51
|
Horenstein AL, Morandi F, Bracci C, Pistoia V, Malavasi F. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma. Immunol Lett 2018; 205:40-50. [PMID: 30447309 DOI: 10.1016/j.imlet.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Human myeloma cells grow in a hypoxic acidic niche in the bone marrow. Cross talk among cellular components of this closed niche generates extracellular adenosine, which promotes tumor cell survival. This is achieved through the binding of adenosine to purinergic receptors into complexes that function as an autocrine/paracrine signal factor with immune regulatory activities that i) down-regulate the functions of most immune effector cells and ii) enhance the activity of cells that suppress anti-tumor immune responses, thus facilitating the escape of malignant myeloma cells from immune surveillance. Here we review recent findings confirming that the dominant phenotype for survival of tumor cells is that where the malignant cells have been metabolically reprogrammed for the generation of lactic acidosis in the bone marrow niche. Adenosine triphosphate and nicotinamide-adenine dinucleotide extruded from tumor cells, along with cyclic adenosine monophosphate, are the main intracellular energetic/messenger molecules that serve as leading substrates in the extracellular space for membrane-bound ectonucleotidases metabolizing purine nucleotides to signaling adenosine. Within this mechanistic framework, the adenosinergic substrate conversion can vary significantly according to the metabolic environment. Indeed, the neoplastic expansion of plasma cells exploits both enzymatic networks and hypoxic acidic conditions for migrating and homing to a protected niche and for evading the immune response. The expression of multiple specific adenosine receptors in the niche completes the profile of a complex regulatory framework whose signals modify multiple myeloma and host immune responses.
Collapse
Affiliation(s)
- A L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy.
| | - F Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - C Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| | - V Pistoia
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| |
Collapse
|
52
|
Brunnbauer P, Leder A, Kamali C, Kamali K, Keshi E, Splith K, Wabitsch S, Haber P, Atanasov G, Feldbrügge L, Sauer IM, Pratschke J, Schmelzle M, Krenzien F. The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids. Sci Rep 2018; 8:16110. [PMID: 30382125 PMCID: PMC6208386 DOI: 10.1038/s41598-018-34350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD), a prominent member of the pyridine nucleotide family, plays a pivotal role in cell-oxidation protection, DNA repair, cell signalling and central metabolic pathways, such as beta oxidation, glycolysis and the citric acid cycle. In particular, extracellular NAD+ has recently been demonstrated to moderate pathogenesis of multiple systemic diseases as well as aging. Herein we present an assaying method, that serves to quantify extracellular NAD+ in human heparinised plasma and exhibits a sensitivity ranging from the low micromolar into the low nanomolar domain. The assay achieves the quantification of extracellular NAD+ by means of a two-step enzymatic cycling reaction, based on alcohol dehydrogenase. An albumin modified revised simulated body fluid was employed as standard matrix in order to optimise enzymatic activity and enhance the linear behaviour and sensitivity of the method. In addition, we evaluated assay linearity, reproducibility and confirmed long-term storage stability of extracellular NAD+ in frozen human heparinised plasma. In summary, our findings pose a novel standardised method suitable for high throughput screenings of extracellular NAD+ levels in human heparinised plasma, paving the way for new clinical discovery studies.
Collapse
Affiliation(s)
- Philipp Brunnbauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Annekatrin Leder
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Can Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kaan Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Eriselda Keshi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Katrin Splith
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Simon Wabitsch
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Philipp Haber
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Georgi Atanasov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Linda Feldbrügge
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Igor M Sauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Johann Pratschke
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Moritz Schmelzle
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Felix Krenzien
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany.
| |
Collapse
|
53
|
Distribution and morphology of baroreceptors in the rat carotid sinus as revealed by immunohistochemistry for P2X3 purinoceptors. Histochem Cell Biol 2018; 151:161-173. [PMID: 30244428 DOI: 10.1007/s00418-018-1734-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
The morphological characteristics of baroreceptors in the rat carotid sinus were reevaluated by whole-mount preparations with immunohistochemistry for P2X3 purinoceptors using confocal scanning laser microscopy. Immunoreactive nerve endings for P2X3 were distributed in the internal carotid artery proximal to the carotid bifurcation, particularly in the region opposite the carotid body. Some pre-terminal axons in nerve endings were ensheathed by myelin sheaths immunoreactive for myelin basic protein. Pre-terminal axons ramified into several branches that extended two-dimensionally in every direction. The axon terminals of P2X3-immunoreactive nerve endings were flat and leaf-like in shape, and extended hederiform- or knob-like protrusions in the adventitial layer. Some axons and axon terminals with P2X3 immunoreactivity were also immunoreactive for P2X2, and axon terminals were closely surrounded by terminal Schwann cells with S100 or S100B immunoreactivity. These results revealed the detailed morphology of P2X3-immunoreactive nerve endings and suggested that these endings respond to a mechanical deformation of the carotid sinus wall with their flat leaf-like terminals.
Collapse
|
54
|
Lei J, Zhong W, Almalki A, Zhao H, Arif H, Rozzah R, Al Yousif G, Alhejaily N, Wu D, McLane M, Burd I. Maternal Glucose Supplementation in a Murine Model of Chorioamnionitis Alleviates Dysregulation of Autophagy in Fetal Brain. Reprod Sci 2018; 25:1175-1185. [PMID: 29017418 PMCID: PMC6346301 DOI: 10.1177/1933719117734321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fetal brain injury induced by intrauterine inflammation is a major risk factor for adverse neurological outcomes, including cerebral palsy, cognitive dysfunction, and behavioral disabilities. There are no adequate therapies for neuronal protection to reduce fetal brain injury, especially new strategies that may apply promptly and conveniently. In this study, we explored the effect of maternal glucose administration in a mouse model of intrauterine inflammation at term. Our results demonstrated that maternal glucose supplementation significantly increased survival birth rate and improved the neurobehavioral performance of pups exposed to intrauterine inflammation. Furthermore, we demonstrated that maternal glucose administration improved myelination and oligodendrocyte development in offspring exposed to intrauterine inflammation. Though the maternal blood glucose concentration was temporally prevented from decrease induced by intrauterine inflammation, the glucose concentration in fetal brain was not recovered by maternal glucose supplementation. The adenosine triphosphate (ATP) level and autophagy in fetal brain were regulated by maternal glucose supplementation, which may prevent dysregulation of cellular metabolism. Our study is the first to provide evidence for the role of maternal glucose supplementation in the cell survival of fetal brain during intrauterine inflammation and further support the possible medication with maternal glucose treatment.
