51
|
Abstract
Heat shock protein 90 (HSP90) family is a class of proteins known as molecular chaperones that promote client protein folding and translocation in unstressed cells and regulate cellular homeostasis in the stress response. Noncoding RNAs (ncRNAs) are defined as RNAs that do not encode proteins. Previous studies have shown that ncRNAs are key regulators of multiple fundamental cellular processes, such as development, differentiation, proliferation, transcription, post-transcriptional modifications, apoptosis, and cell metabolism. It is known that ncRNAs do not act alone but function via the interactions with other molecules, including co-chaperones, RNAs, DNAs, and so on. As a kind of molecular chaperone, HSP90 is also involved in many biological procedures of ncRNAs. In this review, we systematically analyze the impact of HSP90 on various kinds of ncRNAs, including their synthesis and function, and how ncRNAs influence HSP90 directly and indirectly.
Collapse
Affiliation(s)
- Qing Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Haoduo Qiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yunfei Xu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Yao Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Nina He
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Jie Zhao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| | - Ying Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- National Medicine Functional Experimental Teaching Center, Changsha, China
| |
Collapse
|
52
|
Markus D, Pelletier A, Boube M, Port F, Boutros M, Payre F, Obermayer B, Zanet J. The pleiotropic functions of Pri smORF peptides synchronize leg development regulators. PLoS Genet 2023; 19:e1011004. [PMID: 37903161 PMCID: PMC10635573 DOI: 10.1371/journal.pgen.1011004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/09/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
The last decade witnesses the emergence of the abundant family of smORF peptides, encoded by small ORF (<100 codons), whose biological functions remain largely unexplored. Bioinformatic analyses here identify hundreds of putative smORF peptides expressed in Drosophila imaginal leg discs. Thanks to a functional screen in leg, we found smORF peptides involved in morphogenesis, including the pioneer smORF peptides Pri. Since we identified its target Ubr3 in the epidermis and pri was known to control leg development through poorly understood mechanisms, we investigated the role of Ubr3 in mediating pri function in leg. We found that pri plays several roles during leg development both in patterning and in cell survival. During larval stage, pri activates independently of Ubr3 tarsal transcriptional programs and Notch and EGFR signaling pathways, whereas at larval pupal transition, Pri peptides cooperate with Ubr3 to insure cell survival and leg morphogenesis. Our results highlight Ubr3 dependent and independent functions of Pri peptides and their pleiotropy. Moreover, we reveal that the smORF peptide family is a reservoir of overlooked developmental regulators, displaying distinct molecular functions and orchestrating leg development.
Collapse
Affiliation(s)
- Damien Markus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Aurore Pelletier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Muriel Boube
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Fillip Port
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - François Payre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charité Universitätsmedizin-Berlin, Berlin, Germany
| | - Jennifer Zanet
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| |
Collapse
|
53
|
Mudd P, Borcherding N, Kim W, Quinn M, Han F, Zhou J, Sturtz A, Schmitz A, Lei T, Schattgen S, Klebert M, Suessen T, Middleton W, Goss C, Liu C, Crawford J, Thomas P, Teefey S, Presti R, O'Halloran J, Turner J, Ellebedy A. Antigen-specific CD4 + T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans. RESEARCH SQUARE 2023:rs.3.rs-3304466. [PMID: 37790414 PMCID: PMC10543502 DOI: 10.21203/rs.3.rs-3304466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SARS-CoV-2 infection and mRNA vaccination induce robust CD4+ T cell responses that are critical for the development of protective immunity. Here, we evaluated spike-specific CD4+ T cells in the blood and draining lymph node (dLN) of human subjects following BNT162b2 mRNA vaccination using single-cell transcriptomics. We analyze multiple spike-specific CD4+ T cell clonotypes, including novel clonotypes we define here using Trex, a new deep learning-based reverse epitope mapping method integrating single-cell T cell receptor (TCR) sequencing and transcriptomics to predict antigen-specificity. Human dLN spike-specific T follicular helper cells (TFH) exhibited distinct phenotypes, including germinal center (GC)-TFH and IL-10+ TFH, that varied over time during the GC response. Paired TCR clonotype analysis revealed tissue-specific segregation of circulating and dLN clonotypes, despite numerous spike-specific clonotypes in each compartment. Analysis of a separate SARS-CoV-2 infection cohort revealed circulating spike-specific CD4+ T cell profiles distinct from those found following BNT162b2 vaccination. Our findings provide an atlas of human antigen-specific CD4+ T cell transcriptional phenotypes in the dLN and blood following vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Charles Goss
- Division of Biostatistics, Washington University in St.Louis
| | - Chang Liu
- Washington University School of Medicine
| | | | | | | | | | - Jane O'Halloran
- Department of Emergency Medicine, Washington University in St.Louis
| | | | | |
Collapse
|
54
|
Zhang M, Zhao J, Wu J, Wang Y, Zhuang M, Zou L, Mao R, Jiang B, Liu J, Song X. In-depth characterization and identification of translatable lncRNAs. Comput Biol Med 2023; 164:107243. [PMID: 37453378 DOI: 10.1016/j.compbiomed.2023.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Long non-coding RNAs (LncRNAs) are non-protein coding transcripts more than 200 nucleotides in length. Deep sequencing technologies have unveiled lncRNAs can harbor translatable short open reading frames (sORFs). Yet the regulatory mechanisms governing lncRNA translation events remain poorly understood. Here, we exhaustively detected the sequence, functional element, and structure features relevant to lncRNA translation in human. Extensive identification and analysis reveal that translatable lncRNAs contain richer protein-coding related sequence features, cap-dependent and cap-independent translation initiation mechanisms, and more stable secondary structures, as compared to untranslatable lncRNAs. These findings strongly support lncRNAs serve as a repository for the production of new small peptides. Based on the feature fusion affecting translation and the extreme gradient boosting (XGBoost) algorithm, we developed the first computational tool that dedicated for predicting translatable lncRNAs, named TransLncPred. Benchmark experimental results show that our method outperforms several state-of-the-art RNA coding potential prediction tools on the same training and testing datasets. The 100-time 10-fold cross-validation tests also demonstrate that regulatory element-derived features, especially N7-methylguanosine (m7G) and internal ribosome entry site (IRES), contribute to the improvement in predictive performance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Renlong Mao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
55
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
56
|
Xia J, Liu Y, Ma Y, Yang F, Ruan Y, Xu JF, Pi J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023; 15:2096. [PMID: 37631310 PMCID: PMC10458399 DOI: 10.3390/pharmaceutics15082096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
57
|
Dong X, Zhang K, Xun C, Chu T, Liang S, Zeng Y, Liu Z. Small Open Reading Frame-Encoded Micro-Peptides: An Emerging Protein World. Int J Mol Sci 2023; 24:10562. [PMID: 37445739 DOI: 10.3390/ijms241310562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Small open reading frames (sORFs) are often overlooked features in genomes. In the past, they were labeled as noncoding or "transcriptional noise". However, accumulating evidence from recent years suggests that sORFs may be transcribed and translated to produce sORF-encoded polypeptides (SEPs) with less than 100 amino acids. The vigorous development of computational algorithms, ribosome profiling, and peptidome has facilitated the prediction and identification of many new SEPs. These SEPs were revealed to be involved in a wide range of basic biological processes, such as gene expression regulation, embryonic development, cellular metabolism, inflammation, and even carcinogenesis. To effectively understand the potential biological functions of SEPs, we discuss the history and development of the newly emerging research on sORFs and SEPs. In particular, we review a range of recently discovered bioinformatics tools for identifying, predicting, and validating SEPs as well as a variety of biochemical experiments for characterizing SEP functions. Lastly, this review underlines the challenges and future directions in identifying and validating sORFs and their encoded micropeptides, providing a significant reference for upcoming research on sORF-encoded peptides.
