51
|
Park HJ, Jo DS, Choi DS, Bae JE, Park NY, Kim JB, Chang JH, Shin JJ, Cho DH. Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells. Biochem Biophys Res Commun 2020; 531:209-214. [PMID: 32792197 DOI: 10.1016/j.bbrc.2020.07.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that are involved in melanin synthesis. Unlike melanosome biogenesis, the melanosome degradation pathway is poorly understood. Among the cellular processes, autophagy controls degradation of intracellular components by cooperating with lysosomes. In this study, we showed that ursolic acid inhibits skin pigmentation by promoting melanosomal autophagy, or melanophagy, in melanocytes. We found that B16F1 cells treated with ursolic acid suppressed alpha-melanocyte stimulating hormone (α-MSH) stimulated increase in melanin content and activated autophagy. In addition, we found that treatment with ursolic acid promotes melanosomal degradation, and bafilomycin A1 inhibition of autophagosome-lysosome fusion blocked the removal of melanosomes in α-MSH-stimulated B16F1 cells. Furthermore, depletion of the autophagy-related gene 5 (ATG5) resulted in significant suppression of ursolic acid-mediated anti-pigmentation activity and autophagy in α-MSH-treated B16F1 cells. Taken together, our results suggest that ursolic acid inhibits skin pigmentation by increasing melanosomal degradation in melanocytes.
Collapse
Affiliation(s)
- Hyun Jun Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Sig Choi
- T.E.N. Co., Ltd., Yongin, Gyeonggi-do, 17015, Republic of Korea
| | - Ji-Eun Bae
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jun-Bum Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joong Jin Shin
- T.E.N. Co., Ltd., Yongin, Gyeonggi-do, 17015, Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
52
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
53
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
54
|
Boo YC. Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs. Biomedicines 2020; 8:biomedicines8090322. [PMID: 32882959 PMCID: PMC7555855 DOI: 10.3390/biomedicines8090322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the pigmentation level of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied but the results are not always satisfactory. Studies have been conducted to improve the efficacy and safety of these treatment strategies. In this review, we present the latest studies regarding peptides and related compounds that may be useful in artificially increasing or reducing skin melanin levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many other compounds, additional studies are required to verify their efficacy and safety in vivo and in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of peptides and related compounds will lead to the development of novel drugs for the treatment of skin pigmentary disorders.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; ; Tel.: +82-53-420-4946
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
55
|
Murase D, Kusaka-Kikushima A, Hachiya A, Fullenkamp R, Stepp A, Imai A, Ueno M, Kawabata K, Takahashi Y, Hase T, Ohuchi A, Nakamura S, Yoshimori T. Autophagy Declines with Premature Skin Aging resulting in Dynamic Alterations in Skin Pigmentation and Epidermal Differentiation. Int J Mol Sci 2020; 21:ijms21165708. [PMID: 32784909 PMCID: PMC7460956 DOI: 10.3390/ijms21165708] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a membrane traffic system that provides sustainable degradation of cellular components for homeostasis, and is thus considered to promote health and longevity, though its activity declines with aging. The present findings show deterioration of autophagy in association with premature skin aging. Autophagy flux was successfully determined in skin tissues, which demonstrated significantly decreased autophagy in hyperpigmented skin such as that seen in senile lentigo. Furthermore, an exacerbated decline in autophagy was confirmed in xerotic hyperpigmentation areas, accompanied by severe dehydration and a barrier defect, which showed correlations with skin physiological conditions. The enhancement of autophagy in skin ex vivo ameliorated skin integrity, including pigmentation and epidermal differentiation. The present results indicate that the restoration of autophagy can contribute to improving premature skin aging by various intrinsic and extrinsic factors via the normalization of protein homeostasis.
Collapse
Affiliation(s)
- Daiki Murase
- Biological Science Research, Kao Corporation, Haga 321-3497, Japan;
- Correspondence: ; Tel.: +81-285-68-7637
| | - Ayumi Kusaka-Kikushima
- Biological Science Research, Kao Corporation, Odawara 250-0002, Japan; (A.K.-K.); (M.U.); (K.K.); (Y.T.)
| | - Akira Hachiya
- Planning and Implementation, Kao Corporation, Haga 321-3497, Japan;
| | - Rachel Fullenkamp
- Americas Research Laboratories, Kao USA Inc., Cincinnati, OH 45214, USA; (R.F.); (A.S.); (A.I.)
| | - Anita Stepp
- Americas Research Laboratories, Kao USA Inc., Cincinnati, OH 45214, USA; (R.F.); (A.S.); (A.I.)
| | - Asuka Imai
- Americas Research Laboratories, Kao USA Inc., Cincinnati, OH 45214, USA; (R.F.); (A.S.); (A.I.)
| | - Mizuki Ueno
- Biological Science Research, Kao Corporation, Odawara 250-0002, Japan; (A.K.-K.); (M.U.); (K.K.); (Y.T.)
| | - Keigo Kawabata
- Biological Science Research, Kao Corporation, Odawara 250-0002, Japan; (A.K.-K.); (M.U.); (K.K.); (Y.T.)
| | - Yoshito Takahashi
- Biological Science Research, Kao Corporation, Odawara 250-0002, Japan; (A.K.-K.); (M.U.); (K.K.); (Y.T.)
| | - Tadashi Hase
- Core Technology Sector, Kao Corporation, Sumida 131-0044, Japan;
| | - Atsushi Ohuchi
- Biological Science Research, Kao Corporation, Haga 321-3497, Japan;
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; (S.N.); (T.Y.)
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; (S.N.); (T.Y.)
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
56
|
Qiao Z, Xu Z, Xiao Q, Yang Y, Ying J, Xiang L, Zhang C. Dysfunction of ATG7-dependent autophagy dysregulates the antioxidant response and contributes to oxidative stress-induced biological impairments in human epidermal melanocytes. Cell Death Discov 2020; 6:31. [PMID: 32377394 PMCID: PMC7195468 DOI: 10.1038/s41420-020-0266-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a process involving the self-digestion of components that participates in anti-oxidative stress responses and protects cells against oxidative damage. However, the role of autophagy in the anti-oxidative stress responses of melanocytes remains unclear. To investigate the role of autophagy in human epidermal melanocytes, we knocked down and overexpressed ATG7, the critical gene of autophagy, in normal human epidermal melanocytes. We demonstrated that ATG7-dependent autophagy could affect melanin content of melanocytes by regulating melanogenesis. Moreover, suppression of ATG7-dependent autophagy inhibits proliferation and promotes oxidative stress-induced apoptosis of melanocytes, whereas enhancement of ATG7-dependent autophagy protects melanocytes from oxidative stress-induced apoptosis. Meanwhile, deficiency of ATG7-dependent autophagy results in premature senescence of melanocytes under oxidative stress. Notably, we verified that ATG7-dependent autophagy could alter oxidative stress homeostasis by regulating reactive oxygen species (ROS) production, nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway, and the activity of several antioxidant enzymes in melanocytes. In conclusion, our study suggested that ATG7-dependent autophagy is indispensable for redox homeostasis and the biological functions of melanocytes, such as melanogenesis, proliferation, apoptosis, and senescence, especially under oxidative stress.
Collapse
Affiliation(s)
- Zhuhui Qiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Xiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Marubashi S, Fukuda M. Rab7B/42 Is Functionally Involved in Protein Degradation on Melanosomes in Keratinocytes. Cell Struct Funct 2020; 45:45-55. [PMID: 32037382 PMCID: PMC10739166 DOI: 10.1247/csf.19039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2023] Open
Abstract
Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.
Collapse
Affiliation(s)
- Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|