51
|
Wang Y, Chen H, Lin K, Han Y, Gu Z, Wei H, Mu K, Wang D, Liu L, Jin R, Song R, Rong Z, Wang S. Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device. Nat Commun 2024; 15:3279. [PMID: 38627378 PMCID: PMC11021474 DOI: 10.1038/s41467-024-47518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
The emerging monkeypox virus (MPXV) has raised global health concern, thereby highlighting the need for rapid, sensitive, and easy-to-use diagnostics. Here, we develop a single-step CRISPR-based diagnostic platform, termed SCOPE (Streamlined CRISPR On Pod Evaluation platform), for field-deployable ultrasensitive detection of MPXV in resource-limited settings. The viral nucleic acids are rapidly released from the rash fluid swab, oral swab, saliva, and urine samples in 2 min via a streamlined viral lysis protocol, followed by a 10-min single-step recombinase polymerase amplification (RPA)-CRISPR/Cas13a reaction. A pod-shaped vest-pocket analysis device achieves the whole process for reaction execution, signal acquisition, and result interpretation. SCOPE can detect as low as 0.5 copies/µL (2.5 copies/reaction) of MPXV within 15 min from the sample input to the answer. We validate the developed assay on 102 clinical samples from male patients / volunteers, and the testing results are 100% concordant with the real-time PCR. SCOPE achieves a single-molecular level sensitivity in minutes with a simplified procedure performed on a miniaturized wireless device, which is expected to spur substantial progress to enable the practice application of CRISPR-based diagnostics techniques in a point-of-care setting.
Collapse
Affiliation(s)
- Yunxiang Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Hong Chen
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, 100142, Beijing, China
| | - Yongjun Han
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Zhixia Gu
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China
| | - Hongjuan Wei
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Kai Mu
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Dongfeng Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Liyan Liu
- Bioinformatics Center of AMMS, 100850, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, 100015, Beijing, China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, 100850, Beijing, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, 100850, Beijing, China.
| |
Collapse
|
52
|
Deng Y, Zhou T, Hu K, Peng Y, Jia X, Yang J, Li G. An electrochemical biosensor designed with entropy-driven autocatalytic DNA circuits for sensitive detection of ovarian cancer-derived exosomes. Biosens Bioelectron 2024; 250:116060. [PMID: 38278121 DOI: 10.1016/j.bios.2024.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Intelligent artificial DNA circuits have emerged as a promising approach for modulating signaling pathways and signal transduction through rational design, which may contribute to comprehensively realizing biomolecular sensing of organisms. In this work, we have fabricated an electrochemical biosensor for the sensitive and accurate detection of ovarian cancer-derived exosomes by constructing an entropy-driven autocatalytic DNA circuit (EADC). Specifically, the robust EADC is prepared by the self-assembly of well-designed DNA probes, and upon stimulation of the presence of ovarian cancer cells-derived exosomes, numerous inputs can be produced to feedback and accelerate the reaction. The catalytic abilities of the generated input sequences play a pivotal role in EADC and dramatically enhance the signal amplification capability. Through the combination of the autocatalytic circuit and circular cleavage reactions, significantly changed electrochemical signals can be recorded for sensitive analysis of the exosomes with a remarkably low detection limit of 30 particles/μL. Moreover, the proposed enzyme-free biosensor shows exceptional performance in distinguishing patient samples from healthy samples, which exhibits promising prospects for the clinical diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Kai Hu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, PR China
| | - Ying Peng
- School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, PR China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, PR China.
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
53
|
Kang W, Xiao F, Zhu X, Ling X, Xie S, Li R, Yu P, Cao L, Lei C, Qiu Y, Liu T, Nie Z. Engineering Anti-CRISPR Proteins to Create CRISPR-Cas Protein Switches for Activatable Genome Editing and Viral Protease Detection. Angew Chem Int Ed Engl 2024; 63:e202400599. [PMID: 38407550 DOI: 10.1002/anie.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Proteins capable of switching between distinct active states in response to biochemical cues are ideal for sensing and controlling biological processes. Activatable CRISPR-Cas systems are significant in precise genetic manipulation and sensitive molecular diagnostics, yet directly controlling Cas protein function remains challenging. Herein, we explore anti-CRISPR (Acr) proteins as modules to create synthetic Cas protein switches (CasPSs) based on computational chemistry-directed rational protein interface engineering. Guided by molecular fingerprint analysis, electrostatic potential mapping, and binding free energy calculations, we rationally engineer the molecular interaction interface between Cas12a and its cognate Acr proteins (AcrVA4 and AcrVA5) to generate a series of orthogonal protease-responsive CasPSs. These CasPSs enable the conversion of specific proteolytic events into activation of Cas12a function with high switching ratios (up to 34.3-fold). These advancements enable specific proteolysis-inducible genome editing in mammalian cells and sensitive detection of viral protease activities during virus infection. This work provides a promising strategy for developing CRISPR-Cas tools for controllable gene manipulation and regulation and clinical diagnostics.