Collapse
Affiliation(s)
- Jun Lei
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenyu Zhong
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ahmad Almalki
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongxi Zhao
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hattan Arif
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rayyan Rozzah
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ghada Al Yousif
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nader Alhejaily
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Wu
- 2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael McLane
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- 1 Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- 3 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
55
|
Jung D, Alshaikh A, Ratakonda S, Bashir M, Amin R, Jeon S, Stevens J, Sharma S, Ahmed W, Musch M, Hassan H. Adenosinergic signaling inhibits oxalate transport by human intestinal Caco2-BBE cells through the A 2B adenosine receptor. Am J Physiol Cell Physiol 2018; 315:C687-C698. [PMID: 30020825 DOI: 10.1152/ajpcell.00024.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most kidney stones (KS) are composed of calcium oxalate, and small increases in urine oxalate affect the stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 (PAT1) plays a crucial role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and related KS, reflecting the importance of understanding regulation of intestinal oxalate transport. We previously showed that ATP and UTP inhibit oxalate transport by human intestinal Caco2-BBE cells (C2). Since ATP is rapidly degraded to adenosine (ADO), we examined whether intestinal oxalate transport is regulated by ADO. We measured [14C]oxalate uptake in the presence of an outward Cl gradient as an assay of Cl-oxalate exchange activity, ≥49% of which is PAT1-mediated in C2 cells. We found that ADO significantly inhibited oxalate transport by C2 cells, an effect completely blocked by the nonselective ADO receptor antagonist 8- p-sulfophenyltheophylline. ADO also significantly inhibited oxalate efflux by C2 cells, which is important since PAT1 mediates oxalate efflux in vivo. Using pharmacological antagonists and A2B adenosine receptor (A2B AR) siRNA knockdown studies, we observed that ADO inhibits oxalate transport through the A2B AR, phospholipase C, and PKC. ADO inhibits oxalate transport by reducing PAT1 surface expression as shown by biotinylation studies. We conclude that ADO inhibits oxalate transport by lowering PAT1 surface expression in C2 cells through signaling pathways including the A2B AR, PKC, and phospholipase C. Given higher ADO levels and overexpression of the A2B AR in inflammatory bowel disease (IBD), our findings have potential relevance to pathophysiology of IBD-associated hyperoxaluria and related KS.
Collapse
Affiliation(s)
- Daniel Jung
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Altayeb Alshaikh
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | | | - Mohamed Bashir
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Ruhul Amin
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Sohee Jeon
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Jan Stevens
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Sapna Sharma
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Wahaj Ahmed
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Mark Musch
- Department of Medicine, The University of Chicago , Chicago, Illinois
| | - Hatim Hassan
- Department of Medicine, The University of Chicago , Chicago, Illinois
| |
Collapse
|
56
|
Molecular Mechanism of Plant Recognition of Extracellular ATP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:233-253. [PMID: 29064066 DOI: 10.1007/5584_2017_110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine 5'-triphosphate (ATP), a ubiquitously dispersed biomolecule, is not only a major source of biochemical energy for living cells, but also acts as a critical signaling molecule through inter-cellular communication. Recent studies have clearly shown that extracellular ATP is involved in various physiological processes in plants, including root growth, stomata movement, pollen tube development, gravitropism, and abiotic/biotic stress responses. The first plant purinergic receptor for extracellular ATP, DORN1 (the founding member of the P2K family of purinergic receptors), was identified in Arabidopsis thaliana by a forward genetic screen. DORN1 consists of an extracellular lectin domain, transmembrane domain, and serine/threonine kinase, intracellular domain. The predicted structure of the DORN1 extracellular domain revealed putative key ATP binding residues but an apparent lack of sugar binding. In this chapter, we summarize recent studies on the molecular mechanism of plant recognition of extracellular ATP with specific reference to the role of DORN1.
Collapse
|
57
|
Extracellular ATP activates hyaluronan synthase 2 ( HAS2) in epidermal keratinocytes via P2Y 2, Ca 2+ signaling, and MAPK pathways. Biochem J 2018; 475:1755-1772. [PMID: 29626161 DOI: 10.1042/bcj20180054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.
Collapse
|
58
|
Henriquez M, Fonseca M, Perez-Zoghbi JF. Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins. J Physiol 2018; 596:2491-2506. [PMID: 29790164 DOI: 10.1113/jp274731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS We investigated the excitation-contraction coupling mechanisms in small pulmonary veins (SPVs) in rat precision-cut lung slices. We found that SPVs contract strongly and reversibly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced vasoconstriction in SPVs was associated with the stimulation of purinergic P2Y2 receptors in vascular smooth muscle cell, activation of phospholipase C-β and the generation of intracellular Ca2+ oscillations mediated by cyclic Ca2+ release events via the inositol 1,4,5-trisphosphate receptor. Active constriction of SPVs may play an important role in the development of pulmonary hypertension and pulmonary oedema. ABSTRACT The small pulmonary veins (SPVs) may play a role in the development of pulmonary hypertension and pulmonary oedema via active changes in SPV diameter, mediated by vascular smooth muscle cell (VSMC) contraction. However, the excitation-contraction coupling mechanisms during vasoconstrictor stimulation remain poorly understood in these veins. We used rat precision-cut lung slices and phase-contrast and confocal microscopy to investigate dynamic changes in SPV cross-sectional luminal area and intracellular Ca2+ signalling in their VSMCs. We found that the SPV (∼150 μm in diameter) contract strongly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced SPV contraction was fast, concentration-dependent, completely reversible upon ATP washout, and inhibited by purinergic receptor antagonists suramin and AR-C118925 but not by MRS2179. Immunofluorescence showed purinergic P2Y2 receptors expressed in SPV VSMCs. ATP-induced SPV contraction was inhibited by phospholipase Cβ inhibitor U73122 and accompanied by intracellular Ca2+ oscillations in the VSMCs. These Ca2+ oscillations and SPV contraction were inhibited by the inositol 1,4,5-trisphosphate receptor inhibitor 2-APB but not by ryanodine. The results of the present study suggest that ATP-induced vasoconstriction in SPVs is associated with the activation of purinergic P2Y2 receptors in VSMCs and the generation of Ca2+ oscillations.
Collapse
Affiliation(s)
- Mauricio Henriquez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Marcelo Fonseca
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
59
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
60
|
Hou QZ, Sun K, Zhang H, Su X, Fan BQ, Feng HQ. The responses of photosystem II and intracellular ATP production of Arabidopsis leaves to salt stress are affected by extracellular ATP. JOURNAL OF PLANT RESEARCH 2018; 131:331-339. [PMID: 29098479 DOI: 10.1007/s10265-017-0990-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/28/2017] [Indexed: 05/16/2023]
Abstract
Hypertonic salt stress with different concentrations of NaCl increased the levels of extracellular ATP of Arabidopsis leaves. And, hypertonic salt stress decreased the levels of F v /F m (the maximal efficiency of photosystem II), Φ PSII (the photosystem II operating efficiency), qP (photochemical quenching), and intracellular ATP (iATP) production. The treatment with β,γ-methyleneadenosine 5'-triphosphate (AMP-PCP), which can exclude extracellular ATP from its binding sites of extracellular ATP receptors, caused a further decrease in the levels of F v /F m , Φ PSII, qP, and iATP production of the salt-stressed Arabidopsis leaves, while the addition of exogenous ATP rescued the inhibitory effects of AMP-PCP on Φ PSII , qP, and iATP production under hypertonic salt stress. Under hypertonic salt stress, the values of F v /F m , Φ PSII , qP, and iATP production were lower in the dorn 1-3 mutant than in the wild-type plants. These results indicate that the responses of photosystem II and intracellular ATP production to salt stress could be affected by extracellular ATP.