Collapse
Affiliation(s)
- Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Kun Zhang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Chengfeng Xun
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Tianqi Chu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhonghua Liu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
58
|
Kozuka-Hata H, Hiroki T, Miyamura N, Kitamura A, Tsumoto K, Inoue JI, Oyama M. Real-Time Search-Assisted Multiplexed Quantitative Proteomics Reveals System-Wide Translational Regulation of Non-Canonical Short Open Reading Frames. Biomolecules 2023; 13:979. [PMID: 37371559 DOI: 10.3390/biom13060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Abnormal expression of histone deacetylases (HDACs) is reported to be associated with angiogenesis, metastasis and chemotherapy resistance regarding cancer in a wide range of previous studies. Suberoylanilide hydroxamic acid (SAHA) is well known to function as a pan-inhibitor for HDACs and recognized as one of the therapeutic drug candidates to epigenetically coordinate cancer cell fate regulation on a genomic scale. Here, we established a Real-Time Search (RTS)-assisted mass spectrometric platform for system-wide quantification of translated products encoded by non-canonical short open reading frames (ORFs) as well as already annotated protein coding sequences (CDSs) on the human transciptome and applied this methodology to quantitative proteomic analyses of suberoylanilide hydroxamic acid (SAHA)-treated human HeLa cells to evaluate proteome-wide regulation in response to drug perturbation. Very intriguingly, our RTS-based in-depth proteomic analysis enabled us to identify approximately 5000 novel peptides from the ribosome profiling-based short ORFs encoded in the diversified regions on presumed 'non-coding' nucleotide sequences of mRNAs as well as lncRNAs and nonsense mediated decay (NMD) transcripts. Furthermore, TMT-based multiplex large-scale quantification of the whole proteome changes upon differential SAHA treatment unveiled dose-dependent selective translational regulation of a limited fraction of the non-canonical short ORFs in addition to key cell cycle/proliferation-related molecules such as UBE2C, CENPF and PRC1. Our study provided the first system-wide landscape of drug-perturbed translational modulation on both canonical and non-canonical proteome dynamics in human cancer cells.
Collapse
Affiliation(s)
- Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Hiroki
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoaki Miyamura
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Aya Kitamura
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jun-Ichiro Inoue
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
59
|
Pan J, Zhan C, Yuan T, Gu W, Wang W, Sun Y, Chen L. Long noncoding RNA signatures in intrauterine infection/inflammation-induced lung injury: an integrative bioinformatics study. BMC Pulm Med 2023; 23:194. [PMID: 37280583 DOI: 10.1186/s12890-023-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation can result in fetal and neonatal lung injury. However, the biological mechanisms of intrauterine infection/inflammation on fetal and neonatal lung injury and development are poorly known. To date, there are no reliable biomarkers for improving intrauterine infection/inflammation-induced lung injury. METHODS An animal model of intrauterine infection/inflammation-induced lung injury was established with pregnant Sprague-Dawley rats inoculated with Escherichia coli suspension. The intrauterine inflammatory status was assessed through the histological examination of the placenta and uterus. A serial of histological examinations of the fetal and neonatal rats lung tissues were performed. The fetal and neonatal rat lung tissues were harvested for next generation sequencing at embryonic day 17 and postnatal day 3, respectively. Differentially expressed mRNAs and lncRNAs were identified by conducting high-throughput sequencing technique. The target genes of identified differentially expressed lncRNAs were analyzed. Homology analyses for important differentially expressed lncRNAs were performed. RESULTS The histopathological results showed inflammatory infiltration, impaired alveolar vesicular structure, less alveolar numbers, and thickened alveolar septa in fetal and neonatal rat lung tissues. Transmission electron micrographs revealed inflammatory cellular swelling associated with diffuse alveolar damage and less surfactant-storing lamellar bodies in alveolar epithelial type II cells. As compared with the control group, there were 432 differentially expressed lncRNAs at embryonic day 17 and 125 differentially expressed lncRNAs at postnatal day 3 in the intrauterine infection group. The distribution, expression level, and function of these lncRNAs were shown in the rat genome. LncRNA TCONS_00009865, lncRNA TCONS_00030049, lncRNA TCONS_00081686, lncRNA TCONS_00091647, lncRNA TCONS_00175309, lncRNA TCONS_00255085, lncRNA TCONS_00277162, and lncRNA TCONS_00157962 may play an important role in intrauterine infection/inflammation-induced lung injury. Fifty homologous sequences in Homo sapiens were also identified. CONCLUSIONS This study provides genome-wide identification of novel lncRNAs which may serve as potential diagnostic biomarkers and therapeutic targets for intrauterine infection/inflammation-induced lung injury.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Canyang Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Weiyan Wang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Lihua Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| |
Collapse
|
60
|
Liu J, Shi Y, Zhang Y. Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework. EPMA J 2023; 14:275-305. [PMID: 37275552 PMCID: PMC10236109 DOI: 10.1007/s13167-023-00327-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Methods Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. Results We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Conclusion Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00327-3.
Collapse
Affiliation(s)
- Jinsong Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yanjia Shi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yuxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
61
|
Wang Z, Cui Q, Su C, Zhao S, Wang R, Wang Z, Meng J, Luan Y. Unveiling the secrets of non-coding RNA-encoded peptides in plants: A comprehensive review of mining methods and research progress. Int J Biol Macromol 2023:124952. [PMID: 37257526 DOI: 10.1016/j.ijbiomac.2023.124952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Non-coding RNAs (ncRNAs) are not conventionally involved in protein encoding. However, recent findings indicate that ncRNAs possess the capacity to code for proteins or peptides. These ncRNA-encoded peptides (ncPEPs) are vital for diverse plant life processes and exhibit significant potential value. Despite their importance, research on plant ncPEPs is limited, with only a few studies conducted and less information on the underlying mechanisms, and the field remains in its nascent stage. This manuscript provides a comprehensive overview of ncPEPs mining methods in plants, focusing on prediction, identification, and functional analysis. We discuss the strengths and weaknesses of various techniques, identify future research directions in the ncPEPs domain, and elucidate the biological functions and agricultural application prospects of plant ncPEPs. By highlighting the immense potential and research value of ncPEPs, we aim to lay a solid foundation for more in-depth studies in plant science.
Collapse
Affiliation(s)
- Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
62
|
Pei H, Dai Y, Yu Y, Tang J, Cao Z, Zhang Y, Li B, Nie J, Hei TK, Zhou G. The Tumorigenic Effect of lncRNA AFAP1-AS1 is Mediated by Translated Peptide ATMLP Under the Control of m 6 A Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300314. [PMID: 36871154 PMCID: PMC10161021 DOI: 10.1002/advs.202300314] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 05/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) in eukaryotic transcripts have long been believed to regulate various aspects of cellular processes, including carcinogenesis. Herein, it is found that lncRNA AFAP1-AS1 encodes a conserved 90-amino acid peptide located on mitochondria, named lncRNA AFAP1-AS1 translated mitochondrial-localized peptide (ATMLP), and it is not the lncRNA but the peptide that promotes the malignancy of nonsmall cell lung cancer (NSCLC). As the tumor progresses, the serum level of ATMLP increases. NSCLC patients with high levels of ATMLP display poorer prognosis. Translation of ATMLP is controlled by m6 A methylation at the 1313 adenine locus of AFAP1-AS1. Mechanistically, ATMLP binds to the 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and inhibits its transport from the inner to the outer mitochondrial membrane, which antagonizes the NIPSNAP1-mediated regulation of cell autolysosome formation. The findings uncover a complex regulatory mechanism of NSCLC malignancy orchestrated by a peptide encoded by a lncRNA. A comprehensive judgment of the application prospects of ATMLP as an early diagnostic biomarker for NSCLC is also made.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Zhifei Cao
- Department of PathologyThe Second Affiliated Hospital of Soochow UniversityJiangsuSuzhou215004P. R. China
| | - Yongsheng Zhang
- Department of PathologyThe Second Affiliated Hospital of Soochow UniversityJiangsuSuzhou215004P. R. China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| | - Tom K. Hei
- Center for Radiological ResearchCollege of Physician and SurgeonsColumbia UniversityNew YorkNY10032USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and ProtectionSuzhou Medical College of Soochow UniversityJiangsuSuzhou215123P. R. China
| |
Collapse
|
63
|
