP. A Systematic Review of the Effects of Arbuscular Mycorrhizal Fungi on Root-Lesion Nematodes, Pratylenchus spp. FRONTIERS IN PLANT SCIENCE 2020; 11:923. [PMID: 32765542 PMCID: PMC7381225 DOI: 10.3389/fpls.2020.00923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/05/2020] [Indexed: 05/29/2023]
Abstract
Root-lesion nematodes (Pratylenchus spp.) and arbuscular mycorrhizal fungi (AMF) occupy the same ecological niche in the phytobiome of many agriculturally important crops. Arbuscular mycorrhizal fungi can enhance the resistance or tolerance of a plant to Pratylenchus and previous studies have been undertaken to investigate the relationship between these organisms. A restructuring of the AMF phylum Glomeromycota has reallocated the species into genera according to molecular analysis. A systematic review of the literature was synthesized to assess the interaction between Pratylenchus spp. and AMF using the revised classification. Plants inoculated with AMF generally exhibited greater tolerance as demonstrated by increased biomass under Pratylenchus pressure. Species of AMF from the order Diversisporales tended to increase Pratylenchus population densities compared to those from the order Glomerales. Species from the genera Funneliformis and Glomus had a reductive effect on Pratylenchus population densities. The interaction between AMF and Pratylenchus spp. showed variation in responses as a result of cultivar, crop species, and AMF species. Putative mechanisms involved in these interactions are discussed.
Collapse
|
57
|
Domokos E, Bíró-Janka B, Bálint J, Molnár K, Fazakas C, Jakab-Farkas L, Domokos J, Albert C, Mara G, Balog A. Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Influences Artemisia annua Plant Parameters and Artemisinin Content under Different Soil Types and Cultivation Methods. Microorganisms 2020; 8:E899. [PMID: 32549234 PMCID: PMC7356791 DOI: 10.3390/microorganisms8060899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Artemisinin extracted from Artemisia annua has been used efficiently in malaria treatment since 2005. In this study, the variations in plant parameters (plant biomass, glandular trichome density, essential oil total chemical content, artemisinin production, and polyphenol oxidase (PPO) activity) were tested under different soil types (Luvisol, Gleysol, Anthrosol and sterile peat) and cultivation conditions (potted plants in semi-open field, and open field experiments) for plants inoculated with arbuscular mycorrhizal fungus (AMF) Rizophagus irregularis. Under semi-open field conditions, the AMF colonization of A. annua plant roots varied, and presented the highest percentage in Luvisol and sterile peat. The increase in the root colonization rate positively influenced some plant parameters (biomass, glandular trichome density, artemisinin concentration, essential oil quantity and composition), but no effects on PPO enzyme activity were detected. AMF fungus R. irregularis significantly increased the artemisinin content and essential oil yield of plants cultivated in Luvisol, Gleysol, Anthrosol and in peat. These soil types can offer appropriate conditions for A. annua cultivation and artemisinin production even on a smaller scale. Under open field conditions, low (about 5%) AMF colonization was observed. No differences in artemisin contents were detected, but essential oil yield significantly increased compared to control plants. AMF treatment increased beta-farnesene and germacrene D concentrations in Artemisia plants in the open field experiment.
Collapse
Affiliation(s)
- Erzsébet Domokos
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - Béla Bíró-Janka
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - János Bálint
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - Katalin Molnár
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - Csaba Fazakas
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - László Jakab-Farkas
- Department of Mechanical Engineering, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania;
| | - József Domokos
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania;
| | - Csilla Albert
- Department of Food Science, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Gyöngyvér Mara
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Adalbert Balog
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| |
Collapse
|
58
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
59
|
Agriculture and the Disruption of Plant–Microbial Symbiosis. Trends Ecol Evol 2020; 35:426-439. [DOI: 10.1016/j.tree.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/29/2022]
|
60
|
Luo X, Li H, Wu Z, Yao W, Zhao P, Cao D, Yu H, Li K, Poudel K, Zhao D, Zhang F, Xia X, Chen L, Wang Q, Jing D, Cao S. The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft- and hard-seeded cultivars. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:955-968. [PMID: 31549477 PMCID: PMC7061868 DOI: 10.1111/pbi.13260] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 05/18/2023]
Abstract
Complete and highly accurate reference genomes and gene annotations are indispensable for basic biological research and trait improvement of woody tree species. In this study, we integrated single-molecule sequencing and high-throughput chromosome conformation capture techniques to produce a high-quality and long-range contiguity chromosome-scale genome assembly of the soft-seeded pomegranate cultivar 'Tunisia'. The genome covers 320.31 Mb (scaffold N50 = 39.96 Mb; contig N50 = 4.49 Mb) and includes 33 594 protein-coding genes. We also resequenced 26 pomegranate varieties that varied regarding seed hardness. Comparative genomic analyses revealed many genetic differences between soft- and hard-seeded pomegranate varieties. A set of selective loci containing SUC8-like, SUC6, FoxO and MAPK were identified by the selective sweep analysis between hard- and soft-seeded populations. An exceptionally large selective region (26.2 Mb) was identified on chromosome 1. Our assembled pomegranate genome is more complete than other currently available genome assemblies. Our results indicate that genomic variations and selective genes may have contributed to the genetic divergence between soft- and hard-seeded pomegranate varieties.
