51
|
Maravall M, Alenda A, Bale MR, Petersen RS. Transformation of adaptation and gain rescaling along the whisker sensory pathway. PLoS One 2013; 8:e82418. [PMID: 24349279 PMCID: PMC3859573 DOI: 10.1371/journal.pone.0082418] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Neurons in all sensory systems have a remarkable ability to adapt their sensitivity to the statistical structure of the sensory signals to which they are tuned. In the barrel cortex, firing rate adapts to the variance of a whisker stimulus and neuronal sensitivity (gain) adjusts in inverse proportion to the stimulus standard deviation. To determine how adaptation might be transformed across the ascending lemniscal pathway, we measured the responses of single units in the first and last subcortical stages, the trigeminal ganglion (TRG) and ventral posterior medial thalamic nucleus (VPM), to controlled whisker stimulation in urethane-anesthetized rats. We probed adaptation using a filtered white noise stimulus that switched between low- and high-variance epochs. We found that the firing rate of both TRG and VPM neurons adapted to stimulus variance. By fitting the responses of each unit to a Linear-Nonlinear-Poisson model, we tested whether adaptation changed feature selectivity and/or sensitivity. We found that, whereas feature selectivity was unaffected by stimulus variance, units often exhibited a marked change in sensitivity. The extent of these sensitivity changes increased systematically along the pathway from TRG to barrel cortex. However, there was marked variability across units, especially in VPM. In sum, in the whisker system, the adaptation properties of subcortical neurons are surprisingly diverse. The significance of this diversity may be that it contributes to a rich population representation of whisker dynamics.
Collapse
Affiliation(s)
- Miguel Maravall
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
- * E-mail: (MM); (RSP)
| | - Andrea Alenda
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Michael R. Bale
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Rasmus S. Petersen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (MM); (RSP)
| |
Collapse
|
52
|
Wanger T, Takagaki K, Lippert MT, Goldschmidt J, Ohl FW. Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci 2013; 14:78. [PMID: 23902414 PMCID: PMC3733618 DOI: 10.1186/1471-2202-14-78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Propagating waves of excitation have been observed extensively in the neocortex, during both spontaneous and sensory-evoked activity, and they play a critical role in spatially organizing information processing. However, the state-dependence of these spatiotemporal propagation patterns is largely unexplored. In this report, we use voltage-sensitive dye imaging in the rat visual cortex to study the propagation of spontaneous population activity in two discrete cortical states induced by urethane anesthesia. RESULTS While laminar current source density patterns of spontaneous population events in these two states indicate a considerable degree of similarity in laminar networks, lateral propagation in the more active desynchronized state is approximately 20% faster than in the slower synchronized state. Furthermore, trajectories of wave propagation exhibit a strong anisotropy, but the preferred direction is different depending on cortical state. CONCLUSIONS Our results show that horizontal wave propagation of spontaneous neural activity is largely dependent on the global activity states of local cortical circuits.
Collapse
Affiliation(s)
- Tim Wanger
- Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
53
|
Yang PF, Chen YY, Chen DY, Hu JW, Chen JH, Yen CT. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat. PLoS One 2013; 8:e66821. [PMID: 23826146 PMCID: PMC3691267 DOI: 10.1371/journal.pone.0066821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.
Collapse
Affiliation(s)
- Pai-Feng Yang
- Interdisciplinary MRI/MRI Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University, Tainan City, Taiwan
| | - James W. Hu
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRI Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- * E-mail: (JHC); (CTY)
| | - Chen-Tung Yen
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- * E-mail: (JHC); (CTY)
| |
Collapse
|
54
|
Long JD, Carmena JM. Dynamic changes of rodent somatosensory barrel cortex are correlated with learning a novel conditioned stimulus. J Neurophysiol 2013; 109:2585-95. [DOI: 10.1152/jn.00553.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rodent somatosensory barrel cortex (S1bf) has proved a valuable model for studying neural plasticity in vivo. It has been observed that sensory deprivation or conditioning reorganizes sensory-driven activity within S1bf. These observations suggest a role for S1bf in somatosensory learning. This study evaluated the hypothesis that the response properties of extracellularly recorded neurons in S1bf would change as subjects learned to respond to stimulation of S1bf. Intracortical microstimulation (ICMS) of S1bf was used as a means for bypassing feedforward drive from the sensory periphery, midbrain, and thalamus while exciting local cortical networks. To separate the learning of this conditioned stimulus-conditioned response (CS-CR) from other elements of the task, we employed a cross-modal transfer schedule. Long-Evans rats were initially trained to respond to an auditory stimulus. All subjects were then implanted in both S1bfs with chronic microwire arrays for recording neural activity and delivering ICMS. Next, this association was transferred to ICMS of one hemisphere's S1bf. S1bf responded to ICMS with a brief increase in firing rate followed by a longer reduction in activity. We observed that the duration of reduced activity elicited by ICMS increased as the subjects began to respond correctly more often than expected by chance, and the magnitude of the initial positive response increased as they consolidated this CS-CR. Subsequent ICMS of the opposite S1bf revealed that this CS-CR did not generalize across hemispheres. These results suggest that a mechanism involving a single hemisphere's S1bf tunes cortical responses in concert with changes in rodent behavior during somatosensory learning.
Collapse
Affiliation(s)
- John D. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
| | - Jose M. Carmena
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California
- Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
- UCB-UCSF Joint Graduate Group in Bioengineering, University of California, Berkeley, California
| |
Collapse
|
55
|
Abstract
During behavioral quiescence, the neocortex generates spontaneous slow oscillations, which may consist of up-states and down-states. Up-states are short epochs of persistent activity that resemble the activated neocortex during arousal and cognition. Neural activity in neocortical pathways can trigger up-states, but the variables that control their occurrence are poorly understood. We used thalamocortical slices from adult mice to explore the role of thalamocortical and intracortical synaptic cooperativity (the number of coincident afferents) in driving up-states. Cooperativity was adjusted by varying the intensity of electrical or blue-light stimuli in pathways that express channelrhodopsin-2. We found that optogenetics greatly improves the study of thalamocortical pathways in slices because it produces thalamocortical responses that resemble those observed in vivo. The results indicate that more synaptic cooperativity, caused by either thalamocortical or intracortical fast AMPA-receptor excitation, leads to more robust inhibition of up-states because it drives stronger feedforward inhibition. Conversely, during strong synaptic cooperativity that suppresses up-states, blocking fast excitation, and as a result the feedforward inhibition it drives, unmasks up-states entirely mediated by slow NMDA-receptor excitation. Regardless of the pathway's origin, cooperativity mediated by fast excitation is inversely related to the ability of excitatory synaptic pathways to trigger up-states in neocortex.
Collapse
|
56
|
Petersen C, Crochet S. Synaptic Computation and Sensory Processing in Neocortical Layer 2/3. Neuron 2013; 78:28-48. [DOI: 10.1016/j.neuron.2013.03.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
|
57
|
Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C. Barrel cortex function. Prog Neurobiol 2013. [DOI: 10.1016/j.pneurobio.2012.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Minces VH, Alexander AS, Datlow M, Alfonso SI, Chiba AA. The role of visual cortex acetylcholine in learning to discriminate temporally modulated visual stimuli. Front Behav Neurosci 2013; 7:16. [PMID: 23519084 PMCID: PMC3602721 DOI: 10.3389/fnbeh.2013.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/15/2013] [Indexed: 11/13/2022] Open
Abstract
Cholinergic neurons in the basal forebrain innervate discrete regions of the cortical mantle, bestowing the cholinergic system with the potential to dynamically modulate sub-regions of the cortex according to behavioral demands. Cortical cholinergic activity has been shown to facilitate learning and modulate attention. Experiments addressing these issues have primarily focused on widespread cholinergic depletions, extending to areas involved in general cognitive processes and sleep cycle regulation, making a definitive interpretation of the behavioral role of cholinergic projections difficult. Furthermore, a review of the electrophysiological literature suggests that cholinergic modulation is particularly important in representing the fine temporal details of stimuli, an issue rarely addressed in behavioral experimentation. The goal of this work is to understand the role of cholinergic projections, specific to the sensory cortices, in learning to discriminate fine differences in the temporal structure of stimuli. A novel visual Go/No-Go task was developed to assess the ability of rats to learn to discriminate fine differences in the temporal structure of visual stimuli (lights flashing at various frequencies). The cholinergic contribution to this task was examined by selective reduction of acetylcholine projections to visual cortex (VCx) (using 192 IgG-saporin), either before or after discrimination training. We find that in the face of compromised cholinergic input to the VCx, the rats' ability to learn to perform fine discriminations is impaired, whereas their ability to perform previously learned discriminations remains unaffected. These results suggest that acetylcholine serves the role of facilitating plastic changes in the sensory cortices that are necessary for an animal to refine its sensitivity to the temporal characteristics of relevant stimuli.
