51
|
Wu X, Gu HH. Cocaine affinity decreased by mutations of aromatic residue phenylalanine 105 in the transmembrane domain 2 of dopamine transporter. Mol Pharmacol 2003; 63:653-8. [PMID: 12606774 DOI: 10.1124/mol.63.3.653] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine transporter (DAT) is a major target of cocaine, one of the most abused drugs. Major efforts have been focused on defining residues in DAT involved in cocaine binding. We have isolated the Drosophila melanogaster DAT (dDAT) cDNA, which is 10-fold less sensitive to cocaine than the mammalian DATs. Replacing transmembrane domain 2 (TM2) of mouse DAT (mDAT) with dDAT sequence reduced cocaine sensitivity. The reciprocal construct exhibited increased cocaine sensitivity. Switching residue 105 in TM2, a phenylalanine conserved in all mammalian DATs, to methionine, the corresponding residue in dDAT, resulted in a functional transporter with cocaine sensitivity 4-fold lower. Replacing F105 with alanine, leucine, isoleucine, serine, threonine, asparagine, or glutamine resulted in transporters with low transport activity. In contrast, changing F105 to the other aromatic residues tyrosine or tryptophan retained more than 75% transport activity and high cocaine sensitivity. Most significantly, the reciprocal construct, switching the methionine in dDAT at the corresponding residue to phenylalanine, increased cocaine sensitivity 3-fold. Finally, the mDAT mutant with a cysteine at this position had normal transport activity but exhibited cocaine sensitivity that was 15-fold lower. These results suggest that F105 in mDAT contributes to high-affinity cocaine binding. The functional cocaine-insensitive mutants provide tools for the study of the mechanism of cocaine addiction.
Collapse
Affiliation(s)
- Xiaohong Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
52
|
Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 2003; 4:13-25. [PMID: 12511858 DOI: 10.1038/nrn1008] [Citation(s) in RCA: 666] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gonzalo E Torres
- Howard Hughes Medical Institute, Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
53
|
Newman AH, Kulkarni S. Probes for the dopamine transporter: new leads toward a cocaine-abuse therapeutic--A focus on analogues of benztropine and rimcazole. Med Res Rev 2002; 22:429-64. [PMID: 12210554 DOI: 10.1002/med.10014] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an attempt to discover a cocaine-abuse pharmacotherapeutic, extensive investigation has been directed toward elucidating the molecular mechanisms underlying the reinforcing effects of this psychostimulant drug. The results of these studies have been consistent with the inhibition of dopamine uptake, at the dopamine transporter (DAT), which results in a rapid and excessive accumulation of extracellular dopamine in the synapse as being the mechanism primarily responsible for the locomotor stimulant actions of cocaine. Nevertheless, investigation of the serotonin (SERT) and norepinephrine (NET) transporters, as well as other receptor systems, with which cocaine either directly or indirectly interacts, has suggested that the DAT is not solely responsible for the reinforcing effects of cocaine. In an attempt to further elucidate the roles of these systems in the reinforcing effects of cocaine, selective molecular probes, in the form of drug molecules, have been designed, synthesized, and characterized. Many of these compounds bind potently and selectively to the DAT, block dopamine reuptake, and are behaviorally cocaine-like in animal models of psychostimulant abuse. However, there have been exceptions noted in several classes of dopamine uptake inhibitors that demonstrate behavioral profiles that are distinctive from cocaine. Structure-activity relationships between chemically diverse dopamine uptake inhibitors have suggested that different binding interactions, at the molecular level on the DAT, as well as divergent actions at the other monoamine transporters may be related to the differing pharmacological actions of these compounds, in vivo. These studies suggest that novel dopamine uptake inhibitors, which are structurally and pharmacologically distinct from cocaine, may be developed as potential cocaine-abuse therapeutics.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse--Intramural Research Program, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
54
|
Lin Z, Uhl GR. Dopamine transporter mutants with cocaine resistance and normal dopamine uptake provide targets for cocaine antagonism. Mol Pharmacol 2002; 61:885-91. [PMID: 11901228 DOI: 10.1124/mol.61.4.885] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine's blockade of dopamine reuptake by brain dopamine transporters (DAT) is a central feature of current understanding of cocaine reward and addiction. Empirical screening of small-molecule chemical libraries has thus far failed to provide successful cocaine blockers that allow dopamine reuptake in the presence of cocaine and provide cocaine "antagonism". We have approached this problem by assessing expression, dopamine uptake, and cocaine analog affinities of 56 DAT mutants in residues located in or near transmembrane domains likely to play significant roles in cocaine recognition and dopamine uptake. A phenylalanine-to-alanine mutant in putative DAT transmembrane domain 3, F154A, retains normal dopamine uptake, lowers cocaine affinity 10-fold, and reduces cocaine stereospecificity. Such mutants provide windows into DAT structures that could serve as targets for selective cocaine blockers and document how combined strategies of mutagenesis and small molecule screening may improve our abilities to identify and design compounds with such selective properties.
