51
|
Piperazinyl quinolines as chemosensitizers to increase fluconazole susceptibility of Candida albicans clinical isolates. Bioorg Med Chem Lett 2011; 21:5502-5. [PMID: 21802942 DOI: 10.1016/j.bmcl.2011.06.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
The effectiveness of the potent antifungal drug fluconazole is being compromised by the rise of drug-resistant fungal pathogens. While inhibition of Hsp90 or calcineurin can reverse drug resistance in Candida, such inhibitors also impair the homologous human host protein and fungal-selective chemosensitizers remain rare. The MLPCN library was screened to identify compounds that selectively reverse fluconazole resistance in a Candida albicans clinical isolate, while having no antifungal activity when administered as a single agent. A piperazinyl quinoline was identified as a new small-molecule probe (ML189) satisfying these criteria.
Collapse
|
52
|
de Macedo-Silva ST, de Oliveira Silva TLA, Urbina JA, de Souza W, Rodrigues JCF. Antiproliferative, Ultrastructural, and Physiological Effects of Amiodarone on Promastigote and Amastigote Forms of Leishmania amazonensis. Mol Biol Int 2011; 2011:876021. [PMID: 22091415 PMCID: PMC3200143 DOI: 10.4061/2011/876021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/01/2011] [Accepted: 03/14/2011] [Indexed: 11/27/2022] Open
Abstract
Amiodarone (AMIO), the most frequently antiarrhythmic drug used for the symptomatic treatment of chronic Chagas' disease patients with cardiac compromise, has recently been shown to have also specific activity against fungi, Trypanosoma cruzi and Leishmania. In this work, we characterized the effects of AMIO on proliferation, mitochondrial physiology, and ultrastructure of Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values were 4.21 and 0.46 μM against promastigotes and intracellular amastigotes, respectively, indicating high selectivity for the clinically relevant stage. We also found that treatment with AMIO leads to a collapse of the mitochondrial membrane potential (ΔΨm) and to an increase in the production of reactive oxygen species, in a dose-dependent manner. Fluorescence microscopy of cells labeled with JC-1, a marker for mitochondrial energization, and transmission electron microscopy confirmed severe alterations of the mitochondrion, including intense swelling and modification of its membranes. Other ultrastructural alterations included (1) presence of numerous lipid-storage bodies, (2) presence of large autophagosomes containing part of the cytoplasm and membrane profiles, sometimes in close association with the mitochondrion and endoplasmic reticulum, and (3) alterations in the chromatin condensation and plasma membrane integrity. Taken together, our results indicate that AMIO is a potent inhibitor of L. amazonensis growth, acting through irreversible alterations in the mitochondrial structure and function, which lead to cell death by necrosis, apoptosis and/or autophagy.
Collapse
Affiliation(s)
- Sara Teixeira de Macedo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas, 373, CCS, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
53
|
Adesse D, Meirelles Azzam E, de Nazareth L. Meirelles M, Urbina JA, Garzoni LR. Amiodarone inhibits Trypanosoma cruzi infection and promotes cardiac cell recovery with gap junction and cytoskeleton reassembly in vitro. Antimicrob Agents Chemother 2011; 55:203-10. [PMID: 21078932 PMCID: PMC3019665 DOI: 10.1128/aac.01129-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 11/20/2022] Open
Abstract
We present the results of the first detailed study of the antiproliferative and ultrastructural effects of amiodarone on Trypanosoma cruzi, the causative agent of Chagas' disease. Moreover, we report the effects of this compound on the recovery of F-actin fibrils, connexin43, and contractility in T. cruzi-infected cardiac myocytes. Amiodarone is the most prescribed class III antiarrhythmic agent and is frequently used for the symptomatic treatment of Chagas' disease patients with cardiac compromise. In addition, recent studies identified its antifungal and antiprotozoal activities, which take place through Ca(2+) homeostasis disruption and ergosterol biosynthesis blockade. We tested different concentrations of amiodarone (2.5 to 10 μM) on infected primary cultures of heart muscle cells and observed a dose- and time-dependent effect on growth of the clinically relevant intracellular amastigote form of T. cruzi. Ultrastructural analyses revealed that amiodarone had a profound effect on intracellular amastigotes, including mitochondrial swelling and disorganization of reservosomes and the kinetoplast and a blockade of amastigote-trypomastigote differentiation. Amiodarone showed no toxic effects on host cells, which recovered their F-actin fibrillar organization, connexin43 distribution, and spontaneous contractility concomitant with the drug-induced eradication of the intracellular parasites. Amiodarone is, therefore, a promising compound for the development of new drugs against T. cruzi.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Eduardo Meirelles Azzam