Collapse
Affiliation(s)
- Qin-Zheng Hou
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Kun Sun
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Hui Zhang
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Xue Su
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Bao-Qiang Fan
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China
| | - Han-Qing Feng
- Department of Biology Science, College of Life Sciences, Northwest Normal University, Anning East Road, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
61
|
Salem M, Tremblay A, Pelletier J, Robaye B, Sévigny J. P2Y 6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells. Front Pharmacol 2018. [PMID: 29541027 PMCID: PMC5835513 DOI: 10.3389/fphar.2018.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP-2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 ligand UDP induced expression and secretion of CXCL10. For the other studies, we took advantage of mice deficient in P2Y6 (P2ry6-/-). Similar expression levels of P2Y1, P2Y2, P2X2, P2X4, and A2A were detected in P2ry6-/- and WT IEC. Agonists of TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion of CXCL10 more prominently in P2ry6-/- IEC than in WT IEC. CXCL10 expression and secretion induced by poly(I:C) in both P2ry6-/- and WT IEC were inhibited by general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4. Neither adenosine nor an A2A antagonist had an effect on CXCL10 expression and secretion. Macrophage chemotaxis was induced by the supernatant of poly(I:C)-treated IEC which was consistent with the level of CXCL10 secreted. Finally, the non-nucleotide agonist FGF2 induced MMP9 mRNA expression also at a higher level in P2ry6-/- IEC than in WT IEC. In conclusion, extracellular nucleotides regulate CXCL10 expression and secretion by IEC. In the absence of P2Y6, these effects are modulated by other P2 receptors also present on IEC. These data suggest that the presence of P2Y6 regulates chemokine secretion and may also regulate IEC homeostasis.
Collapse
Affiliation(s)
- Mabrouka Salem
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|
62
|
Abstract
The skin is the third most zinc (Zn)-abundant tissue in the body. The skin consists of the epidermis, dermis, and subcutaneous tissue, and each fraction is composed of various types of cells. Firstly, we review the physiological functions of Zn and Zn transporters in these cells. Several human disorders accompanied with skin manifestations are caused by mutations or dysregulation in Zn transporters; acrodermatitis enteropathica (Zrt-, Irt-like protein (ZIP)4 in the intestinal epithelium and possibly epidermal basal keratinocytes), the spondylocheiro dysplastic form of Ehlers-Danlos syndrome (ZIP13 in the dermal fibroblasts), transient neonatal Zn deficiency (Zn transporter (ZnT)2 in the secretory vesicles of mammary glands), and epidermodysplasia verruciformis (ZnT1 in the epidermal keratinocytes). Additionally, acquired Zn deficiency is deeply involved in the development of some diseases related to nutritional deficiencies (acquired acrodermatitis enteropathica, necrolytic migratory erythema, pellagra, and biotin deficiency), alopecia, and delayed wound healing. Therefore, it is important to associate the existence of mutations or dysregulation in Zn transporters and Zn deficiency with skin manifestations.
Collapse
|
63
|
Kutryb-Zajac B, Mateuszuk L, Zukowska P, Jasztal A, Zabielska MA, Toczek M, Jablonska P, Zakrzewska A, Sitek B, Rogowski J, Lango R, Slominska EM, Chlopicki S, Smolenski RT. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition. Cardiovasc Res 2018; 112:590-605. [PMID: 28513806 DOI: 10.1093/cvr/cvw203] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023] Open
Abstract
Aims Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Methods and results Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular inflammation and improved endothelial function. Conclusions This study highlights the importance of extracellular nucleotides and adenosine metabolism in the atherosclerotic vessel in both experimental and clinical setting. The increased eADA activity marks an early stage of atherosclerosis, contributes to its progression and could represent a novel target for therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Romuald Lango
- Department of Cardiac Anaesthesiology, Chair of Anaesthesiology and Intensive Care, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
64
|
Moehring F, Cowie AM, Menzel AD, Weyer AD, Grzybowski M, Arzua T, Geurts AM, Palygin O, Stucky CL. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 2018; 7:31684. [PMID: 29336303 PMCID: PMC5777822 DOI: 10.7554/elife.31684] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022] Open
Abstract
The first point of our body’s contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions. The skin is the largest sensory organ of the body, and the first point of contact with the outside world. Whether it is being pinched or caressed, the skin’s sense of touch informs organisms about their surroundings and allows them to react appropriately. Nerve cells present in the skin capture information about touch and transmit it to the brain where it is decoded. However, there are many other types of cells in the skin besides nerve cells. The role that these other skin cells play in perceiving non-painful and painful touch is still unclear. Moehring et al. now report how the skin cells that form 95% of the most outer layer of the skin are involved in detecting touch. In mutant mice whose cells can be ‘switched off’ by a certain light, artificially deactivating these cells makes the animals less able to respond to tactile stimuli. Further experiments show that when pressure is applied onto the skin, the surface skin cells release a chemical messenger, which then binds specifically to the nerve cells. When the messaging molecule is experimentally destroyed or prevented from attaching to the nerve cell, the mice react less to non-painful and painful touch. This means the cells at the surface of the skin detect tactile signals from the environment and then communicate this information to the nerve cells, where it is taken to the brain. Disrupted communication between the cells in the outer layer of the skin and the nerve cells is found in painful and itchy skin conditions such as eczema and psoriasis. Knowing how these two types of cells normally work together may help with finding new pain and itch treatments for these skin disorders.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Ashley M Cowie
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Anthony D Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Andy D Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Thiago Arzua
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
65
|
Grubišić V, Verkhratsky A, Zorec R, Parpura V. Enteric glia regulate gut motility in health and disease. Brain Res Bull 2018; 136:109-117. [PMID: 28363846 PMCID: PMC5620110 DOI: 10.1016/j.brainresbull.2017.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
The enteric nervous system, often referred to as the second brain, is the largest assembly of neurons and glia outside the central nervous system. The enteric nervous system resides within the wall of the digestive tract and regulates local gut reflexes involved in gastrointestinal motility and fluid transport; these functions can be accomplished in the absence of the extrinsic innervation from the central nervous system. It is neurons and their circuitry within the enteric nervous system that govern the gut reflexes. However, it is becoming clear that enteric glial cells are also actively involved in this process through the bidirectional signaling with neurons and other cells in the gut wall. We synthesize the recently discovered modulatory roles of enteric gliotransmission in gut motility and provide our perspective for future lines of research.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; Neuroscience Program, Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Alexei Verkhratsky
- The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia; Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
66
|
Mancini JE, Ortiz G, Potilinstki C, Salica JP, Lopez ES, Croxatto JO, Gallo JE. Possible neuroprotective role of P2X2 in the retina of diabetic rats. Diabetol Metab Syndr 2018; 10:31. [PMID: 29682007 PMCID: PMC5898034 DOI: 10.1186/s13098-018-0332-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Purinergic receptors are expressed in different tissues including the retina. These receptors are involved in processes like cell growth, proliferation, activation and survival. ATP is the major activator of P2 receptors. In diabetes, there is a constant ATP production and this rise of ATP leads to a persistent activation of purinergic receptors. Antagonists of these receptors are used to evaluate their inhibition effects. Recently, the P2X2 has been reported to have a neuroprotective role. METHODS We carried out a study in groups of diabetic and non-diabetic rats (N = 5) treated with intraperitoneal injections of PPADS, at 9 and 24 weeks of diabetes. Control group received only the buffer. Animals were euthanized at 34 weeks of diabetes or at a matching age. Rat retinas were analyzed with immunohistochemistry and western blot using antibodies against GFAP, P2X2, P2Y2 and VEGF-A. RESULTS Diabetic animals treated with PPADS disclosed a much more extended staining of VEGF-A than diabetics without treatment. A lower protein expression of VEGF-A was found at the retina of diabetic animals without treatment of purinergic antagonists compared to diabetics with the antagonist treatment. Inhibition of P2X2 receptor by PPADS decreases cell death in the diabetic rat retina. CONCLUSION Results might be useful for better understanding the pathophysiology of diabetic retinopathy.