Mustafin RN, Khusnutdinova E. Perspective for Studying the Relationship of miRNAs with Transposable Elements. Curr Issues Mol Biol 2023; 45:3122-3145. [PMID: 37185728 PMCID: PMC10136691 DOI: 10.3390/cimb45040204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Transposable elements are important sources of miRNA, long non-coding RNAs genes, and their targets in the composition of protein-coding genes in plants and animals. Therefore, the detection of expression levels of specific non-coding RNAs in various tissues and cells in normal and pathological conditions may indicate a programmed pattern of transposable elements' activation. This reflects the species-specific composition and distribution of transposable elements in genomes, which underlie gene regulation in every cell division, including during aging. TEs' expression is also regulated by epigenetic factors (DNA methylation, histone modifications), SIRT6, cytidine deaminases APOBEC3, APOBEC1, and other catalytic proteins, such as ERCC, TREX1, RB1, HELLS, and MEGP2. In evolution, protein-coding genes and their regulatory elements are derived from transposons. As part of non-coding regions and introns of genes, they are sensors for transcriptional and post-transcriptional control of expression, using miRNAs and long non-coding RNAs, that arose from transposable elements in evolution. Methods (Orbld, ncRNAclassifier) and databases have been created for determining the occurrence of miRNAs from transposable elements in plants (PlanTE-MIR DB, PlaNC-TE), which can be used to design epigenetic gene networks in ontogenesis. Based on the data accumulated in the scientific literature, the presence of 467 transposon-derived miRNA genes in the human genome has been reliably established. It was proposed to create an updated and controlled online bioinformatics database of miRNAs derived from transposable elements in healthy individuals, as well as expression changes of these miRNAs during aging and various diseases, such as cancer and difficult-to-treat diseases. The use of the information obtained can open new horizons in the management of tissue and organ differentiation to aging slow down. In addition, the created database could become the basis for clarifying the mechanisms of pathogenesis of various diseases (imbalance in the activity of transposable elements, reflected in changes in the expression of miRNAs) and designing their targeted therapy using specific miRNAs as targets. This article provides examples of the detection of transposable elements-derived miRNAs involved in the development of specific malignant neoplasms, aging, and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Ufa Federal Research Centre, Institute of Biochemistry and Genetics, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
64
|
Sha JF, Xie QM, Chen N, Song SM, Ruan Y, Zhao CC, Liu Q, Shi RH, Jiang XQ, Fei GH, Wu HM. TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in allergic airway inflammation. Free Radic Biol Med 2023; 200:102-116. [PMID: 36907255 DOI: 10.1016/j.freeradbiomed.2023.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
As a pattern recognition receptor which activates innate immune system, toll-like receptor 2 (TLR2) has been reportedly mediates allergic airway inflammation (AAI), yet the underlying mechanism remains elusive. Here, in a murine AAI model, TLR2-/- mice showed decreased airway inflammation, pyroptosis and oxidative stress. RNA-sequencing revealed that allergen-induced hif1 signaling pathway and glycolysis were significantly downregulated when TLR2 was deficient, which were confirmed by lung protein immunoblots. Glycolysis inhibitor 2-Deoxy-d-glucose (2-DG) inhibited allergen-induced airway inflammation, pyroptosis, oxidative stress and glycolysis in wild type (WT) mice, while hif1α stabilizer ethyl 3,4-dihydroxybenzoate (EDHB) restored theses allergen-induced changes in TLR2-/- mice, indicating TLR2-hif1α-mediated glycolysis contributes to pyroptosis and oxidative stress in AAI. Moreover, upon allergen challenge, lung macrophages were highly activated in WT mice but were less activated in TLR2-/- mice, 2-DG replicated while EDHB reversed such effect of TLR2 deficiency on lung macrophages. Likewise, both in vivo and ex vivo WT alveolar macrophages (AMs) exhibited higher TLR2/hif1α expression, glycolysis and polarization activation in response to ovalbumin (OVA), which were all inhibited in TLR2-/- AMs, suggesting AMs activation and metabolic switch are dependent on TLR2. Finally, depletion of resident AMs in TLR2-/- mice abolished while transfer of TLR2-/- resident AMs to WT mice replicated the protective effect of TLR2 deficiency on AAI when administered before allergen challenge. Collectively, we suggested that loss of TLR2-hif1α-mediated glycolysis in resident AMs ameliorates allergic airway inflammation that inhibits pyroptosis and oxidative stress, therefore the TLR2-hif1α-glycolysis axis in resident AMs may be a novel therapeutic target for AAI.
Collapse
Affiliation(s)
- Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China
| | - Qian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China
| | - Rong-Hua Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China
| | - Xu-Qin Jiang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Huang Shan Road 443, Hefei, Anhui, 230027, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China, Lujiang Road 17, Hefei, Anhui, 230001, PR China.
| | - Guang-He Fei
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China.
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui, 230022, PR China; Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road No.218, Hefei, Anhui, 230022, PR China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
65
|
Shiny transcriptional junk: lncRNA-derived peptides in cancers and immune responses. Life Sci 2023; 316:121434. [PMID: 36706831 DOI: 10.1016/j.lfs.2023.121434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
By interacting with DNA, RNA, and proteins, long noncoding RNAs (lncRNAs) have been linked to several pathological states. LncRNA-derived peptides, as a novel modality of action of lncRNAs, have recently become a research hotspot. An increasing body of evidence has demonstrated the important role of these peptides in carcinogenesis and cancer progression and immune response. This review first describes lncRNA-derived peptides, the regulators that control their translation, and the roles of these peptides in multiple biological processes and disease states including cancers. In the following section, we comprehensively analyzed the significant role lncRNA-derived peptide played in the immune response. This review provides fresh perspectives on the biological role of lncRNAs and their relationship with diseases, particularly with cancers and the immune response, providing a theoretical basis for these lncRNA-derived peptides as therapeutic and diagnostic targets in cancers and inflammatory diseases.
Collapse
|
66
|
Qi C, Liang T, Lin J, Xie J, Cao D, Wang H, Li Q, Li S, Li J, Zhang Y, Wang Y, Li S, Chen Z, Yau H, Lin S, Zhang S, Liu S, Liang X, Zhang L, Wang W. Linc279227 contributes to mitochondrial dysfunction in high glucose-treated mouse renal tubular epithelial cells. Biochem Biophys Res Commun 2023; 644:95-104. [PMID: 36640668 DOI: 10.1016/j.bbrc.2023.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND The aberrant expression of long noncoding RNAs (lncRNAs) has been associated with diabetic nephropathy (DN), a major complication of diabetes mellitus (DM). This study investigated the differential expression of lncRNAs in DM without renal damage and DM with renal damage, known as DN, and elucidated the functions of a pathogenic lncRNA. METHODS High-throughput sequencing was performed on the kidneys of male db/db mice with kidney injury, db/db mice without kidney involvement and db/m control littermates. Linc279227 expression was confirmed by RT‒qPCR and fluorescence in situ hybridization. The effects of linc279227 on high glucose (HG)-treated renal tubular epithelial cells (RTECs) were evaluated by autophagy flux monitoring, Western blot determination and mitochondrial morphological detection. RESULTS With high-throughput sequencing, we identified a 1024 nt long intergenic noncoding RNA, TCONS_00279227 (linc279227), whose expression was markedly increased in the kidneys of db/db mice with kidney injury compared to db/db mice without kidney injury and db/m control littermates. Fluorescence in situ hybridization confirmed that linc279227 was mainly located in the renal tubules of mice with DN. In vitro, linc279227 expression was found to be significantly increased in RTECs treated with high glucose (HG) for 48 h. Silencing linc279227 markedly restored the levels of autophagy-/mitophagy-associated proteins in HG-stimulated RTECs. Furthermore, silencing linc279227 reduced phosphorylated Drp1 expression and increased Mfn2 expression in RTECs exposed to HG. CONCLUSION Our data suggest that linc279227 plays an important role in mitochondrial dysfunction in HG-treated RTECs and that silencing linc279227 rescues RTECs exposed to HG.
Collapse
Affiliation(s)
- Chunfang Qi
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Tiantian Liang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jinxin Lin
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jianteng Xie
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dan Cao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huizhen Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qiuling Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shenheng Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jing Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yifan Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yanhui Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Sheng Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zujiao Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hokhim Yau
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shaochun Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shaogui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shuangxin Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xinling Liang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Liang Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Wenjian Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
67
|
Erokhina TN, Ryazantsev DY, Zavriev SK, Morozov SY. Regulatory miPEP Open Reading Frames Contained in the Primary Transcripts of microRNAs. Int J Mol Sci 2023; 24:ijms24032114. [PMID: 36768436 PMCID: PMC9917039 DOI: 10.3390/ijms24032114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
This review aims to consider retrospectively the available data on the coding properties of pri-microRNAs and the regulatory functions of their open reading frames (ORFs) and the encoded peptides (miPEPs). Studies identifying miPEPs and analyzing the fine molecular mechanisms of their functional activities are reviewed together with a brief description of the methods to identify pri-miRNA ORFs and the encoded protein products. Generally, miPEPs have been identified in many plant species of several families and in a few animal species. Importantly, molecular mechanisms of the miPEP action are often quite different between flowering plants and metazoan species. Requirement for the additional studies in these directions is highlighted by alternative findings concerning negative or positive regulation of pri-miRNA/miRNA expression by miPEPs in plants and animals. Additionally, the question of how miPEPs are distributed in non-flowering plant taxa is very important for understanding the evolutionary origin of such micropeptides. Evidently, further extensive studies are needed to explore the functions of miPEPs and the corresponding ORFs and to understand the full set of their roles in eukaryotic organisms. Thus, we address the most recent integrative views of different genomic, physiological, and molecular aspects concerning the expression of miPEPs and their possible fine functions.
