51
|
Selberg J, Jia M, Rolandi M. Proton conductivity of glycosaminoglycans. PLoS One 2019; 14:e0202713. [PMID: 30849116 PMCID: PMC6407855 DOI: 10.1371/journal.pone.0202713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
Proton conductivity is important in many natural phenomena including oxidative phosphorylation in mitochondria and archaea, uncoupling membrane potentials by the antibiotic Gramicidin, and proton actuated bioluminescence in dinoflagellate. In all of these phenomena, the conduction of protons occurs along chains of hydrogen bonds between water and hydrophilic residues. These chains of hydrogen bonds are also present in many hydrated biopolymers and macromolecule including collagen, keratin, chitosan, and various proteins such as reflectin. All of these materials are also proton conductors. Recently, our group has discovered that the jelly found in the Ampullae of Lorenzini- shark’s electro-sensing organs- is the highest naturally occurring proton conducting substance. The jelly has a complex composition, but we proposed that the conductivity is due to the glycosaminoglycan keratan sulfate (KS). Here we measure the proton conductivity of hydrated keratan sulfate purified from Bovine Cornea. PdHx contacts at 0.50 ± 0.11 mS cm -1, which is consistent to that of Ampullae of Lorenzini jelly at 2 ± 1 mS cm -1. Proton conductivity, albeit with lower values, is also shared by other glycosaminoglycans with similar chemical structures including dermatan sulfate, chondroitin sulfate A, heparan sulfate, and hyaluronic acid. This observation supports the relationship between proton conductivity and the chemical structure of biopolymers.
Collapse
Affiliation(s)
- John Selberg
- Department of Electrical Engineering, University of California, Santa Cruz, CA, United States of America
| | - Manping Jia
- Department of Electrical Engineering, University of California, Santa Cruz, CA, United States of America
| | - Marco Rolandi
- Department of Electrical Engineering, University of California, Santa Cruz, CA, United States of America
- * E-mail:
| |
Collapse
|
52
|
Baker CVH, Modrell MS. Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells. Integr Comp Biol 2019; 58:329-340. [PMID: 29846597 DOI: 10.1093/icb/icy037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vertebrate lateral line system comprises a mechanosensory division, with neuromasts containing hair cells that detect local water movement ("distant touch"); and an electrosensory division, with electrosensory organs that detect the weak, low-frequency electric fields surrounding other animals in water (primarily used for hunting). The entire lateral line system was lost in the amniote lineage with the transition to fully terrestrial life; the electrosensory division was lost independently in several lineages, including the ancestors of frogs and of teleost fishes. (Electroreception with different characteristics subsequently evolved independently within two teleost lineages.) Recent gene expression studies in a non-teleost actinopterygian fish suggest that electroreceptor ribbon synapses employ the same transmission mechanisms as hair cell ribbon synapses, and show that developing electrosensory organs express transcription factors essential for hair cell development, including Atoh1 and Pou4f3. Previous hypotheses for electroreceptor evolution suggest either that electroreceptors and hair cells evolved independently in the vertebrate ancestor from a common ciliated secondary cell, or that electroreceptors evolved from hair cells. The close developmental and putative physiological similarities implied by the gene expression data support the latter hypothesis, i.e., that electroreceptors evolved in the vertebrate ancestor as a "sister cell-type" to lateral line hair cells.
Collapse
Affiliation(s)
- Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | - Melinda S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
53
|
Liu B, Cheng D, Zhu H, Du J, Li K, Zang HY, Tan H, Wang Y, Xing W, Li Y. A bismuth oxide/graphene oxide nanocomposite membrane showing super proton conductivity and low methanol permeability. Chem Sci 2019; 10:556-563. [PMID: 30713651 PMCID: PMC6334630 DOI: 10.1039/c8sc03726d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
Proton exchange membrane fuel cells are still limited as state-of-art proton exchange membranes perform poorly at high and low temperature and are easily damaged by harsh electrochemical conditions such as reactive peroxide species. One effective solution to this issue is to develop new types of proton conductive materials that are capable of working in a broad temperature range. A simple vacuum-assisted filtration method is employed to obtain a well-ordered new proton-conducting membrane by immobilizing nanosized bismuth oxide clusters [H6Bi12O16] (NO3)10·6(H2O) {H6Bi12O16} onto graphene oxide (GO) supports (named as {H6Bi12O16}/GO). {H6Bi12O16}/GO is stable in acidic media and has high proton conductivity over the temperature range from -40 to 80 °C. The proton conductivity of the {H6Bi12O16}/GO membrane is 0.564 S cm-1 at 80 °C in aqueous solution (in plane), and 0.1 S cm-1 at 80 °C and 97% RH (out of plane), respectively. Without loss of high proton conductivity, the membrane also exhibited 100-fold lower methanol permeability than a Nafion 117 membrane. Moreover, {H6Bi12O16}/GO displayed good catalytic decomposition of hydrogen peroxide and superior humidity response and recovery properties. These advantages mean that {H6Bi12O16}/GO holds great promise as a solid-state electrolyte that can potentially be applied in energy conversion devices in the future.