Collapse
Affiliation(s)
- Jorge E. Mancini
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Gustavo Ortiz
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Constanza Potilinstki
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Juan P. Salica
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Emiliano S. Lopez
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - J. Oscar Croxatto
- Department of Ocular Pathology, Fundación Oftalmlógica Argentina “Jorge Malbran”, Buenos Aires, Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| | - Juan E. Gallo
- Department of Ophthalmology, Nanomedicine & Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Juan D. Perón 1500, B1629AHJ Pilar, Buenos Aires Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (UA-CONICET), Pilar, Buenos Aires, Argentina
| |
Collapse
|
67
|
Hou QZ, Ye GJ, Wang RF, Jia LY, Liang JY, Feng HQ, Wen J, Shi DL, Wang QW. Changes by cadmium stress in lipid peroxidation and activities of lipoxygenase and antioxidant enzymes in Arabidopsis are associated with extracellular ATP. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
68
|
ATP-degrading ENPP1 is required for survival (or persistence) of long-lived plasma cells. Sci Rep 2017; 7:17867. [PMID: 29259245 PMCID: PMC5736562 DOI: 10.1038/s41598-017-18028-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Survival of antibody-secreting plasma cells (PCs) is vital for sustained antibody production. However, it remains poorly understood how long-lived PCs (LLPCs) are generated and maintained. Here we report that ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is preferentially upregulated in bone marrow LLPCs compared with their splenic short-lived counterparts (SLPCs). We studied ENPP1-deficient mice (Enpp1−/−) to determine how the enzyme affects PC biology. Although Enpp1−/− mice generated normal levels of germinal center B cells and plasmablasts in periphery, they produced significantly reduced numbers of LLPCs following immunization with T-dependent antigens or infection with plasmodium C. chabaudi. Bone marrow chimeric mice showed B cell intrinsic effect of ENPP1 selectively on generation of bone marrow as well as splenic LLPCs. Moreover, Enpp1−/− PCs took up less glucose and had lower levels of glycolysis than those of wild-type controls. Thus, ENPP1 deficiency confers an energetic disadvantage to PCs for long-term survival and antibody production.
Collapse
|
69
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
70
|
Conley JM, Radhakrishnan S, Valentino SA, Tantama M. Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor. PLoS One 2017; 12:e0187481. [PMID: 29121644 PMCID: PMC5679667 DOI: 10.1371/journal.pone.0187481] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) is a key purinergic signal that mediates cell-to-cell communication both within and between organ systems. We address the need for a robust and minimally invasive approach to measuring extracellular ATP by re-engineering the ATeam ATP sensor to be expressed on the cell surface. Using this approach, we image real-time changes in extracellular ATP levels with a sensor that is fully genetically-encoded and does not require an exogenous substrate. In addition, the sensor is ratiometric to allow for reliable quantitation of extracellular ATP fluxes. Using live-cell microscopy, we characterize sensor performance when expressed on cultured Neuro2A cells, and we measure both stimulated release of ATP and its clearance by ectonucleotidases. Thus, this proof-of-principle demonstrates a first-generation sensor to report extracellular ATP dynamics that may be useful for studying purinergic signaling in living specimens.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Saranya Radhakrishnan
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Stephen A. Valentino
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
| | - Mathew Tantama
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Science Graduate Program, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
71
|
Yu H, Rao X, Zhang K. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol Res 2017; 205:125-134. [PMID: 28942838 DOI: 10.1016/j.micres.2017.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/23/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Nucleoside diphosphate kinase (Ndk) is a housekeeping enzyme that balances cellular nucleoside triphosphate (NTP) pools by catalyzing the reversible transfer of γ-phosphate from NTPs to nucleoside diphosphates (NDPs). In addition to its fundamental role in nucleotide metabolism, Ndk has roles in protein histidine phosphorylation, DNA cleavage/repair, and gene regulation. Recent studies have also revealed that Ndk secreted from bacteria is important in modulating virulence-associated phenotypes including quorum sensing regulation, type III secretion system activation, and virulence factor production. Moreover, after infection, Ndks released from bacteria are involved in regulating host defense activities, such as cell apoptosis, phagocytosis, and inflammatory responses. Given that Ndk exerts a pleiotropic effect on bacterial virulence and bacteria-host interactions, the biological significance of the bacterial Ndks during infection is intriguing. This review will provide a synopsis of the current knowledge regarding the biological properties and roles of Ndks in regulating bacterial virulence and adaptation and will discuss in depth the biological significance of Ndk during bacteria-host interactions.
Collapse
Affiliation(s)
- Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
72
|
Dominguez-Godinez C, Carracedo G, Pintor J. Diquafosol Delivery from Silicone Hydrogel Contact Lenses: Improved Effect on Tear Secretion. J Ocul Pharmacol Ther 2017; 34:170-176. [PMID: 28700254 DOI: 10.1089/jop.2016.0193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the ability to uptake and to deliver diquafosol from commercial contact lenses (CLs) and its effect on tear secretion. METHODS For both in vitro and in vivo experiments, two commercial silicone hydrogel (Si-Hy) CLs (comfilcon A and balafilcon A) were used. The CLs were soaked overnight for 12 h in diquafosol solution and control CLs were soaked in saline solution (NaCl 0.9%). The CLs were introduced into a new well container with 1 mL of saline solution, and aliquots of 100 μL were extracted at different times during a period of 6 h to measure the diquafosol release. For in vivo experiments, nine male New Zealand white rabbits were used. CLs soaked in diquafosol were inserted in the eye and compared with control CLs and diquafosol topical instillation. Schirmer's tests were performed to evaluate tear secretion and diquafosol release at different times during the 6-h period. RESULTS For in vitro experiments, the largest amount of diquafosol was released during the first 24 h for both CL materials under study, without statistical differences between them (P < 0.05). The topical application showed the maximum release at 1 min after instillation, meanwhile the release from both CL materials was at 30 min of insertion. The effect on tear secretion was higher with CL delivery compared with topical instillation (P < 0.05), being 300 min for both CLs and 90 min for topical application. CONCLUSION The use of CLs increases the residence time of diquafosol on the ocular surface with a concomitant enhancement in tear secretion during longer periods.
Collapse
Affiliation(s)
- Carmen Dominguez-Godinez
- 1 Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 1 Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 2 Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|
73
|
Abstract
ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.