Collapse
Affiliation(s)
- V H Minces
- Temporal Dynamics of Learning Center, University of California San Diego, CA, USA ; Department of Cognitive Science, University of California San Diego, CA, USA
| | | | | | | | | |
Collapse
|
59
|
Abstract
Switches between different behavioral states of the animal are associated with prominent changes in global brain activity, between sleep and wakefulness or from inattentive to vigilant states. What mechanisms control brain states, and what are the functions of the different states? Here we summarize current understanding of the key neural circuits involved in regulating brain states, with a particular emphasis on the subcortical neuromodulatory systems. At the functional level, arousal and attention can greatly enhance sensory processing, whereas sleep and quiet wakefulness may facilitate learning and memory. Several new techniques developed over the past decade promise great advances in our understanding of the neural control and function of different brain states.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
60
|
Benita JM, Guillamon A, Deco G, Sanchez-Vives MV. Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Front Comput Neurosci 2012; 6:64. [PMID: 22973221 PMCID: PMC3428579 DOI: 10.3389/fncom.2012.00064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
Abstract
Short-term synaptic depression (STD) is a form of synaptic plasticity that has a large impact on network computations. Experimental results suggest that STD is modulated by cortical activity, decreasing with activity in the network and increasing during silent states. Here, we explored different activity-modulation protocols in a biophysical network model for which the model displayed less STD when the network was active than when it was silent, in agreement with experimental results. Furthermore, we studied how trains of synaptic potentials had lesser decay during periods of activity (UP states) than during silent periods (DOWN states), providing new experimental predictions. We next tackled the inverse question of what is the impact of modifying STD parameters on the emergent activity of the network, a question difficult to answer experimentally. We found that synaptic depression of cortical connections had a critical role to determine the regime of rhythmic cortical activity. While low STD resulted in an emergent rhythmic activity with short UP states and long DOWN states, increasing STD resulted in longer and more frequent UP states interleaved with short silent periods. A still higher synaptic depression set the network into a non-oscillatory firing regime where DOWN states no longer occurred. The speed of propagation of UP states along the network was not found to be modulated by STD during the oscillatory regime; it remained relatively stable over a range of values of STD. Overall, we found that the mutual interactions between synaptic depression and ongoing network activity are critical to determine the mechanisms that modulate cortical emergent patterns.
Collapse
Affiliation(s)
- Jose M Benita
- Department of Applied Mathematics I - EPSEB, Universitat Politècnica de Catalunya Barcelona, Spain
| | | | | | | |
Collapse
|
61
|
Favero M, Varghese G, Castro-Alamancos MA. The state of somatosensory cortex during neuromodulation. J Neurophysiol 2012; 108:1010-24. [PMID: 22623484 DOI: 10.1152/jn.00256.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During behavioral quiescence, such as slow-wave sleep and anesthesia, the neocortex is in a deactivated state characterized by the presence of slow oscillations. During arousal, slow oscillations are absent and the neocortex is in an activated state that greatly impacts information processing. Neuromodulators acting in neocortex are believed to mediate these state changes, but the mechanisms are poorly understood. We investigated the actions of noradrenergic and cholinergic activation on slow oscillations, cellular excitability, and synaptic inputs in thalamocortical slices of somatosensory cortex. The results show that neuromodulation abolishes slow oscillations, dampens the excitability of principal cells, and rebalances excitatory and inhibitory synaptic inputs in thalamocortical-recipient layers IV-III. Sensory cortex is much more selective about the inputs that can drive it. The source of neuromodulation is critically important in determining this selectivity. Cholinergic activation suppresses the excitatory and inhibitory conductances driven by thalamocortical and intracortical inputs. Noradrenergic activation suppresses the excitatory conductance driven by intracortical inputs but not by thalamocortical inputs and enhances the inhibitory conductance driven by thalamocortical inputs but not by intracortical inputs. Thus noradrenergic activation emphasizes thalamocortical (sensory) inputs relative to intracortical inputs, while cholinergic activation suppresses both.
Collapse
Affiliation(s)
- Morgana Favero
- Dept. of Neurobiology and Anatomy, Drexel Univ. College of Medicine, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
62
|
Mahmud M, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. SigMate: a Matlab-based automated tool for extracellular neuronal signal processing and analysis. J Neurosci Methods 2012; 207:97-112. [PMID: 22513383 DOI: 10.1016/j.jneumeth.2012.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/19/2022]
Abstract
Rapid advances in neuronal probe technology for multisite recording of brain activity have posed a significant challenge to neuroscientists for processing and analyzing the recorded signals. To be able to infer meaningful conclusions quickly and accurately from large datasets, automated and sophisticated signal processing and analysis tools are required. This paper presents a Matlab-based novel tool, "SigMate", incorporating standard methods to analyze spikes and EEG signals, and in-house solutions for local field potentials (LFPs) analysis. Available modules at present are - 1. In-house developed algorithms for: data display (2D and 3D), file operations (file splitting, file concatenation, and file column rearranging), baseline correction, slow stimulus artifact removal, noise characterization and signal quality assessment, current source density (CSD) analysis, latency estimation from LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs, and single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis, and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well as signals from multiple recording sources. The in-house developed tools for LFP analysis have been extensively tested with signals recorded using standard extracellular recording electrode, and planar and implantable multi transistor array (MTA) based neural probes. SigMate will be disseminated shortly to the neuroscience community under the open-source GNU-General Public License.
Collapse
Affiliation(s)
- Mufti Mahmud
- NeuroChip Laboratory, Department of Human Anatomy and Physiology, University of Padova, via f. Marzolo 3, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
63
|
Tell me something interesting: context dependent adaptation in somatosensory cortex. J Neurosci Methods 2011; 210:35-48. [PMID: 22186665 DOI: 10.1016/j.jneumeth.2011.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/21/2022]
Abstract
It is widely accepted that through a process of adaptation cells adjust their sensitivity in accordance with prevailing stimulus conditions. However, in two recent studies exploring adaptation in the rodent inferior colliculus and somatosensory cortex, neurons did not adapt towards global mean, but rather became most sensitive to inputs that were located towards the edge of the stimulus distribution with greater intensity than the mean. We re-examined electrophysiological data from the somatosensory study with the purpose of exploring the underlying encoding strategies. We found that neural gain tended to decrease as stimulus variance increased. Following adaptation to changes in global mean, neuronal output was scaled such that the relationship between firing rate and local, rather than global, differences in stimulus intensity was maintained. The majority of cells responded to large, positive deviations in stimulus amplitude; with a small number responding to both positive and negative changes in stimulus intensity. Adaptation to global mean was replicated in a model neuron by incorporating both spike-rate adaptation and tonic-inhibition, which increased in proportion to stimulus mean. Adaptation to stimulus variance was replicated by approximating the output of a population of neurons adapted to global mean and using it to drive a layer of recurrently connected depressing synapses. Within the barrel cortex, adaptation ensures that neurons are able to encode both overall levels of variance and large deviations in the input. This is achieved through a combination of gain modulation and a shift in sensitivity to intensity levels that are greater than the mean.