Collapse
Affiliation(s)
- Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Fei Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, P. R. China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Ruimiao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Peihang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, P. R. China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
54
|
Wu C, Yan L, Zhan Z, Qu R, Wang Y, Zeng X, Yang H, Feng P, Wei Z, Chen P. Biomolecules-mediated electrochemical signals of Cu 2+: Y-DNA nanomachines enable homogeneous rapid one-step assay of lung cancer circulating tumor cells. Biosens Bioelectron 2024; 249:116030. [PMID: 38241796 DOI: 10.1016/j.bios.2024.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
This study presents a straightforward efficient technique for extracting circulating tumor cells (CTCs) and a rapid one-step electrochemical method (45 min) for detecting lung cancer A549 cells based on the specific recognition of mucin 1 using aptamers and the modulation of Cu2+ electrochemical signals by biomolecules. The CTCs separation and enrichment process can be completed within 45 min using lymphocyte separation solution (LSS), erythrocyte lysis solution (ELS), and three centrifugations. Besides, the influence of various biomolecules on Cu2+ electrochemical signals is comprehensively discussed, with DNA nanospheres selected as the medium. Three single-stranded DNA sequences were hybridized to form Y-shaped DNA (Y-DNA), creating DNA nanospheres. Upon specific capture of mucin 1 by the aptamer, most DNA nanospheres could form complexes with Cu2+ (DNA nanosphere-Cu2+), significantly reducing the concentration of free Cu2+. Our approach yielded the limit of detection (LOD) of 2 ag/mL for mucin 1 and 1 cell/mL for A549 cells. 39 clinical blood samples were used for further validation, yielding results closely correlated with pathological, computed tomography (CT) scan findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve displayed an area under the curve (AUC) value of 0.960, demonstrating 100% specificity and 93.1% sensitivity for the assay. Taken together, our findings indicate that this straightforward and efficient pretreatment and rapid, highly sensitive electrochemical assay holds great promise for liquid biopsy-based tumor detection using CTCs.
Collapse
Affiliation(s)
- Chengyong Wu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Yan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zixuan Zhan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Runlian Qu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haihui Yang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pan Feng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zeliang Wei
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, Out-patient Department, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
55
|
Tian Z, Yan H, Zeng Y. Solid-Phase Extraction and Enhanced Amplification-Free Detection of Pathogens Integrated by Multifunctional CRISPR-Cas12a. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14445-14456. [PMID: 38472096 DOI: 10.1021/acsami.3c17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Public healthcare demands effective and pragmatic diagnostic tools to address the escalating challenges in infection management in resource-limited areas. Recent advances in clustered regularly interspaced short palindromic repeat (CRISPR)-based biosensing promise the development of next-generation tools for disease diagnostics, including point-of-care (POC) testing for infectious diseases. The currently prevailing strategy of developing CRISPR/Cas-based diagnostics exploits only the target identification and trans-cleavage activity of a CRISPR-Cas12a/Cas13a system to provide diagnostic results, and they need to be combined with an additional preamplification reaction to enhance sensitivity. In contrast to this dual-function strategy, here, we present a new approach that collaboratively integrates the triple functions of CRISPR-Cas12a: target identification, sequence-specific enrichment, and signal generation. With this approach, we develop a nucleic acid assay termed Solid-Phase Extraction and Enhanced Detection Assay integrated by CRISPR-Cas12a (SPEEDi-CRISPR) that negates the need for preamplification but significantly improves the detection of limit (LOD) from the pM to fM level. Specifically, using Cas12a-coated magnetic beads, this assay combines efficient solid-phase extraction and enrichment of DNA targets enabled by the sequence-specific affinity of CRISPR-Cas12a with fluorogenic detection by activated Cas12a on beads. SPEEDi-CRISPR, for the first time, leverages the possibility of employing CRISPR/Cas12a in nucleic acid extraction and integrates the ability of both enrichment and detection of CRISPR/Cas into a single platform. Our proof-of-concept studies revealed that the SPEEDi-CRISPR assay has great specificity to distinguish HPV-18 from HPV-16, and Parvovirus B19, in addition to being able to detect HPV-18 at a concentration as low as 2.3 fM in 100 min and 4.7 fM in 60 min. Furthermore, we proved that this assay can be coupled with two point-of-care testing strategies: the smartphone-based fluorescence detector and the lateral flow assay. Overall, these results suggested that our assay could pave a new way for developing CRISPR diagnostics.
Collapse
Affiliation(s)
- Zimu Tian
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- University of Florida Health Cancer Center, Gainesville, Florida 32611, United States
| |
Collapse
|
56
|
Yu S, Lei X, Qu C. MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection. Crit Rev Anal Chem 2024:1-17. [PMID: 38489095 DOI: 10.1080/10408347.2024.2329229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
MicroRNA (miRNA) has emerged as a promising biomarker for disease diagnosis and a potential therapeutic targets for drug development. The detection of miRNA can serve as a noninvasive tool in diseases diagnosis and predicting diseases prognosis. CRISPR/Cas12a system has great potential in nucleic acid detection due to its high sensitivity and specificity, which has been developed to be a versatile tool for nucleic acid-based detection of targets in various fields. However, conversion from RNA to DNA with or without amplification operation is necessary for miRNA detection based on CRISPR/Cas12a system, because dsDNA containing PAM sequence or ssDNA is traditionally considered as the activator of Cas12a. Until recently, direct detection of miRNA by CRISPR/Cas12a system has been reported. In this review, we provide an overview of the evolution of biosensors based on CRISPR/Cas12a for miRNA detection from indirect to direct, which would be beneficial to the development of CRISPR/Cas12a-based sensors with better performance for direct detection of miRNA.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
57
|
Li X, Dang Z, Tang W, Zhang H, Shao J, Jiang R, Zhang X, Huang F. Detection of Parasites in the Field: The Ever-Innovating CRISPR/Cas12a. BIOSENSORS 2024; 14:145. [PMID: 38534252 DOI: 10.3390/bios14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The rapid and accurate identification of parasites is crucial for prompt therapeutic intervention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine, or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages, including comparable sensitivity and specificity, simple observation of reaction results, easy and stable transportation conditions, and low equipment dependence. However, a common issue arises as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.