Collapse
Affiliation(s)
- Zhicheng Lin
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
55
|
Chen N, Vaughan RA, Reith ME. The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site-directed mutagenesis. J Neurochem 2001; 77:1116-27. [PMID: 11359877 DOI: 10.1046/j.1471-4159.2001.00312.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human dopamine (DA) transporter (hDAT) contains multiple tryptophans and acidic residues that are completely or highly conserved among Na(+)/Cl(-)-dependent transporters. We have explored the roles of these residues using non-conservative substitution. Four of 17 mutants (E117Q, W132L, W177L and W184L) lacked plasma membrane immunostaining and were not functional. Both DA uptake and cocaine analog (i.e. 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane, CFT) binding were abolished in W63L and severely damaged in W311L. Four of five aspartate mutations (D68N, D313N, D345N and D436N) shifted the relative selectivity of the hDAT for cocaine analogs and DA by 10-24-fold. In particular, mutation of D345 in the third intracellular loop still allowed considerable [(3)H]DA uptake, but caused undetectable [(3)H]CFT binding. Upon anti-C-terminal-hDAT immunoblotting, D345N appeared as broad bands of 66-97 kDa, but this band could not be photoaffinity labeled with cocaine analog [(125)I]-3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid ([(125)I]RTI-82). Unexpectedly, in this mutant, cocaine-like drugs remained potent inhibitors of [(3)H]DA uptake. CFT solely raised the K(m) of [(3)H]DA uptake in wild-type hDAT, but increased K(m) and decreased V(max) in D345N, suggesting different mechanisms of inhibition. The data taken together indicate that mutation of conserved tryptophans or acidic residues in the hDAT greatly impacts ligand recognition and substrate transport. Additionally, binding of cocaine to the transporter may not be the only way by which cocaine analogs inhibit DA uptake.
Collapse
Affiliation(s)
- N Chen
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, Illinois, USA
| | | | | |
Collapse
|
56
|
Goulet M, Miller GM, Bendor J, Liu S, Meltzer PC, Madras BK. Non-amines, drugs without an amine nitrogen, potently block serotonin transport: novel antidepressant candidates? Synapse 2001; 42:129-40. [PMID: 11746710 DOI: 10.1002/syn.1108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The serotonin transporter (SERT) is a principal site of action of therapeutic antidepressants in the brain. Without exception, these inhibitors of serotonin transport contain an amine nitrogen in their structure. We previously demonstrated that novel compounds without an amine nitrogen in their structure (non-amines), blocked dopamine transport in cells transfected with the human dopamine transporter. The present study investigated whether, in the absence of an amine nitrogen, certain non-amines bind selectively to the SERT and block the transport of serotonin. At 10 microM concentration, select non-amines displayed no, or little, affinity for 9 serotonin, 5 dopamine, 7 adrenergic, 5 muscarinic cholinergic, 3 opiate and histamine receptors. The affinities of non-amines for [(3)H]citalopram binding sites on the SERT and their potencies for blocking [(3)H]serotonin transport were measured in cloned human SERT stably or transiently expressed in HEK-293. Whether oxa- or carba-based, non-amines bound to [(3)H]citalopram-labeled sites and blocked [(3)H]serotonin transport in the low nanomolar range, at values equal to or higher than those of some conventional antidepressants. A non-amine, O-1809, was 99-fold more selective for the serotonin over the dopamine transporter. As substituents on the aromatic ring of non-amines confer high affinity for the SERT, we investigated the hypothesis that aromatic-aromatic interactions may contribute significantly to non-amine/transporter association. A SERT mutant was produced in which a highly conserved aromatic amino acid, phenylalanine 548, was replaced by an alanine (F548A). Although the affinities of several non-amines were unchanged in the mutant SERT, the affinity of imipramine was decreased, revealing possible differences in amine and non-amine binding domains on the SERT. The similar affinities of non-amines and conventional antidepressant drugs for the SERT support the view that an amine nitrogen is not essential for drugs to block serotonin transport with high affinity. Non-amines open avenues for developing a new generation of antidepressants.