Collapse
Affiliation(s)
- Bailing Liu
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Dongming Cheng
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Haotian Zhu
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Jing Du
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Ke Li
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
- School of Chemistry and Environmental Engineering , Changchun University of Science and Technology , Changchun 130024 , P. R. China
| | - Huaqiao Tan
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Yonghui Wang
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , PR China .
| | - Yangguang Li
- Key Lab of Polyoxometalate Science of Ministry of Education , Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province , Faculty of Chemistry , Northeast Normal University , Changchun 130024 , P. R. China . ; ; ; Tel: +86-431-85099108
| |
Collapse
|
54
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
55
|
Melrose J. Mucin-like glycopolymer gels in electrosensory tissues generate cues which direct electrolocation in amphibians and neuronal activation in mammals. Neural Regen Res 2019; 14:1191-1195. [PMID: 30804244 PMCID: PMC6425839 DOI: 10.4103/1673-5374.251298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucin-like glycoproteins have established roles in epithelial boundary protection and lubricative roles in some tissues. This mini-review illustrates alternative functional roles which rely on keratan sulphate and sialic acid modifications to mucin glycopolymers which convey charge properties suggestive of novel electroconductive properties not previously ascribed to these polymers. Many tumour cells express mucin-like glycopolymers modified with highly sulphated keratan sulphate and sialic which can be detected using diagnostic biosensors. The mucin-like keratan sulphate glycopolymer present in the ampullae of lorenzini is a remarkable sensory polymer which elasmobranch fish (sharks, rays, skate) use to detect weak electrical fields emitted through muscular activity of prey fish. Information on the proton gradients is conveyed to neuromast cells located at the base of the ampullae and mechanotransduced to neural networks. This ampullae keratan sulphate sensory gel is the most sensitive proton gradient detection polymer known in nature. This process is known as electrolocation, and allows the visualization of prey fish under conditions of low visibility. The bony fish have similar electroreceptors located along their lateral lines which consist of neuromast cells containing sensory hairs located within a cupula which contains a sensory gel polymer which detects distortions in fluid flow in channels within the lateral lines and signals are sent back to neural networks providing information on the environment around these fish. One species of dolphin, the Guiana dolphin, has electrosensory pits in its bill with similar roles to the ampullae but which have evolved from its vibrissal system. Only two terrestrial animals can undertake electrolocation, these are the Duck-billed platypus and long and short nosed Echidna. In this case the electrosensor is a highly evolved innervated mucous gland. The platypus has 40,000 electroreceptors around its bill through which it electrolocates food species. The platypus has poor eyesight, is a nocturnal feeder and closes its eyes, nostrils and ears when it hunts, so electrolocation is an essential sensory skill. Mammals also have sensory cells containing stereocilia which are important in audition in the organ of corti of the cochlea and in olfaction in the olfactory epithelium. The rods and cones of the retina also have an internal connecting cilium with roles in the transport of phototransduced chemical signals and activation of neurotransmitter release to the optic nerve. Mucin-like glycopolymer gels surround the stereocilia of these sensory hair cells but these are relatively poorly characterized however they deserve detailed characterization since they may have important functional attributes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District; Graduate School of Biomedical Engineering, University of New South Wales; Sydney Medical School, Northern, The University of Sydney; Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
56
|
The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Syst 2018; 7:231-244. [DOI: 10.1016/j.cels.2018.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
|
57
|
Patel HA, Selberg J, Salah D, Chen H, Liao Y, Mohan Nalluri SK, Farha OK, Snurr RQ, Rolandi M, Stoddart JF. Proton Conduction in Tröger's Base-Linked Poly(crown ether)s. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25303-25310. [PMID: 29869495 DOI: 10.1021/acsami.8b05532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exactly 50 years ago, the ground-breaking discovery of dibenzo[18]crown-6 (DB18C6) by Charles Pedersen led to the use of DB18C6 as a receptor in supramolecular chemistry and a host in host-guest chemistry. We have demonstrated proton conductivity in Tröger's base-linked polymers through hydrogen-bonded networks formed from adsorbed water molecules on the oxygen atoms of DB18C6 under humid conditions. Tröger's base-linked polymers-poly(TBL-DB18C6)- t and poly(TBL-DB18C6)- c-synthesized by the in situ alkylation and cyclization of either trans- or cis-di(aminobenzo) [18]crown-6 at room temperature have been isolated as high-molecular-weight polymers. The macromolecular structures of the isomeric poly(TBL-DB18C6)s have been established by spectroscopic techniques and size-exclusion chromatography. The excellent solubility of these polymers in chloroform