Collapse
Affiliation(s)
- Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850002, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jianwei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui Jiang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
58
|
Deng F, Li Y, Yang B, Sang R, Deng W, Kansara M, Lin F, Thavaneswaran S, Thomas DM, Goldys EM. Topological barrier to Cas12a activation by circular DNA nanostructures facilitates autocatalysis and transforms DNA/RNA sensing. Nat Commun 2024; 15:1818. [PMID: 38443394 PMCID: PMC10914725 DOI: 10.1038/s41467-024-46001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Control of CRISPR/Cas12a trans-cleavage is crucial for biosensor development. Here, we show that small circular DNA nanostructures which partially match guide RNA sequences only minimally activate Cas12a ribonucleoproteins. However, linearizing these structures restores activation. Building on this finding, an Autocatalytic Cas12a Circular DNA Amplification Reaction (AutoCAR) system is established which allows a single nucleic acid target to activate multiple ribonucleoproteins, and greatly increases the achievable reporter cleavage rates per target. A rate-equation-based model explains the observed near-exponential rate trends. Autocatalysis is also sustained with DNA nanostructures modified with fluorophore-quencher pairs achieving 1 aM level (<1 copy/μL) DNA detection (106 times improvement), without additional amplification, within 15 min, at room temperature. The detection range is tuneable, spanning 3 to 11 orders of magnitude. We demonstrate 1 aM level detection of SNP mutations in circulating tumor DNA from blood plasma, genomic DNA (H. Pylori) and RNA (SARS-CoV-2) without reverse transcription as well as colorimetric lateral flow tests of cancer mutations with ~100 aM sensitivity.
Collapse
Affiliation(s)
- Fei Deng
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Biyao Yang
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maya Kansara
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2011, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2011, Australia
- Omico, Australian Genomic Cancer Medicine Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Frank Lin
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2011, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Subotheni Thavaneswaran
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2011, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2011, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - David M Thomas
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2011, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2011, Australia
- Omico, Australian Genomic Cancer Medicine Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
59
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
60
|
Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:798-816. [PMID: 38259224 DOI: 10.1039/d3ay02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.
Collapse
Affiliation(s)
- Bingqian Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Guangyu Zhai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaru Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Wang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Peng Ma
- School of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
61
|
Chen M, Jiang X, Hu Q, Long J, He J, Wu Y, Wu Z, Niu Y, Jing C, Yang X. Toehold-Containing Three-Way Junction-Initiated Multiple Exponential Amplification and CRISPR/Cas14a Assistant Magnetic Separation Enhanced Visual Detection of Mycobacterium Tuberculosis. ACS Sens 2024; 9:62-72. [PMID: 38126108 DOI: 10.1021/acssensors.3c01622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Rapid and simple nucleic acid detection is significant for disease diagnosis and pathogen screening, especially under specific conditions. However, achieving highly sensitive and specific nucleic acid detection to meet the time and equipment demand remains technologically challenging. In this study, we proposed a magnetic separation enhanced colorimetry biosensor based on a toehold-containing three-way junction (TWJ) induced multiple isothermal exponential amplification and the CRISPR/Cas14a (C-TEC) biosensor. The TWJ template was designed as a Y-X-Y structure. In the presence of the target, the formation of toehold-containing TWJ complex induced primer extension, leading to the generation of amplified single-stranded DNA; this amplified DNA could then bind to either the free TWJ template for EXPAR reaction or the toehold of the TWJ complex for toehold-mediated strand displacement, thereby enabling the recycling of the target. The amplification products could trigger CRISPR/Cas14a for efficient trans-cleavage and release the magnetically bound gold nanoparticle probes for colorimetry detection. Using Mycobacterium tuberculosis 16S rDNA as the target, the proposed C-TEC could detect 16S rDNA down to 50 fM by the naked eye and 20.71 fM by UV-vis detector at 520 nm within 90 min under optimal conditions. We successfully applied this biosensor to clinical isolates of Mycobacterium tuberculosis. In addition, the C-TEC biosensor also showed feasibility for the detection of RNA viruses. In conclusion, the proposed C-TEC is a convenient, fast, and versatile platform for visual detection of pathogen DNA/RNA and has potential clinical applications.
Collapse
Affiliation(s)
- Mengqi Chen
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianfang Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinyan Long
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Jianwei He
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuchen Wu
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Zhili Wu
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Yanhong Niu
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Chunmei Jing
- Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Xiaolan Yang
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| |
Collapse
|
62
|
Tan W, Zhang C, Cheng S, Hu X, Wang M, Xian Y. DNA Gate-Based CRISPR-Cas Exponential Amplification System for Ultrasensitive Small Extracellular Vesicle Detection to Enhance Breast Cancer Diagnosis. Anal Chem 2024; 96:1328-1335. [PMID: 38190500 DOI: 10.1021/acs.analchem.3c04873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Tumor-derived small extracellular vesicles (tEVs) as potential biomarkers possess abundant surface proteins closely related to parent cells, which are crucial for noninvasive cancer diagnosis. However, tEVs exhibit phenotype heterogeneity and low abundance, posing a significant challenge for multiplex detection with a high sensitivity. Herein, we developed a DNA gate-based exponential amplification CRISPR-Cas (DGEAC) system for accurate and ultrasensitive detection of tEVs, which can greatly improve the accuracy of breast cancer (BC) diagnosis. Based on the coexpression of CD63 and vascular endothelial growth factor (VEGF) on BC-derived tEVs, we developed a dual-aptamer-based AND gate fluorescent probe by proximity hybridization. By integrating the target recognition and trans-cleavage activity of Cas12a, an autocatalysis-driven exponential amplification circuit was developed for ultrasensitive detection of CD63 and VEGF proteins on tEVs, which could avoid false negative signals from single protein or other interfering proteins. We achieved highly sensitive detection of tEVs over a linear range from 1.75 × 103 to 3.5 × 108 particles/mL with a detection limit as low as 1.02 × 103 particles/mL. Furthermore, the DGEAC system can distinguish tEVs from tEVs derived from different BC cell lines, including MDA-MB-231, MCF-7, SKBR3, and MCF-10A. Compared to linear amplification (AUC 90.0%), the DGEAC system effectively differentiates BC in different stages (AUC 98.3%).