Collapse
Affiliation(s)
- M Goulet
- Harvard Medical School, Department of Psychiatry, Division of Neurochemistry, New England Regional Primate Research Center, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
57
|
Wang S, Sakamuri S, Enyedy IJ, Kozikowski AP, Zaman WA, Johnson KM. Molecular modeling, structure--activity relationships and functional antagonism studies of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketones as a novel class of dopamine transporter inhibitors. Bioorg Med Chem 2001; 9:1753-64. [PMID: 11425577 DOI: 10.1016/s0968-0896(01)00090-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously disclosed the discovery of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone (3) as a novel class of dopamine transporter (DAT) inhibitors and showed that (+/-)-3 has a significant functional antagonism against cocaine in vitro. Our previous preliminary structure-activity relationship study led to identification of a more potent DAT inhibitor [(+/-)-4] but this compound failed to show any significant functional antagonism. To search for more potent analogues than 3 but still displaying significant functional antagonism, further SARs, molecular modeling studies and in vitro pharmacological evaluation of this novel class of DAT inhibitors were performed. Sixteen new analogues were synthesized in racemic form and evaluated as DAT inhibitors. It was found that seven new analogues are reasonably potent DAT inhibitors with K(i) values of 0.041--0.30 and 0.052--0.16 microM in [(3)H]mazindol binding and inhibition of DA reuptake. Chiral isomers of several potent DAT inhibitors were obtained through chiral HPLC separation and evaluated as inhibitors at all the three monoamine transporter sites. In general, the (-)-isomer is more active than the (+)-isomer in inhibition of DA reuptake and all the (-)-isomers are selective inhibitors at the DAT site. Evaluation of cocaine's effect on dopamine uptake in the presence and absence of (+)-3 and (-)-3 showed that (-)-3 is responsible for the functional antagonism obtained with the original lead (+/-)-3. Out of the new compounds synthesized, analogue (+/-)-20, which is 8- and 3-fold more potent than (+/-)-3 in binding and inhibition of DA reuptake, appeared to have improved functional antagonism as compared to (+/-)-3.
Collapse
Affiliation(s)
- S Wang
- Department of Oncology, Georgetown University Medical Center, Building D, Room 235/237 4000 Reservoir Rd, Washington, DC 20007, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Vaughan RA, Gaffaney JD, Lever JR, Reith ME, Dutta AK. Dual incorporation of photoaffinity ligands on dopamine transporters implicates proximity of labeled domains. Mol Pharmacol 2001; 59:1157-64. [PMID: 11306699 DOI: 10.1124/mol.59.5.1157] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently developed novel high-affinity blockers for the dopamine transporter (DAT) by carrying out structure-activity studies of GBR 12909 molecule piperidine analogs. To investigate the molecular basis of binding of these compounds in comparison to known sites of action of GBR 12909, cocaine, and benztropine analogs, we developed a piperidine-based photoaffinity label [(125)I]4-[2-(diphenylmethoxy)ethyl]-1-[(4-azido- 3-iodophenyl)methyl]-piperidine [(125)I]AD-96-129), and used proteolysis and epitope-specific immunoprecipitation to identify the protein domains that interact with the ligand. [(125)I]AD-96-129 became incorporated into two different regions of the DAT primary sequence, an N-terminal site containing transmembrane domains (TMs) 1 to 2, and a second site containing TMs 4 to 6. Both of these regions have been identified previously as sites involved in the binding of other DAT photoaffinity labels. However, in contrast to the previously characterized ligands that showed nearly complete specificity in their binding site incorporation, [(125)I]AD-96-129 became incorporated into both sites at comparable levels. These results suggest that the two domains may be in close three-dimensional proximity and contribute to binding of multiple uptake blockers. We also found that DATs labeled with [(125)I]AD-96-129 or other photoaffinity labels displayed distinctive sensitivities to proteolysis of a site in the second extracellular loop, with protease resistance related to the extent of ligand incorporation in the TM4 to 6 region. These differences in protease sensitivity may indicate the relative proximity of the ligands to the protease site or reflect antagonist-induced conformational changes in the loop related to transport inhibition.