Collapse
Affiliation(s)
- Tatiana N. Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
68
|
The Essentials on microRNA-Encoded Peptides from Plants to Animals. Biomolecules 2023; 13:biom13020206. [PMID: 36830576 PMCID: PMC9953219 DOI: 10.3390/biom13020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/22/2023] Open
Abstract
Primary transcripts of microRNAs (pri-miRNAs) were initially defined as long non-coding RNAs that host miRNAs further processed by the microRNA processor complex. A few years ago, however, it was discovered in plants that pri-miRNAs actually contain functional open reading frames (sORFs) that translate into small peptides called miPEPs, for microRNA-encoded peptides. Initially detected in Arabidopsis thaliana and Medicago truncatula, recent studies have revealed the presence of miPEPs in other pri-miRNAs as well as in other species ranging from various plant species to animals. This suggests that miPEP numbers remain largely underestimated and that they could be a common signature of pri-miRNAs. Here we present the most recent advances in miPEPs research and discuss how their discovery has broadened our vision of the regulation of gene expression by miRNAs, and how miPEPs could be interesting tools in sustainable agriculture or the treatment of certain human diseases.
Collapse
|
69
|
Xu S, Liu D, Kuang Y, Li R, Wang J, Shi M, Zou Y, Qiu Q, Liang L, Xiao Y, Xu H. Long Noncoding RNA HAFML Promotes Migration and Invasion of Rheumatoid Fibroblast-like Synoviocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:135-147. [PMID: 36458981 DOI: 10.4049/jimmunol.2200453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023]
Abstract
The aggressive phenotype exhibited by fibroblast-like synoviocytes (FLSs) is critical for the progression of joint destruction in rheumatoid arthritis (RA). Long noncoding RNAs (lncRNAs) have crucial roles in the pathogenesis of diverse disorders; however, few have been identified that might be able to control the joint damage in RA. In this study, we identified an lncRNA, ENST00000509194, which was expressed at abnormally high levels in FLSs and synovial tissues from patients with RA. ENST00000509194 positively modulates the migration and invasion of FLSs by interacting with human Ag R (HuR, also called ELAVL1), an RNA-binding protein that mainly stabilizes mRNAs. ENST00000509194 binds directly to HuR in the cytoplasm to form a complex that promotes the expression of the endocytic adaptor protein APPL2 by stabilizing APPL2 mRNA. Knockdown of HuR or APPL2 impaired the migration and invasion of RA FLSs. Given its close association with HuR and FLS migration, we named ENST00000509194 as HAFML (HuR-associated fibroblast migratory lncRNA). Our findings suggest that an increase in synovial HAFML might contribute to FLS-mediated rheumatoid synovial aggression and joint destruction, and that the lncRNA HAFML might be a potential therapeutic target for dysregulated fibroblasts in a wide range of diseases.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong, China; and
| | - Yaoyao Zou
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
70
|
Fernandes JCR, Gonçalves ANA, Floeter-Winter LM, Nakaya HI, Muxel SM. Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages. Front Genet 2023; 13:1051568. [PMID: 36685903 PMCID: PMC9845402 DOI: 10.3389/fgene.2022.1051568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
It is well established that infection with Leishmania alters the host cell's transcriptome. Since mammalian cells have multiple mechanisms to control gene expression, different molecules, such as noncoding RNAs, can be involved in this process. MicroRNAs have been extensively studied upon Leishmania infection, but whether long noncoding RNAs (lncRNAs) are also altered in macrophages is still unexplored. We performed RNA-seq from THP-1-derived macrophages infected with Leishmania amazonensis (La), L. braziliensis (Lb), and L. infantum (Li), investigating a previously unappreciated fraction of macrophage transcriptome. We found that more than 24% of the total annotated transcripts and 30% of differentially expressed (DE) RNAs in Leishmania-infected macrophage correspond to lncRNAs. LncRNAs and protein coding RNAs with altered expression are similar among macrophages infected with the Leishmania species. Still, some species-specific alterations could occur due to distinct pathophysiology in which Li infection led to a more significant number of exclusively DE RNAs. The most represented classes among DE lncRNAs were intergenic and antisense lncRNAs. We also found enrichment for immune response-related pathways in the DE protein coding RNAs, as well as putative targets of the lncRNAs. We performed a coexpression analysis to explore potential cis regulation of coding and antisense noncoding transcripts. We identified that antisense lncRNAs are similarly regulated as its neighbor protein coding genes, such as the BAALC/BAALC-AS1, BAALC/BAALC-AS2, HIF1A/HIF1A-AS1, HIF1A/HIF1A-AS3 and IRF1/IRF1-AS1 pairs, which can occur as a species-specific modulation. These findings are a novelty in the field because, to date, no study has focused on analyzing lncRNAs in Leishmania-infected macrophage. Our results suggest that lncRNAs may account for a novel mechanism by which Leishmania can control macrophage function. Further research must validate putative lncRNA targets and provide additional prospects in lncRNA function during Leishmania infection.
Collapse
Affiliation(s)
- Juliane C. R. Fernandes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil,Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucile M. Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra M. Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sandra M. Muxel,
| |
Collapse
|
71
|
Martinez TF, Lyons-Abbott S, Bookout AL, De Souza EV, Donaldson C, Vaughan JM, Lau C, Abramov A, Baquero AF, Baquero K, Friedrich D, Huard J, Davis R, Kim B, Koch T, Mercer AJ, Misquith A, Murray SA, Perry S, Pino LK, Sanford C, Simon A, Zhang Y, Zipp G, Bizarro CV, Shokhirev MN, Whittle AJ, Searle BC, MacCoss MJ, Saghatelian A, Barnes CA. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins. Cell Metab 2023; 35:166-183.e11. [PMID: 36599300 PMCID: PMC9889109 DOI: 10.1016/j.cmet.2022.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/19/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma. Analyses of MP-encoding mRNAs under different physiological conditions (high-fat diet) revealed that numerous MPs are regulated in adipose tissue in vivo and are co-expressed with established metabolic genes. Furthermore, Ribo-seq provided evidence for the translation of Gm8773, which encodes a secreted MP that is homologous to human and chicken FAM237B. Gm8773 is highly expressed in the arcuate nucleus of the hypothalamus, and intracerebroventricular administration of recombinant mFAM237B showed orexigenic activity in obese mice. Together, these data highlight the value of this adipocyte MP database in identifying MPs with roles in fundamental metabolic and physiological processes such as feeding.
Collapse
Affiliation(s)
- Thomas F Martinez
- Department of Pharmaceutical Sciences, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | | | - Angie L Bookout
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Eduardo V De Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90616-900, Brazil; Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Calvin Lau
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ariel Abramov
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Arian F Baquero
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Karalee Baquero
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Dave Friedrich
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Justin Huard
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ray Davis
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Bong Kim
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ty Koch
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ayesha Misquith
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Sara A Murray
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Sakara Perry
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Lindsay K Pino
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Alex Simon
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Yu Zhang
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Garrett Zipp
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90616-900, Brazil
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Christopher A Barnes
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA; Velia Therapeutics, Inc., San Diego, CA, USA.
| |
Collapse
|
72
|
Luaibi AR, Al-Saffar M, Jalil AT, Rasol MA, Fedorovich EV, Saleh MM, Ahmed OS. Long non-coding RNAs: The modulators of innate and adaptive immune cells. Pathol Res Pract 2023; 241:154295. [PMID: 36608622 DOI: 10.1016/j.prp.2022.154295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Before very sensitive current genomics platforms were discovered, long non-coding RNAs (lncRNAs) as controllers of gene expression, were thought to be accumulated genetic garbage. The past few years have seen a lot of interest in a large classification of non-coding transcripts with an indeterminate length of more than 200 nucleotides [1]. lncRNAs' association with immunity and disease progression has been revealed by a growing body of experimental research. Only a limited subset of lncRNAs, however, has solid proof of their role. It is also clear that various immune cells express lncRNAs differently. In this review, we concentrated on the role of lncRNA expression in the regulation of immune cell function and response to pathological conditions in macrophages, dendritic cells, natural killer (NK) cells, neutrophils, Myeloid-derived suppressor cells (MDSCs), T cells, and B cells. The innate and adaptive immune response systems may be significantly regulated by lncRNAs, according to emerging research. To discover possible therapeutic targets for the therapy of different diseases, it may be helpful to have a better realization of the molecular mechanisms beyond the role of lncRNAs in the immune response. Therefore, it is crucial to investigate lncRNA expression and comprehend its significance for the immune system.