Collapse
Affiliation(s)
- Xiang Luo
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Haoxian Li
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Zhikun Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Da Cao
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Haiyan Yu
- Biomarker Technologies CorporationBeijingChina
| | - Kaidi Li
- Biomarker Technologies CorporationBeijingChina
| | - Krishna Poudel
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Diguang Zhao
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Fuhong Zhang
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Xiaocong Xia
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Lina Chen
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Qi Wang
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Dan Jing
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| | - Shangyin Cao
- Chinese Academy of Agricultural SciencesZhengzhou Fruit Tree Research InstituteZhengzhouChina
| |
Collapse
|
61
|
Research Advances of Beneficial Microbiota Associated with Crop Plants. Int J Mol Sci 2020; 21:ijms21051792. [PMID: 32150945 PMCID: PMC7084388 DOI: 10.3390/ijms21051792] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plants are associated with hundreds of thousands of microbes that are present outside on the surfaces or colonizing inside plant organs, such as leaves and roots. Plant-associated microbiota plays a vital role in regulating various biological processes and affects a wide range of traits involved in plant growth and development, as well as plant responses to adverse environmental conditions. An increasing number of studies have illustrated the important role of microbiota in crop plant growth and environmental stress resistance, which overall assists agricultural sustainability. Beneficial bacteria and fungi have been isolated and applied, which show potential applications in the improvement of agricultural technologies, as well as plant growth promotion and stress resistance, which all lead to enhanced crop yields. The symbioses of arbuscular mycorrhizal fungi, rhizobia and Frankia species with their host plants have been intensively studied to provide mechanistic insights into the mutual beneficial relationship of plant–microbe interactions. With the advances in second generation sequencing and omic technologies, a number of important mechanisms underlying plant–microbe interactions have been unraveled. However, the associations of microbes with their host plants are more complicated than expected, and many questions remain without proper answers. These include the influence of microbiota on the allelochemical effect caused by one plant upon another via the production of chemical compounds, or how the monoculture of crops influences their rhizosphere microbial community and diversity, which in turn affects the crop growth and responses to environmental stresses. In this review, first, we systematically illustrate the impacts of beneficial microbiota, particularly beneficial bacteria and fungi on crop plant growth and development and, then, discuss the correlations between the beneficial microbiota and their host plants. Finally, we provide some perspectives for future studies on plant–microbe interactions.
Collapse
|
62
|
Tian L, Shi S, Ma L, Tran LSP, Tian C. Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping. Microbiol Res 2020; 232:126390. [PMID: 31855689 DOI: 10.1016/j.micres.2019.126390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022]
Abstract
Continuous cropping of soybean often causes significant declines in yields of soybean because of the outbreaks of soil-borne fungal diseases. It has been reported that wild crops often harbour a unique microbiome to benefit the host plants. Thus, it is necessary to find the different community structures of the rhizomicrobiomes associated with cultivated and wild soybeans in their continuous cropping. In this study, we simulated monocropping of cultivated and wild soybeans under greenhouse conditions to investigate the rhizomicrobiomes of both soybeans. Results indicated that the bacterial community structure still maintained a changing trend after four continuous planting seasons, while fungal community structure showed a stable trend as indicated by the high similarity in the fungal community structure between the third and fourth planting rotations in both soybeans. In addition, by comparing the continuous cropping of the two soybeans, we found different fungal groups in their rhizospheres between the wild and cultivated soybeans following each passage. Spizellomycetaceae was more highly enriched in the rhizosphere following cultivation of the cultivated soybean, while Chaetomiaceae and Orbiliaceae were more highly enriched in the rhizosphere of wild soybean. Taken together, results of this study suggested that although there was the same trend of stabilized fungal development in the rhizospheres of both soybeans, wild soybean rhizosphere had different fungal groups compared with that of cultivated soybean following their continuous cropping. The findings of this study may provide useful information for the farmers with regard to planting soybean, especially when they consider growing soybean in monoculture.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
63
|
Preece C, Peñuelas J. A Return to the Wild: Root Exudates and Food Security. TRENDS IN PLANT SCIENCE 2020; 25:14-21. [PMID: 31648938 DOI: 10.1016/j.tplants.2019.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 05/07/2023]
Abstract
Challenges to food security under conditions of global change are forcing us to increase global crop production. Focussing on belowground plant traits, especially root exudation, has great promise to meet this challenge. Root exudation is the release of a vast array of compounds into the soil. These exudates are involved in many biotic and abiotic interactions. Wild relatives of crops provide a large potential source of information and genetic material and have desirable traits that could be incorporated into modern breeding programs. However, root exudates are currently underexploited. Here, we highlight how the traits of root exudates of crop wild relatives could be used to improve agricultural output and reduce environmental impacts, particularly by decreasing our dependence on pesticides and fertilisers.