Collapse
|
64
|
Kuo SP, Trussell LO. Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition. Neuron 2011; 71:306-18. [PMID: 21791289 DOI: 10.1016/j.neuron.2011.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/18/2022]
Abstract
Inhibitory interneurons across diverse brain regions commonly exhibit spontaneous spiking activity, even in the absence of external stimuli. It is not well understood how stimulus-evoked inhibition can be distinguished from background inhibition arising from spontaneous firing. We found that noradrenaline simultaneously reduced spontaneous inhibitory inputs and enhanced evoked inhibitory currents recorded from principal neurons of the mouse dorsal cochlear nucleus (DCN). Together, these effects produced a large increase in signal-to-noise ratio for stimulus-evoked inhibition. Surprisingly, the opposing effects on background and evoked currents could both be attributed to noradrenergic silencing of spontaneous spiking in glycinergic interneurons. During spontaneous firing, glycine release was decreased due to strong short-term depression. Elimination of background spiking relieved inhibitory synapses from depression and thereby enhanced stimulus-evoked inhibition. Our findings illustrate a simple yet powerful neuromodulatory mechanism to shift the balance between background and stimulus-evoked signals.
Collapse
Affiliation(s)
- Sidney P Kuo
- Neuroscience Graduate Program and Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
65
|
Abstract
The auditory system must be able to adapt to changing acoustic environment and still maintain accurate representation of signals. Mechanistically, this is a difficult task because the responsiveness of a large heterogeneous population of interconnected neurons must be adjusted properly and precisely. Synaptic short-term plasticity (STP) is widely regarded as a viable mechanism for adaptive processes. Although the cellular mechanism for STP is well characterized, the overall effect on information processing at the network level is poorly understood. The main challenge is that there are many cell types in auditory cortex, each of which exhibit different forms and degrees of STP. In this article, I will review the basic properties of STP in auditory cortical circuits and discuss the possible impact on signal processing.
Collapse
Affiliation(s)
- Alex D Reyes
- Center for Neural Science, New York University, NY 10003, United States.
| |
Collapse
|
66
|
Bezdudnaya T, Castro-Alamancos MA. Superior colliculus cells sensitive to active touch and texture during whisking. J Neurophysiol 2011; 106:332-46. [PMID: 21525369 DOI: 10.1152/jn.00072.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats sense the environment through rhythmic vibrissa protractions, called active whisking, which can be simulated in anesthetized rats by electrically stimulating the facial motor nerve. Using this method, we investigated barrel cortex field potential and superior colliculus single-unit responses during passive touch, whisking movement, active touch, and texture discrimination. Similar to passive touch, whisking movement is signaled during the onset of the whisker protraction by short-latency responses in barrel cortex that drive corticotectal responses in superior colliculus, and all these responses show robust adaptation with increases in whisking frequency. Active touch and texture are signaled by longer latency responses, first in superior colliculus during the rising phase of the protraction, likely driven by trigeminotectal inputs, and later in barrel cortex by the falling phase of the protraction. Thus, superior colliculus is part of a broader vibrissa neural network that can decode whisking movement, active touch, and texture.
Collapse
Affiliation(s)
- Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
67
|
Hirata A, Castro-Alamancos MA. Effects of cortical activation on sensory responses in barrel cortex. J Neurophysiol 2011; 105:1495-505. [PMID: 21273311 PMCID: PMC3075282 DOI: 10.1152/jn.01085.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/19/2011] [Indexed: 11/22/2022] Open
Abstract
Neocortex network activity changes from a deactivated state during quiescence to an activated state during arousal and vigilance. In urethane-anesthetized rats, cortical activation is readily produced by either stimulating the brainstem reticular formation or by application of cholinergic agonists into the thalamus. We studied the effects of cortical activation on spontaneous activity and sensory responses in the barrel cortex. Cortical activation leads to a suppression of low-frequency sensory responses and to a reduction in their variability due to the abolishment of up and down membrane potential fluctuations in cortical cells. Overall, sensory responses become sharper and more reliable during cortical activation.
Collapse
Affiliation(s)
- Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
68
|
Roy NC, Bessaih T, Contreras D. Comprehensive mapping of whisker-evoked responses reveals broad, sharply tuned thalamocortical input to layer 4 of barrel cortex. J Neurophysiol 2011; 105:2421-37. [PMID: 21325677 DOI: 10.1152/jn.00939.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical neurons are organized in columns, distinguishable by their physiological properties and input-output organization. Columns are thought to be the fundamental information-processing modules of the cortex. The barrel cortex of rats and mice is an attractive model system for the study of cortical columns, because each column is defined by a layer 4 (L4) structure called a barrel, which can be clearly visualized. A great deal of information has been collected regarding the connectivity of neurons in barrel cortex, but the nature of the input to a given L4 barrel remains unclear. We measured this input by making comprehensive maps of whisker-evoked activity in L4 of rat barrel cortex using recordings of multiunit activity and current source density analysis of local field potential recordings of animals under light isoflurane anesthesia. We found that a large number of whiskers evoked a detectable response in each barrel (mean of 13 suprathreshold, 18 subthreshold) even after cortical activity was abolished by application of muscimol, a GABA(A) agonist. We confirmed these findings with intracellular recordings and single-unit extracellular recordings in vivo. This constitutes the first direct confirmation of the hypothesis that subcortical mechanisms mediate a substantial multiwhisker input to a given cortical barrel.
Collapse
Affiliation(s)
- Noah C Roy
- Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, Philadelphia, PA 19106-6074, USA
| | | | | |
Collapse
|
69
|
An automated method for detection of layer activation order in information processing pathway of rat barrel cortex under mechanical whisker stimulation. J Neurosci Methods 2010; 196:141-50. [PMID: 21145917 DOI: 10.1016/j.jneumeth.2010.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/26/2010] [Accepted: 11/28/2010] [Indexed: 11/22/2022]
Abstract
Rodents perform object localization, texture and shape discrimination very precisely through whisking. During whisking, microcircuits in corresponding barrel columns get activated to segregate and integrate tactile information through the information processing pathway. Sensory signals are projected through the brainstem and thalamus to the corresponding 'barrel columns' where different cortical layers are activated during signal projection. Therefore, having precise information about the layer activation order is desirable to better understand this signal processing pathway. This work proposes an automated, computationally efficient and easy to implement method to determine the cortical layer activation from intracortically recorded local field potentials (LFPs) and derived current source density (CSD) profiles: 1. Barrel cortex LFPs are represented by a template of four subsequent events: small positive/negative (E1) → large negative (E2) → slow positive (E3)→ slow long negative (E4). The method exploits the layer specific characteristics of LFPs to obtain latencies of the individual events (E1–E4), then taking the latency of E2 for calculating the layer activation order. 2. The corresponding CSD profile is calculated from the LFPs and the first sink’s peak is considered as a reference point to calculate latencies and evaluate the layer activation order. Other reference points require manual calculation. Similar results of layer activation sequence are found using LFPs and CSDs. Extensive tests on LFPs recorded using standard borosilicate micropipettes demonstrated the method's workability. An interpretation of layer activation order and CSD profiles on the basis of a simplified interacortical barrel column architecture is also provided.