Collapse
Affiliation(s)
- Aseel Riyadh Luaibi
- Utbah bin Ghazwan High School for Girls, Al_Karkh first Directorate of Education, Ministry of Education, Baghdad, Iraq
| | - Montaha Al-Saffar
- Community Health Department, Institute of Medical Technology /Baghdad, Middle Technical University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Mustafa Asaad Rasol
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Eremin Vladimir Fedorovich
- Republican Scientific and Practical Center for Transfusiology and Medical, Biotechnologies, Minsk, Belarus
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
73
|
Song TJ, Ke J, Chen F, Zhang JY, Zhang C, Chen HY. Effect of SNHG11/miR-7-5p/PLCB1 Axis on Acute Pancreatitis through Inhibiting p38MAPK Pathway. Cells 2022; 12:cells12010065. [PMID: 36611865 PMCID: PMC9818913 DOI: 10.3390/cells12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. A growing number of studies have shown that long noncoding RNAs (lncRNAs) play an important role in AP progression. Here, we aimed to elucidate the role of Small Nucleolar RNA Host Gene 11(SNHG11) and its underlying molecular mechanisms behind AP progression. The in vivo and in vitro AP cell models were established by retrograde injection of sodium taurocholate and caerulein stimulation into AR42J cells and HPDE6-C7 cells, respectively. A bioinformatics website predicted the relationship between SNHG11, miR-7-5p, and Phospholipase C Beta 1(PLCB1) and validated it with a dual-luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. AR42J cells and HPDE6-C7 cells were transfected with an overexpression of plasmids or shRNA to investigate the effects of the SNHG11/miR-7-5p/PLCB1 axis on cell proliferation and apoptosis, inflammatory cytokine secretion, and acute pancreatitis. Low expression of SNHG11 and PLCB1 and high expression of miR-7-5p were observed in AP pancreatic tissue and AP cell models. SNHG11 overexpression inhibited apoptosis and inflammatory responses induced by caerulein. Simultaneously, we discovered that SNHG11 regulates PLCB1 expression by sponging miR-7-5p. PLCB1 overexpression abrogated inflammatory damage exacerbated by miR-7-5p enrichment. In addition, the SNHG11/miR-7-5p/PLCB1 axis could be involved in caerulein-induced inflammatory injury by participating in the p38MAPK signaling pathway. The overexpressed SNHG11/miR-7-5p/PLCB1 axis can inhibit AP progression by participating in the p38MAPK signaling pathway, thereby providing a potential therapeutic target and therapeutic direction for AP therapy.
Collapse
Affiliation(s)
- Tian-Jiao Song
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Jun Ke
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Feng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
- Correspondence:
| | - Jiu-Yun Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| | - Chun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Mindong Hospital, Ningde, Fujian Medical University, No. 89, Heshan Road, Fuan 355000, China
| | - Hong-Yi Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou 350001, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou 350001, China
| |
Collapse
|
74
|
Rai KR, Liao Y, Cai M, Qiu H, Wen F, Peng M, Wang S, Liu S, Guo G, Chi X, Maarouf M, Chen Y, Huang S, Chen JL. MIR155HG Plays a Bivalent Role in Regulating Innate Antiviral Immunity by Encoding Long Noncoding RNA-155 and microRNA-155-5p. mBio 2022; 13:e0251022. [PMID: 36321836 PMCID: PMC9765511 DOI: 10.1128/mbio.02510-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
MIR155HG encodes a precursor RNA of microRNA-155 (miRNA-155). We previously identified this RNA also as a long noncoding RNA (lncRNA) that we call lncRNA-155. To define the functions of miRNA-155 and lncRNA-155, we generated miRNA-155 knockout (KO) mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155. Surprisingly, compared with the miRNA-155KO mice, previously generated lncRNA-155KO mice were more susceptible to both influenza virus (RNA virus) and pseudorabies virus (DNA virus) infection, as characterized by lower survival rate, higher body weight loss, and higher viral load. We found that miRNA-155-5p enhanced antiviral responses by positively regulating activation of signal transducer and activator of transcription 1 (STAT1), but the STAT1 activity differed greatly in the animals (lncRNA-155KO < miRNA-155KO < wild type). In line with this, expression levels of several critical interferon-stimulated genes (ISGs) were also significantly different (lncRNA-155KO < miRNA-155KO < wild type). We found that lncRNA-155 augmented interferon beta (IFN-β) production during the viral infection, but miRNA-155 had no significant effect on the virus-induced IFN-β expression. Furthermore, we observed that lncRNA-155 loss in mice resulted in dramatic inhibition of virus-induced activation of interferon regulatory factor 3 compared to both miRNA-155KO and wild-type (WT) animals. Moreover, lncRNA-155 still significantly suppressed the viral infection even though the miRNA-155 derived from lncRNA-155 was deleted or blocked. These results reveal that lncRNA-155 and miRNA-155 regulate antiviral responses through distinct mechanisms, indicating a bivalent role for MIR155HG in innate immunity. IMPORTANCE Here, we found that lncRNA-155KO mice lacking most of the lncRNA-155 sequences along with pre-miRNA-155, were more susceptible to influenza virus or pseudorabies virus infection than miRNA-155KO mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155, as evidenced by faster body weight loss, poorer survival, and higher viral load, suggesting an additional role of lncRNA-155 in regulating viral pathogenesis besides via processing miRNA-155. Congruously, miRNA-155-deleted lncRNA-155 significantly attenuated the viral infection. Mechanistically, we demonstrated miRNA-155-5p potentiated antiviral responses by promoting STAT1 activation but could not directly regulate the IFN-β expression. In contrast, lncRNA-155 enhanced virus-induced IFN-β production by regulating the activation of interferon regulatory factor 3. This finding reveals a bivalent role of MIR155HG in regulating antiviral responses through encoding lncRNA-155 and miRNA-155-5p and provides new insights into complicated mechanisms underlying interaction between virus and host innate immunity.
Collapse
Affiliation(s)
- Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Liao
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengjuan Cai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haori Qiu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Faxin Wen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Peng
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
75
|
Peng L, Pan B, Zhang X, Wang Z, Qiu J, Wang X, Tang N. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol 2022; 38:1159-1173. [PMID: 35438468 DOI: 10.1007/s10565-022-09718-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/07/2022] [Indexed: 01/25/2023]
Abstract
Recent studies have suggested that the initiation and progression of hepatocellular carcinoma (HCC) are closely associated with lipopolysaccharide (LPS) of intestinal bacteria. However, the role of LPS in immune regulation of HCC remains largely unknown. An orthotopic Hepa1-6 tumor model of HCC was constructed to analyze the effect of LPS on the expression of immune checkpoint molecules PD-1 and PD-L1. Then we verified the regulation of PD-L1 by LPS in HCC cells. Based on the previous finding that lncRNA MIR155HG regulates PD-L1 expression in HCC cells, we analyzed the relationship of LPS signaling pathway molecules with PD-L1 and MIR155HG by bioinformatics. The molecular mechanism of MIR155HG regulating PD-L1 expression induced by LPS was investigated by RNA pull-down followed by mass spectrometry, RNA immunoprecipitation, fluorescence in situ hybridization, and luciferase reporter assay. Finally, the HepG2 xenograft model was established to determine the role of MIR155HG on PD-L1 expression in vivo. We showed that LPS induced PD-1 and PD-L1 expression in mouse tumor tissues and induced PD-L1 expression in HCC cells. Mechanistically, upregulation of METTL14 by LPS promotes the m6A methylation of MIR155HG, which stabilizes MIR155HG relying on the "reader" protein ELAVL1 (also known as HuR)-dependent pathway. Moreover, MIR155HG functions as a competing endogenous RNA (ceRNA) to modulate the expression of PD-L1 by miR-223/STAT1 axis. Our results suggested that LPS plays a critical role in immune escape of HCC through METTL14/MIR155HG/PD-L1 axis. This study provides a new insight for understanding the complex immune microenvironment of HCC. 1. LPS plays a critical role in immune escape of HCC, especially HCC with cirrhosis. 2. Our study reveals that LPS regulates PD-L1 by m6A modification of lncRNA in HCC. 3. MIR155HG plays an important role in LPS induced PD-L1 expression. 4. LPS-MIR155HG-PD-L1 regulatory axis provides a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Lirong Peng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zengbin Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, 350001, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