Collapse
|
74
|
Brüser A, Zimmermann A, Crews BC, Sliwoski G, Meiler J, König GM, Kostenis E, Lede V, Marnett LJ, Schöneberg T. Prostaglandin E 2 glyceryl ester is an endogenous agonist of the nucleotide receptor P2Y 6. Sci Rep 2017; 7:2380. [PMID: 28539604 PMCID: PMC5443783 DOI: 10.1038/s41598-017-02414-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/10/2017] [Indexed: 11/10/2022] Open
Abstract
Cyclooxygenase-2 catalyses the biosynthesis of prostaglandins from arachidonic acid but also the biosynthesis of prostaglandin glycerol esters (PG-Gs) from 2-arachidonoylglycerol. Previous studies identified PG-Gs as signalling molecules involved in inflammation. Thus, the glyceryl ester of prostaglandin E2, PGE2-G, mobilizes Ca2+ and activates protein kinase C and ERK, suggesting the involvement of a G protein-coupled receptor (GPCR). To identify the endogenous receptor for PGE2-G, we performed a subtractive screening approach where mRNA from PGE2-G response-positive and -negative cell lines was subjected to transcriptome-wide RNA sequencing analysis. We found several GPCRs that are only expressed in the PGE2-G responder cell lines. Using a set of functional readouts in heterologous and endogenous expression systems, we identified the UDP receptor P2Y6 as the specific target of PGE2-G. We show that PGE2-G and UDP are both agonists at P2Y6, but they activate the receptor with extremely different EC50 values of ~1 pM and ~50 nM, respectively. The identification of the PGE2-G/P2Y6 pair uncovers the signalling mode of PG-Gs as previously under-appreciated products of cyclooxygenase-2.
Collapse
Affiliation(s)
- Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany.
| | - Anne Zimmermann
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Brenda C Crews
- Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Gregory Sliwoski
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232-8725, USA
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Lawrence J Marnett
- Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
75
|
Extracellular ATP is a key modulator of alveolar bone loss in periodontitis. Arch Oral Biol 2017; 81:131-135. [PMID: 28528307 DOI: 10.1016/j.archoralbio.2017.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
Periodontal diseases are initiated by pathogenic bacterial biofilm activity that induces a host inflammatory cells immune response, degradation of dento gingival fibrous tissue and its detachment from root cementum. It is well accepted, that osteoclastic alveolar bone loss is governed exclusively through secretion of proinflammatory cytokines. Nevertheless, our findings suggest that once degradation of collagen fibers by MMPs occurs, a drop of cellular strains cause immediate release of ATP from marginal gingival fibroblasts, cell deformation and influx of Ca+2. Increased extracellular ATP (eATP) by interacting with P2×7 purinoreceptors, present on fibroblasts and osteoblasts, induces generation of receptor activator of nuclear factor kB ligand (RANKL) that further activates osteoclastic alveolar bone resorption and bone loss. In addition, increased eATP levels may amplify inflammation by promoting leukocyte recruitment and NALP3-inflammasome activation via P2×7. Then, the inflammatory cells secrete cytokines, interleukin IL-1, TNF and RANKL that further trigger alveolar bone resorption. Moreover, eATP can be secreted from periodontal bacteria that may further contribute to inflammation and bone loss in periodontitis. It seems therefore, that eATP is a key modulator that initiates the pathway of alveolar bone resorption and bone loss in patients with periodontal disease. In conclusion, we propose that strain release in gingival fibroblasts aligned on collagen fibers, due to activity of MMP, activates release of ATP that triggers the pathway of alveolar bone resorption in periodontitis. We predict that by controlling the eATP interaction with its cellular purinoreceptors will reduce significantly bone loss in periodontitis.
Collapse
|
76
|
Cardouat G, Duparc T, Fried S, Perret B, Najib S, Martinez LO. Ectopic adenine nucleotide translocase activity controls extracellular ADP levels and regulates the F 1-ATPase-mediated HDL endocytosis pathway on hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:832-841. [PMID: 28504211 DOI: 10.1016/j.bbalip.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Ecto-F1-ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F1-ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F1-ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis.
Collapse
Affiliation(s)
- G Cardouat
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - T Duparc
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - S Fried
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - B Perret
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France; Service de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - S Najib
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| | - L O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| |
Collapse
|
77
|
Dynamic regulation of extracellular ATP in Escherichia coli. Biochem J 2017; 474:1395-1416. [PMID: 28246335 DOI: 10.1042/bcj20160879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1-1 µM). Exposure to MST7 and MEL enhanced ATP release by 3-7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6-7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.
Collapse
|
78
|
Canzian J, Fontana BD, Quadros VA, Rosemberg DB. Conspecific alarm substance differently alters group behavior of zebrafish populations: Putative involvement of cholinergic and purinergic signaling in anxiety- and fear-like responses. Behav Brain Res 2017; 320:255-263. [DOI: 10.1016/j.bbr.2016.12.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
|
79
|
Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J. Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Front Pharmacol 2017; 8:48. [PMID: 28275350 PMCID: PMC5321202 DOI: 10.3389/fphar.2017.00048] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
Neuropathic pain is still an extremely important problem in today's medicine because opioids, which are commonly used to reduce pain, have limited efficacy in this type of pathology. Therefore, complementary therapy is needed. Our experiments were performed in rats to evaluate the contribution of the purinergic system, especially P2X4 receptor (P2X4R), in the modulation of glia activation and, consequently, the levels of nociceptive interleukins after chronic constriction injury (CCI) of the right sciatic nerve, a rat model of neuropathic pain. Moreover, we studied how intrathecal (ith.) injection of a P2X4R antagonist Tricarbonyldichlororuthenium (II) dimer (CORM-2) modulates nociceptive transmission and opioid effectiveness in the CCI model. Our results demonstrate that repeated ith. administration of CORM-2 once daily (20 μg/5 μl, 16 and 1 h before CCI and then daily) for eight consecutive days significantly reduced pain-related behavior and activation of both spinal microglia and/or astroglia induced by CCI. Moreover, even a single administration of CORM-2 on day 7 after CCI attenuated mechanical and thermal hypersensitivity as efficiently as morphine and buprenorphine. In addition, using Western blot, we have shown that repeated ith. administration of CORM-2 lowers the CCI-elevated level of MMP-9 and pronociceptive interleukins (IL-1β, IL-18, IL-6) in the dorsal L4-L6 spinal cord and/or DRG. Furthermore, in parallel, CORM-2 upregulates spinal IL-1Ra; however, it does not influence other antinociceptive factors, IL-10 and IL-18BP. Additionally, based on our biochemical results, we hypothesize that p38MAPK, ERK1/2 and PI3K/Akt but not the NLRP3/Caspase-1 pathway are partly involved in the CORM-2 analgesic effects in rat neuropathic pain. Our data provide new evidence that P2X4R may indeed play a significant role in neuropathic pain development by modulating neuroimmune interactions in the spinal cord and DRG, suggesting that its blockade may have potential therapeutic utility.
Collapse
Affiliation(s)
- Agnieszka M Jurga
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Barbara Przewlocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| |
Collapse
|
80
|
Hyoju SK, Morrison S, Gul S, Gharedaghi MH, Mussa M, Najibi M, Economopoulos KP, Hamarneh SR, Hodin RA. Intestinal alkaline phosphatase decreases intraperitoneal adhesion formation. J Surg Res 2017; 208:84-92. [DOI: 10.1016/j.jss.2016.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
|
81
|
Silkin YA, Silkina EN. The role of ecto-ATPases of erythrocyte plasma membrane in hemodynamics of fishes. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017010094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation. Front Neurosci 2016; 10:564. [PMID: 28066160 PMCID: PMC5165017 DOI: 10.3389/fnins.2016.00564] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s) involved in EC cell "mechanosensation" and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are "mechanosensors" that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The "purinergic hypothesis" is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B-Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.