Collapse
Affiliation(s)
- Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Man Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
63
|
Qi L, Liu J, Liu S, Liu Y, Xiao Y, Zhang Z, Zhou W, Jiang Y, Fang X. Ultrasensitive Point-of-Care Detection of Protein Markers Using an Aptamer-CRISPR/Cas12a-Regulated Liquid Crystal Sensor (ALICS). Anal Chem 2024; 96:866-875. [PMID: 38164718 DOI: 10.1021/acs.analchem.3c04492] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.
Collapse
Affiliation(s)
- Lubin Qi
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Jie Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Songlin Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yang Liu
- Department of Orthopedics, Second Affiliated Hospital of Shandong First Medical University, Taian 271000, PR China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
| | - Zhen Zhang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| |
Collapse
|
64
|
Zhang X, Li Z, Yang L, Hu B, Zheng Q, Man J, Cao J. CRISPR/Cas12a-Derived Photoelectrochemical Aptasensor Based on Au Nanoparticle-Attached CdS/UiO-66-NH 2 Heterostructures for the Rapid and Sensitive Detection of Ochratoxin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:874-882. [PMID: 38156660 DOI: 10.1021/acs.jafc.3c09106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The sensitive and accurate detection of ochratoxin A (OTA) is crucial for public health due to its high toxicity. Herein, using Au nanoparticle (NP)-attached CdS/UiO-66-NH2 heterostructures as photoactive materials, a photoelectrochemical (PEC) aptasensor was presented for the ultrasensitive assay of OTA based on a competitive displacement reaction triggering the trans-cleavage ability of CRISPR/Cas12a. In this sensing strategy, methylene blue-labeled single-stranded DNA (MB-ssDNA) was immobilized on the Au NPs/CdS/UiO-66-NH2 electrode to accelerate the separation of the photogenerated carrier, thus producing a significantly increased PEC response. In the presence of OTA, it specifically bound with the aptamer (Apt) and resulted in the release of the activation chain, triggering the trans-cleavage characteristics of CRISPR/Cas12a. MB-ssDNA was cut randomly on the electrode surface to convert the PEC signal from the "on" to the "off" state, thereby achieving a quantitative and accurate detection of OTA. The CRISPR/Cas12a-derived PEC aptasensor exhibited excellent sensitivity and specificity, with a linear range from 100 to 50 ng/mL and a detection limit of 38 fg/mL. Overall, the proposed aptasensor could provide a rapid, accurate, and sensitive method for the determination of OTA in actual samples.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lili Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jiang Man
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
65
|
Feng Y, Liu S, Yao Y, Chen M, Liu Q, Chen X. Endogenous mRNA-Powered and Spatial Confinement-Derived DNA Nanomachines for Ultrarapid and Sensitive Imaging of Let-7a. Anal Chem 2024; 96:564-571. [PMID: 38112715 DOI: 10.1021/acs.analchem.3c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
DNA nanostructure-based signal amplifiers offer new tools for imaging intracellular miRNA. However, the inadequate kinetics and susceptibility to enzymatic hydrolysis of these amplifiers, combined with a deficient cofactor concentration within the intracellular environment, significantly undermine their operational efficiency. In this study, we address these challenges by encapsulating a localized target strand displacement assembly (L-SD) and a toehold-exchange endogenous-powered component (R-mRNA) within a framework nucleic acid (FNA) structure─20 bp cubic DNA nanocage (termed RL-cube). This design enables the construction of an endogenous-powered and spatial-confinement DNA nanomachine for ratiometric fluorescence imaging of intracellular miRNA Let-7a. The R-mRNA is designed to be specifically triggered by glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an abundant cellular enzyme, and concurrently releases a component that can recycle the target Let-7a. Meanwhile, L-SD reacts with Let-7a to release a stem-loop beacon, generating a FRET signal. The spatial confinement provided by the framework, combined with the ample intracellular supply of GAPDH, imparts remarkable sensitivity (7.57 pM), selectivity, stability, biocompatibility, and attractive dynamic performance (2240-fold local concentration, approximately four times reaction rate, and a response time of approximately 7 min) to the nanomachine-based biosensor. Consequently, this study introduces a potent sensing approach for detecting nucleic acid biomarkers with significant potential for application in clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yinghui Feng
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- College of Life Science, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
- Xiangjiang Laboratory, Changsha 410205, Hunan, China
| |
Collapse
|
66
|
Talebian S, Dehghani F, Weiss PS, Conde J. Evolution of CRISPR-enabled biosensors for amplification-free nucleic acid detection. Trends Biotechnol 2024; 42:10-13. [PMID: 37516612 DOI: 10.1016/j.tibtech.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
CRISPR biosensors enable rapid and accurate detection of nucleic acids without resorting to target amplification. Specifically, these systems facilitate the simultaneous detection of multiple nucleic acid targets with single-base specificity. This is an invaluable asset that can ultimately facilitate accurate diagnoses of biologically complex diseases.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia.