Collapse
Affiliation(s)
- Catherine Preece
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain.
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra 08193, Catalonia, Spain
| |
Collapse
|
64
|
Ramoneda J, Le Roux J, Frossard E, Bester C, Oettlé N, Frey B, Gamper HA. Insights from invasion ecology: Can consideration of eco-evolutionary experience promote benefits from root mutualisms in plant production? AOB PLANTS 2019; 11:plz060. [PMID: 31777649 PMCID: PMC6863469 DOI: 10.1093/aobpla/plz060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Mutualistic plant-microbial functioning relies on co-adapted symbiotic partners as well as conducive environmental conditions. Choosing particular plant genotypes for domestication and subsequent cultivar selection can narrow the gene pools of crop plants to a degree that they are no longer able to benefit from microbial mutualists. Elevated mineral nutrient levels in cultivated soils also reduce the dependence of crops on nutritional support by mutualists such as mycorrhizal fungi and rhizobia. Thus, current ways of crop production are predestined to compromise the propagation and function of microbial symbionts, limiting their long-term benefits for plant yield stability. The influence of mutualists on non-native plant establishment and spread, i.e. biological invasions, provides an unexplored analogue to contemporary crop production that accounts for mutualistic services from symbionts like rhizobia and mycorrhizae. The historical exposure of organisms to biotic interactions over evolutionary timescales, or so-called eco-evolutionary experience (EEE), has been used to explain the success of such invasions. In this paper, we stress that consideration of the EEE concept can shed light on how to overcome the loss of microbial mutualist functions following crop domestication and breeding. We propose specific experimental approaches to utilize the wild ancestors of crops to determine whether crop domestication compromised the benefits derived from root microbial symbioses or not. This can predict the potential for success of mutualistic symbiosis manipulation in modern crops and the maintenance of effective microbial mutualisms over the long term.
Collapse
Affiliation(s)
- Josep Ramoneda
- Group of Plant Nutrition, Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland
| | - Johannes Le Roux
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emmanuel Frossard
- Group of Plant Nutrition, Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland
| | - Cecilia Bester
- South African Agricultural Research Council (ARC-Infruitec), Nieuwoudtville Northern Cape, Stellenbosch Central, Stellenbosch, South Africa
| | - Noel Oettlé
- Environmental Monitoring Group (EMG), Nieuwoudtville Northern Cape, South Africa
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
65
|
Plouznikoff K, Asins MJ, de Boulois HD, Carbonell EA, Declerck S. Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi. ANNALS OF BOTANY 2019; 124:933-946. [PMID: 30753410 PMCID: PMC7145532 DOI: 10.1093/aob/mcy240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF-plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved. METHODS A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2-2.6 Mbp). KEY RESULTS The three AMF colonization parameters were highly correlated (0.78-0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks. CONCLUSIONS Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF-plant symbiosis.
Collapse
Affiliation(s)
- Katia Plouznikoff
- Université catholique de Louvain, Earth and Life Institute, Mycology, Louvain-la-Neuve, Belgium
| | - Maria J Asins
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | | | - Emilio A Carbonell
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Louvain-la-Neuve, Belgium
| |
Collapse
|
66
|
Brody AK, Waterman B, Ricketts TH, Degrassi AL, González JB, Harris JM, Richardson LL. Genotype-specific effects of ericoid mycorrhizae on floral traits and reproduction in Vaccinium corymbosum. AMERICAN JOURNAL OF BOTANY 2019; 106:1412-1422. [PMID: 31675110 PMCID: PMC6899715 DOI: 10.1002/ajb2.1372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/03/2019] [Indexed: 05/28/2023]
Abstract
PREMISE Most plants interact with mycorrhizal fungi and animal pollinators simultaneously. Yet, whether mycorrhizae affect traits important to pollination remains poorly understood and may depend on the match between host and fungal genotypes. Here, we examined how ericoid mycorrhizal fungi affected flowering phenology, floral traits, and reproductive success, among eight genotypes of highbush blueberry, Vaccinium corymbosum (Ericaceae). We asked three overarching questions: (1) Do genotypes differ in response to inoculation? (2) How does inoculation affect floral and flowering traits? (3) Are inoculated plants more attractive to pollinators and less pollen limited than non-inoculated plants of the same genotype? METHODS To examine these questions, we experimentally inoculated plants with ericoid mycorrhizal fungi, grew the plants in the field, and measured flowering and floral traits over 2 years. In year 2, we conducted a hand-pollination experiment to test whether plants differed in pollen limitation. RESULTS Inoculated plants had significantly higher levels of colonization for some genotypes, and there were significant floral trait changes in inoculated plants for some genotypes as well. On average, inoculated plants produced significantly larger floral displays, more fruits per inflorescence, and heavier fruits with lower sugar content, than non-inoculated, control plants. Hand pollination enhanced the production of fruits, and fruit mass, for non-inoculated plants but not for those that were inoculated. CONCLUSIONS Our results demonstrate that inoculation with ericoid mycorrhizal fungi enhanced flowering and altered investment in reproduction in genotype-specific ways. These findings underscore the importance of examining belowground symbionts and genotype-specific responses in their hosts to fully understand the drivers of aboveground interactions.