Collapse
|
70
|
Cohen JD, Castro-Alamancos MA. Behavioral state dependency of neural activity and sensory (whisker) responses in superior colliculus. J Neurophysiol 2010; 104:1661-72. [PMID: 20610783 DOI: 10.1152/jn.00340.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats use their vibrissa (whiskers) to explore and navigate the environment. These sensory signals are distributed within the brain stem by the trigeminal complex and are also relayed to the superior colliculus in the midbrain and to the thalamus (and subsequently barrel cortex) in the forebrain. In the intermediate layers of the superior colliculus, whisker-evoked responses are driven by direct inputs from the trigeminal complex (trigeminotectal) and feedback from the barrel cortex (corticotectal). But the effects of the behavioral state of the animal on the spontaneous firing and sensory responses of these neurons are unknown. By recording from freely behaving rats, we show that the spontaneous firing of whisker sensitive neurons in superior colliculus is higher, or in an activated mode, during active exploration and paradoxical sleep and much lower, or in a quiescent/deactivated mode, during awake immobility and slow-wave sleep. Sensory evoked responses in superior colliculus also depend on behavioral state. Most notably, feedback corticotectal responses are significantly larger during the quiescent/deactivated mode, which tracks the barrel cortex responses on which they depend. Finally, sensory evoked responses depend not only on the state of the animal but also on the orienting response elicited by the stimulus, which agrees with the well known role of the superior colliculus in orienting about salient stimuli.
Collapse
Affiliation(s)
- Jeremy D Cohen
- Department of Neurobiology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
71
|
Cohen JD, Castro-Alamancos MA. Neural correlates of active avoidance behavior in superior colliculus. J Neurosci 2010; 30:8502-11. [PMID: 20573897 PMCID: PMC2905738 DOI: 10.1523/jneurosci.1497-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 11/21/2022] Open
Abstract
Active avoidance of harmful situations seems highly adaptive, but the underlying neural mechanisms are unknown. Rats can effectively use the superior colliculus during active avoidance to detect a salient whisker conditioned stimulus (WCS) that signals an aversive event. Here, we recorded unit and field potential activity in the intermediate layers of the superior colliculus of rats during active avoidance behavior. During the period preceding the onset of the WCS, avoids are associated with a higher firing rate than escapes (unsuccessful avoids), indicating that a prepared superior colliculus is more likely to detect the WCS and lead to an avoid. Moreover, during the WCS, a robust ramping up of the overall firing rate is observed for trials leading to avoids. The firing rate ramping is not caused by shuttling and may serve to drive downstream circuits to avoid. Therefore, a robust neural correlate of active avoidance behavior is found in the superior colliculus, emphasizing its role in the detection of salient sensory signals that require immediate action.
Collapse
Affiliation(s)
- Jeremy D Cohen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
72
|
Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo. J Neurosci 2010; 30:5071-7. [PMID: 20371827 DOI: 10.1523/jneurosci.2193-09.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adaptive processes over many timescales endow neurons with sensitivity to stimulus changes over a similarly wide range of scales. Although spike timing of single neurons can precisely signal rapid fluctuations in their inputs, the mean firing rate can convey information about slower-varying properties of the stimulus. Here, we investigate the firing rate response to a slowly varying envelope of whisker motion in two processing stages of the rat vibrissa pathway. The whiskers of anesthetized rats were moved through a noise trajectory with an amplitude that was sinusoidally modulated at one of several frequencies. In thalamic neurons, we found that the rate response to the stimulus envelope was also sinusoidal, with an approximately frequency-independent phase advance with respect to the input. Responses in cortex were similar but with a phase shift that was about three times larger, consistent with a larger amount of rate adaptation. These response properties can be described as a linear transformation of the input for which a single parameter quantifies the phase shift as well as the degree of adaptation. These results are reproduced by a model of adapting neurons connected by synapses with short-term plasticity, showing that the observed linear response and phase lead can be built up from a network that includes a sequence of nonlinear adapting elements. Our study elucidates how slowly varying envelope information under passive stimulation is preserved and transformed through the vibrissa processing pathway.
Collapse
|
73
|
Castro-Alamancos MA. Cortical up and activated states: implications for sensory information processing. Neuroscientist 2010; 15:625-34. [PMID: 19321459 DOI: 10.1177/1073858409333074] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neocortex generates spontaneous slow oscillations that consist of up and down states during quiescence. Up states are short epochs of persistent activity that resemble the state of cortical activation during arousal and cognition. The excitability of cortical cells and synaptic networks is impacted by up states. This review describes the characteristics and putative functional role of up states and their similarity with activated states.
Collapse
Affiliation(s)
- Manuel A Castro-Alamancos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
74
|
Gallace A, Zeeden S, Röder B, Spence C. Lost in the move? Secondary task performance impairs tactile change detection on the body. Conscious Cogn 2010; 19:215-29. [DOI: 10.1016/j.concog.2009.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 06/26/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
75
|
Sobolewski A, Kublik E, Swiejkowski DA, Lęski S, Kamiński JK, Wróbel A. Cross-trial correlation analysis of evoked potentials reveals arousal-related attenuation of thalamo-cortical coupling. J Comput Neurosci 2010; 29:485-93. [PMID: 20177762 DOI: 10.1007/s10827-010-0220-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 12/23/2009] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
We describe a computational method for assessing functional connectivity in sensory neuronal networks. The method, which we term cross-trial correlation, can be applied to signals representing local field potentials (LFPs) evoked by sensory stimulations and utilizes their trial-to-trial variability. A set of single trial samples of a given post-stimulus latency from consecutive evoked potentials (EPs) recorded at a given site is correlated with such sets for all other latencies and recording sites. The results of this computation reveal how neuronal activities at various sites and latencies correspond to activation of other sites at other latencies. The method was used to investigate the functional connectivity of thalamo-cortical network of somatosensory system in behaving rats at two levels of alertness: habituated and aroused. We analyzed potentials evoked by vibrissal deflections recorded simultaneously from the ventrobasal thalamus and barrel cortex. The cross-trial correlation analysis applied to the early post-stimulus period (<25 ms) showed that the magnitude of the population spike recorded in the thalamus at 5 ms post-stimulus correlated with the cortical activation at 6-13 ms post-stimulus. This correlation value was reduced at 6-9 ms, i.e. at early postsynaptic cortical response, with increased level of the animals' arousal. Similarly, the aroused state diminished positive thalamo-cortical correlation for subsequent early EP waves, whereas the efficacy of an indirect cortico-fugal inhibition (over 15 ms) did not change significantly. Thus we were able to characterize the state related changes of functional connections within the thalamo-cortical network of behaving animals.
Collapse
Affiliation(s)
- Aleksander Sobolewski
- Nencki Institute of Experimental Biology-Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
76
|
Cohen JD, Castro-Alamancos MA. Detection of low salience whisker stimuli requires synergy of tectal and thalamic sensory relays. J Neurosci 2010; 30:2245-56. [PMID: 20147551 PMCID: PMC2823802 DOI: 10.1523/jneurosci.5746-09.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/15/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022] Open
Abstract
Detection of a sensory stimulus depends on its psychophysical saliency; the higher the saliency, the easier the detection. But it is not known whether sensory relay nuclei differ in their ability to detect low salient whisker stimuli. We found that reversible lesions of either the somatosensory thalamus or superior colliculus blocked detection of a low salience whisker conditioned stimulus (WCS) in an active avoidance task, without affecting detection of a high salience WCS. Thus, thalamic and tectal sensory relays work synergistically to detect low salient stimuli during avoidance behavior, but are redundant during detection of highly salient stimuli. We also recorded electrophysiological responses evoked by high and low salience stimuli in the superior colliculus and barrel cortex of freely behaving animals during active exploration, awake immobility, and sensory detection in the active avoidance task. Field potential (FP) responses evoked in barrel cortex and superior colliculus by high intensity stimuli are larger and adapt more to frequency than those evoked by low-intensity stimuli. FP responses are also more suppressed and adapt less during active exploration, and become further suppressed in barrel cortex during successful detection of either high or low salient stimuli in the active avoidance task. In addition, unit recordings revealed that firing rate increases in superior colliculus during active exploration and especially during successful detection of either high or low salient stimuli in the active avoidance task. We conclude that detection of low salient stimuli is achieved by a sparse neural code distributed through multiple sensory relays.