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia; Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal.
| |
Collapse
|
67
|
Li Y, Liu Y, Tang X, Qiao J, Kou J, Man S, Zhu L, Ma L. CRISPR/Cas-Powered Amplification-Free Detection of Nucleic Acids: Current State of the Art, Challenges, and Futuristic Perspectives. ACS Sens 2023; 8:4420-4441. [PMID: 37978935 DOI: 10.1021/acssensors.3c01463] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajie Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
68
|
Jiang Y, Qian X, Zheng M, Deng K, Li C. Enhancement and inactivation effect of CRISPR/Cas12a via extending hairpin activators for detection of transcription factors. Mikrochim Acta 2023; 191:43. [PMID: 38114763 DOI: 10.1007/s00604-023-06123-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
An enhancement effect for the activation of CRISPR/Cas12a (CRISPR = clustered regularly interspaced short palindromic repeats; Cas = CRISPR-associated) was discovered. That was, a hairpin model with dangling 5' end complementary to crRNA (CRISPR RNA) greatly improved the activity of CRISPR/Cas12a after extention of two random sequences. But, the corresponding intact hairpin without PAM (protospacer adjacent motif) or suboptimal PAM sequences was completely inactive to CRISPR/Cas12a because of the superhigh stability of intact hairpin. According to the finding, a CRISPR/Cas12a-based strategy coupled with a signal reported system was designed for transcription factors detection. By using mono-labeled ssDNA (single-stranded DNA) as reporter and two newly synthesized N-C (nitrogen-doped carbon) nanosheets as scavenger to eliminate the fluorescent background, the strategy realized the detection of NF-ĸB p50 (p50 subunit of nuclear factor kappa-B) with a linear detection range of 0.8 - 2000.0 pM and a LOD of 0.5 pM. The discovery of "enhancement and inactivation effect" not only deepened insight into CRISPR/Cas12a but also broadened the practical application of CRISPR/Cas systems for the molecular detection and disease diagnostics.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinmei Qian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Mingyu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
| | - Chunxiang Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
69
|
Li HD, Fang GH, Ye BC, Yin BC. RNase H-Driven crRNA Switch Circuits for Rapid and Sensitive Detection of Various Analytical Targets. Anal Chem 2023; 95:18549-18556. [PMID: 38073045 DOI: 10.1021/acs.analchem.3c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR/Cas12a) system has exhibited great promise in the rapid and sensitive molecular diagnostics for its trans-cleavage property. However, most CRISPR/Cas system-based detection methods are designed for nucleic acids and require target preamplification to improve sensitivity and detection limits. Here, we propose a generic crRNA switch circuit-regulated CRISPR/Cas sensor for the sensitive detection of various targets. The crRNA switch is engineered and designed in a blocked state but can be activated in the presence of triggers, which are target-induced association DNA to initiate the trans-cleavage activity of Cas12a for signal reporting. Additionally, RNase H is introduced to specifically hydrolyze RNA duplexed with the DNA trigger, resulting in the regeneration of the trigger to activate more crRNA switches. Such a combination provides a generic and sensitive strategy for the effective sensing of the p53 sequence, thrombin, and adenosine triphosphate. The design is incorporated with nucleic acid nanotechnology and extensively broadens the application scope of the CRISPR technology in biosensing.
Collapse
Affiliation(s)
- Hua-Dong Li
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Guan-Hua Fang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
| |
Collapse
|
70
|
Shen C, Wang T, Yang K, Zhong L, Liu B. Ultrasensitive detection of genetic variation based on dual signal amplification assisted by isothermal amplification and cobalt oxyhydroxide nanosheets/quantum dots. Mikrochim Acta 2023; 191:12. [PMID: 38063936 DOI: 10.1007/s00604-023-06097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
PML/RARα fusion gene (P/R) is the characteristic signature genetic variation of acute promyelocytic leukemia (APL). Here, by integrating triple-stranded DNA hybridization-triggered strand displacement amplification (tri-HT SDA) and cobalt oxyhydroxide nanosheets/quantum dots (CoOOH/QD)-based amplification, we constructed a novel biosensor of easy-operating, time-saving and high sensitivity for detecting P/R to meet clinical needs. Owing to the specific recognition and efficient amplification of tri-HT SDA as well as impressive anti-interference and considerable amplification of CoOOH/QD, this biosensor demonstrated a wide dynamic range (10 fM to 10 nM) with a low limit of detection (5.50 fM) in P/R detection. Additionally, this biosensor could detect P/R spiked into human serum with good recoveries and relative standard deviation (RSD), thus potentially exhibiting ultrasensitive and specific nuclear acid sequence detection ability in clinical diagnosis owing to combing isothermal amplification and nanomaterials.
Collapse
Affiliation(s)
- Chenlan Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Tong Wang
- Clinical Laboratory of the Fourth People's Hospital of Chengdu, Chengdu, 610036, Sichuan, China
| | - Ke Yang
- Department of Laboratory Medicine, Chengdu Shangjin Nanfu Hospital, Chengdu, 611743, Sichuan, China
| | - Liang Zhong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
71
|
Moon J, Liu C. Asymmetric CRISPR enabling cascade signal amplification for nucleic acid detection by competitive crRNA. Nat Commun 2023; 14:7504. [PMID: 37980404 PMCID: PMC10657364 DOI: 10.1038/s41467-023-43389-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Nucleic acid detection powered by CRISPR technology provides a rapid, sensitive, and deployable approach to molecular diagnostics. While exciting, there remain challenges limiting its practical applications, such as the need for pre-amplification and the lack of quantitative ability. Here, we develop an asymmetric CRISPR assay for cascade signal amplification detection of nucleic acids by leveraging the asymmetric trans-cleavage behavior of competitive crRNA. We discover that the competitive reaction between a full-sized crRNA and split crRNA for CRISPR-Cas12a can induce cascade signal amplification, significantly improving the target detection signal. In addition, we find that CRISPR-Cas12a can recognize fragmented RNA/DNA targets, enabling direct RNA detection by Cas12a. Based on these findings, we apply our asymmetric CRISPR assay to quantitatively detect microRNA without the need for pre-amplification, achieving a detection sensitivity of 856 aM. Moreover, using this method, we analyze and quantify miR-19a biomarker in plasma samples from bladder cancer patients. This asymmetric CRISPR assay has the potential to be widely applied for simple and sensitive nucleic acid detection in various diagnostic settings.