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Maria de Nazareth L. Meirelles
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Julio A. Urbina
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| | - Luciana R. Garzoni
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil, Laboratorio de Química Biológica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Cientificas, Apartado Postal 21.627, Caracas 1020A, Venezuela
| |
Collapse
|
54
|
Oldfield E. Targeting isoprenoid biosynthesis for drug discovery: bench to bedside. Acc Chem Res 2010; 43:1216-26. [PMID: 20560544 DOI: 10.1021/ar100026v] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isoprenoid biosynthesis pathways produce the largest class of small molecules in Nature: isoprenoids (also called terpenoids). Not surprisingly then, isoprenoid biosynthesis is a target for drug discovery, and many drugs--such as Lipitor (used to lower cholesterol), Fosamax (used to treat osteoporosis), and many anti-infectives--target isoprenoid biosynthesis. However, drug resistance in malaria, tuberculosis, and staph infections is rising, cheap and effective drugs for the neglected tropical diseases are lacking, and progress in the development of anticancer drugs is relatively slow. Isoprenoid biosynthesis is thus an attractive target, and in this Account, I describe developments in four areas, using in each case knowledge derived from one area of chemistry to guide the development of inhibitors (or drug leads) in another, seemingly unrelated, area. First, I describe mechanistic studies of the enzyme IspH, which is present in malaria parasites and most pathogenic bacteria, but not in humans. IspH is a 4Fe-4S protein and produces the five-carbon (C5) isoprenoids IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) from HMBPP (E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate) via a 2H(+)/2e(-) reduction (of an allyl alcohol to an alkene). The mechanism is unusual in that it involves organometallic species: "metallacycles" (η(2)-alkenes) and η(1)/η(3)-allyls. These observations lead to novel alkyne inhibitors, which also form metallacycles. Second, I describe structure-function-inhibition studies of FPP synthase, the macromolecule that condenses IPP and DMAPP to the sesquiterpene farnesyl diphosphate (FPP) in a "head-to-tail" manner. This enzyme uses a carbocation mechanism and is potently inhibited by bone resorption drugs (bisphosphonates), which I show are also antiparasitic agents that block sterol biosynthesis in protozoa. Moreover, "lipophilic" bisphosphonates inhibit protein prenylation and invasiveness in tumor cells, in addition to activating γδ T-cells to kill tumor cells, and are important new leads in oncology. Third, I describe structural and inhibition studies of a "head-to-head" triterpene synthase, dehydrosqualene synthase (CrtM), from Staphylococcus aureus. CrtM catalyzes the first committed step in biosynthesis of the carotenoid virulence factor staphyloxanthin: the condensation of two FPP molecules to produce a cyclopropane (presqualene diphosphate). The structure of CrtM is similar to that of human squalene synthase (SQS), and some SQS inhibitors (originally developed as cholesterol-lowering drugs) block staphyloxanthin biosynthesis. Treated bacteria are white and nonvirulent (because they lack the carotenoid shield that protects them from reactive oxygen species produced by neutrophils), rendering them susceptible to innate immune system clearance--a new therapeutic approach. And finally, I show that the heart drug amiodarone, also known to have antifungal activity, blocks ergosterol biosynthesis at the level of oxidosqualene cyclase in Trypanosoma cruzi, work that has led to its use in the clinic as a novel antiparasitic agent. In each of these four examples, I use information from one area (organometallic chemistry, bone resorption drugs, cholesterol-lowering agents, heart disease) to develop drug leads in an unrelated area: a "knowledge-based" approach that represents an important advance in the search for new drugs.
Collapse
Affiliation(s)
- Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
55
|
Kossakowski J, Krawiecka M, Kuran B, Stefańska J, Wolska I. Synthesis and preliminary evaluation of the antimicrobial activity of selected 3-benzofurancarboxylic acid derivatives. Molecules 2010; 15:4737-49. [PMID: 20657389 PMCID: PMC6257615 DOI: 10.3390/molecules15074737] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/16/2022] Open
Abstract
Halogen derivatives of selected 3-benzofurancarboxylic acids were prepared using 6-acetyl-5-hydroxy-2-methyl-3-benzofuranocarboxylic acid as starting material. 1H-NMR spectra were obtained for all of the synthesized structures, and for compound VI, an X-ray crystal structure was also obtained. All derivatives were tested for antimicrobial activity against a selection of Gram-positive cocci, Gram-negative rods and yeasts. Three compounds, III, IV, and VI, showed antimicrobial activity against Gram-positive bacteria (MIC 50 to 200 μg/mL). Compounds VI and III exhibited antifungal activity against the Candida strains C. albicans and C. parapsilosis (MIC – 100 μg/mL).