Collapse
Affiliation(s)
- Jeremy D Cohen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
77
|
Hirata A, Castro-Alamancos MA. Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol 2010; 103:1147-57. [PMID: 20053845 DOI: 10.1152/jn.00955.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neocortex network activity varies from a desynchronized or activated state typical of arousal to a synchronized or deactivated state typical of quiescence. Such changes are usually attributed to the effects of neuromodulators released in the neocortex by nonspecific activating systems originating in basal forebrain and brain stem reticular formation. As a result, the only role attributed to thalamocortical cells projecting to primary sensory areas, such as barrel cortex, is to transmit sensory information. However, thalamocortical cells can undergo significant changes in spontaneous tonic firing as a function of state, although the role of such variations is unknown. Here we show that the tonic firing level of thalamocortical cells, produced by cholinergic and noradrenergic stimulation of the somatosensory thalamus in urethane-anesthetized rats, controls neocortex activation and deactivation. Thus in addition to its well-known role in the relay of sensory information, the thalamus can control the state of neocortex activation, which may complement the established roles in this regard of basal forebrain and brain stem nuclei. Because of the topographical organization of primary thalamocortical pathways, this mechanism provides a means by which area-specific neocortical activation can occur, which may be useful for modality-specific sensory processing or selective attention.
Collapse
Affiliation(s)
- Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
78
|
A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. J Neurosci 2009; 29:10600-12. [PMID: 19710313 DOI: 10.1523/jneurosci.2053-09.2009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses of neocortical cells to sensory stimuli are variable and state dependent. It has been hypothesized that intrinsic cortical dynamics play an important role in trial-to-trial variability; the precise nature of this dependence, however, is poorly understood. We show here that in auditory cortex of urethane-anesthetized rats, population responses to click stimuli can be quantitatively predicted on a trial-by-trial basis by a simple dynamical system model estimated from spontaneous activity immediately preceding stimulus presentation. Changes in cortical state correspond consistently to changes in model dynamics, reflecting a nonlinear, self-exciting system in synchronized states and an approximately linear system in desynchronized states. We propose that the complex and state-dependent pattern of trial-to-trial variability can be explained by a simple principle: sensory responses are shaped by the same intrinsic dynamics that govern ongoing spontaneous activity.
Collapse
|
79
|
Middleton JW, Kinnischtzke A, Simons DJ. Effects of thalamic high-frequency electrical stimulation on whisker-evoked cortical adaptation. Exp Brain Res 2009; 200:239-50. [PMID: 19701629 DOI: 10.1007/s00221-009-1977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
Activity in thalamocortical circuits depends strongly on immediate past experience. When the successive activity is attenuated on short timescales, this phenomenon is known as adaptation. Adaptive processes may be effectively initiated by ongoing exposure to sensory stimuli and/or direct electrical stimulation of neural tissue. Ongoing high-frequency electrical stimulation is increasingly employed as a treatment for a variety of neurological disorders. Neural stimulation with similar parameters to therapeutic electrical stimulation may modulate the way in which cortical neurons respond and adapt to sensory stimuli. Here, we studied the effects of high-frequency stimulation of the somatosensory thalamus on the transmission of sensory signals in thalamocortical circuits. We examined how whisker-evoked sensory inputs in layer IV cortical barrels are affected by concurrent 100 Hz thalamic electrical stimulation and how the latter modulates sensory-evoked adaptation. Even in the presence of ongoing thalamic stimulation, sensory transmission in thalamocortical circuits is maintained. However, cortical responses to whisker deflections are reduced in an intensity-dependent fashion and can be nearly abolished with high intensity currents. The electrical stimulation-induced reduction in cortical responsiveness likely reflects engagement of circuit mechanisms that normally produce sensory adaptation.
Collapse
Affiliation(s)
- Jason W Middleton
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
80
|
Attentional capture is contingent on the interaction between task demand and stimulus salience. Atten Percept Psychophys 2009; 71:1015-26. [DOI: 10.3758/app.71.5.1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
81
|
Venkatraman S, Carmena JM. Behavioral modulation of stimulus-evoked oscillations in barrel cortex of alert rats. Front Integr Neurosci 2009; 3:10. [PMID: 19521539 PMCID: PMC2694660 DOI: 10.3389/neuro.07.010.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/15/2009] [Indexed: 11/13/2022] Open
Abstract
Stimulus-evoked oscillations have been observed in the visual, auditory, olfactory and somatosensory systems. To further our understanding of these oscillations, it is essential to study their occurrence and behavioral modulation in alert, awake animals. Here we show that microstimulation in barrel cortex of alert rats evokes 15–18 Hz oscillations that are strongly modulated by motor behavior. In freely whisking rats, we found that the power of the microstimulation-evoked oscillation in the local field potential was inversely correlated to the strength of whisking. This relationship was also present in rats performing a stimulus detection task suggesting that the effect was not due to sleep or drowsiness. Further, we present a computational model of the thalamocortical loop which recreates the observed phenomenon and predicts some of its underlying causes. These findings demonstrate that stimulus-evoked oscillations are strongly influenced by motor modulation of afferent somatosensory circuits.
Collapse
Affiliation(s)
- Subramaniam Venkatraman
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, CA, USA
| | | |
Collapse
|
82
|
Petersen RS, Panzeri S, Maravall M. Neural coding and contextual influences in the whisker system. BIOLOGICAL CYBERNETICS 2009; 100:427-46. [PMID: 19189120 DOI: 10.1007/s00422-008-0290-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
A fundamental problem in neuroscience, to which Prof. Segundo has made seminal contributions, is to understand how action potentials represent events in the external world. The aim of this paper is to review the issue of neural coding in the context of the rodent whiskers, an increasingly popular model system. Key issues we consider are: the role of spike timing; mechanisms of spike timing; decoding and context-dependence. Significant insight has come from the development of rigorous, information theoretic frameworks for tackling these questions, in conjunction with suitably designed experiments. We review both the theory and experimental studies. In contrast to the classical view that neurons are noisy and unreliable, it is becoming clear that many neurons in the subcortical whisker pathway are remarkably reliable and, by virtue of spike timing with millisecond-precision, have high bandwidth for conveying sensory information. In this way, even small (approximately 200 neuron) subcortical modules are able to support the sensory processing underlying sophisticated whisker-dependent behaviours. Future work on neural coding in cortex will need to consider new findings that responses are highly dependent on context, including behavioural and internal states.
Collapse
|
83
|
Stoelzel CR, Bereshpolova Y, Swadlow HA. Stability of thalamocortical synaptic transmission across awake brain states. J Neurosci 2009; 29:6851-9. [PMID: 19474312 PMCID: PMC2713605 DOI: 10.1523/jneurosci.5983-08.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/23/2009] [Accepted: 04/23/2009] [Indexed: 12/26/2022] Open
Abstract
Sensory cortical neurons are highly sensitive to brain state, with many neurons showing changes in spatial and/or temporal response properties and some neurons becoming virtually unresponsive when subjects are not alert. Although some of these changes are undoubtedly attributable to state-related filtering at the thalamic level, another likely source of such effects is the thalamocortical (TC) synapse, where activation of nicotinic receptors on TC terminals have been shown to enhance synaptic transmission in vitro. However, monosynaptic TC synaptic transmission has not been directly examined during different states of alertness. Here, in awake rabbits that shifted between alert and non-alert EEG states, we examined the monosynaptic TC responses and short-term synaptic dynamics generated by spontaneous impulses of single visual and somatosensory TC neurons. We did this using spike-triggered current source-density analysis, an approach that enables assessment of monosynaptic extracellular currents generated in different cortical layers by impulses of single TC afferents. Spontaneous firing rates of TC neurons were higher, and burst rates were much lower in the alert state. However, we found no state-related changes in the amplitude of monosynaptic TC responses when TC spikes with similar preceding interspike interval were compared. Moreover, the relationship between the preceding interspike interval of the TC spike and postsynaptic response amplitude was not influenced by state. These data indicate that TC synaptic transmission and dynamics are highly conserved across different states of alertness and that observed state-related changes in receptive field properties that occur at the cortical level result from other mechanisms.