Collapse
Affiliation(s)
- Jeong Moon
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06032, US
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06032, US.
| |
Collapse
|
72
|
Zhao R, Luo W, Wu Y, Zhang L, Liu X, Li J, Yang Y, Wang L, Wang L, Han X, Wang Z, Zhang J, Lv K, Chen T, Xie G. Unmodificated stepless regulation of CRISPR/Cas12a multi-performance. Nucleic Acids Res 2023; 51:10795-10807. [PMID: 37757856 PMCID: PMC10602922 DOI: 10.1093/nar/gkad748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
As CRISPR technology is promoted to more fine-divided molecular biology applications, its inherent performance finds it increasingly difficult to cope with diverse needs in these different fields, and how to more accurately control the performance has become a key issue to develop CRISPR technology to a new stage. Herein, we propose a CRISPR/Cas12a regulation strategy based on the powerful programmability of nucleic acid nanotechnology. Unlike previous difficult and rigid regulation of core components Cas nuclease and crRNA, only a simple switch of different external RNA accessories is required to change the reaction kinetics or thermodynamics, thereby finely and almost steplessly regulating multi-performance of CRISPR/Cas12a including activity, speed, specificity, compatibility, programmability and sensitivity. In particular, the significantly improved specificity is expected to mark advance the accuracy of molecular detection and the safety of gene editing. In addition, this strategy was applied to regulate the delayed activation of Cas12a, overcoming the compatibility problem of the one-pot assay without any physical separation or external stimulation, and demonstrating great potential for fine-grained control of CRISPR. This simple but powerful CRISPR regulation strategy without any component modification has pioneering flexibility and versatility, and will unlock the potential for deeper applications of CRISPR technology in many finely divided fields.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhongzhong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianhong Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Ke Lv
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
73
|
Kulkarni A, Tanga S, Karmakar A, Hota A, Maji B. CRISPR-Based Precision Molecular Diagnostics for Disease Detection and Surveillance. ACS APPLIED BIO MATERIALS 2023; 6:3927-3945. [PMID: 37788375 DOI: 10.1021/acsabm.3c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sensitive, rapid, and portable molecular diagnostics is the future of disease surveillance, containment, and therapy. The recent SARS-CoV-2 pandemic has reminded us of the vulnerability of lives from ever-evolving pathogens. At the same time, it has provided opportunities to bridge the gap by translating basic molecular biology into therapeutic tools. One such molecular biology technique is CRISPR (clustered regularly interspaced short palindromic repeat) which has revolutionized the field of molecular diagnostics at the need of the hour. The use of CRISPR-Cas systems has been widespread in biology research due to the ease of performing genetic manipulations. In 2012, CRISPR-Cas systems were, for the first time, shown to be reprogrammable, i.e., capable of performing sequence-specific gene editing. This discovery catapulted the field of CRISPR-Cas research and opened many unexplored avenues in the field of gene editing, from basic research to therapeutics. One such field that benefitted greatly from this discovery was molecular diagnostics, as using CRISPR-Cas technologies enabled existing diagnostic methods to become more sensitive, accurate, and portable, a necessity in disease control. This Review aims to capture some of the trajectories and advances made in this arena and provides a comprehensive understanding of the methods and their potential use as point-of-care diagnostics.
Collapse
Affiliation(s)
- Akshara Kulkarni
- Ashoka University, Department of Biology, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - Sadiya Tanga
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - Arkadeep Karmakar
- Bose Institute, Department of Biological Sciences, EN Block, Sector V, Kolkata 700091, West Bengal, India
| | - Arpita Hota
- Bose Institute, Department of Biological Sciences, EN Block, Sector V, Kolkata 700091, West Bengal, India
| | - Basudeb Maji
- Ashoka University, Department of Biology, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
- Bose Institute, Department of Biological Sciences, EN Block, Sector V, Kolkata 700091, West Bengal, India
| |
Collapse
|
74
|
Mohammad N, Talton L, Hetzler Z, Gongireddy M, Wei Q. Unidirectional trans-cleaving behavior of CRISPR-Cas12a unlocks for an ultrasensitive assay using hybrid DNA reporters containing a 3' toehold. Nucleic Acids Res 2023; 51:9894-9904. [PMID: 37650631 PMCID: PMC10570054 DOI: 10.1093/nar/gkad715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
CRISPR-Cas12a can induce nonspecific trans-cleavage of dsDNA substrate, including long and stable λ DNA. However, the mechanism behind this is still largely undetermined. In this study, we observed that while trans-activated Cas12a didn't cleave blunt-end dsDNA within a short reaction time, it could degrade dsDNA reporters with a short overhang. More interestingly, we discovered that the location of the overhang also affected the susceptibility of dsDNA substrate to trans-activated Cas12a. Cas12a trans-cleaved 3' overhang dsDNA substrates at least 3 times faster than 5' overhang substrates. We attributed this unique preference of overhang location to the directional trans-cleavage behavior of Cas12a, which may be governed by RuvC and Nuc domains. Utilizing this new finding, we designed a new hybrid DNA reporter as nonoptical substrate for the CRISPR-Cas12a detection platform, which sensitively detected ssDNA targets at sub picomolar level. This study not only unfolded new insight into the trans-cleavage behavior of Cas12a but also demonstrated a sensitive CRISPR-Cas12a assay by using a hybrid dsDNA reporter molecule.