Collapse
Affiliation(s)
- R A Vaughan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA.
| | | | | | | | | |
Collapse
|
59
|
Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, Wichems C, Lesch KP, Murphy DL, Uhl GR. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci U S A 2001; 98:5300-5. [PMID: 11320258 PMCID: PMC33204 DOI: 10.1073/pnas.091039298] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy that either DAT or SERT might be able to mediate cocaine reward in the other's absence. To test this hypothesis, we examined double knockout mice with deletions of one or both copies of both the DAT and SERT genes. These mice display viability, weight gain, histologic features, neurochemical parameters, and baseline behavioral features that allow tests of cocaine influences. Mice with even a single wild-type DAT gene copy and no SERT copies retain cocaine reward/reinforcement, as measured by conditioned place-preference testing. However, mice with no DAT and either no or one SERT gene copy display no preference for places where they have previously received cocaine. The serotonin dependence of cocaine reward in DAT knockout mice is thus confirmed by the elimination of cocaine place preference in DAT/SERT double knockout mice. These results provide insights into the brain molecular targets necessary for cocaine reward in knockout mice that develop in their absence and suggest novel strategies for anticocaine medication development.
Collapse
Affiliation(s)
- I Sora
- Molecular Neurobiology, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Miller GM, Yatin SM, De La Garza R, Goulet M, Madras BK. Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:124-43. [PMID: 11223167 DOI: 10.1016/s0169-328x(00)00288-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used RT-PCR to clone monoamine transporters from Macaca mulatta, Macaca fasicularis and Saimiri sciureus (dopamine transporter; DAT) and Macaca mulatta (norepinephrine transporter; NET and serotonin transporter; SERT). Monkey DAT, NET and SERT proteins were >98% homologous to human and, when expressed in HEK-293 cells, displayed drug affinities and uptake kinetics that were highly correlated with monkey brain or human monoamine transporters. In contrast to reports of other species, we discovered double (leucine for phenylalanine 143 and arginine for glutamine 509; Variant I) and single (proline for leucine 355; Variant II) amino acid variants of DAT. Variant I displayed dopamine transport kinetics and binding affinities for various DAT blockers (including cocaine) versus [3H] CFT (WIN 35, 428) that were identical to wild-type DAT (n=7 drugs; r(2)=0.991). However, we detected a six-fold difference in the affinity of cocaine versus [3H] cocaine between Variant I (IC(50): 488+/-102 nM, SEM, n=3) and wild-type DAT (IC(50): 79+/-8.2 nM, n=3, P<0.05). Variant II was localized intracellularly in HEK-293 cells, as detected by confocal microscopy, and had very low levels of binding and dopamine transport. Also discovered was a novel exon 5 splice variant of NET that displayed very low levels of transport and did not bind cocaine. With NetPhos analysis, we detected a number of highly conserved putative phosphorylation sites on extracellular as well as intracellular loops of the DAT, NET, and SERT, which may be functional for internalized transporters. The homology and functional similarity of human and monkey monoamine transporters further support the value of primates in investigating the role of monoamine transporters in substance abuse mechanisms, neuropsychiatric disorders and development of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- G M Miller
- Harvard Medical School, Division of Neurochemistry, New England Regional Primate Research Center, One Pine Hill Drive, 01772, Southborough, MA, USA
| | | | | | | | | |
Collapse
|
61
|
Kamdar G, Penado KM, Rudnick G, Stephan MM. Functional role of critical stripe residues in transmembrane span 7 of the serotonin transporter. Effects of Na+, Li+, and methanethiosulfonate reagents. J Biol Chem 2001; 276:4038-45. [PMID: 11058600 DOI: 10.1074/jbc.m008483200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations at critical residue positions in transmembrane span 7 (TM7) of the serotonin transporter affect the Na(+) dependence of transport. It was possible that these residues, which form a stripe along one side of the predicted alpha-helix, formed part of a water-filled pore for Na(+). We tested whether cysteine substitutions in TM7 were accessible to hydrophilic, membrane-impermeant methanethiosulfonate (MTS) reagents. Although all five cysteine-containing mutants tested were sensitive to these reagents, noncysteine control mutants at the same positions were in most cases equally sensitive. In all cases, MTS sensitivity could be traced to changes in accessibility of a native cysteine residue in extracellular loop 1, Cys-109. Moreover, none of the TM7 cysteines reacted with the biotinylating reagent MTSEA-biotin when tested in the C109A background. It is thus unlikely that the critical stripe forms part of a water-filled pore. Instead, studies of the ion dependence of the reaction between Cys-109 and MTS reagents lead to the conclusion that TM7 is involved in propagating conformational changes caused by ion binding, perhaps as part of the translocation mechanism. The critical stripe residues on TM7 probably represent a close contact region between TM7 and one or more other TMs in the transporter's three-dimensional structure.