Collapse
Affiliation(s)
- Carl R Stoelzel
- Department of Psychology, The University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
84
|
Hirata A, Aguilar J, Castro-Alamancos MA. Influence of subcortical inhibition on barrel cortex receptive fields. J Neurophysiol 2009; 102:437-50. [PMID: 19403743 DOI: 10.1152/jn.00277.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Influence of subcortical inhibition on barrel cortex receptive fields. By the time neural responses driven by vibrissa stimuli reach the barrel cortex, they have undergone significant spatial and temporal transformations within subcortical relays. A major regulator of these transformations is thought to be subcortical GABA-mediated inhibition, but the actual degree of this influence is unknown. We used disinhibition produced by GABA receptor antagonists to unmask the excitatory sensory responses that are normally suppressed by inhibition in the main subcortical sensory relays to barrel cortex; principal trigeminal (Pr5) and primary thalamic (VPM) nuclei. We found that, within subcortical relays, inhibition only slightly suppresses short-latency receptive field responses, but robustly suppresses long-latency center and surround receptive field responses. However, the long-latency subcortical effects of inhibition are mostly not reflected in the barrel cortex. The most robust effect of subcortical inhibition on barrel cortex responses is to transiently suppress the receptive field responses of high-frequency sensory stimuli. This transient adaptation caused by subcortical inhibition recovers within a few stimuli and gives way to a steady-state adaptation that is independent of subcortical inhibition.
Collapse
Affiliation(s)
- Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Ln., Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
85
|
Rigas P, Castro-Alamancos MA. Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs. J Neurophysiol 2009; 102:119-31. [PMID: 19403750 DOI: 10.1152/jn.00126.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neocortex generates short epochs of persistent activity called up states, which are associated with changes in cellular and network excitability. Using somatosensory thalamocortical slices, we studied the impact of persistent cortical activity during spontaneous up states on intrinsic cellular excitability (input resistance) and on excitatory synaptic inputs of cortical cells. At the intrinsic excitability level, we found that the expected decrease in input resistance (high conductance) resulting from synaptic barrages during up states is counteracted by an increase in input resistance due to depolarization per se. The result is a variable but on average relatively small reduction in input resistance during up states. At the synaptic level, up states enhanced a late synaptic component of short-latency thalamocortical field potential responses but suppressed intracortical field potential responses. The thalamocortical enhancement did not reflect an increase in synaptic strength, as determined by measuring the evoked postsynaptic current, but instead an increase in evoked action potential (spike) probability due to depolarization during up states. In contrast, the intracortical suppression was associated with a reduction in synaptic strength, apparently driven by increased presynaptic intracortical activity during up states. In addition, intracortical suppression also reflected a reduction in evoked spike latency caused by depolarization and the abolishment of longer-latency spikes caused by stronger inhibitory drive during up states. In conclusion, depolarization during up states increases the success of excitatory synaptic inputs to reach firing. However, activity-dependent synaptic depression caused by increased presynaptic firing during up states and the enhancement of evoked inhibitory drive caused by depolarization suppress excitatory intracortical synaptic inputs.
Collapse
Affiliation(s)
- Pavlos Rigas
- Department of Neurobiology, Drexel University College of Medicine, 2900 Queen Ln., Philadelphia, PA 19129, USA
| | | |
Collapse
|
86
|
Otazu GH, Tai LH, Yang Y, Zador AM. Engaging in an auditory task suppresses responses in auditory cortex. Nat Neurosci 2009; 12:646-54. [PMID: 19363491 PMCID: PMC4084972 DOI: 10.1038/nn.2306] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/05/2009] [Indexed: 12/01/2022]
Abstract
Although systems involved in attentional selection have been studied extensively, much less is known about non-selective systems. To study these preparatory mechanisms, we compared activity in auditory cortex elicited by sounds while rats performed an auditory task (“engaged”) with activity elicited by identical stimuli while subjects were awake but not performing a task (“passive”). Surprisingly, we found that engagement suppressed responses, an effect opposite in sign to that elicited by selective attention. In the auditory thalamus, however, engagement enhanced spontaneous firing rates but did not affect evoked responses. These results demonstrate that in auditory cortex, neural activity cannot be viewed simply as a limited resource allocated in greater measure as the state of the animal passes from somnolent to passively listening to engaged and attentive. Instead the engaged condition possesses a characteristic and distinct neural signature in which sound-evoked responses are paradoxically suppressed.
Collapse
|
87
|
RICHARDSON HEIDILOUISE, WALKER ADRIANMARK, HORNE ROSEMARYSYLVIACLAIRE. Sleep position alters arousal processes maximally at the high-risk age for sudden infant death syndrome. J Sleep Res 2008; 17:450-7. [DOI: 10.1111/j.1365-2869.2008.00683.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Cohen JD, Hirata A, Castro-Alamancos MA. Vibrissa sensation in superior colliculus: wide-field sensitivity and state-dependent cortical feedback. J Neurosci 2008; 28:11205-20. [PMID: 18971463 PMCID: PMC2587996 DOI: 10.1523/jneurosci.2999-08.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/29/2008] [Accepted: 09/07/2008] [Indexed: 11/21/2022] Open
Abstract
Rodents use their vibrissae (whiskers) to sense and navigate the environment. A main target of this sensory information is the superior colliculus in the midbrain, which rats can use to detect meaningful whisker stimuli in behavioral contexts. Here, we used field potential, single-unit, and intracellular recordings to show that, although cells in the intermediate layers of the superior colliculus respond relatively effectively to single whiskers, the cells respond much more robustly to simultaneous, or nearly simultaneous, wide-field (multiwhisker) stimuli. The enhanced multiwhisker response is temporally stereotyped, consisting of two short latency peaks caused by convergent trigeminal synaptic inputs and cortical feedback, respectively. The cells are highly sensitive to the degree of temporal dispersion and contact order of multiwhisker stimuli, which makes them excellent detectors of initial multiwhisker contact. In addition, their output is most robust during quiescent states because of the dependence of cortical feedback on forebrain activation, and this may serve as an alerting signal to drive orienting responses.
Collapse
Affiliation(s)
- Jeremy D. Cohen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Manuel A. Castro-Alamancos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
89
|
Churchill L, Rector DM, Yasuda K, Fix C, Rojas MJ, Yasuda T, Krueger JM. Tumor necrosis factor alpha: activity dependent expression and promotion of cortical column sleep in rats. Neuroscience 2008; 156:71-80. [PMID: 18694809 PMCID: PMC2654198 DOI: 10.1016/j.neuroscience.2008.06.066] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/06/2008] [Accepted: 06/28/2008] [Indexed: 11/23/2022]
Abstract
Cortical surface evoked potentials (SEPs) are larger during sleep and characterize a sleep-like state in cortical columns. Since tumor necrosis factor alpha (TNF) may be involved in sleep regulation and is produced as a consequence of waking activity, we tested the hypothesis that direct application of TNF to the cortex will induce a sleep-like state within cortical columns and enhance SEP amplitudes. We found that microinjection of TNF onto the surface of the rat somatosensory cortex enhanced whisker stimulation-induced SEP amplitude relative to a control heat-inactivated TNF microinjection. We also determined if whisker stimulation enhanced endogenous TNF expression. TNF immunoreactivity (IR) was visualized after 2 h of deflection of a single whisker on each side. The number of TNF-IR cells increased in layers II-IV of the activated somatosensory barrel column. In two separate studies, unilateral deflection of multiple whiskers for 2 h increased the number of TNF-IR cells in layers II-V in columns that also exhibited enhanced cellular ongogene (Fos-IR). TNF-IR also colocalized with NeuN-IR suggesting that TNF expression was in neurons. Collectively these data are consistent with the hypotheses that TNF is produced in response to neural activity and in turn enhances the probability of a local sleep-like state as determined by increases in SEP amplitudes.