Collapse
Affiliation(s)
- Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Logan Talton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Megha Gongireddy
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
75
|
Rananaware SR, Vesco EK, Shoemaker GM, Anekar SS, Sandoval LSW, Meister KS, Macaluso NC, Nguyen LT, Jain PK. Programmable RNA detection with CRISPR-Cas12a. Nat Commun 2023; 14:5409. [PMID: 37669948 PMCID: PMC10480431 DOI: 10.1038/s41467-023-41006-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Cas12a, a CRISPR-associated protein complex, has an inherent ability to cleave DNA substrates and is utilized in diagnostic tools to identify DNA molecules. We demonstrate that multiple orthologs of Cas12a activate trans-cleavage in the presence of split activators. Specifically, the PAM-distal region of the crRNA recognizes RNA targets provided that the PAM-proximal seed region has a DNA target. Our method, Split Activator for Highly Accessible RNA Analysis (SAHARA), detects picomolar concentrations of RNA without sample amplification, reverse-transcription, or strand-displacement by simply supplying a short DNA sequence complementary to the seed region. Beyond RNA detection, SAHARA outperforms wild-type CRISPR-Cas12a in specificity towards point-mutations and can detect multiple RNA and DNA targets in pooled crRNA/Cas12a arrays via distinct PAM-proximal seed DNAs. In conclusion, SAHARA is a simple, yet powerful nucleic acid detection platform based on Cas12a that can be applied in a multiplexed fashion and potentially be expanded to other CRISPR-Cas enzymes.
Collapse
Affiliation(s)
| | - Emma K Vesco
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Grace M Shoemaker
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Swapnil S Anekar
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | | | - Katelyn S Meister
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Nicolas C Macaluso
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Long T Nguyen
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Piyush K Jain
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
76
|
Ou X, Wan Z, Xiong Y, Huang K, Wei Z, Nuermaimaiti Z, Chen Y, Yiliya D, Lin H, Dai Z, Li Y, Chen P. Homogeneous Dual Fluorescence Count of CD4 in Clinical HIV-Positive Samples via Parallel Catalytic Hairpin Assembly and Multiple Recognitions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38285-38293. [PMID: 37526600 DOI: 10.1021/acsami.3c06742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Regularly measuring the level of CD4+ cells is necessary for monitoring progression and predicting prognosis in patients suffering from an infection with the human immunodeficiency virus (HIV). However, the current flow cytometry standard detection method is expensive and complicated. A parallel catalytic hairpin assembly (CHA)-assisted fluorescent aptasensor is reported for homogeneous CD4 count by targeting the CD4 protein expressed on the membrane of CD4+ cells. Detection was achieved using CdTe quantum dots (QDs) and methylene blue (MB) as signal reporters. CdTe QDs distinguished CHA-assisted release of Ag+ and C-Ag+-C and MB that has differentiated cytosine (C)-rich single-stranded DNA (ssDNA) and C-Ag+-C, generating changes in fluorescence intensity. With the assistance of the CHA strategy and luminescent nanomaterials, this method reached limits of detection of 0.03 fg/mL for the CD4 protein and 0.3 cells/mL for CD4+ cells with linear ranges of 0.1 to 100 fg/mL and 1 to 1000 cells/mL, respectively. The method was validated in 50 clinical whole blood samples consisting of 30 HIV-positive patients, 10 healthy volunteers, and 10 patients with cancer or other chronic infections. The findings from this method were in good agreement with the data from clinical flow cytometry. Due to its sensitivity, affordability, and ease of operation, the current method has demonstrated great potential for routine CD4 counts for the management of HIV, especially in communities and remote areas.
Collapse
Affiliation(s)
- Xiaoqi Ou
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengli Wan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Xiong
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zeliang Wei
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zulimire Nuermaimaiti
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanting Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Duerdanna Yiliya
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyin Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjie Dai
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Department of Urology, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
77
|
Fei X, Lei C, Ren W, Liu X, Liu C. Regulating the trans-Cleavage Activity of CRISPR/Cas12a by Using an Elongation-Caged Single-Stranded DNA Activator and the Biosensing Applications. Anal Chem 2023; 95:12169-12176. [PMID: 37531567 DOI: 10.1021/acs.analchem.3c02471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The CRISPR/Cas12a system exhibits extraordinary capability in the field of biosensing and molecular diagnosis due to its trans-cleavage ability. However, it is still desirable for precise control and programmable regulation of Cas12a trans-cleavage activity to promote the in-depth studies and application expansion of Cas12a-based sensing platforms. In this work, we have developed a new and robust CRISPR/Cas12a regulation mechanism by endowing the activator with the function of caging crRNA ingeniously. Specifically, we constructed an integrated elongation-caged activator (EL-activator) by extending the ssDNA activator on the 3'-end. We found that appending only about 8 nt that is complementary to the crRNA repeat region is enough to cage the crRNA spacer/repeat region, thus effectively inhibiting Cas12a trans-cleavage activity. The inner inhibition mechanism was further uncovered after a thorough investigation, demonstrating that the EL-activator works by impeding the conformation of crRNA required for Cas12a recognition and destroying its affinity with Cas12a. By further switching on the elongated moiety on the EL-activator using target biomarkers, the blocked trans-cleavage activity of Cas12a can be rapidly recovered. Finally, a versatile sensing platform was established based on the EL-activator regulation mechanism, expanding the conventional Cas12a system that only directly recognizes DNA to the direct detection of enzymes and RNA biomarkers. This work has enriched the CRISPR/Cas12a regulation toolbox and expanded its sensing applications.