Collapse
Affiliation(s)
- Andromeda Linan-Rico
- Department of Anesthesiology, Wexner Medical Center at Ohio State UniversityColumbus, OH, USA; CONACYT-Centro Universitario de Investigaciones Biomedicas, University of ColimaColima, Mexico
| | - Fernando Ochoa-Cortes
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Suren Soghomonyan
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Alix Zuleta-Alarcon
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Vincenzo Coppola
- SBS-Cancer Biology and Genetics, Ohio State University Columbus, OH, USA
| | - Fievos L Christofi
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| |
Collapse
|
83
|
Purinergic signaling in schistosomal infection. Biomed J 2016; 39:316-325. [PMID: 27884378 PMCID: PMC6138794 DOI: 10.1016/j.bj.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 01/06/2023] Open
Abstract
Human schistosomiasis is a chronic inflammatory disease caused by blood fluke worms belonging to the genus Schistosoma. Health metrics indicate that the disease is related to an elevated number of years lost-to-disability and years lost-to-life. Schistosomiasis is an intravascular disease that is related to a Th1 and Th2 immune response polarization, and the degree of polarization affects the outcome of the disease. The purinergic system is composed of adenosine and nucleotides acting as key messenger molecules. Moreover, nucleotide-transforming enzymes and cell-surface purinergic receptors are obligatory partners of this purinergic signaling. In mammalian cells, purinergic signaling modulates innate immune responses and inflammation among other functions; conversely purinergic signaling may also be modulated by inflammatory mediators. Moreover, schistosomes also express some enzymes of the purinergic system, and it is possible that worms modulate host purinergic signaling. Current data obtained in murine models of schistosomiasis support the notion that the host purinergic system is altered by the disease. The dysfunction of adenosine receptors, metabotropic P2Y and ionotropic P2X7 receptors, and NTPDases likely contributes to disease morbidity.
Collapse
|
84
|
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC PLANT BIOLOGY 2016. [PMID: 27782807 DOI: 10.1186/s12870-016-0921-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
85
|
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC PLANT BIOLOGY 2016; 16:232. [PMID: 27782807 PMCID: PMC5080799 DOI: 10.1186/s12870-016-0921-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/19/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853 USA
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853 USA
| |
Collapse
|
86
|
Li Z, Chakraborty S, Xu G. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa. Acta Crystallogr F Struct Biol Commun 2016; 72:782-787. [PMID: 27710944 PMCID: PMC5053164 DOI: 10.1107/s2053230x16014278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022] Open
Abstract
Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses in Arabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein, Camelina sativa lectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space group C222 or C2221, with unit-cell parameters a = 94.7, b = 191.5, c = 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Molecular and Structural Biochemistry, North Carolina State University, 26 Polk Hall, Raleigh, NC 27695, USA
| | - Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, 26 Polk Hall, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, 26 Polk Hall, Raleigh, NC 27695, USA
| |
Collapse
|
87
|
Burm SM, Zuiderwijk-Sick EA, Weert PM, Bajramovic JJ. ATP-induced IL-1β secretion is selectively impaired in microglia as compared to hematopoietic macrophages. Glia 2016; 64:2231-2246. [PMID: 27641912 DOI: 10.1002/glia.23059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
Under stressful conditions nucleotides are released from dying cells into the extracellular space, where they can bind to purinergic P2X and P2Y receptors. High concentrations of extracellular ATP in particular induce P2X7-mediated signaling, which leads to inflammasome activation. This in turn leads to the processing and secretion of pro-inflammatory cytokines, like interleukin (IL)-1β. During neurodegenerative diseases, innate immune responses are shaped by microglia and we have previously identified microglia-specific features of inflammasome-mediated responses. Here, we compared ATP-induced IL-1β secretion in primary rhesus macaque microglia and bone marrow-derived macrophages (BMDM). We assessed the full expression profile of P2 receptors and characterized the induction and modulation of IL-1β secretion by extracellular nucleotides. Microglia secreted significantly lower levels of IL-1β in response to ATP when compared to BMDM. We demonstrate that this is not due to differences in sensitivity, kinetics or expression of ATP-processing enzymes, but rather to differences in purinergic receptor expression levels and usage. Using a combined approach of purinergic receptor agonists and antagonists, we demonstrate that ATP-induced IL-1β secretion in BMDM was fully dependent on P2X7 signaling, whereas in microglia multiple purinergic receptors were involved, including P2X7 and P2X4. These cell type-specific features of conserved innate immune responses may reflect adaptations to the vulnerable CNS microenvironment. GLIA 2016;64:2231-2246.
Collapse
Affiliation(s)
- Saskia Maria Burm
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | | | - Paola Massiel Weert
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
88
|
Horiuchi K, Tohmonda T, Morioka H. The unfolded protein response in skeletal development and homeostasis. Cell Mol Life Sci 2016; 73:2851-69. [PMID: 27002737 PMCID: PMC11108572 DOI: 10.1007/s00018-016-2178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts and chondrocytes produce a large number of extracellular matrix proteins to generate and maintain the skeletal system. To cope with their functions as secretory cells, these cells must acquire a considerable capacity for protein synthesis and also the machinery for the quality-control and transport of newly synthesized secreted proteins. The unfolded protein response (UPR) plays a crucial role during the differentiation of these cells to achieve this goal. Unexpectedly, however, studies in the past several years have revealed that the UPR has more extensive functions in skeletal development than was initially assumed, and the UPR critically orchestrates many facets of skeletal development and homeostasis. This review focuses on recent findings on the functions of the UPR in the differentiation of osteoblasts, chondrocytes, and osteoclasts. These findings may have a substantial impact on our understanding of bone metabolism and also on establishing treatments for congenital and acquired skeletal disorders.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takahide Tohmonda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
89
|
Zhang PP, Zhang G, Zhou W, Weng SJ, Yang XL, Zhong YM. Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells. Sci Rep 2016; 6:28938. [PMID: 27357477 PMCID: PMC4928062 DOI: 10.1038/srep28938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022] Open
Abstract
ATP modulates voltage- and ligand-gated channels in the CNS via the activation of ionotropic P2X and metabotropic P2Y receptors. While P2Y receptors are expressed in retinal neurons, the function of these receptors in the retina is largely unknown. Using whole-cell patch-clamp techniques in rat retinal slice preparations, we demonstrated that ATP suppressed glycine receptor-mediated currents of OFF type ganglion cells (OFF-GCs) dose-dependently, and the effect was in part mediated by P2Y1 and P2Y11, but not by P2X. The ATP effect was abolished by intracellular dialysis of a Gq/11 protein inhibitor and phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor, but not phosphatidylcholine (PC)-PLC inhibitor. The ATP effect was accompanied by an increase in [Ca(2+)]i through the IP3-sensitive pathway and was blocked by intracellular Ca(2+)-free solution. Furthermore, the ATP effect was eliminated in the presence of PKC inhibitors. Neither PKA nor PKG system was involved. These results suggest that the ATP-induced suppression may be mediated by a distinct Gq/11/PI-PLC/IP3/Ca(2+)/PKC signaling pathway, following the activation of P2Y1,11 and other P2Y subtypes. Consistently, ATP suppressed glycine receptor-mediated light-evoked inhibitory postsynaptic currents of OFF-GCs. These results suggest that ATP may modify the ON-to-OFF crossover inhibition, thus changing action potential patterns of OFF-GCs.