Collapse
Affiliation(s)
- Alison K. Brody
- Department of BiologyUniversity of VermontBurlingtonVT05405USA
| | - Benjamin Waterman
- University of VermontExtension Center for Sustainable AgricultureBurlingtonVT05401USA
- Waterman OrchardsJohnsonVT05656USA
| | - Taylor H. Ricketts
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVT05405USA
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVT05405USA
| | - Allyson L. Degrassi
- Department of BiologyUniversity of VermontBurlingtonVT05405USA
- Department of Land ResourcesGlenville State CollegeGlenvilleWV26351USA
| | - Jonathan B. González
- Department of BiologyUniversity of VermontBurlingtonVT05405USA
- Section of Plant Pathology and Plant–Microbe BiologySchool of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Jeanne M. Harris
- Department of Plant BiologyUniversity of VermontBurlingtonVT05405USA
| | - Leif L. Richardson
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVT05405USA
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVT05405USA
| |
Collapse
|
67
|
White PJ. Root traits benefitting crop production in environments with limited water and nutrient availability. ANNALS OF BOTANY 2019; 124:mcz162. [PMID: 31599920 PMCID: PMC6881216 DOI: 10.1093/aob/mcz162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Breeding for advantageous root traits will play a fundamental role in improving the efficiency of water and nutrient acquisition, closing yield gaps, and underpinning the "Evergreen Revolution" that must match crop production with human demand. SCOPE This preface provides an overview of a Special Issue of Annals of Botany on "Root traits benefitting crop production in environments with limited water and nutrient availability". The first papers in the Special Issue examine how breeding for reduced shoot stature and greater harvest index during the Green Revolution affected root system architecture. It is observed that reduced plant height and root architecture are inherited independently and can be improved simultaneously to increase the acquisition and utilisation of carbon, water and mineral nutrients. These insights are followed by papers examining beneficial root traits for resource acquisition in environments with limited water or nutrient availability, such as deep rooting, control of hydraulic conductivity, formation of aerenchyma, proliferation of lateral roots and root hairs, foraging of nutrient-rich patches, manipulation of rhizosphere pH and the exudation of low molecular weight organic solutes. The Special Issue concludes with papers exploring the interactions of plant roots and microorganisms, highlighting the need for plants to control the symbiotic relationships between mycorrhizal fungi and rhizobia to achieve maximal growth, and the roles of plants and microbes in the modification and development of soils.
Collapse
Affiliation(s)
- Philip J White
- Ecological Science Group, The James Hutton Institute, Invergowrie, Dundee, UK
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
68
|
Salloum MS, Insani M, Monteoliva MI, Menduni MF, Silvente S, Carrari F, Luna C. Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes. MYCORRHIZA 2019; 29:459-473. [PMID: 31410554 DOI: 10.1007/s00572-019-00909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.
Collapse
Affiliation(s)
- María Soraya Salloum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina.
| | - Marina Insani
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Mariela Inés Monteoliva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| | - María Florencia Menduni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCyT), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA),, Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| | - Sonia Silvente
- Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA), Universidad Nacional de Chilecito (UNdeC), Av Los Peregrinos s/n, Chilecito, F5360CKB, La Rioja, Argentina
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Celina Luna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| |
Collapse
|
69
|
Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM, Kindt R, Hoad S, Hale I, Jamnadass R. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. THE NEW PHYTOLOGIST 2019; 224:37-54. [PMID: 31063598 DOI: 10.1111/nph.15895] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 05/27/2023]
Abstract
Especially in low-income nations, new and orphan crops provide important opportunities to improve diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into multiple niches in production systems, and relatively adapted to low-input conditions. The evolving space for these crops in production systems presents particular genetic improvement requirements that extensive gene pools are able to accommodate. Particular needs for genetic development identified in part with plant breeders relate to three areas of fundamental importance for addressing food production and human demographic trends and associated challenges, namely: facilitating integration into production systems; improving the processability of crop products; and reducing farm labour requirements. Here, we relate diverse involved target genes and crop development techniques. These techniques include transgressive methods that involve defining exemplar crop models for effective new and orphan crop improvement pathways. Research on new and orphan crops not only supports the genetic improvement of these crops, but they serve as important models for understanding crop evolutionary processes more broadly, guiding further major crop evolution. The bridging position of orphan crops between new and major crops provides unique opportunities for investigating genetic approaches for de novo domestications and major crop 'rewildings'.