Collapse
Affiliation(s)
- G Kamdar
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
62
|
Lin Z, Wang W, Uhl GR. Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains. Mol Pharmacol 2000; 58:1581-92. [PMID: 11093799 DOI: 10.1124/mol.58.6.1581] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling and in restricting its spatial spread through molecular interactions that remain largely obscure. Cocaine analog structure-activity studies suggest roles for cationic and hydrophobic interactions between DAT, dopamine, cocaine, and the sodium and chloride ions whose gradients power uptake processes. Tryptophan residues lying in putative DAT transmembrane domains could contribute to both aromatic and cationic interactions between DAT and dopamine or cocaine. We thus produced mutant DATs with alanine substitutions for tryptophans lying in or near putative DAT transmembrane domains. We have focused analyses on mutations that exert selective influences on affinities for dopamine or the cocaine analog CFT [(-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane]. Substitutions W162A, W255A, and W310A reduced dopamine uptake affinities. 5W266A, 12W555A, and 12W561A each reduced dopamine superficial recognition affinities by more than 3-fold and all retained affinity for CFT. W406A, W496A and W523A each reduced CFT affinity, and W84A increased CFT affinity. None of these four mutations decreased dopamine uptake affinity. These data, current provisional DAT structural models, and results from parallel studies of other mutants identify candidate dopamine-selective DAT domains for transmembrane dopamine permeation and regions in which mutations selectively lower CFT affinities. Tryptophan residues may contribute more extensively to these selective domains than other previously studied DAT amino acids. These sites provide tempting targets for selective blockers of cocaine recognition by DAT.
Collapse
Affiliation(s)
- Z Lin
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|
63
|
Hinerth MA, Collins HA, Baniecki M, Hanson RN, Waszczak BL. Novel in vivo electrophysiological assay for the effects of cocaine and putative "cocaine antagonists" on dopamine transporter activity of substantia nigra and ventral tegmental area dopamine neurons. Synapse 2000; 38:305-12. [PMID: 11020233 DOI: 10.1002/1098-2396(20001201)38:3<305::aid-syn9>3.0.co;2-u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of these studies was to establish a rapid in vivo assay for evaluating potential "cocaine antagonists," i.e., drugs postulated to block cocaine binding to the dopamine transporter (DAT) without corresponding blockade of dopamine reuptake. The assay is based on the ability of dopamine, and drugs that elevate synaptic dopamine levels, to inhibit the extracellular single unit activities of midbrain dopamine neurons in chloral hydrate-anesthetized rats. As expected, cocaine itself (0.06-16 mg/kg, i.v.) caused a dose-dependent inhibition of firing of both substantia nigra and ventral tegmental area (VTA) dopamine neurons, but had a significantly higher potency on VTA than nigral dopamine cells (ED(50)'s 1.2 and 8.8 mg/kg, respectively). VTA cells were also inhibited to a greater extent (to 4.7 +/- 4.5% vs. 41.3 +/- 6.3% of baseline rates at 16 mg/kg, respectively). We next evaluated GBR12909, a piperazine analog promoted as a "cocaine antagonist" because of its ability to bind with high affinity to the DAT, while only modestly elevating extracellular dopamine levels. The agonist- and antagonist-like properties of GBR12909 were evaluated on only VTA dopamine cells since these neurons were more fully inhibited by cocaine and have been implicated in its rewarding effects. Given alone, GBR12909 exhibited modest "cocaine-like" activity insofar as it partially inhibited VTA dopamine neurons (to 59.0 +/- 4.6% of baseline at 8 mg/kg). However, consistent with an antagonist profile, pretreatment with a low (0.5 mg/kg) dose of GBR12909, which depressed firing only slightly, resulted in a >2-fold rightward shift in the dose-response curve to cocaine (ED(50) 2.6 mg/kg). We conclude that electrophysiological testing of putative "anti-cocaine" drugs for their abilities to inhibit the firing of VTA dopamine neurons, and to block their inhibitory responses to cocaine, may provide a rapid in vivo screen for compounds expected to behave as functional cocaine antagonists in the dopamine reward system.