Collapse
Affiliation(s)
- Jerzy Kossakowski
- Department of Medical Chemistry, Medical University of Warsaw, 3 Oczki Str., 02-007 Warsaw, Poland; E-Mails: (J.K.); (B.K.)
| | - Mariola Krawiecka
- Department of Medical Chemistry, Medical University of Warsaw, 3 Oczki Str., 02-007 Warsaw, Poland; E-Mails: (J.K.); (B.K.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Bożena Kuran
- Department of Medical Chemistry, Medical University of Warsaw, 3 Oczki Str., 02-007 Warsaw, Poland; E-Mails: (J.K.); (B.K.)
| | - Joanna Stefańska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 3 Oczki Str., 02-007 Warsaw, Poland; E-Mail: (J.S.)
| | - Irena Wolska
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, 6 Grunwaldzka Str., 60-780 Poznań, Poland; E-Mail: (I.W.)
| |
Collapse
|
56
|
Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 2010; 6:e1000939. [PMID: 20532216 PMCID: PMC2880581 DOI: 10.1371/journal.ppat.1000939] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022] Open
Abstract
Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+)-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(-) phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+) and H(+) surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+) sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- The Johns Hopkins University School of Medicine of Baltimore, Maryland, United States of America
| | - Soledad Gamarra
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Guillermo Garcia-Effron
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Steven Park
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - David S. Perlin
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Rajini Rao
- The Johns Hopkins University School of Medicine of Baltimore, Maryland, United States of America
| |
Collapse
|
57
|
Gamarra S, Rocha EMF, Zhang YQ, Park S, Rao R, Perlin DS. Mechanism of the synergistic effect of amiodarone and fluconazole in Candida albicans. Antimicrob Agents Chemother 2010; 54:1753-61. [PMID: 20194694 PMCID: PMC2863688 DOI: 10.1128/aac.01728-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/29/2010] [Accepted: 02/20/2010] [Indexed: 11/20/2022] Open
Abstract
The antiarrhythmic drug amiodarone has been found to have fungicidal activity. In Saccharomyces cerevisiae, its antifungal activity is mediated by calcium overload stress, which leads to a rapid nuclear accumulation of the calcineurin-regulated transcription factor CRZ1. In addition, low doses of amiodarone have been reported to be synergistic with fluconazole in fluconazole-resistant Candida albicans. To establish its mechanism of toxicity in C. albicans, we used expression profiling of key pathway genes to examine cellular responses to amiodarone alone and in combination with fluconazole. Gene expression profiling of 59 genes was done in five C. albicans strains (three fluconazole-susceptible strains and two fluconazole-resistant strains) after amiodarone and/or fluconazole exposure. Of the 59 genes, 27 analyzed showed a significant change (>2-fold) in expression levels after amiodarone exposure. The up- or downregulated genes included genes involved in Ca(2+) homeostasis, cell wall synthesis, vacuolar/lysosomal transport, diverse pathway regulation, stress response, and pseudohyphal morphogenesis. As expected, fluconazole induces an increase in ergosterol pathway genes expression levels. The combination treatment significantly dampened the transcriptional response to either drug, suggesting that synergism was due to an inhibition of compensatory response pathways. This dampening resulted in a decrease in total ergosterol levels and decreased pseudohyphal formation, a finding consistent with decreased virulence in a murine candidiasis model.
Collapse
Affiliation(s)
- Soledad Gamarra
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Elousa Maria F. Rocha
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Qiang Zhang
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Steven Park
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rajini Rao
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David S. Perlin
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey 07103-3535, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
58
|
Cerecetto H, González M. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase. Pharmaceuticals (Basel) 2010; 3:810-838. [PMID: 27713281 PMCID: PMC4034012 DOI: 10.3390/ph3040810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.