Collapse
Affiliation(s)
- Ian K Dawson
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Prasad Hendre
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Jon Bančič
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Roeland Kindt
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Steve Hoad
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Iago Hale
- University of New Hampshire, Durham, NH,, 03824, USA
| | - Ramni Jamnadass
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| |
Collapse
|
70
|
Schneider KD, Thiessen Martens JR, Zvomuya F, Reid DK, Fraser TD, Lynch DH, O'Halloran IP, Wilson HF. Options for Improved Phosphorus Cycling and Use in Agriculture at the Field and Regional Scales. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1247-1264. [PMID: 31589712 DOI: 10.2134/jeq2019.02.0070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil phosphorus (P) cycling in agroecosystems is highly complex, with many chemical, physical, and biological processes affecting the availability of P to plants. Traditionally, P fertilizer recommendations have been made using an insurance-based approach, which has resulted in the accumulation of P in many intensively managed agricultural soils worldwide and contributed to the widespread water quality issue of eutrophication. To mitigate further environmental degradation and because future P fertilizer supplies are threatened due to finite phosphate rock resources and associated geopolitical and quality issues, there is an immediate need to increase P use efficiency (PUE) in agroecosystems. Through cultivar selection and improved cropping system design, contemporary research suggests that sufficient crop yields could be maintained at reduced soil test P (STP) concentrations. In addition, more efficient P cycling at the field scale can be achieved through agroecosystem management that increases soil organic matter and organic P mineralization and optimizes arbuscular mycorrhizal fungi (AMF) symbioses. This review paper provides a perspective on how agriculture has the potential to utilize plant and microbial traits to improve PUE at the field scale and accordingly, maintain crop yields at lower STP concentrations. It also links with the need to tighten the P cycle at the regional scale, including a discussion of P recovery and recycling technologies, with a particular focus on the use of struvite as a recycled P fertilizer. Guidance on directions for future research is provided.
Collapse
|
71
|
Hassani MA, Özkurt E, Seybold H, Dagan T, Stukenbrock EH. Interactions and Coadaptation in Plant Metaorganisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:483-503. [PMID: 31348865 DOI: 10.1146/annurev-phyto-082718-100008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants associate with a wide diversity of microorganisms. Some microorganisms engage in intimate associations with the plant host, collectively forming a metaorganism. Such close coexistence with plants requires specific adaptations that allow microorganisms to overcome plant defenses and inhabit plant tissues during growth and reproduction. New data suggest that the plant immune system has a broader role beyond pathogen recognition and also plays an important role in the community assembly of the associated microorganism. We propose that core microorganisms undergo coadaptation with their plant host, notably in response to the plant immune system allowing them to persist and propagate in their host. Microorganisms, which are vertically transmitted from generation to generation via plant seeds, putatively compose highly adapted species and may have plant-beneficial functions. The extent to which plant domestication has impacted the underlying genetics of plant-microbe associations remains poorly understood. We propose that the ability of domesticated plants to select and maintain advantageous microbial partners may have been affected. In this review, we discuss factors that impact plant metaorganism assembly and function. We underline the importance of microbe-microbe interactions in plant tissues, as they are still poorly studied but may have a great impact on plant health.
Collapse
Affiliation(s)
- M Amine Hassani
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Ezgi Özkurt
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Heike Seybold
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Tal Dagan
- Institute of Microbiology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
72
|
Sendek A, Karakoç C, Wagg C, Domínguez-Begines J, do Couto GM, van der Heijden MGA, Naz AA, Lochner A, Chatzinotas A, Klotz S, Gómez-Aparicio L, Eisenhauer N. Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 2019; 9:9650. [PMID: 31273222 PMCID: PMC6609766 DOI: 10.1038/s41598-019-45702-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023] Open
Abstract
Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change.
Collapse
Affiliation(s)
- Agnieszka Sendek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany.
- Department of Geobotany and Botanical Garden, Martin Luther University of Halle-Wittenberg, Am Kirchweg 2, 06108, Halle, Germany.