Collapse
Affiliation(s)
- M A Hinerth
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
64
|
Abstract
The dopamine transporter mediates uptake of dopamine into neurons and is a major target for various pharmacologically active drugs and environmental toxins. Since its cloning, much information has been obtained regarding its structure and function. Binding domains for dopamine and various blocking drugs including cocaine are likely formed by interactions with multiple amino acid residues, some of which are separate in the primary structure but lie close together in the still unknown tertiary structure. Chimera and site-directed mutagenesis studies suggest the involvement of both overlapping and separate domains in the interaction with substrates and blockers, whereas recent findings with sulfhydryl reagents selectively targeting cysteine residues support a role for conformational changes in the binding of blockers such as cocaine. The dopamine transporter can also operate in reverse, i.e. in an efflux mode, and recent mutagenesis experiments show different structural requirements for inward and outward transport. Strong evidence for dopamine transporter domains selectively influencing binding of dopamine or cocaine analogs has not yet emerged, although the development of a cocaine antagonist at the level of the transporter remains a possibility.
Collapse
Affiliation(s)
- N Chen
- Department of Biomedical and Therapeutic Sciences, College of Medicine, University of Illinois, Box 1649, Peoria, IL 61656, USA
| | | |
Collapse
|
65
|
Madras BK, Miller GM, Meltzer PC, Brownell AL, Fischman AJ. Molecular and regional targets of cocaine in primate brain: liberation from prosaic views. Addict Biol 2000; 5:351-9. [PMID: 20575852 DOI: 10.1111/j.1369-1600.2000.tb00202.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract The neurochemical processes underlying initial exposure to and reinforcing effects of cocaine are not fully understood. An enduring hypothesis of cocaine addiction is based on an underlying premise that dopamine is the acute mediator of the rewarding effects of cocaine and this nefarious role extends through each phase of addiction. Cocaine is an effective inhibitor of the dopamine transporter, thereby increasing extracellular dopamine levels. Euphoria is attributed to the cocaine-induced inundation of extracellular dopamine and the withdrawal and craving for cocaine after cessation of drug use are attributed to neuroadaptive processes to dampen dopaminergic transmission. Nevertheless, our understanding of the role of dopamine transporter blockade in cocaine addiction is not fully understood. The objectives of this laboratory are to investigate the primary targets of cocaine in the brain, those associated with the initial phase of cocaine use and that can provide leads for investigating neuroadaptive processes that may trigger addiction. Two prosaic views of the neurobiology of cocaine addiction are examined in this review. The first is based on the assumption that the dopamine transporter contributes significantly to the stimulant and reinforcing effects of cocaine, and focuses on how stimulant drugs of abuse such as cocaine bind to the dopamine transporter. We present evidence that the widespread assumption that dopamine transporter blockers require an amine nitrogen in their structure is incorrect as non-amines are effective blockers of transporters. The second prosaic view, based on the assumption that the dopamine transporter fulfills a paramount role in cocaine addiction, is assessed in view of mounting evidence that the transporter may not account for the full spectrum of cocaine's effects. Other targets of cocaine, which may be relevant to the acute and chronic effects of cocaine, are presented.
Collapse
Affiliation(s)
- B K Madras
- Department of Psychiatry, Harvard Medical School, New England Regional Primate Research Center, Southborough, MA, USA
| | | | | | | | | |
Collapse
|
66
|
Ponce J, Biton B, Benavides J, Avenet P, Aragon C. Transmembrane domain III plays an important role in ion binding and permeation in the glycine transporter GLYT2. J Biol Chem 2000; 275:13856-62. [PMID: 10788509 DOI: 10.1074/jbc.275.18.13856] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal glycine transporter GLYT2 takes up glycine from the extracellular space by an electrogenic process where this neurotransmitter is co-transported with sodium and chloride ions. We report in this paper that tyrosine at position 289 of GLYT2a is crucial for ion coupling, glycine affinity and sodium selectivity, stressing the essential role played by this residue of transmembrane domain III in the mechanism of transport. Substitution to tryptophan (Y289W), phenylalanine (Y289F), or serine (Y289S), renders transporters unable to catalyze glycine uptake. Measurements of glycine evoked steady-state currents in transfected HEK-293 cells reveal EC(50) values for glycine 17-fold (Y289F) and 45-fold (Y289S) higher than that of the wild type transporter. Sodium dependence is severely altered in tyrosine 289 mutants, both at the level of apparent affinity and cooperativity, with the more dramatic change corresponding to the less conservative substitution (Y289S). Accordingly, sodium selectivity is gradually lost in Y289F and Y289S mutants, and chloride dependence of glycine evoked currents is markedly decreased in Y289F and Y289S mutants. In the absence of three-dimensional information from these transporters, these results provide experimental evidence supporting the hypothesis of transmembrane domain III being part of a common permeation pathway for substrate and co-transported ions.