Collapse
Affiliation(s)
- Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Laboratorio de Química Orgánica, Instituto de Química Biológica-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
59
|
Courchesne WE, Tunc M, Liao S. Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae. Can J Microbiol 2009; 55:288-303. [PMID: 19370072 DOI: 10.1139/w08-132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used a proteomic approach to study effects of amiodarone on cells of the yeast Saccharomyces cerevisiae. Amiodarone has been shown to have antifungal activity in vitro and causes a massive increase in cytoplasmic calcium levels ([Ca2+]cyt). Proteomic analysis of cells exposed to amiodarone show that this drug elicits stress responses and points to involvement of proteins associated with the cell wall. We tested several of those proteins for involvement in the Ca2+ flux. In particular, the amiodarone-induced Ca2+ flux was decreased in bgl2Delta cells, which have altered levels of beta-glucan and chitin. The involvement of the cell wall in the Ca2+ flux induced by amiodarone treatment was tested by addition of yeast cell-wall components. While mannan inhibited the rise in [Ca2+]cyt, beta-glucan potentiated the Ca2+ flux by 4.5-fold, providing evidence that the cell wall is directly involved in controlling this Ca2+ flux. This conclusion is corroborated by the inhibition of the Ca2+ flux by calcofluor, which is known to bind to cell-wall chitin and inhibit cell growth. Zymolyase treatment altered the kinetics of amiodarone-induced calcium flux and uncoupled the inhibitory effect of calcofluor. These effects demonstrate that the cell-wall beta-glucan regulates calcium flux elicited by amiodarone.
Collapse
Affiliation(s)
- William E Courchesne
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
60
|
Peña A, Calahorra M, Michel B, Ramírez J, Sánchez NS. Effects of amiodarone on K+, internal pH and Ca2+ homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 9:832-48. [PMID: 19656199 DOI: 10.1111/j.1567-1364.2009.00538.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this study, amiodarone, at very low concentrations, produced a clear efflux of K(+). Increasing concentrations also produced an influx of protons, resulting in an increase of the external pH and a decrease of the internal pH. The K(+) efflux resulted in an increased plasma membrane potential difference, responsible for the entrance of Ca(2+) and H(+), the efflux of anions and the subsequent changes resulting from the increased cytoplasmic Ca(2+) concentration, as well as the decreased internal pH. The Deltatok1 and Deltanha1 mutations resulted in a smaller effect of amiodarone, and Deltatrk1 and Deltatrk2 showed a higher increase of the plasma membrane potential. Higher concentrations of amiodarone also produced full inhibition of respiration, insensitive to uncouplers and a partial inhibition of fermentation. This phenomenon appears to be common to a large series of cationic molecules that can produce the efflux of K(+), through the reduction of the negative surface charge of the cell membrane, and the concentration of this cation directly available to the monovalent cation carriers, and/or producing a disorganization of the membrane and altering the functioning of the carriers, probably not only in yeast.
Collapse
Affiliation(s)
- Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
61
|
|
62
|
Amiodarone destabilizes intracellular Ca2+ homeostasis and biosynthesis of sterols in Leishmania mexicana. Antimicrob Agents Chemother 2009; 53:1403-10. [PMID: 19164149 DOI: 10.1128/aac.01215-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis represents a serious public health problem worldwide. The first line of treatment is based on glucantime and pentostan, which generate toxic effects in treated patients. We have recently shown that amiodarone, frequently used as an antiarrhythmic, possesses activity against Trypanosoma cruzi through the disruption of mitochondrial Ca(2+) homeostasis and the inhibition of parasite ergosterol biosynthesis, specifically at the level of oxidosqualene cyclase activity (G. Benaim, J. Sanders, Y. Garcia-Marchan, C. Colina, R. Lira, A. Caldera, G. Payares, C. Sanoja, J. Burgos, A. Leon-Rossell, J. Concepcion, A. Schijman, M. Levin, E. Oldfield, and J. Urbina, J. Med. Chem. 49:892-899, 2006). Here we show that at therapeutic concentrations, amiodarone has a profound effect on the viability of Leishmania mexicana promastigotes. Additionally, its effect on the viability of the parasite was greater against intracellular amastigotes than against promastigotes, and it did not affect the host cell. Using fluorimetric and confocal microscopy techniques, we also demonstrated that the mechanism of action of amiodarone was related to the disruption of intracellular Ca(2+) homeostasis through a direct action not only on the mitochondria but also on the acidocalcisomes. On the other hand, analysis of the free sterols in promastigotes incubated with amiodarone showed that this drug also affected the biosynthesis of 5-dehydroepisterol, which results in squalene accumulation, thus suggesting that amiodarone inhibits the squalene epoxidase activity of the parasite. Taken together, the results obtained in the present work point to a more general effect of amiodarone in trypanosomatids, opening potential therapeutic possibilities for this infectious disease.