| | - Canan Karakoç
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, Zürich, CH-8057, Switzerland
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| | - Jara Domínguez-Begines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Gabriela Martucci do Couto
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ali Ahmad Naz
- Crop Genetics and Biotechnology Unit, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Stefan Klotz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
| | - Lorena Gómez-Aparicio
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, LINCGlobal, Avenida Reina Mercedes, 10, 41012, Sevilla, Spain
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
73
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
74
|
Tian L, Chang C, Ma L, Nasir F, Zhang J, Li W, Tran LSP, Tian C. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2019; 12:35. [PMID: 31076886 PMCID: PMC6510786 DOI: 10.1186/s12284-019-0287-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice, which serves as a staple food for more than half of the world's population, is very susceptible to the pathogenic fungus, Magnaporthe oryzae. However, common wild rice (Oryza rufipogon), which is the ancestor of Asian cultivated rice (O. sativa), has significant potential as a genetic source of resistance to M. oryzae. Recent studies have shown that the domestication of rice has altered its relationship to symbiotic arbuscular mycorrhizae. A comparative response of wild and domestic rice inhabited by mycorrhizae to infection by M. oryzae has not been documented. RESULTS In the current study, roots of wild and cultivated rice colonized with the arbuscular mycorrhizal (AM) fungus (AMF) Rhizoglomus intraradices were used to compare the transcriptomic responses of the two species to infection by M. oryzae. Phenotypic analysis indicated that the colonization of wild and cultivated rice with R. intraradices improved the resistance of both genotypes to M. oryzae. Wild AM rice, however, was more resistant to M. oryzae than the cultivated AM rice, as well as nonmycorrhizal roots of wild rice. Transcriptome analysis indicated that the mechanisms regulating the responses of wild and cultivated AM rice to M. oryzae invasion were significantly different. The expression of a greater number of genes was changed in wild AM rice than in cultivated AM rice in response to the pathogen. Both wild and cultivated AM rice exhibited a shared response to M. oryzae which included genes related to the auxin and salicylic acid pathways; all of these play important roles in pathogenesis-related protein synthesis. In wild AM rice, secondary metabolic and biotic stress-related analyses indicated that the jasmonic acid synthesis-related α-linolenic acid pathway, the phenolic and terpenoid pathways, as well as the phenolic and terpenoid syntheses-related mevalonate (MVA) pathway were more affected by the pathogen. Genes related to these pathways were more significantly enriched in wild AM rice than in cultivated AM rice in response to M. oryzae. On the other hand, genes associated with the 'brassinosteroid biosynthesis' were more enriched in cultivated AM rice. CONCLUSIONS The AMF R. intraradices-colonized rice plants exhibited greater resistance to M. oryzae than non-AMF-colonized plants. The findings of the current study demonstrate the potential effects of crop domestication on the benefits received by the host via root colonization with AMF(s), and provide new information on the underlying molecular mechanisms. In addition, results of this study can also help develop guidelines for the applications of AMF(s) when planting rice.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Jianfeng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- College of Life Science, Jilin Agricultural University, Changchun, Jilin China
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000 Vietnam
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|
75
|
Hufford MB, Berny Mier Y Teran JC, Gepts P. Crop Biodiversity: An Unfinished Magnum Opus of Nature. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:727-751. [PMID: 31035827 DOI: 10.1146/annurev-arplant-042817-040240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crop biodiversity is one of the major inventions of humanity through the process of domestication. It is also an essential resource for crop improvement to adapt agriculture to ever-changing conditions like global climate change and consumer preferences. Domestication and the subsequent evolution under cultivation have profoundly shaped the genetic architecture of this biodiversity. In this review, we highlight recent advances in our understanding of crop biodiversity. Topics include the reduction of genetic diversity during domestication and counteracting factors, a discussion of the relationship between parallel phenotypic and genotypic evolution, the role of plasticity in genotype × environment interactions, and the important role subsistence farmers play in actively maintaining crop biodiversity and in participatory breeding. Linking genotype and phenotype remains the holy grail of crop biodiversity studies.
Collapse
Affiliation(s)
- Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020, USA;
| | | | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, California 95616-8780, USA; ,
| |
Collapse
|
76
|
Sosa-Hernández MA, Leifheit EF, Ingraffia R, Rillig MC. Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet? Front Microbiol 2019; 10:744. [PMID: 31031726 PMCID: PMC6473167 DOI: 10.3389/fmicb.2019.00744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/25/2019] [Indexed: 11/30/2022] Open
Abstract
With growing populations and climate change, assuring food and nutrition security is an increasingly challenging task. Climate-smart and sustainable agriculture, that is, conceiving agriculture to be resistant and resilient to a changing climate while keeping it viable in the long term, is probably the best solution. The role of soil biota and particularly arbuscular mycorrhizal (AM) fungi in this new agriculture is believed to be of paramount importance. However, the large nutrient pools and the microbiota of subsoils are rarely considered in the equation. Here we explore the potential contributions of subsoil AM fungi to a reduced and more efficient fertilization, carbon sequestration, and reduction of greenhouse gas emissions in agriculture. We discuss the use of crop rotations and cover cropping with deep rooting mycorrhizal plants, and low-disturbance management, as means of fostering subsoil AM communities. Finally, we suggest future research goals that would allow us to maximize these benefits.
Collapse
Affiliation(s)
- Moisés A. Sosa-Hernández
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Eva F. Leifheit
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, Università di Palermo, Palermo, Italy
| | - Matthias C. Rillig
- Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
77
|
Bernardo L, Carletti P, Badeck FW, Rizza F, Morcia C, Ghizzoni R, Rouphael Y, Colla G, Terzi V, Lucini L. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:203-212. [PMID: 30802803 DOI: 10.1016/j.plaphy.2019.02.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 05/13/2023]
Abstract
Under global climate change forecasts, the pressure of environmental stressors (and in particular drought) on crop productivity is expected to rise and challenge further global food security. The application of beneficial microorganisms may represent an environment friendly tool to secure improved crop performance and yield stability. Accordingly, this current study aimed at elucidating the metabolomic responses triggered by mycorrhizal (Funneliformis mosseae) inoculation of durum (Triticum durum Desf.; cv. 'Mongibello') and bread wheat cultivars (Triticum aestivum L.; cv. 'Chinese Spring') under full irrigation and water deficit regimes. Metabolomics indicated a similar regulation of secondary metabolism in both bread and durum wheat cultivars following water limiting conditions. Nonetheless, a mycorrhizal fungi (AMF) x cultivar interaction could be observed, with the bread wheat cultivar being more affected by arbuscular colonization under water limiting conditions. Discriminant compounds could be mostly related to sugars and lipids, both being positively modulated by AMF colonization under water stress. Moreover, a regulation of metabolites related to oxidative stress and a tuning of crosstalk between phytohormones were also evidenced. Among the latter, the stimulation of the brassinosteroids biosynthetic pathway was particularly evident in inoculated wheat roots, supporting the hypothesis of their involvement in enhancing plant response to water stress and modulation of oxidative stress conditions. This study proposes new insights on the modulation of the tripartite interaction plant-AMF-environmental stress.