Collapse
Affiliation(s)
- L Churchill
- Department of VCAPP, Program in Neuroscience, College of Veterinary Medicine, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Masri R, Bezdudnaya T, Trageser JC, Keller A. Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus. J Neurophysiol 2008; 100:681-9. [PMID: 18234976 PMCID: PMC2652137 DOI: 10.1152/jn.01322.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/29/2008] [Indexed: 11/22/2022] Open
Abstract
In all sensory systems, information is processed along several parallel streams. In the vibrissa-to-barrel cortex system, these include the lemniscal system and the lesser-known paralemniscal system. The posterior medial nucleus (POm) is the thalamic structure associated with the latter pathway. Previous studies suggested that POm response latencies are positively correlated with stimulation frequency and negatively correlated with response duration, providing a basis for a phase locked loop-temporal decoding of stimulus frequency. We tested this hypothesis by analyzing response latencies of POm neurons, in both awake and anesthetized rats, to vibrissae deflections at frequencies between 0.3 and 11 Hz. We found no significant, systematic correlation between stimulation frequency and the latency or duration of POm responses. We obtained similar findings from recording in awake rats, in rats under different anesthetics, and in anesthetized rats in which the reticular activating system was stimulated. These findings suggest that stimulus frequency is not reliably reflected in response latency of POm neurons. We also tested the hypothesis that POm neurons respond preferentially to sensor motion, that is, they respond to whisking in air, without contacts. We recorded from awake, head-restrained rats while monitoring vibrissae movements. All POm neurons responded to passive whisker deflections, but none responded to noncontact whisking. Thus like their counterparts in the trigeminal ganglion, POm neurons may not reliably encode whisking kinematics. These observations suggest that POm neurons might not faithfully encode vibrissae inputs to provide reliable information on vibrissae movements or contacts.
Collapse
Affiliation(s)
- Radi Masri
- Program in Neuroscience, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
91
|
Hirata A, Castro-Alamancos MA. Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 2008; 100:358-70. [PMID: 18480364 PMCID: PMC2493475 DOI: 10.1152/jn.90538.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 11/22/2022] Open
Abstract
In the barrel cortex of rodents, cells respond to a principal whisker (PW) and more weakly to several adjacent whiskers (AWs). Here we show that compared with PW responses, simultaneous wide-field stimulation of the PW and several AWs enhances short-latency responses and suppresses long-latency responses. Multiwhisker enhancement and suppression is first seen at the level of the cortex in layer 4 and not in the ventroposterior medial thalamus. Within the cortex, enhancement is manifested as a reduction in spike latency in layer 4 but also as an increase in spike probability in layer 2/3. Intracellular recordings revealed that multiwhisker enhancement of short-latency responses is caused by synaptic summation that can be explained by synaptic cooperativity (i.e., convergence of synaptic inputs activated by different whiskers). Conversely, multiwhisker suppression of long-latency responses is due to increased recruitment of inhibition in cortical cells. Interestingly, the ability to differentiate multiwhisker and PW responses is lost during rapid sensory adaptation caused by high-frequency whisker stimulation. The results reveal that simultaneous and temporally dispersed wide-field sensory inputs are discriminated at the level of single cells in barrel cortex with high temporal resolution, but the ability to compute this difference is highly dynamic and dependent on the level of adaptation in the thalamocortical network.
Collapse
Affiliation(s)
- Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
92
|
Stoelzel CR, Bereshpolova Y, Gusev AG, Swadlow HA. The impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. J Neurosci 2008; 28:5018-28. [PMID: 18463255 PMCID: PMC2713607 DOI: 10.1523/jneurosci.4726-07.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 11/21/2022] Open
Abstract
We used spike-triggered current source-density analysis to examine axonal and postsynaptic currents generated in the visual cortex of awake rabbits by spontaneous spikes of individual sustained and transient dorsal lateral geniculate nucleus (LGNd) neurons. Using these data, we asked whether sustained/transient sensory responses are related to short-term synaptic dynamics at the thalamocortical synapse. Most sustained (34 of 40) and transient (24 of 25) neurons generated axonal and monosynaptic responses in layer 4 and/or 6 of the aligned cortical domain, with input from transient neurons arriving approximately 0.3 ms earlier and 100-200 microm deeper. Postsynaptic cortical responses generated by both thalamic cell classes were reduced in amplitude after a preceding impulse and slowly recovered over a period of >750 ms. We interpret this to reflect interval-dependent recovery from chronic depression at the thalamocortical synapse, caused by significant spontaneous firing of LGNd cells (approximately 8 Hz). Surprisingly, postsynaptic cortical responses generated by spontaneous spikes of sustained thalamic neurons were more depressed than those of transient neurons. This difference was seen both in layers 4 and 6. The depression saturated rapidly with multiple preceding impulses, and postsynaptic responses generated by sustained neurons during maintained visual stimulation remained sufficiently robust to allow a sustained flow of information to the cortex. Our results indicate a relationship between the sensory response properties of thalamic neurons and the short-term dynamics of their synapses, and suggest that cortical recipients of sustained and transient thalamic inputs will differ considerably in their response modulation by prior impulse activity.
Collapse
Affiliation(s)
- Carl R. Stoelzel
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Yulia Bereshpolova
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Alexander G. Gusev
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Harvey A. Swadlow
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
93
|
Jones M, Devonshire IM, Berwick J, Martin C, Redgrave P, Mayhew J. Altered neurovascular coupling during information-processing states. Eur J Neurosci 2008; 27:2758-72. [PMID: 18445054 DOI: 10.1111/j.1460-9568.2008.06212.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain imaging techniques rely on changes in blood flow, volume and oxygenation to infer the loci and magnitude of changes in activity. Although progress has been made in understanding the link between stimulus-evoked neural activity and haemodynamics, the extent to which neurovascular-coupling relationships remain constant during different states of baseline cortical activity is poorly understood. Optical imaging spectroscopy, laser Doppler flowmetry and electrophysiology were used to measure haemodynamics and neural activity in the barrel cortex of anaesthetized rats. The responses to stimulation of the whisker pad were recorded during quiescence and cortical desynchronization produced by stimulation of the brainstem. Cortical desynchronization was accompanied by increases in baseline blood flow, volume and oxygenation. Haemodynamic responses to low-frequency whisker stimuli (1 Hz) were attenuated during arousal compared with that observed during quiescence. During arousal it was possible to increase stimulus-evoked haemodynamics by increasing the frequency of the stimulus. Neural responses to low-frequency stimuli were also attenuated but to a far lesser extent than the reduction in the accompanying haemodynamics. In contrast, neuronal activity evoked by high-frequency stimuli (40 Hz) was enhanced during arousal, but induced haemodynamic responses of a similar magnitude compared with that observed for the same high-frequency stimulus presented during quiescence. These data suggest that there may be differences in stimulus-evoked neural activity and accompanying haemodynamics during different information-processing states.
Collapse
Affiliation(s)
- Myles Jones
- The Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | | | | | | | | | | |
Collapse
|
94
|
Auditory event-related potentials during a spatial working memory task. Clin Neurophysiol 2008; 119:1176-89. [PMID: 18313978 DOI: 10.1016/j.clinph.2008.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/19/2007] [Accepted: 01/17/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Sensory cortical activity can be jointly governed by bottom-up (e.g. stimulus features) and top-down (e.g. memory, attention) factors. We tested the hypothesis that auditory sensory cortical activity is affected by encoding and retrieval of spatial information. METHODS Auditory event-related potentials (ERPs) were recorded during working memory and passive listening conditions. Trials contained three noise bursts (two "items" at different locations, followed by a "probe"). In the working memory task subjects determined if the probe matched an item location. The influence of long-term memory was evaluated by training to one location that was always a non-match. Auditory ERPs were analyzed to items and probes (N100, P200, late positive wave-LPW). RESULTS Reaction times varied significantly among probes (trained non-match<matches<non-match). In only the Passive condition N100 and P200 amplitudes to the first item were significantly larger than the second item. Probe ERP amplitudes (N100, LPW) were comparable for match and trained non-match probes relative to non-matches. CONCLUSIONS Findings suggest that top-down factors during encoding modify sensory responses to successive items. Probe ERPs reflect sequence factors, such as recency and stimulus probability, and retrieval mechanisms not evident in passive listening. SIGNIFICANCE Results support a contribution of auditory cortex to working memory.