Collapse
|
63
|
Synthesis of new derivatives of 2,2-dimethyl-2,3-dihydro-7-benzo[b]furanol with potential antimicrobial activity. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9149-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
Maresova L, Muend S, Zhang YQ, Sychrova H, Rao R. Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J Biol Chem 2008; 284:2795-2802. [PMID: 19054772 DOI: 10.1074/jbc.m806693200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cationic amphipathic drugs, such as amiodarone, interact preferentially with lipid membranes to exert their biological effect. In the yeast Saccharomyces cerevisiae, toxic levels of amiodarone trigger a rapid influx of Ca(2+) that can overwhelm cellular homeostasis and lead to cell death. To better understand the mechanistic basis of antifungal activity, we assessed the effect of the drug on membrane potential. We show that low concentrations of amiodarone (0.1-2 microm) elicit an immediate, dose-dependent hyperpolarization of the membrane. At higher doses (>3 microm), hyperpolarization is transient and is followed by depolarization, coincident with influx of Ca(2+) and H(+) and loss in cell viability. Proton and alkali metal cation transporters play reciprocal roles in membrane polarization, depending on the availability of glucose. Diminishment of membrane potential by glucose removal or addition of salts or in pma1, tok1Delta, ena1-4Delta, or nha1Delta mutants protected against drug toxicity, suggesting that initial hyperpolarization was important in the mechanism of antifungal activity. Furthermore, we show that the link between membrane hyperpolarization and drug toxicity is pH-dependent. We propose the existence of pH- and hyperpolarization-activated Ca(2+) channels in yeast, similar to those described in plant root hair and pollen tubes that are critical for cell elongation and growth. Our findings illustrate how membrane-active compounds can be effective microbicidals and may pave the way to developing membrane-selective agents.
Collapse
Affiliation(s)
- Lydie Maresova
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, Prague, Czech Republic
| | - Sabina Muend
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Qiang Zhang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, Prague, Czech Republic
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
65
|
Guo Q, Sun S, Yu J, Li Y, Cao L. Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time–kill methods. J Med Microbiol 2008; 57:457-462. [PMID: 18349365 DOI: 10.1099/jmm.0.47651-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is the most common candidal pathogen, causing serious systemic disease in immunocompromised patients. Azoles are widely applied and largely effective; however, they are generally fungistatic and clinically resistant isolates are emerging increasingly. The present study provided in vitro evidence using a chequerboard technique that amiodarone is strongly synergistic with azoles against resistant C. albicans, with mean fractional inhibitory concentration indices of 0.01 and high-percentage synergistic interactions of 1250 %. A time–kill study performed by both colony counting and a colorimetric reduction assay confirmed the synergistic interaction, with a ≥2 log10 decrease in c.f.u. ml−1 compared with the corresponding azoles alone. These results suggest the possibility of supplementing azoles with amiodarone to treat resistant C. albicans infections.
Collapse
Affiliation(s)
- Qiongjie Guo
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| | - Jinlong Yu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan 250012, PR China
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Yan Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| | - Lili Cao
- The General Surgical Central Laboratory, Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| |
Collapse
|
66
|
Abstract
The antiarrhythmic drug amiodarone has microbicidal activity against fungi, bacteria and protozoa. In Saccharomyces cerevisiae, amiodarone triggers an immediate burst of cytosolic Ca2+, followed by cell death markers. Ca2+ transients are a common response to many forms of environmental insults and toxic compounds, including osmotic and pH shock, endoplasmic reticulum stress, and high levels of mating pheromone. Downstream signaling events involving calmodulin, calcineurin and the transcription factor Crz1 are critical in mediating cell survival in response to stress. In this study we asked whether amiodarone induced Ca2+ influx was beneficial, toxic or a bystander effect unrelated to the fungicidal effect of the drug. We show that downregulation of Ca2+ channel activity in stationary phase cells correlates with increased resistance to amiodarone. In actively growing cells, extracellular Ca2+ modulated the size and shape of the Ca2+ transient and directly influenced amiodarone toxicity. Paradoxically, protection was achieved both by removal of external Ca2+ or by adding high levels of CaCl2 (10 mM) to block the drug induced Ca2+ burst. Our results support a model in which the fungicidal activity of amiodarone is mediated by Ca2+ stress, and highlight the pathway of Ca2+ mediated cell death as a promising target for antifungal drug development.