Collapse
Affiliation(s)
- Ping-Ping Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Gong Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Wei Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
90
|
Leal Denis MF, Alvarez HA, Lauri N, Alvarez CL, Chara O, Schwarzbaum PJ. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes. PLoS One 2016; 11:e0158305. [PMID: 27355484 PMCID: PMC4927150 DOI: 10.1371/journal.pone.0158305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.
Collapse
Affiliation(s)
- M. Florencia Leal Denis
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - H. Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Natalia Lauri
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - Cora L. Alvarez
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
| | - Osvaldo Chara
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden (TUD), Dresden, Germany
| | - Pablo J. Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas “Prof. A. C. Paladini”, Universidad de Buenos Aires, CONICET, FFyB, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
91
|
Abstract
Focusing on the recent literature (since 2000), this review outlines the main synthetic approaches for the preparation of 5'-mono-, 5'-di-, and 5'-triphosphorylated nucleosides, also known as nucleotides, as well as several derivatives, namely, cyclic nucleotides and dinucleotides, dinucleoside 5',5'-polyphosphates, sugar nucleotides, and nucleolipids. Endogenous nucleotides and their analogues can be obtained enzymatically, which is often restricted to natural substrates, or chemically. In chemical synthesis, protected or unprotected nucleosides can be used as the starting material, depending on the nature of the reagents selected from P(III) or P(V) species. Both solution-phase and solid-support syntheses have been developed and are reported here. Although a considerable amount of research has been conducted in this field, further work is required because chemists are still faced with the challenge of developing a universal methodology that is compatible with a large variety of nucleoside analogues.
Collapse
Affiliation(s)
- Béatrice Roy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Anaïs Depaix
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
92
|
Ogawa Y, Kawamura T, Shimada S. Zinc and skin biology. Arch Biochem Biophys 2016; 611:113-119. [PMID: 27288087 DOI: 10.1016/j.abb.2016.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Of all tissues, the skin has the third highest abundance of zinc in the body. In the skin, the zinc concentration is higher in the epidermis than in the dermis, owing to a zinc requirement for the active proliferation and differentiation of epidermal keratinocytes. Here we review the dynamics and functions of zinc in the skin as well as skin disorders associated with zinc deficiency, zinc finger domain-containing proteins, and zinc transporters. Among skin disorders associated with zinc deficiency, acrodermatitis enteropathica is a disorder caused by mutations in the ZIP4 transporter and subsequent zinc deficiency. The triad acrodermatitis enteropathica is characterized by alopecia, diarrhea, and skin lesions in acral, periorificial, and anogenital areas. We highlight the underlying mechanism of the development of acrodermatitis because of zinc deficiency by describing our new findings. We also discuss the accumulating evidence on zinc deficiency in alopecia and necrolytic migratory erythema, which is typically associated with glucagonomas.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| |
Collapse
|
93
|
Kauffenstein G, Tamareille S, Prunier F, Roy C, Ayer A, Toutain B, Billaud M, Isakson BE, Grimaud L, Loufrani L, Rousseau P, Abraham P, Procaccio V, Monyer H, de Wit C, Boeynaems JM, Robaye B, Kwak BR, Henrion D. Central Role of P2Y6 UDP Receptor in Arteriolar Myogenic Tone. Arterioscler Thromb Vasc Biol 2016; 36:1598-606. [PMID: 27255725 DOI: 10.1161/atvbaha.116.307739] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/17/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Myogenic tone (MT) of resistance arteries ensures autoregulation of blood flow in organs and relies on the intrinsic property of smooth muscle to contract in response to stretch. Nucleotides released by mechanical strain on cells are responsible for pleiotropic vascular effects, including vasoconstriction. Here, we evaluated the contribution of extracellular nucleotides to MT. APPROACH AND RESULTS We measured MT and the associated pathway in mouse mesenteric resistance arteries using arteriography for small arteries and molecular biology. Of the P2 receptors in mouse mesenteric resistance arteries, mRNA expression of P2X1 and P2Y6 was dominant. P2Y6 fully sustained UDP/UTP-induced contraction (abrogated in P2ry6(-/-) arteries). Preventing nucleotide hydrolysis with the ectonucleotidase inhibitor ARL67156 enhanced pressure-induced MT by 20%, whereas P2Y6 receptor blockade blunted MT in mouse mesenteric resistance arteries and human subcutaneous arteries. Despite normal hemodynamic parameters, P2ry6(-/-) mice were protected against MT elevation in myocardial infarction-induced heart failure. Although both P2Y6 and P2Y2 receptors contributed to calcium mobilization, P2Y6 activation was mandatory for RhoA-GTP binding, myosin light chain, P42-P44, and c-Jun N-terminal kinase phosphorylation in arterial smooth muscle cells. In accordance with the opening of a nucleotide conduit in pressurized arteries, MT was altered by hemichannel pharmacological inhibitors and impaired in Cx43(+/-) and P2rx7(-/-) mesenteric resistance arteries. CONCLUSIONS Signaling through P2 nucleotide receptors contributes to MT. This mechanism encompasses the release of nucleotides coupled to specific autocrine/paracrine activation of the uracil nucleotide P2Y6 receptor and may contribute to impaired tissue perfusion in cardiovascular diseases.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.).
| | - Sophie Tamareille
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Fabrice Prunier
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Charlotte Roy
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Audrey Ayer
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Bertrand Toutain
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Marie Billaud
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Brant E Isakson
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Linda Grimaud
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Laurent Loufrani
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Pascal Rousseau
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Pierre Abraham
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Vincent Procaccio
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Hannah Monyer
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Cor de Wit
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Jean-Marie Boeynaems
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Bernard Robaye
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Brenda R Kwak
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Daniel Henrion
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| |
Collapse
|
94
|
Zhao T, Lin C, Yao Q, Chen X. A label-free electrochemiluminescent sensor for ATP detection based on ATP-dependent ligation. Talanta 2016; 154:492-7. [PMID: 27154705 DOI: 10.1016/j.talanta.2016.03.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
In this work, we describe a new label-free, sensitive and highly selective strategy for the electrochemiluminescent (ECL) detection of ATP at the picomolar level via ATP-induced ligation. The molecular-beacon like DNA probes (P12 complex) are self-assembled on a gold electrode. The presence of ATP leads to the ligation of P12 complex which blocks the digestion by Exonuclease III (Exo III). The protected P12 complex causes the intercalation of numerous ECL indicators (Ru(phen)3(2+)) into the duplex DNA grooves, resulting in significantly amplified ECL signal output. Since the ligating site of T4 DNA ligase and the nicking site of Exo III are the same, it involves no long time of incubation for conformation change. The proposed strategy combines the amplification power of enzyme and the inherent high sensitivity of the ECL technique and enables picomolar detection of ATP. The developed strategy also shows high selectivity against ATP analogs, which makes our new label-free and highly sensitive ligation-based method a useful addition to the amplified ATP detection arena.