76
|
Liu X, Li Y, Jiang X, Deng Y, Ma C, Yu Q, Gao D. Long non-coding RNA: Multiple effects on the differentiation, maturity and cell function of dendritic cells. Clin Immunol 2022; 245:109167. [DOI: 10.1016/j.clim.2022.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022]
|
77
|
Bai X, Qi Z, Zhu M, Lu Z, Zhao X, Zhang L, Song G. The effect of lncRNA MIR155HG-modified MSCs and exosome delivery to synergistically attenuate vein graft intimal hyperplasia. Stem Cell Res Ther 2022; 13:512. [PMID: 36333764 PMCID: PMC9636746 DOI: 10.1186/s13287-022-03197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background The mesenchymal stem cells (MSCs) were used to repair tissue injury. However, the treatment effect was not satisfactory. We investigated whether lncRNA MIR155HG could promote survival and migration of MSCs under oxidative stress, which mimics in vivo environments. Furthermore, we studied the protective effect of exosomes secreted by MSCs transfected with MIR155HG on endothelial cells. This study aimed to determine whether exploiting MSCs and exosomes modified with lncRNA MIR155HG would exert synergistic therapeutic effect to attenuate vein graft intimal hyperplasia more effectively. Methods Lentivirus containing lncRNA MIR155HG overexpressing vector was packaged and used to infect MSCs. Then, CCK-8 assay, flow cytometry, Transwell assay, and Elisa assay were used to assess the functional changes of MSCs with overexpressed MIR155HG (OE-MSCs). Furthermore, the associated pathways were screened by Western blot. MIR155HG-MSCs-derived exosomes (OE-exo) were collected and co-cultured with human umbilicus vein endothelial cell (HUVEC). We validated the protective effect of OE-exo on HUVEC. In vivo, both MSCs and exosomes modified with MIR155HG were injected into a vein graft rat model via tail vein. We observed MSCs homing and intimal hyperplasia of vein graft using a fluorescent microscope and histological stain. Results Our study found that lncRNA MIR155HG promoted proliferation, migration, and anti-apoptosis of MSCs. NF-κB pathway took part in the regulation process induced by MIR155HG. OE-exo could enhance the activity and healing ability of HUVEC and reduce apoptosis. In vivo, OE-MSCs had a higher rate of homing to vascular endothelium. The combined treatment with OE-MSCs and OE-exo protected vascular endothelial integrity, reduced inflammatory cell proliferation, and significantly attenuated intimal hyperplasia of vein graft. Conclusion LncRNA MIR155HG could promote the survival and activity of MSCs, and reduce the apoptosis of HUVECs using exosome delivery. Exploiting MSCs and exosomes modified with MIR155HG could attenuate vein graft intimal hyperplasia more effectively and maximize the surgical effect.
Collapse
Affiliation(s)
- Xiao Bai
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China ,grid.27255.370000 0004 1761 1174Thoracoscopy Institute of Cardiac Surgery, Shandong University, Jinan, China
| | - Zaiwen Qi
- The Fifth People’s Hospital of Jinan, Jinan, China
| | - Mingzhen Zhu
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Zhuangzhuang Lu
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Xin Zhao
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| | - Lining Zhang
- grid.27255.370000 0004 1761 1174Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, 250012 China
| | - Guangmin Song
- grid.452402.50000 0004 1808 3430Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012 China
| |
Collapse
|
78
|
Translation and natural selection of micropeptides from long non-canonical RNAs. Nat Commun 2022; 13:6515. [PMID: 36316320 PMCID: PMC9622821 DOI: 10.1038/s41467-022-34094-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but lacking canonical coding sequences. Apparently unable to produce peptides, lncRNA function seems to rely only on RNA expression, sequence and structure. Here, we exhaustively detect in-vivo translation of small open reading frames (small ORFs) within lncRNAs using Ribosomal profiling during Drosophila melanogaster embryogenesis. We show that around 30% of lncRNAs contain small ORFs engaged by ribosomes, leading to regulated translation of 100 to 300 micropeptides. We identify lncRNA features that favour translation, such as cistronicity, Kozak sequences, and conservation. For the latter, we develop a bioinformatics pipeline to detect small ORF homologues, and reveal evidence of natural selection favouring the conservation of micropeptide sequence and function across evolution. Our results expand the repertoire of lncRNA biochemical functions, and suggest that lncRNAs give rise to novel coding genes throughout evolution. Since most lncRNAs contain small ORFs with as yet unknown translation potential, we propose to rename them "long non-canonical RNAs".
Collapse
|
79
|
Wei S, Hu W, Feng J, Geng Y. Promotion or remission: a role of noncoding RNAs in colorectal cancer resistance to anti-EGFR therapy. Cell Commun Signal 2022; 20:150. [PMID: 36131281 PMCID: PMC9490904 DOI: 10.1186/s12964-022-00960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-epidermal-growth-factor-receptor (EGFR) monoclonal antibodies (mAbs) are of great significance for RAS and BRAF wild-type metastatic colorectal cancer (mCRC) patients. However, the generation of primary and secondary resistance to anti-EGFR mAbs has become an important factor restricting its efficacy. Recent studies have revealed that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are implicated in anti-EGFR antibodies resistance, affecting the sensitivity of CRC cells to Cetuximab and Panitumumab. This paper briefly reviewed the research advance of the expression, signaling network and functional mechanism of ncRNAs related to anti-EGFR mAbs resistance in CRC, as well as their relationship with clinical prognosis and the possibility of therapeutic targets. In addition, some ncRNAs that are involved in the regulation of signaling pathways or genes related to anti-EGFR resistance, but need to be further verified by resistance experiments were also included in this review, thereby providing more ideas and basis for ncRNAs as CRC prognostic markers and anti-EGFR therapy sensitizers. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
80
|
Renman E, Ekici R, Sundström M, Lejon K. HSC70 is a novel binding partner involved in the capture of immunoglobulins on B cells in the NOD mouse. Autoimmunity 2022; 55:520-528. [PMID: 36120986 DOI: 10.1080/08916934.2022.2117307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
B cells have been shown to be essential for Type 1 diabetes development in the non-obese diabetic mouse, where their contribution as antigen presenting cells has been emphasised. Other important functions for B cells include surface capture of immunoglobulins and transportation of immune complexes, with subsequent endocytosis, antigen processing and antigen presentation. We have previously demonstrated that NOD B cells capture IgM and IgG immune complexes through an unknown surface molecule. In this study, we revealed the presumptive immunoglobulin-binding molecule to be HSC70. Moreover, we detected increased levels of HSC70 on NOD B cells. HSC70 has been shown to play a role in antigen processing and presentation as well as being important in several autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus. Due to its protein stabilising properties, increased HSC70 could contribute to enhanced self-antigen collection and presentation and thereby contribute to the development of Type 1 diabetes.