Collapse
Affiliation(s)
- Sabina Muend
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
67
|
Furune T, Hashimoto K, Ishiguro J. Characterization of a fission yeast P5-type ATPase homologue that is essential for Ca2+/Mn2+ homeostasis in the absence of P2-type ATPases. Genes Genet Syst 2008; 83:373-81. [DOI: 10.1266/ggs.83.373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Takahiro Furune
- Department of Biology, Faculty of Science and Engineering, Konan University
| | - Kentaro Hashimoto
- Department of Biology, Faculty of Science and Engineering, Konan University
| | - Junpei Ishiguro
- Department of Biology, Faculty of Science and Engineering, Konan University
| |
Collapse
|
68
|
Zhang YQ, Rao R. Global disruption of cell cycle progression and nutrient response by the antifungal agent amiodarone. J Biol Chem 2007; 282:37844-53. [PMID: 17974566 DOI: 10.1074/jbc.m707593200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antiarrhythmic drug amiodarone has fungicidal activity against a broad range of fungi. In Saccharomyces cerevisiae, it elicits an immediate influx of Ca(2+) followed by mitochondrial fragmentation and eventual cell death. To dissect the mechanism of its toxicity, we assessed the transcriptional response of S. cerevisiae to amiodarone by DNA microarray. Consistent with the drug-induced calcium burst, more than half of the differentially transcribed genes were induced by high levels of CaCl(2). Amiodarone also caused rapid nuclear accumulation of the calcineurin-regulated Crz1. The majority of genes induced by amiodarone within 10 min were involved in utilization of alternative carbon and nitrogen sources and in mobilizing energy reserves. The similarity to nutrient starvation responses seen in stationary phase cells, rapamycin treatment, and late stages of shift to diauxic conditions and nitrogen depletion suggests that amiodarone may interfere with nutrient sensing and regulatory networks. Transcription of a set of nutrient-responsive genes was affected by amiodarone but not CaCl(2), indicating that activation of the starvation response was independent of Ca(2+). Genes down-regulated by amiodarone were involved in all stages of cell cycle control. A moderate dose of amiodarone temporarily delayed cell cycle progression at G(1), S, and G(2)/M phases, with the Swe1-mediated delay in G(2)/M phase being most prominent in a calcineurin-dependent manner. Overall, the transcriptional responses to amiodarone revealed by this study were found to be distinct from other classes of antifungals, including the azole drugs, pointing toward a novel target pathway in combating fungal pathogenesis.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
69
|
Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C. Exploring the Mode-of-Action of Bioactive Compounds by Chemical-Genetic Profiling in Yeast. Cell 2006; 126:611-25. [PMID: 16901791 DOI: 10.1016/j.cell.2006.06.040] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/31/2006] [Accepted: 06/06/2006] [Indexed: 02/07/2023]
Abstract
Discovering target and off-target effects of specific compounds is critical to drug discovery and development. We generated a compendium of "chemical-genetic interaction" profiles by testing the collection of viable yeast haploid deletion mutants for hypersensitivity to 82 compounds and natural product extracts. To cluster compounds with a similar mode-of-action and to reveal insights into the cellular pathways and proteins affected, we applied both a hierarchical clustering and a factorgram method, which allows a gene or compound to be associated with more than one group. In particular, tamoxifen, a breast cancer therapeutic, was found to disrupt calcium homeostasis and phosphatidylserine (PS) was recognized as a target for papuamide B, a cytotoxic lipopeptide with anti-HIV activity. Further, the profile of crude extracts resembled that of its constituent purified natural product, enabling detailed classification of extract activity prior to purification. This compendium should serve as a valuable key for interpreting cellular effects of novel compounds with similar activities.
Collapse
Affiliation(s)
- Ainslie B Parsons
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Zhang NN, Dudgeon DD, Paliwal S, Levchenko A, Grote E, Cunningham KW. Multiple signaling pathways regulate yeast cell death during the response to mating pheromones. Mol Biol Cell 2006; 17:3409-22. [PMID: 16738305 PMCID: PMC1525234 DOI: 10.1091/mbc.e06-03-0177] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mating pheromones promote cellular differentiation and fusion of yeast cells with those of the opposite mating type. In the absence of a suitable partner, high concentrations of mating pheromones induced rapid cell death in approximately 25% of the population of clonal cultures independent of cell age. Rapid cell death required Fig1, a transmembrane protein homologous to PMP-22/EMP/MP20/Claudin proteins, but did not require its Ca2+ influx activity. Rapid cell death also required cell wall degradation, which was inhibited in some surviving cells by the activation of a negative feedback loop involving the MAP kinase Slt2/Mpk1. Mutants lacking Slt2/Mpk1 or its upstream regulators also underwent a second slower wave of cell death that was independent of Fig1 and dependent on much lower concentrations of pheromones. A third wave of cell death that was independent of Fig1 and Slt2/Mpk1 was observed in mutants and conditions that eliminate calcineurin signaling. All three waves of cell death appeared independent of the caspase-like protein Mca1 and lacked certain "hallmarks" of apoptosis. Though all three waves of cell death were preceded by accumulation of reactive oxygen species, mitochondrial respiration was only required for the slowest wave in calcineurin-deficient cells. These findings suggest that yeast cells can die by necrosis-like mechanisms during the response to mating pheromones if essential response pathways are lacking or if mating is attempted in the absence of a partner.