allows the formation of freestanding membranes, which are thermally stable and also show stability under aqueous conditions. The hydrophilic nature of the DB18C6 building blocks in the polymer facilitates retention of water as confirmed by water vapor adsorption isotherms, which show a 23 wt % water uptake. The adsorbed water is retained even after reducing the relative humidity to 25%. The proton conductivity of poly(TBL-DB18C6)- t, which is found to be 1.4 × 10-4 mS cm-1 in a humid environment, arises from the hydrogen bonding and the associated proton-hopping mechanism, as supported by a modeling study. In addition to proton conductivity, the Tröger's base-linked polymers reported here promise a wide range of applications where the sub-nanometer-sized cavities of the crown ethers and the robust film-forming ability are the governing factors in dictating their properties.
Collapse
Affiliation(s)
| | - John Selberg
- Department of Electrical Engineering , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Dhafer Salah
- King Abdulaziz City for Science and Technology (KACST) , Riyadh 11442 , Saudi Arabia
| | | | | | | | | | | | - Marco Rolandi
- Department of Electrical Engineering , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | | |
Collapse
|
58
|
A protonic biotransducer controlling mitochondrial ATP synthesis. Sci Rep 2018; 8:10423. [PMID: 30002478 PMCID: PMC6043558 DOI: 10.1038/s41598-018-28435-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
In nature, protons (H+) play an important role in biological activities such as in mitochondrial ATP synthesis, which is driven by a H+ gradient across the inner membrane, or in the activation of acid sensing ion channels in neuron cells. Bioprotonic devices directly interface with the H+ concentration (pH) to facilitate engineered interactions with these biochemical processes. Here we develop a H+ biotransducer that changes the pH in a mitochondrial matrix by controlling the flow of H+ between a conductive polymer of sulfonated polyaniline and solution. We have successfully modulated the rate of ATP synthesis in mitochondria by altering the solution pH. Our H+ biotransducer provides a new way to monitor and modulate pH dependent biological functions at the interface between the electronic devices and biological materials.
Collapse
|
59
|
Zhang X, Xia K, Lin L, Zhang F, Yu Y, St. Ange K, Han X, Edsinger E, Sohn J, Linhardt RJ. Structural and Functional Components of the Skate Sensory Organ Ampullae of Lorenzini. ACS Chem Biol 2018; 13:1677-1685. [PMID: 29708722 DOI: 10.1021/acschembio.8b00335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The skate, a cartilaginous fish related to sharks and rays, possesses a unique electrosensitive sensory organ known as the ampullae of Lorenzini (AoL). This organ is responsible for the detection of weak electric field changes caused by the muscle contractions of their prey. While keratan sulfate (KS) is believed to be a component of a jelly that fills this sensory organ and has been credited with its high proton conductivity, modern analytical methods have not been applied to its characterization. Surprisingly, total glycosaminoglycan (GAG) analysis demonstrates that the KS from skate jelly is extraordinarily pure, containing no other GAGs. This KS had a molecular weight of 20 to 30 kDa, consisting primarily of N-linked KS comprised mostly of a monosulfated disaccharide repeating unit, →3) Gal (1→4) GlcNAc6S (1→. Proteomic analysis of AoL jelly suggests that transferrin, keratin, and mucin serve as KS core proteins. Actin and tropomyosin are responsible for assembling the macrostructure of the jelly, and parvalbumin α-like protein and calreticulin regulate calcium and potassium channels involved in the transduction of the electrical signal, once conducted down the AoL by the jelly, serving as the molecular basis for electroreception.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lei Lin
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yanlei Yu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kalib St. Ange
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Eric Edsinger
- Marine Biological Lab, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel Sohn
- Department of Electrical Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, United States
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
60
|
Bellono NW, Leitch DB, Julius D. Molecular tuning of electroreception in sharks and skates. Nature 2018; 558:122-126. [PMID: 29849147 PMCID: PMC6101975 DOI: 10.1038/s41586-018-0160-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
Ancient cartilaginous vertebrates, such as sharks, skates, and rays, possess specialized electrosensory organs that detect weak electric fields and relay this information to the central nervous system1–4. Sharks exploit this sensory modality for predation, whereas skates may also use it to detect signals from conspecifics5. Here we analyze shark and skate electrosensory cells to ask if discrete physiological properties could contribute to behaviorally-relevant sensory tuning. We show that sharks and skates use a similar low threshold voltage-gated calcium channel to initiate cellular activity but employ distinct potassium channels to modulate this activity. Electrosensory cells from sharks express specially adapted voltage-gated potassium channels that support large, repetitive membrane voltage spikes capable of driving near-maximal vesicular release from elaborate ribbon synapses. In contrast, skates use a calcium-activated potassium channel to produce small, tunable membrane voltage oscillations that elicit stimulus-dependent vesicular release. We propose that these sensory adaptations support amplified indiscriminate signal detection in sharks versus selective frequency detection in skates, potentially reflecting the electroreceptive requirements of these elasmobranch species. Our findings demonstrate how sensory systems adapt to suit an animal’s lifestyle or environmental niche through discrete molecular and biophysical modifications.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