Collapse
Affiliation(s)
- J Ponce
- Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
67
|
Li LB, Reith ME. Interaction of Na+, K+, and Cl- with the binding of amphetamine, octopamine, and tyramine to the human dopamine transporter. J Neurochem 2000; 74:1538-52. [PMID: 10737611 DOI: 10.1046/j.1471-4159.2000.0741538.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little information is available on the role of Na+, K+, and Cl- in the initial event of uptake of substrates by the dopamine transporter, i.e., the recognition step. In this study, substrate recognition was studied via the inhibition of binding of [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)[3H]tropane], a cocaine analogue, to the human dopamine transporter in human embryonic kidney 293 cells. D-Amphetamine was the most potent inhibitor, followed by p-tyramine and, finally, dl-octopamine; respective affinities at 150 mM Na+ and 140 mM Cl- were 5.5, 26, and 220 microM. For each substrate, the decrease in the affinity with increasing [K+] could be fitted to a competitive model involving the same inhibitory cation site (site 1) overlapping with the substrate domain as reported by us previously for dopamine. K+ binds to this site with an apparent affinity, averaged across substrates, of 9, 24, 66, 99, and 134 mM at 2, 10, 60, 150, and 300 mM Na+, respectively. In general, increasing [Na+] attenuated the inhibitory effect of K+ in a manner that deviated from linearity, which could be modeled by a distal site for Na+, linked to site 1 by negative allosterism. The presence of Cl- did not affect the binding of K+ to site 1. Models assuming low binding of substrate in the absence of Na+ did not provide fits as good as models in which substrate binds in the absence of Na+ with appreciable affinity. The binding of dl-octopamine and p-tyramine was strongly inhibited by Na+, and stimulated by Cl- only at high [Na+] (300 mM), consonant with a stimulatory action of Cl- occurring through Na+ disinhibition.
Collapse
Affiliation(s)
- L B Li
- Department of Biology, Illinois State University, Normal, USA
| | | |
Collapse
|
68
|
Lin Z, Itokawa M, Uhl GR. Dopamine transporter proline mutations influence dopamine uptake, cocaine analog recognition, and expression. FASEB J 2000; 14:715-28. [PMID: 10744628 DOI: 10.1096/fasebj.14.5.715] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analyses of mutation effects can aid in understanding how large proteins act. The dopamine transporter (DAT) mediates complex actions in recognizing cocaine and in recognizing and translocating dopamine, sodium, and chloride. DAT proline residues, especially those in transmembrane (TM) domains, are good candidates for involvement in these DAT actions. We now report production of mutants substituting alanine and/or glycine residues for 16 prolines located in or near putative DAT TM domains. We examine effects of these modifications on DAT expression, dopamine uptake, and cocaine analog binding. Mutants in prolines located in five DAT TM domains and four connecting loops alter apparent DAT membrane targeting. Five mutations decrease dopamine affinities more than threefold without significantly decreasing cocaine analog affinities. One decreases cocaine analog affinity without decreasing dopamine affinity. Two mutations decrease affinities for both dopamine and cocaine analog. P101 is especially implicated in dopamine uptake. Alanine substitution for this proline yields dopamine V(max) values of less than 3% of wild-type values despite dopamine affinities more than fourfold higher than wild-type and normal Na(+) and Cl(-) dependence. These DAT proline mutants identify DAT regions likely for dopamine translocation and for recognition of dopamine and cocaine.
Collapse
Affiliation(s)
- Z Lin
- Molecular Neurobiology Branch, NIDA-IRP, National Institutes of Health, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|