Collapse
Affiliation(s)
| | | | - Saurabh Paliwal
- Whitaker Institute for Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and
| | - Andre Levchenko
- Whitaker Institute for Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and
| | - Eric Grote
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | |
Collapse
|
71
|
Benaim G, Sanders JM, Garcia-Marchán Y, Colina C, Lira R, Caldera AR, Payares G, Sanoja C, Burgos JM, Leon-Rossell A, Concepcion JL, Schijman AG, Levin M, Oldfield E, Urbina JA. Amiodarone Has Intrinsic Anti-TrypanosomacruziActivity and Acts Synergistically with Posaconazole†. J Med Chem 2006; 49:892-9. [PMID: 16451055 DOI: 10.1021/jm050691f] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is no effective treatment for the prevalent chronic form of Chagas' disease in Latin America. Its causative agent, the protozoan parasite Trypanosoma cruzi, has an essential requirement for ergosterol, and ergosterol biosynthesis inhibitors, such as the antifungal drug posaconazole, have potent trypanocidal activity. The antiarrhythmic compound amiodarone, frequently prescribed for the symptomatic treatment of Chagas' disease patients, has also recently been shown to have antifungal activity. We now show here for the first time that amiodarone has direct activity against T. cruzi, both in vitro and in vivo, and that it acts synergistically with posaconazole. We found that amiodarone, in addition to disrupting the parasites' Ca(2+) homeostasis, also blocks ergosterol biosynthesis, and that posaconazole also affects Ca(2+) homeostasis. These results provide logical explanations for the synergistic activity of amiodarone with azoles against T. cruzi and open up the possibility of novel, combination therapy approaches to the treatment of Chagas' disease using currently approved drugs.
Collapse
Affiliation(s)
- Gustavo Benaim
- Laboratorio Química Biológica and Laboratorio de Permeabilidad Iónica, Instituto Venezolano de Investigaciones Científicas, Apartado 21927, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. ACTA ACUST UNITED AC 2005; 168:257-69. [PMID: 15657396 PMCID: PMC2171581 DOI: 10.1083/jcb.200408145] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified.
Collapse
|
73
|
Vovou I, Delitheos A, Tiligada E. The heat shock response is dependent on the external environment and on rapid ionic balancing by pharmacological agents in Saccharomyces cerevisiae. J Appl Microbiol 2004; 96:1271-7. [PMID: 15139919 DOI: 10.1111/j.1365-2672.2004.02256.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate whether non-preconditioned yeast cells survive under heat shock, when placed in growth medium originated from protected cells and to provide insights into the ionic contribution in the response. METHODS AND RESULTS The heat shock response was investigated by determining cell viability following exposure of yeast cells to 53 degrees C for 30 min, either in the absence or presence of drugs. Preconditioning was performed by incubating the cultures at 37 degrees C for 2 h. Under heat shock, non-preconditioned cell survival was significantly enhanced by the presence of the cell-free supernatant of resistant cultures. Addition of omeprazole or tetraethylammonium ions during the heat shock resulted in similar increases. Neither amiodarone nor mepivacaine showed any analogous effect. Omeprazole enhanced survival when added before the heat shock, while amiodarone exhibited a cytocidic action. CONCLUSIONS Rapid balancing of ions may contribute to cell survival during heat shock, while survival under mild stress could probably be co-ordinated by additional events. SIGNIFICANCE AND IMPACT OF THE STUDY Evidence is provided for the implication of the external environment and ionic homeostasis in the survival of yeast cells under unfavourable environmental conditions. This knowledge may be of importance in controlling both fermentation and therapeutic approaches.
Collapse
Affiliation(s)
- I Vovou
- Department of Experimental Pharmacology, Medical School, University of Athens, M. Asias 75, GR-11527 Athens, Greece
| | | | | |
Collapse
|
74
|
Afeltra J, Vitale RG, Mouton JW, Verweij PE. Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole. Antimicrob Agents Chemother 2004; 48:1335-43. [PMID: 15047538 PMCID: PMC375285 DOI: 10.1128/aac.48.4.1335-1343.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To develop new approaches for the treatment of invasive infections caused by Aspergillus fumigatus, the in vitro interactions between itraconazole (ITZ) and seven different nonantimicrobial membrane-active compounds--amiodarone (AMD), amiloride, lidocaine, lansoprazole (LAN), nifedipine (NIF), verapamil, and fluphenazine--against seven ITZ-susceptible and seven ITZ-resistant (ITZ-R) strains were evaluated by the checkerboard microdilution method based on National Committee for Clinical Laboratory Standards M-38A guidelines. The nature and the intensity of the interactions were assessed by a nonparametric approach (fractional inhibitory concentration [FIC] index model), a fully parametric response surface approach (Greco model) of the Loewe additivity no-interaction theory, and the nonparametric (Prichard model) and semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found for the combination of ITZ and AMD and the combination of LAN and NIF, although with different intensities against ITZ-R strains. The FIC index values ranged from 1 to 0.02 for ITZ-AMD, 0.53 to 0.04 for ITZ-LAN, and 0.28 to 0.06 for ITZ-NIF. By use of the BI-based model, the strongest synergy was found for the combination of ITZ with AMD, followed by the combination of ITZ and NIF. The parametric models could not be fit adequately because most of the drugs alone did not show any effect and, thus, no sigmoid dose-response. In general, the combination of ITZ with calcium pump blockers displayed in vitro synergistic activity, primarily against ITZ-R strains, and warrants further investigation.