61
|
Amit M, Roy S, Deng Y, Josberger E, Rolandi M, Ashkenasy N. Measuring Proton Currents of Bioinspired Materials with Metallic Contacts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1933-1938. [PMID: 29265803 DOI: 10.1021/acsami.7b16640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Charge transfer at the interface between the active layer and the contact is essential in any device. Transfer of electronic charges across the contact/active layer interface with metal contacts is well-understood. To this end, noble metals, such as gold or platinum, are widely used. With these contacts, ionic currents (especially protonic) are often neglected because ions and protons do not transfer across the interface between the contact and the active layer. Palladium hydride contacts have emerged as good contacts to measure proton currents because of a reversible redox reaction at the interface and subsequent absorption/desorption of H into palladium, translating the proton flow reaching the interface into an electron flow at the outer circuit. Here, we demonstrate that gold and palladium contacts also collect proton currents, especially under high relative humidity conditions because of electrochemical reactions at the interface. A marked kinetic isotope effect, which is a signature of proton currents, is observed with gold and palladium contacts, indicating both bulk and contact processes involving proton transfer. These phenomena are attributed to electrochemical processes involving water splitting at the interface. In addition to promoting charge transfer at the interface, these interfacial electrochemical processes inject charge carriers into the active layer and hence can also modulate the bulk resistivity of the materials, as was found for the studied peptide fibril films. We conclude that proton currents may not be neglected a priori when performing electronic measurements on biological and bioinspired materials with gold and palladium contacts under high humidity conditions.
Collapse
Affiliation(s)
| | | | - Yingxin Deng
- Department of Materials Science and Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Erik Josberger
- Department of Materials Science and Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Marco Rolandi
- Department of Materials Science and Engineering, University of Washington , Seattle, Washington 98195, United States
- Department of Electrical Engineering, University of California , Santa Cruz, California 95064, United States
| | | |
Collapse
|
62
|
Abstract
Only a handful of vertebrates are capable of sensing weak electric fields. Two new studies shed light on the development and physiology of electroreceptive organs.
Collapse
Affiliation(s)
- Eva L Kozak
- Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, Germany
| | - Hernán López-Schier
- Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
63
|
Perovskite nickelates as electric-field sensors in salt water. Nature 2017; 553:68-72. [DOI: 10.1038/nature25008] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 01/11/2023]
|
64
|
Rothschild BM, Naples V. Apparent sixth sense in theropod evolution: The making of a Cretaceous weathervane. PLoS One 2017; 12:e0187064. [PMID: 29095949 PMCID: PMC5667833 DOI: 10.1371/journal.pone.0187064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Objective Two separate and distinctive skills are necessary to find prey: Detection of its presence and determination of its location. Surface microscopy of the dentary of albertosaurines revealed a previously undescribed sensory modification, as will be described here. While dentary “foramina” were previously thought to contain tactile sensory organs, the potential function of this theropod modification as a unique localizing system is explored in this study. Method Dentary surface perforations were examined by surface epi-illumination microscopy in tyrannosaurine and albertosaurine dinosaurs to characterize their anatomy. Fish lateral lines were examined as potentially comparable structures. Result In contrast to the subsurface vascular bifurcation noted in tyrannosaurines (which lack a lateral dentary surface groove), the area subjacent to the apertures in albertosaurine grooves has the appearance of an expanded chamber. That appearance seemed to be indistinguishable from the lateral line of fish. Conclusion Dentary groove apertures in certain tyrannosaurid lines (specifically albertosaurines) not only have a unique appearance, but one with significant functional and behavior implications. The appearance of the perforations in the dentary groove of albertosaurines mirrors that previously noted only with specialized neurologic structures accommodating derived sensory functions, as seen in the lateral line of fish. The possibility that this specialized morphology could also represent a unique function in albertosaurine theropods for interacting with the environment or facilitating prey acquisition cannot be ignored. It is suggested that these expanded chambers function in perceiving and aligning the body relative to the direction of wind, perhaps a Cretaceous analogue of the contemporary midwestern weathervane.