Collapse
Affiliation(s)
| | - Chunshui Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Qiuhong Yao
- Xiamen Huaxia University, Xiamen 361024, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
95
|
Barragán-Iglesias P, Pineda-Farias JB, Bravo-Hernández M, Cervantes-Durán C, Price TJ, Murbartián J, Granados-Soto V. Predominant role of spinal P2Y1 receptors in the development of neuropathic pain in rats. Brain Res 2016; 1636:43-51. [PMID: 26835558 DOI: 10.1016/j.brainres.2016.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
The role of P2X2/3, P2X3, P2X4 or P2X7 and P2Y2, P2Y6, and P2Y12 receptors in neuropathic pain has been widely studied. In contrast, the role of P2Y1 receptors is scarcely studied. In this study we assessed the role of P2Y1 receptors in several neuropathic pain models in the rat. Furthermore, we analyzed the expression of P2Y1 receptors in the ipsilateral dorsal root ganglia (DRG) and dorsal part of the spinal cord during the development and maintenance of neuropathic pain. We also determined the effect of the P2Y1 receptor antagonist on the expression of P2Y1 receptors. Chronic constriction injury (CCI), spared nerve injury (SNI) or spinal nerve ligation (SNL) produced tactile allodynia from 1 to 14 days after nerve injury. CCI, SNI and SNL enhanced expression of P2Y1 receptors in DRG but not in the dorsal part of the spinal cord at 1-3 days after injury. Intrathecal injection of the selective P2Y1 receptor antagonist MRS2500, but not vehicle, reduced tactile allodynia in rats 1-3 days after CCI, SNI, or SNL. Moreover, intrathecal injection of MRS2500 (at day 1 or 3) reduced neuropathy-induced up-regulation of P2Y1 receptors expression. Intrathecal injection of MRS2500 lost most of the antiallodynic effect when injected 14 days after injury. At this time, MRS2500 did not modify nerve-injury-induced P2Y1 receptors up-regulation. Our results suggest that P2Y1 receptors are localized in DRG, are up-regulated by nerve injury and play a pronociceptive role in development and, to a lesser extent, maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., Ciudad de México, México; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., Ciudad de México, México
| | - Mariana Bravo-Hernández
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., Ciudad de México, México
| | - Claudia Cervantes-Durán
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., Ciudad de México, México
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Janet Murbartián
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., Ciudad de México, México
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., Ciudad de México, México.
| |
Collapse
|
96
|
Horváth T, Polony G, Fekete Á, Aller M, Halmos G, Lendvai B, Heinrich A, Sperlágh B, Vizi ES, Zelles T. ATP-Evoked Intracellular Ca²⁺ Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea. Neurochem Res 2016; 41:364-75. [PMID: 26801171 DOI: 10.1007/s11064-015-1818-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/01/2022]
Abstract
Hearing and its protection is regulated by ATP-evoked Ca(2+) signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca(2+) imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca(2+) signaling in pillar, Deiters' and Hensen's cells. Their resting [Ca(2+)]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca(2+) transients in all three cell types, showing desensitization. Inhibiting the Ca(2+) signaling of the ionotropic P2X (omission of extracellular Ca(2+)) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca(2+) stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters' and Hensen's cells. The sum of the extra- and intracellular Ca(2+)-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters' and Hensen's cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca(2+) leak from the endoplasmic reticulum in Deiters' and Hensen's cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca(2+) signaling in these cells. Differences in Ca(2+) homeostasis and ATP-induced Ca(2+) signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology.
Collapse
Affiliation(s)
- T Horváth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary.,Department of Otorhinolaryngology, Head and Neck Surgery, Bajcsy-Zsilinszky Hospital, Budapest, Hungary
| | - G Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Á Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Aller
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary.,Computational Cognitive Neuroimaging Laboratory, Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, UK
| | - G Halmos
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Lendvai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - A Heinrich
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - B Sperlágh
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - E S Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - T Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4., Budapest, 1089, Hungary. .,Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
97
|
Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thomson SJ, Monteith GR. Altered purinergic receptor-Ca²⁺ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 2016; 10:166-78. [PMID: 26433470 PMCID: PMC5528926 DOI: 10.1016/j.molonc.2015.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelial-mesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca(2+) signaling via purinergic receptors is associated with epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP-mediated Ca(2+) signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 μM for normoxic cells versus EC50 of 5.8 μM for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up-regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB-468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hannah Beilby
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Daneth L Marcial
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, USA
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, Victoria, Australia; St Vincent's Institute, Fitzroy, Victoria, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
98
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2016; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| |
Collapse
|
99
|
Lietsche J, Imran I, Klein J. Extracellular levels of ATP and acetylcholine during lithium-pilocarpine induced status epilepticus in rats. Neurosci Lett 2015; 611:69-73. [PMID: 26610905 DOI: 10.1016/j.neulet.2015.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 01/23/2023]
Abstract
Acetylcholine (ACh) and ATP are rapidly acting neurotransmitters with a putative role in epileptic seizures. In the present study we investigated extracellular concentrations of both neurotransmitters in parallel by microdialysis in rat hippocampus. We found that infusion of neostigmine increases, while calcium-free perfusion and infusion of tetrodotoxin (TTX) decreases, ACh levels. Calcium-free perfusion also decreased ATP levels which were, however, not affected by neostigmine or TTX. During status epilepticus, ACh levels were increased threefold but returned to baseline after the termination of seizures by diazepam. ATP levels were unchanged during status epilepticus but a several-fold increase was seen when AOPCP, an inhibitor of 5'-endonucleotidase, was infused. The results demonstrate an increase of ATP levels during epileptic seizures which, however, was not of neuronal origin.
Collapse
Affiliation(s)
- Jana Lietsche
- Department of Pharmacology, College of Pharmacy, Goethe University of Frankfurt, Germany
| | - Imran Imran
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Jochen Klein
- Department of Pharmacology, College of Pharmacy, Goethe University of Frankfurt, Germany.
| |
Collapse
|
100
|
Abstract
Radiation therapy (RT) is a cornerstone in oncologic management and is employed in various curative and palliative scenarios for local-regional control. RT is thought to locally control tumor cells by direct physical DNA damage or indirect insults from reactive oxygen species. Therapeutic effects apart from those observed at the treatment target, that is, abscopal effect, have been observed for several decades, though the underlying mechanisms regulating this phenomenon have been unclear. Accumulating evidence now suggests that the immune system is a major determinant in regulating the abscopal effect. It is now evident that RT may also enhance immunologic responses to tumors by creating an in situ vaccine by eliciting antigen release from dying tumor cells. Harnessing the specificity and dynamic nature of the immune system to target tumors in conjunction with RT is an emerging field with much promise. To optimize this approach, it is important to systematically evaluate the intricacies of the host immune system, the new generation of immunotherapeutics and the RT approach. Here we will discuss the current biologic mechanisms thought to regulate the RT-induced abscopal effect and how these may be translated to the clinical setting.
Collapse
|