Collapse
Affiliation(s)
- Letizia Bernardo
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy; Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università di Padova, Padova, Italy
| | - Franz W Badeck
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Fulvia Rizza
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Caterina Morcia
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Roberta Ghizzoni
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Valeria Terzi
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
78
|
Zhang S, Lehmann A, Zheng W, You Z, Rillig MC. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. THE NEW PHYTOLOGIST 2019; 222:543-555. [PMID: 30372522 DOI: 10.1111/nph.15570] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 05/02/2023]
Abstract
Increasing grain yields of food cereal crops is a major goal in future sustainable agriculture. We quantitatively analyzed the potential role of arbuscular mycorrhizal (AM) fungi in enhancing grain yields of seven cereal crops with exceptional importance for human nutrition across the globe: corn, wheat, rice, barley, sorghum, millet and oat. We conducted a meta-analysis for three datasets including both English and Chinese language publications: the 'whole' dataset including both laboratory and field studies (168 articles); the 'field' dataset comprising only field studies (97 studies); and the 'field-inoculation' dataset including only AM fungal inoculation studies conducted in field conditions (70 articles). We found that the AM fungal effect on grain yield was less pronounced in field and noninoculation studies. AM fungal inoculation in field led to a 16% increase (overall effect) based on the 'field-inoculation' dataset; this effect was variable (77% trials had positive values), crop-specific, lower for new cultivars released after 1950 and further modulated by soil pH. Although there are neutral and negative effects of AM fungi on grain yields, we emphasize the importance of integrating AM fungi in sustainable agriculture to increase grain yields of cereal crops.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, Nanjing, China
| | - Anika Lehmann
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Weishuang Zheng
- College of Marine Science, Shandong University, Wenhua West Road 180, C-264209, Weihai, Shandong, China
| | - Zhaoyang You
- College of Urban Construction, Nanjing Tech University, Puzhu Road(S) 30, Nanjing, China
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, Altensteinstr. 6, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
79
|
El Mujtar V, Muñoz N, Prack Mc Cormick B, Pulleman M, Tittonell P. Role and management of soil biodiversity for food security and nutrition; where do we stand? GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2019. [DOI: 10.1016/j.gfs.2019.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
80
|
Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1031-1046. [PMID: 29806959 DOI: 10.1111/nph.15230] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany
| |
Collapse
|
81
|
Ryan MH, Graham JH. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. THE NEW PHYTOLOGIST 2018; 220:1092-1107. [PMID: 29987890 DOI: 10.1111/nph.15308] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/30/2018] [Indexed: 05/11/2023]
Abstract
Contents Summary 1092 I. Introduction 1093 II. Investigating activity of AMF in agroecosystems 1093 III. Crop benefit from AMF: agronomic and mycorrhizal literature differ 1094 IV. Flawed methodology leads to benefits of mycorrhizas being overstated 1094 V. Rigorous methodology suggests low colonisation by AMF can sometimes reduce crop yield 1095 VI. Predicting when mycorrhizas matter for crop yield 1096 VII. Crop genotype 1099 VIII. Fungal genotype 1100 IX. Complex interactions between the mycorrhizal fungal and soil microbial communities 1102 X. Phosphorus-efficient agroecosystems 1102 XI. Conclusions 1103 Acknowledgements 1104 References 1104 SUMMARY: Arbuscular mycorrhizal fungi (AMF) are ubiquitous in agroecosystems and often stated to be critical for crop yield and agroecosystem sustainability. However, should farmers modify management to enhance the abundance and diversity of AMF? We address this question with a focus on field experiments that manipulated colonisation by indigenous AMF and report crop yield, or investigated community structure and diversity of AMF. We find that the literature presents an overly optimistic view of the importance of AMF in crop yield due, in part, to flawed methodology in field experiments. A small body of rigorous research only sometimes reports a positive impact of high colonisation on crop yield, even under phosphorus limitation. We suggest that studies vary due to the interaction of environment and genotype (crop and mycorrhizal fungal). We also find that the literature can be overly pessimistic about the impact of some common agricultural practices on mycorrhizal fungal communities and that interactions between AMF and soil microbes are complex and poorly understood. We provide a template for future field experiments and a list of research priorities, including phosphorus-efficient agroecosystems. However, we conclude that management of AMF by farmers will not be warranted until benefits are demonstrated at the field scale under prescribed agronomic management.