Collapse
Affiliation(s)
- Emma Renman
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| | - Rifat Ekici
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| | - Mia Sundström
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology Umeå, Umeå University, Umeå, Sweden
| |
Collapse
|
81
|
Li M, Liu G, Jin X, Guo H, Setrerrahmane S, Xu X, Li T, Lin Y, Xu H. Micropeptide MIAC inhibits the tumor progression by interacting with AQP2 and inhibiting EREG/EGFR signaling in renal cell carcinoma. Mol Cancer 2022; 21:181. [PMID: 36117171 PMCID: PMC9484220 DOI: 10.1186/s12943-022-01654-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although, micropeptides encoded by non-coding RNA have been shown to have an important role in a variety of tumors processes, there have been no reports on micropeptide in renal cell carcinoma (RCC). Based on the micropeptide MIAC (micropeptide inhibiting actin cytoskeleton) discovered and named in the previous work, this study screened its tumor spectrum, and explored its mechanism of action and potential diagnosis and treatment value in the occurrence and development of renal carcinoma. METHODS The clinical significance of MIAC in RCC was explored by bioinformatics analysis through high-throughput RNA-seq data from 530 patients with kidney renal clear cell carcinoma (KIRC) in the TCGA database, and the detection of clinical samples of 70 cases of kidney cancer. In vitro and in vivo experiments to determine the role of MIAC in renal carcinoma cell growth and metastasis; High-throughput transcriptomics, western blotting, immunoprecipitation, molecular docking, affinity experiments, and Streptavidin pulldown experiments identify MIAC direct binding protein and key regulatory pathways. RESULTS The analysis of 600 renal carcinoma samples from different sources revealed that the expression level of MIAC is significantly decreased, and corelated with the prognosis and clinical stage of tumors in patients with renal carcinoma. Overexpression of MIAC in renal carcinoma cells can significantly inhibit the proliferation and migration ability, promote apoptosis of renal carcinoma cells, and affect the distribution of cells at various stages. After knocking down MIAC, the trend is reversed. In vivo experiments have found that MIAC overexpression inhibit the growth and metastasis of RCC, while the synthetized MIAC peptides can significantly inhibit the occurrence and development of RCC in vitro and in vivo. Further mechanistic studies have demonstrated that MIAC directly bind to AQP2 protein, inhibit EREG/EGFR expression and activate downstream pathways PI3K/AKT and MAPK to achieve anti-tumor effects. CONCLUSIONS This study revealed for the first time the tumor suppressor potential of the lncRNA-encoded micropeptide MIAC in RCC, which inhibits the activation of the EREG/EGFR signaling pathway by direct binding to AQP2 protein, thereby inhibiting renal carcinoma progression and metastasis. This result emphasizes that the micropeptide MIAC can provide a new strategy for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangxiang Liu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xinrong Jin
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | | | - Xindi Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Tiantian Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunfei Lin
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
82
|
Mustafin RN. Interrelation of MicroRNAs and Transposons in Aging and Carcinogenesis. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
83
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
84
|
Malekos E, Carpenter S. Short open reading frame genes in innate immunity: from discovery to characterization. Trends Immunol 2022; 43:741-756. [PMID: 35965152 PMCID: PMC10118063 DOI: 10.1016/j.it.2022.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) technologies have greatly expanded the size of the known transcriptome. Many newly discovered transcripts are classified as long noncoding RNAs (lncRNAs) which are assumed to affect phenotype through sequence and structure and not via translated protein products despite the vast majority of them harboring short open reading frames (sORFs). Recent advances have demonstrated that the noncoding designation is incorrect in many cases and that sORF-encoded peptides (SEPs) translated from these transcripts are important contributors to diverse biological processes. Interest in SEPs is at an early stage and there is evidence for the existence of thousands of SEPs that are yet unstudied. We hope to pique interest in investigating this unexplored proteome by providing a discussion of SEP characterization generally and describing specific discoveries in innate immunity.
Collapse
Affiliation(s)
- Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Susan Carpenter
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA; Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
85
|
Ponting CP, Haerty W. Genome-Wide Analysis of Human Long Noncoding RNAs: A Provocative Review. Annu Rev Genomics Hum Genet 2022; 23:153-172. [PMID: 35395170 DOI: 10.1146/annurev-genom-112921-123710] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Do long noncoding RNAs (lncRNAs) contribute little or substantively to human biology? To address how lncRNA loci and their transcripts, structures, interactions, and functions contribute to human traits and disease, we adopt a genome-wide perspective. We intend to provoke alternative interpretation of questionable evidence and thorough inquiry into unsubstantiated claims. We discuss pitfalls of lncRNA experimental and computational methods as well as opposing interpretations of their results. The majority of evidence, we argue, indicates that most lncRNA transcript models reflect transcriptional noise or provide minor regulatory roles, leaving relatively few human lncRNAs that contribute centrally to human development, physiology, or behavior. These important few tend to be spliced and better conserved but lack a simple syntax relating sequence to structure and mechanism, and so resist simple categorization. This genome-wide view should help investigators prioritize individual lncRNAs based on their likely contribution to human biology.
Collapse
Affiliation(s)
- Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | | |
Collapse
|
86
|
Shi D, Mu S, Pu F, Zhong B, Hu B, Muhtar M, Tong W, Shao Z, Zhang Z, Liu J. Pan-sarcoma characterization of lncRNAs in the crosstalk of EMT and tumour immunity identifies distinct clinical outcomes and potential implications for immunotherapy. Cell Mol Life Sci 2022; 79:427. [PMID: 35842562 PMCID: PMC11071722 DOI: 10.1007/s00018-022-04462-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shidai Mu
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muradil Muhtar
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
87
|
Kragness S, Clark Z, Mullin A, Guidry J, Earls LR. An Rtn4/Nogo-A-interacting micropeptide modulates synaptic plasticity with age. PLoS One 2022; 17:e0269404. [PMID: 35771867 PMCID: PMC9246188 DOI: 10.1371/journal.pone.0269404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Micropeptides, encoded from small open reading frames of 300 nucleotides or less, are hidden throughout mammalian genomes, though few functional studies of micropeptides in the brain are published. Here, we describe a micropeptide known as the Plasticity–Associated Neural Transcript Short (Pants), located in the 22q11.2 region of the human genome, the microdeletion of which conveys a high risk for schizophrenia. Our data show that Pants is upregulated in early adulthood in the mossy fiber circuit of the hippocampus, where it exerts a powerful negative effect on long-term potentiation (LTP). Further, we find that Pants is secreted from neurons, where it associates with synapses but is rapidly degraded with stimulation. Pants dynamically interacts with Rtn4/Nogo-A, a well-studied regulator of adult plasticity. Pants interaction with Nogo-A augments its influence over postsynaptic AMPA receptor clustering, thus gating plasticity at adult synapses. This work shows that neural micropeptides can act as architectural modules that increase the functional diversity of the known proteome.
Collapse
Affiliation(s)
- S. Kragness
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Z. Clark
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - A. Mullin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane University Transgenic Core Facility, New Orleans, LA, United States of America
| | - J. Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine and Health Sciences Center, New Orleans, LA, United States of America
- The Proteomics Core Facility, LSUHSC, New Orleans, LA, United States of America
| | - L. R. Earls
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
88
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
89
|
Wu D, Li R, Liu J, Zhou C, Jia R. Long Noncoding RNA LINC00467: Role in Various Human Cancers. Front Genet 2022; 13:892009. [PMID: 35719391 PMCID: PMC9198549 DOI: 10.3389/fgene.2022.892009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Intricate genetic mutations promote the progression of different cancer types. Long noncoding RNAs (lncRNAs) have been widely demonstrated to participate in the genomic activities of various human cancers. Long intergenic non-coding RNA 467 (LINC00467) is an upregulated lncRNA in diverse diseases, especially in several types of cancers. Functional experiments of LINC00467 revealed that LINC00467 overexpression enhanced cell chemoresistance, proliferation, migration, and invasion in several types of cancers. Moreover, overexpressed LINC00467 was associated with a poor clinical prognosis. The present evidence suggests that LINC00467 may serve as a promising prognostic indicator and become a novel cancer therapeutic target. In this review, we introduce the biologic functions of lncRNAs and describe the molecular mechanism and clinical significance of LINC00467 in detail.
Collapse
Affiliation(s)
- Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
90
|
Pan J, Wang R, Shang F, Ma R, Rong Y, Zhang Y. Functional Micropeptides Encoded by Long Non-Coding RNAs: A Comprehensive Review. Front Mol Biosci 2022; 9:817517. [PMID: 35769907 PMCID: PMC9234465 DOI: 10.3389/fmolb.2022.817517] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were originally defined as non-coding RNAs (ncRNAs) which lack protein-coding ability. However, with the emergence of technologies such as ribosome profiling sequencing and ribosome-nascent chain complex sequencing, it has been demonstrated that most lncRNAs have short open reading frames hence the potential to encode functional micropeptides. Such micropeptides have been described to be widely involved in life-sustaining activities in several organisms, such as homeostasis regulation, disease, and tumor occurrence, and development, and morphological development of animals, and plants. In this review, we focus on the latest developments in the field of lncRNA-encoded micropeptides, and describe the relevant computational tools and techniques for micropeptide prediction and identification. This review aims to serve as a reference for future research studies on lncRNA-encoded micropeptides.
Collapse
Affiliation(s)
- Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
- *Correspondence: Yanjun Zhang,
| |
Collapse
|
91
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
92
|
Dozier C, Montigny A, Viladrich M, Culerrier R, Combier JP, Besson A, Plaza S. Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Drosophila. Int J Mol Sci 2022; 23:5764. [PMID: 35628573 PMCID: PMC9144653 DOI: 10.3390/ijms23105764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs, resulting from the cleavage of long primary transcripts (pri-miRNAs) in the nucleus by the Microprocessor complex generating precursors (pre-miRNAs) that are then exported to the cytoplasm and processed into mature miRNAs. Some miRNAs are hosted in pri-miRNAs annotated as long non-coding RNAs (lncRNAs) and defined as MIRHGs (for miRNA Host Genes). However, several lnc pri-miRNAs contain translatable small open reading frames (smORFs). If smORFs present within lncRNAs can encode functional small peptides, they can also constitute cis-regulatory elements involved in lncRNA decay. Here, we investigated the possible involvement of smORFs in the regulation of lnc pri-miRNAs in Human and Drosophila, focusing on pri-miRNAs previously shown to contain translatable smORFs. We show that smORFs regulate the expression levels of human pri-miR-155 and pri-miR-497, and Drosophila pri-miR-8 and pri-miR-14, and also affect the expression and activity of their associated miRNAs. This smORF-dependent regulation is independent of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, suggesting the involvement of translational events. This study identifies smORFs as new cis-acting elements involved in the regulation of pri-miRNAs and miRNAs expression, in both Human and Drosophila melanogaster.