Collapse
|
95
|
Ritt JT, Andermann ML, Moore CI. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 2008; 57:599-613. [PMID: 18304488 PMCID: PMC4391974 DOI: 10.1016/j.neuron.2007.12.024] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 10/16/2007] [Accepted: 12/19/2007] [Indexed: 10/21/2022]
Abstract
Peripheral sensory organs provide the first transformation of sensory information, and understanding how their physical embodiment shapes transduction is central to understanding perception. We report the characterization of surface transduction during active sensing in the rodent vibrissa sensory system, a widely used model. Employing high-speed videography, we tracked vibrissae while rats sampled rough and smooth textures. Variation in vibrissa length predicted motion mean frequencies, including for the highest velocity events, indicating that biomechanics, such as vibrissa resonance, shape signals most likely to drive neural activity. Rough surface contact generated large amplitude, high-velocity "stick-slip-ring" events, while smooth surfaces generated smaller and more regular stick-slip oscillations. Both surfaces produced velocities exceeding those applied in reduced preparations, indicating active sensation of surfaces generates more robust drive than previously predicted. These findings demonstrate a key role for embodiment in vibrissal sensing and the importance of input transformations in sensory representation.
Collapse
Affiliation(s)
- Jason T Ritt
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
96
|
Abstract
Barrel cortex neuronal responses adapt to changes in the statistics of complex whisker stimuli. This form of adaptation involves an adjustment in the input-output tuning functions of the neurons, such that their gain rescales depending on the range of the current stimulus distribution. Similar phenomena have been observed in other sensory systems, suggesting that adaptive adjustment of responses to ongoing stimulus statistics is an important principle of sensory function. In other systems, adaptation and gain rescaling can depend on intrinsic properties; however, in barrel cortex, whether intrinsic mechanisms can contribute to adaptation to stimulus statistics is unknown. To examine this, we performed whole-cell patch-clamp recordings of pyramidal cells in acute slices while injecting stochastic current stimuli. We induced changes in statistical context by switching across stimulus distributions. The firing rates of neurons adapted in response to changes in stimulus statistics. Adaptation depended on the form of the changes in stimulus distribution: in vivo-like adaptation occurred only for rectified stimuli that maintained neurons in a persistent state of net depolarization. Under these conditions, neurons rescaled the gain of their input-output functions according to the scale of the stimulus distribution, as observed in vivo. This stimulus-specific adaptation was caused by intrinsic properties and correlated strongly with the amplitude of calcium-dependent slow afterhyperpolarizations. Our results suggest that widely expressed intrinsic mechanisms participate in barrel cortex adaptation but that their recruitment is highly stimulus specific.
Collapse
|
97
|
de la Rocha J, Parga N. Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa-barrel system. J Comput Neurosci 2008; 25:122-40. [PMID: 18236148 DOI: 10.1007/s10827-007-0068-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 11/26/2022]
Abstract
Recent works on the response of barrel neurons to periodic deflections of the rat vibrissae have shown that the stimulus velocity is encoded in the corti cal spike rate (Pinto et al., Journal of Neurophysiology, 83(3), 1158-1166, 2000; Arabzadeh et al., Journal of Neuroscience, 23(27), 9146-9154, 2003). Other studies have reported that repetitive pulse stimulation produces band-pass filtering of the barrel response rate centered around 7-10 Hz (Garabedian et al., Journal of Neurophysiology, 90, 1379-1391, 2003) whereas sinusoidal stimulation gives an increasing rate up to 350 Hz (Arabzadeh et al., Journal of Neuroscience, 23(27), 9146-9154, 2003). To explore the mechanisms underlying these results we propose a simple computational model consisting in an ensemble of cells in the ventro-posterior medial thalamic nucleus (VPm) encoding the stimulus velocity in the temporal profile of their response, connected to a single barrel cell through synapses showing short-term depression. With sinusoidal stimulation, encoding the velocity in VPm facilitates the response as the stimulus frequency increases and it causes the velocity to be encoded in the cortical rate in the frequency range 20-100 Hz. Synaptic depression does not suppress the response with sinusoidal stimulation but it produces a band-pass behavior using repetitive pulses. We also found that the passive properties of the cell membrane eventually suppress the response to sinusoidal stimulation at high frequencies, something not observed experimentally. We argue that network effects not included here must be important in sustaining the response at those frequencies.
Collapse
Affiliation(s)
- Jaime de la Rocha
- Dto. de Física Teórica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | |
Collapse
|
98
|
Abstract
The tactile somatosensory pathway from whisker to cortex in rodents provides a well-defined system for exploring the link between molecular mechanisms, synaptic circuits, and behavior. The primary somatosensory cortex has an exquisite somatotopic map where each individual whisker is represented in a discrete anatomical unit, the "barrel," allowing precise delineation of functional organization, development, and plasticity. Sensory information is actively acquired in awake behaving rodents and processed differently within the barrel map depending upon whisker-related behavior. The prominence of state-dependent cortical sensory processing is likely to be crucial in our understanding of active sensory perception, experience-dependent plasticity and learning.
Collapse
Affiliation(s)
- Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, SV-BMI-LSENS, Station 15, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
99
|
Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH. Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. Neuron 2007; 56:907-23. [PMID: 18054865 DOI: 10.1016/j.neuron.2007.10.007] [Citation(s) in RCA: 486] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/08/2007] [Accepted: 10/02/2007] [Indexed: 11/19/2022]
Affiliation(s)
- Isabelle Ferezou
- Laboratory of Sensory Processing, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland
| | | | | | | | | | | |
Collapse
|
100
|
Coleman MJ, Roy A, Wild JM, Mooney R. Thalamic gating of auditory responses in telencephalic song control nuclei. J Neurosci 2007; 27:10024-36. [PMID: 17855617 PMCID: PMC6672633 DOI: 10.1523/jneurosci.2215-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In songbirds, nucleus Uvaeformis (Uva) is the sole thalamic input to the telencephalic nucleus HVC (used as a proper name), a sensorimotor structure essential to learned song production that also exhibits state-dependent responses to auditory presentation of the bird's own song (BOS). The role of Uva in influencing HVC auditory activity is unknown. Using in vivo extracellular and intracellular recordings in urethane-anesthetized zebra finches, we characterized the auditory properties of Uva and examined its influence on auditory activity in HVC and in the telencephalic nucleus interface (NIf), the main auditory afferent of HVC and a corecipient of Uva input. We found robust auditory activity in Uva and determined that Uva is innervated by the ventral nucleus of lateral lemniscus, an auditory brainstem component. Thus, Uva provides a direct linkage between the auditory brainstem and HVC. Although low-frequency electrical stimulation in Uva elicited short-latency depolarizing postsynaptic potentials in HVC neurons, reversibly silencing Uva exerted little effect on BOS-evoked activity in HVC neurons. However, high-frequency stimulation in Uva suppressed auditory-evoked synaptic and suprathreshold activity in all HVC neuron types, a process accompanied by decreased input resistance of individual HVC neurons. Furthermore, high-frequency stimulation in Uva simultaneously suppressed auditory activity in HVC and NIf. These results suggest that Uva can gate auditory responses in HVC through a mechanism that involves inhibition local to HVC as well as withdrawal of auditory-evoked excitatory drive from NIf. Thus, Uva could play an important role in state-dependent gating of auditory activity in telencephalic sensorimotor structures important to learned vocal control.
Collapse
Affiliation(s)
- Melissa J Coleman
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|