Collapse
Affiliation(s)
- Javier Afeltra
- Department of Medical Microbiology, University Medical Center and Department of Medical Microbiology and Infectious Diseases, Canisius Wilhemina Hospital, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
75
|
Gupta SS, Ton VK, Beaudry V, Rulli S, Cunningham K, Rao R. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J Biol Chem 2003; 278:28831-9. [PMID: 12754197 DOI: 10.1074/jbc.m303300200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The antiarrhythmic drug amiodarone was recently demonstrated to have novel broad range fungicidal activity. We provide evidence that amiodarone toxicity is mediated by disruption of Ca2+ homeostasis in Saccharomyces cerevisiae. In mutants lacking calcineurin and various Ca2+ transporters, including pumps (Pmr1 and Pmc1), channels (Cch1/Mid1 and Yvc1), and exchangers (Vcx1), amiodarone sensitivity correlates with cytoplasmic calcium overload. Measurements of cytosolic Ca2+ by aequorin luminescence demonstrate a biphasic response to amiodarone. An immediate and extensive calcium influx was observed that was dose-dependent and correlated with drug sensitivity. The second phase consisted of a sustained release of calcium from the vacuole via the calcium channel Yvc1 and was independent of extracellular Ca2+ entry. To uncover additional cellular pathways involved in amiodarone sensitivity, we conducted a genome-wide screen of nearly 5000 single-gene yeast deletion mutants. 36 yeast strains with amiodarone hypersensitivity were identified, including mutants in transporters (pmr1, pdr5, and vacuolar H+-ATPase), ergosterol biosynthesis (erg3, erg6, and erg24), intracellular trafficking (vps45 and rcy1), and signaling (ypk1 and ptc1). Of three mutants examined (vps45, vma3, and rcy1), all were found to have defective calcium homeostasis, supporting a correlation with amiodarone hypersensitivity. We show that low doses of amiodarone and an azole (miconazole, fluconazole) are strongly synergistic and exhibit potent fungicidal effects in combination. Our findings point to the potentially effective application of amiodarone as a novel antimycotic, particularly in combination with conventional antifungals.
Collapse
Affiliation(s)
- Soma Sen Gupta
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Courchesne WE, Ozturk S. Amiodarone induces a caffeine-inhibited, MID1-depedent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol Microbiol 2003; 47:223-34. [PMID: 12492866 DOI: 10.1046/j.1365-2958.2003.03291.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium signalling is involved in myriad cellular processes such as mating morphogenesis. Mating in yeast induces changes in cell morphology with a concomitant increase in calcium uptake that is dependent on the MID1 and CCH1 genes. Mid1p and Cch1p are believed to function in a capacitive calcium entry (CCE)-like process. Amiodarone alters mammalian calcium channel activity but, despite its clinical importance, its molecular mechanisms are not clearly defined. We have shown previously that amiodarone has fungicidal activity against a broad array of fungi. We show here that amiodarone causes a dramatic increase in cytoplasmic calcium ([Ca2+]cyt) in Saccharomyces cerevisiae. The majority of this increase is dependent on extracellular Ca2+ nonetheless, a significant increase in [Ca2+]cyt is still induced by amiodarone when no uptake of extracellular Ca2+ can occur. The influx of extracellular Ca2+ may be a direct effect of amiodarone on a membrane transporter or may be by a CCE mechanism. Uptake of the extracellular Ca2+ is inhibited by caffeine and reduced in strains deleted for the mid1 gene, but not in cells deleted for cch1. Our data are the first demonstrating control of yeast calcium channels by amiodarone and caffeine.
Collapse
Affiliation(s)
- William E Courchesne
- Department of Microbiology, School of Medicine, University of Nevada, Reno, NV 89557-0046, USA.
| | | |
Collapse
|