Collapse
Affiliation(s)
- Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Mireia Viladrich
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Raphael Culerrier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| |
Collapse
|
93
|
Xie C, Wang FY, Sang Y, Chen B, Huang JH, He FJ, Li H, Zhu Y, Liu X, Zhuang SM, Fang JH. Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. Cancer Res 2022; 82:2431-2443. [PMID: 35544764 DOI: 10.1158/0008-5472.can-21-3910] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Micropeptides are a recently discovered class of molecules that play vital roles in various cellular processes, including differentiation, proliferation, and apoptosis. Here, we sought to identify cancer-associated micropeptides and to uncover their mechanistic functions. A micropeptide named short trans-membrane protein 1 (STMP1) that localizes at the inner mitochondrial membrane was identified to be upregulated in various cancer types and associated with metastasis and recurrence of hepatocellular carcinoma. Both gain- and loss-of-function studies revealed that STMP1 increased dynamin-related protein 1 (DRP1) activation to promote mitochondrial fission and enhanced migration of tumor cells. STMP1 silencing inhibited in vivo tumor metastasis in xenograft mouse models. Overexpression of STMP1 led to redistribution of mitochondria to the leading edge of cells and enhanced lamellipodia formation. Treatment with a DRP1 inhibitor abrogated the promotive effect of STMP1 on mitochondrial fission, lamellipodia formation, and tumor cell migration in vitro and metastasis in vivo. Furthermore, STMP1 interacted with myosin heavy chain 9 (MYH9), the subunit of non-muscle myosin II, and silencing MYH9 abrogated STMP1-induced DRP1 activation, mitochondrial fission, and cell migration. Collectively, this study identifies STMP1 as a critical regulator of metastasis and a novel unit of the mitochondrial fission protein machinery, providing a potential therapeutic target for treating metastases.
Collapse
Affiliation(s)
- Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Yi Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ye Sang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Bin Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Hui Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Jun He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hui Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
94
|
Zhou H, Lou F, Bai J, Sun Y, Cai W, Sun L, Xu Z, Liu Z, Zhang L, Yin Q, Zhang J, Gao Y, Wang Z, Niu L, Cai X, Deng S, Wang H, Xia L, Ginhoux F, Li Q, Wang H. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting T reg differentiation. EMBO Rep 2022; 23:e53475. [PMID: 35343645 PMCID: PMC9066071 DOI: 10.15252/embr.202153475] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Recent evidence has revealed that small polypeptides (containing fewer than 100 amino acids) can be translated from noncoding RNAs (ncRNAs), which are usually defined as RNA molecules that do not encode proteins. However, studies on functional products translated from primary transcripts of microRNA (pri-miRNA) are quite limited. Here, we describe a peptide termed miPEP31 that is encoded by pri-miRNA-31. miPEP31 is highly expressed in Foxp3+ regulatory T cells (Tregs ) and significantly promotes the differentiation of Tregs without affecting their inhibitory ability. Our results show that miPEP31 is a cell-penetrating peptide both in vitro and in vivo. miPEP31 downregulates miR-31 expression, enhances peripheral Treg induction, and dramatically suppresses experimental autoimmune encephalomyelitis. Mechanistically, we show that miPEP31 acts as a transcriptional repressor inhibiting the expression of miRNA-31, a negative regulator of Tregs . Our results reveal an indispensable role of miPEP31 in maintaining immune homeostasis by promoting Treg differentiation and also present a potential therapeutic peptide for modulating miRNA expression and treating autoimmune diseases.
Collapse
Affiliation(s)
- Hong Zhou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libo Sun
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyuan Liu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junxun Zhang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Gao
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liman Niu
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xia
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
95
|
Dozier C, Plaza S. Functions of animal microRNA-encoded peptides: the race is on! EMBO Rep 2022; 23:e54789. [PMID: 35343609 PMCID: PMC9066062 DOI: 10.15252/embr.202254789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
Abstract
Short open reading frame (sORF)-encoded peptides (SEPs) recently emerged as new key players in biology. Pioneering work first established that sORFs encoded by long non-coding RNAs (lncRNAs) are efficiently translated and produce functional peptides. In plants, primary transcripts of microRNAs (pri-miRNAs) also produce sORF-encoded peptides called miPEPs, which are involved in specific transcriptional autoregulatory feedback loops (Lauressergues et al, 2015). To what extend are such mechanisms conserved in other species, especially in animals? In this issue of EMBO reports, Zhou et al show that pri-miR-31 encodes a miPEP promoting Treg differentiation and downregulating pri-miR-31 expression (Zhou et al, 2022).
Collapse
Affiliation(s)
- Christine Dozier
- Centre de Biologie Intégrative, Laboratoire de Biologie Moléculaire, Cellulaire et du Dévelopment, UMR 5077 CNRS, UPS Université de Toulouse, Toulouse, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS/INPT, CNRS, UPS Université de Toulouse, Auzeville-Tolosan, France
| |
Collapse
|
96
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
97
|
Huang ZX, Qu P, Wang KK, Zheng J, Pan M, Zhu HQ. Transcriptomic profiling of pemphigus lesion infiltrating mononuclear cells reveals a distinct local immune microenvironment and novel lncRNA regulators. J Transl Med 2022; 20:182. [PMID: 35449056 PMCID: PMC9027862 DOI: 10.1186/s12967-022-03387-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/09/2022] [Indexed: 12/07/2022] Open
Abstract
Pemphigus is an autoimmune skin disease. Ectopic lymphoid-like structures (ELSs) were found to be commonly present in the pemphigus lesions, presumably supporting in situ desmoglein (Dsg)-specific antibody production. Yet functional phenotypes and the regulators of Lymphoid aggregates in pemphigus lesions remain largely unknown. Herein, we used microarray technology to profile the gene expression in skin lesion infiltrating mononuclear cells (SIMC) from pemphigus patients. On top of that, we compared SIMC dataset to peripheral blood mononuclear cells (PBMC) dataset to characterize the unique role of SIMC. Functional enrichment results showed that mononuclear cells in skin lesions and peripheral blood both had over-represented IL-17 signaling pathways while neither was characterized by an activation of type I Interferon signaling pathways. Cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) results showed that naïve natural killer cells (NK cells) were significantly more abundant in pemphigus lesions, and their relative abundance positively correlated with B cells abundance. Meanwhile, plasma cells population highly correlated with type 1 macrophages (M1) abundance. In addition, we also identified a lncRNA LINC01588 which might epigenetically regulate T helper 17 cells (Th17)/regulatory T cells (Treg) balance via the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Here, we provide the first transcriptomic characterization of lesion infiltrating immune cells which illustrates a distinct interplay network between adaptive and innate immune cells. It helps discover new regulators of local immune response, which potentially will provide a novel path forward to further uncover pemphigus pathological mechanisms and develop targeted therapy.
Collapse
Affiliation(s)
- Zi-Xuan Huang
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Qu
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kan-Kan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai-Qin Zhu
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
98
|
Peltier DC, Roberts A, Reddy P. LNCing RNA to immunity. Trends Immunol 2022; 43:478-495. [DOI: 10.1016/j.it.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
|
99
|
Proteogenomics Analysis Reveals Novel Micropeptides in Primary Human Immune Cells. IMMUNO 2022. [DOI: 10.3390/immuno2020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Short open reading frames (sORFs) encoding functional peptides have emerged as important mediators of biological processes. Recent studies indicate that sORFs of long non-coding RNAs (lncRNAs) can encode functional micropeptides regulating immunity and inflammation. However, large-scale identification of potential micropeptide-encoding sequences is a significant challenge. We present a data analysis pipeline that uses immune cell-derived mass spectrometry-based proteomic data reanalyzed using a rigorous proteogenomics-based workflow. Our analysis resulted in the identification of 2815 putative lncRNA-encoded micropeptides across three human immune cell types. Stringent score cut-off and manual verification confidently identified 185 high-confidence putative micropeptide-coding events, of which a majority have not been reported previously. Functional validation revealed the expression and localization of lnc-MKKS in both nucleus and cytoplasmic compartments. Our pilot analysis serves as a resource for future studies focusing on the role of micropeptides in immune cell response.
Collapse
|
100
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|