Collapse
Affiliation(s)
- Megan H Ryan
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - James H Graham
- Department of Soil and Water Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| |
Collapse
|
82
|
Campos C, Carvalho M, Brígido C, Goss MJ, Nobre T. Symbiosis Specificity of the Preceding Host Plant Can Dominate but Not Obliterate the Association Between Wheat and Its Arbuscular Mycorrhizal Fungal Partners. Front Microbiol 2018; 9:2920. [PMID: 30542338 PMCID: PMC6277769 DOI: 10.3389/fmicb.2018.02920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
The symbiosis established between arbuscular mycorrhizal fungi (AMF) and roots of most land plants plays a key role in plant nutrient acquisition and alleviation of environmental stresses. Despite the ubiquity of the symbiosis, AMF and host species display significant specificity in their interactions. To clarify preferential associations between wheat (Triticum aestivum) and AMF, we characterized root AMF communities in the transition from two first host species, ryegrass (Lolium rigidum) and yellow-serradella (Ornithopus compressus), grown separately or together, to a second host (wheat), by sequencing the large subunit ribosomal DNA (LSU rDNA) gene. The response of AMF communities in wheat to prior soil disturbance – and consequently of the mycelial network [intact extraradical mycelium (ERM) vs. disrupted mycelium] established with either of the first hosts – was also investigated. Since the outcome of a specific host–symbiont interaction depends on the molecular responses of the host plant upon microbial colonization, we studied the expression of six key symbiosis-related genes in wheat roots. AMF communities on L. rigidum and O. compressus roots were clearly distinct. Within an undisturbed ERM, wheat AMF communities were similar to that of previous host, and O. compressus-wheat-AMF interactions supported a greater growth of wheat than L. rigidum-wheat-AMF interactions. This effect declined when ERM was disrupted, but generated a greater activation of symbiotic genes in wheat, indicating that plant symbiotic program depends on some extent on the colonizing symbiont propagule type. When a mixture of L. rigidum and O. compressus was planted, the wheat colonization pattern resembled that of O. compressus, although this was not reflected in a greater growth. These results show a lasting effect of previous hosts in shaping wheat AMF communities through an efficient use of the established ERM, although not completely obliterating host–symbiont specificity.
Collapse
Affiliation(s)
- Catarina Campos
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Mário Carvalho
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Clarisse Brígido
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Michael J Goss
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Tânia Nobre
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| |
Collapse
|
83
|
Junaidi J, Kallenbach CM, Byrne PF, Fonte SJ. Root traits and root biomass allocation impact how wheat genotypes respond to organic amendments and earthworms. PLoS One 2018; 13:e0200646. [PMID: 30040842 PMCID: PMC6057726 DOI: 10.1371/journal.pone.0200646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022] Open
Abstract
Plant-soil biological interactions are increasingly recognized as a key feature of agroecosystems, promoting both crop and soil health. However, the effectiveness of plant-soil synergies is likely modulated by both root system characteristics and soil management impacts on soil biological communities. To successfully manage for plant-soil interactions, we need to better understand how crops respond to changes in soil management, especially in terms of belowground investment. Specifically, crop genotypes that exhibit reduced plasticity in root growth and investment may not be able to take full advantage of changes in soil biological activity associated with soil health promoting practices. We hypothesized that genotypes with greater belowground investment respond more, in terms of plant growth and crop nitrogen (N) uptake, to compost and earthworm additions, agronomic factors commonly associated with soil health. We evaluated four spring wheat (Triticum aestivum) genotypes with distinct breeding and environmental histories, and one progenitor of wheat (Aegilops tauschii) under low soil fertility conditions in the greenhouse for differences in belowground root biomass and architecture. We then determined how these belowground traits influenced genotype response to additions of compost and earthworms. Measurements included plant growth, biomass, grain yield, root characteristics, plant N uptake, and soil N. Overall, in unamended soils, genotypes differed in above and belowground phenotypic traits. In general, Ae. tauschii had three times greater root: shoot (R:S) ratio, root length, and root biomass relative to wheat genotypes. We found that genotypes with higher R:S ratios responded more positively to compost additions compared to those with lower R:S ratios, particularly in terms of plant aboveground biomass, N uptake and soil N-cycling, and also exhibited greater plasticity in root morphology. Consequently, while higher R:S genotypes had relatively poorer yields in unamended soils, they outperformed lower R:S genotypes in total seed weight under compost treatments. Our findings suggest that genotypes with greater belowground investment may be better able to take advantage of soil health promoting practices, such as the use of organic amendments. These results highlight the need to consider soil management practices (and associated biological communities) in parallel with root phenotypic plasticity when evaluating wheat lines for improvements in plant-soil synergies.
Collapse
Affiliation(s)
- Junaidi Junaidi
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, United States of America
- Indonesian Rubber Research Institute, Bogor, Jawa Barat, Indonesia
| | - Cynthia M. Kallenbach
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, United States of America
| | - Patrick F. Byrne
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, United States of America
| | - Steven J. Fonte
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|