Collapse
Affiliation(s)
- Bruce M Rothschild
- West Virginia University College of Medicine, Department of Medicine, Morgantown, West Virginia United States of America.,Carnegie Museum, Pittsburgh, Pennsylvania, United States of America
| | - Virginia Naples
- Northern Illinois University, DeKalb, Illinois, United States of America
| |
Collapse
|
65
|
Strakosas X, Selberg J, Hemmatian Z, Rolandi M. Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600527. [PMID: 28725527 PMCID: PMC5515233 DOI: 10.1002/advs.201600527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/14/2017] [Indexed: 05/08/2023]
Abstract
From cell-to-cell communication to metabolic reactions, ions and protons (H+) play a central role in many biological processes. Examples of H+ in action include oxidative phosphorylation, acid sensitive ion channels, and pH dependent enzymatic reactions. To monitor and control biological reactions in biology and medicine, it is desirable to have electronic devices with ionic and protonic currents. Here, we summarize our latest efforts on bioprotonic devices that monitor and control a current of H+ in physiological conditions, and discuss future potential applications. Specifically, we describe the integration of these devices with enzymatic logic gates, bioluminescent reactions, and ion channels.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - John Selberg
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Zahra Hemmatian
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| | - Marco Rolandi
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCalifornia95064USA
| |
Collapse
|
66
|
Abstract
Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. The design of electronic skin for medical imaging or robotics applications calls for high capability of temperature sensing. Here, Zhao et al. integrate ionic thermoelectric gating to an organic thin-field transistor to detect temperature at sensitivity comparable to that of pyroelectric materials.
Collapse
|
67
|
Uchoa M, O’Connell C, Goreau T. The effects of Biorock-associated electric fields on the Caribbean reef shark (Carcharhinus perezi) and the bull shark (Carcharhinus leucas). ANIM BIOL 2017. [DOI: 10.1163/15707563-00002531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Healthy coral reefs are biologically diverse and provide vital ecosystem services. However, decreasing water quality and global warming are key contributors to coral reef decline, which poses substantial environmental threats. In response to this degradation, an innovative coral reef restoration technology, called Biorock, utilizes weak direct current electric fields to cause limestone deposition on conductive materials, inevitably inducing prolific coral reef growth. Although expediting coral growth, research on how the associated electric fields may impact the behavioural patterns of teleosts and/or organisms (i.e. elasmobranchs) possessing electroreception capabilities is lacking. Therefore, we studied the behavioural responses of two shark species, the bull shark (Carcharhinus leucas) and the Caribbean reef shark (Carcharhinus perezi) and multiple teleost species towards weak direct current electric fields in Bimini, Bahamas. Generalized linear mixed model analyses based on 90 trials illustrate that both the feeding and avoidance behaviors of C. leucas and C. perezi were significantly associated with treatment type, with the weak experimental electrode treatments resulting in the greatest quantity of avoidances and fewest feedings for both species. However, data analyses illustrate that teleost feeding behavior was not observably impacted by experimental treatments. Although the Biorock technology exhibits promise in coral reef restoration, the findings from this study illustrate a need for future large-scale studies assessing shark behavioral patterns around these devices, since the deterrence of apex predators may impact ecosystem balance.
Collapse
Affiliation(s)
- Marcella P. Uchoa
- 1O’Seas Conservation Foundation, 3636 Waldo Ave, Apt 2B, Bronx, NY 10463, USA
| | - Craig P. O’Connell
- 1O’Seas Conservation Foundation, 3636 Waldo Ave, Apt 2B, Bronx, NY 10463, USA
| | - Thomas J. Goreau
- 2Global Coral Reef Alliance, 37 Pleasant St, Cambridge, MA 02139, USA
| |
Collapse
|