Collapse
Affiliation(s)
- Xinrui Fei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Xiaoling Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
78
|
Huang Z, Zhang G, Lyon CJ, Hu TY, Lu S. Outlook for CRISPR-based tuberculosis assays now in their infancy. Front Immunol 2023; 14:1172035. [PMID: 37600797 PMCID: PMC10436990 DOI: 10.3389/fimmu.2023.1172035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Tuberculosis (TB) remains a major underdiagnosed public health threat worldwide, being responsible for more than 10 million cases and one million deaths annually. TB diagnosis has become more rapid with the development and adoption of molecular tests, but remains challenging with traditional TB diagnosis, but there has not been a critical review of this area. Here, we systematically review these approaches to assess their diagnostic potential and issues with the development and clinical evaluation of proposed CRISPR-based TB assays. Based on these observations, we propose constructive suggestions to improve sample pretreatment, method development, clinical validation, and accessibility of these assays to streamline future assay development and validation studies.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tony Y. Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
79
|
Zhang C, Paluzzi VE, Sha R, Jonoska N, Mao C. Implementing Logic Gates by DNA Crystal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302345. [PMID: 37220213 DOI: 10.1002/adma.202302345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Indexed: 05/25/2023]
Abstract
DNA self-assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover-like (DXL) motifs. They can associate with each other via sticky-end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA-based biosensors with easy readouts.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Victoria E Paluzzi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Natasha Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, 33620, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
80
|
Hu Y, Qiao Y, Li XQ, Xiang Z, Wan Y, Wang P, Yang Z. Development of an inducible Cas9 nickase and PAM-free Cas12a platform for bacterial diagnostics. Talanta 2023; 265:124931. [PMID: 37451121 DOI: 10.1016/j.talanta.2023.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Rapid, efficient, specific and sensitive diagnostic techniques are critical for selecting appropriate treatments for drug-resistant bacterial infections. To address this challenge, we have developed a novel diagnostic method, called the Dual-Cas Tandem Diagnostic Platform (DTDP), which combines the use of Cas9 nickase (Cas9n) and Cas12a. DTDP works by utilizing the Cas9n-sgRNA complex to create a nick in the target strand's double-stranded DNA (dsDNA). This prompts DNA polymerase to displace the single-stranded DNA (ssDNA) and leads to cycles of DNA replication through nicking, displacement, and extension. The ssDNA is then detected by the Cas12a-crRNA complex (which is PAM-free), activating trans-cleavage and generating a fluorescent signal from the fluorescent reporter. DTDP exhibits a high sensitivity (1 CFU/mL or 100 ag/μL), high specificity (specifically to MRSA in nine pathogenic species), and excellent accuracy (100%). The dual RNA recognition process in our method improves diagnostic specificity by decreasing the limitations of Cas12a in detecting dsDNA protospacer adjacent motifs (PAMs) and leverages multiple advantages of multi-Cas enzymes in diagnostics. This novel approach to pathogenic microorganism detection has also great potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yuanzhao Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou 570228, China
| | - Yuefeng Qiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou 570228, China
| | - Xiu-Qing Li
- Agriculture and Agri-Food Canada, Fredericton, New Brunswick, E3B 4Z7, Canada; Nutra Health Products and Technologies Inc., Fredericton NB E3B 6J5, Canada
| | - Zhenbo Xiang
- Rizhao Science and Technology Innovation Service Center, 369 Jining Road, Rizhao, Shandong, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou 570228, China
| | - Peng Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Hainan University, Haikou 570228, China; Rizhao Science and Technology Innovation Service Center, 369 Jining Road, Rizhao, Shandong, China.
| |
Collapse
|
81
|
Huang Z, Lyon CJ, Wang J, Lu S, Hu TY. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301697. [PMID: 37162202 PMCID: PMC10369298 DOI: 10.1002/advs.202301697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Numerous groups have employed the special properties of CRISPR/Cas systems to develop platforms that have broad potential applications for sensitive and specific detection of nucleic acid (NA) targets. However, few of these approaches have progressed to commercial or clinical applications. This review summarizes the properties of known CRISPR/Cas systems and their applications, challenges associated with the development of such assays, and opportunities to improve their performance or address unmet assay needs using nano-/micro-technology platforms. These include rapid and efficient sample preparation, integrated single-tube, amplification-free, quantifiable, multiplex, and non-NA assays. Finally, this review discusses the current outlook for such assays, including remaining barriers for clinical or point-of-care applications and their commercial development.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Jin Wang
- Tolo Biotechnology Company Limited333 Guiping RoadShanghai200233China
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
| | - Tony Y. Hu
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| |
Collapse
|
82
|
Ma L, Zhang W, Yin L, Li Y, Zhuang J, Shen L, Man S. A SERS-signalled, CRISPR/Cas-powered bioassay for amplification-free and anti-interference detection of SARS-CoV-2 in foods and environmental samples using a single tube-in-tube vessel. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131195. [PMID: 36963196 PMCID: PMC10005974 DOI: 10.1016/j.jhazmat.2023.131195] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The pandemic of COVID-19 creates an imperative need for sensitive and portable detection of SARS-CoV-2. We devised a SERS-read, CRISPR/Cas-powered nanobioassay, termed as OVER-SARS-CoV-2 (One-Vessel Enhanced RNA test on SARS-CoV-2), which enabled supersensitive, ultrafast, accurate and portable detection of SARS-CoV-2 in a single vessel in an amplification-free and anti-interference manner. The SERS nanoprobes were constructed by conjugating gold nanoparticles with Raman reporting molecular and single-stranded DNA (ssDNA) probes, whose aggregation-to-dispersion changes can be finely tuned by target-activated Cas12a though trans-cleavage of linker ssDNA. As such, the nucleic acid signals could be dexterously converted and amplified to SERS signals. By customizing an ingenious vessel, the steps of RNA reverse transcription, Cas12a trans-cleavage and SERS nanoprobes crosslinking can be integrated into a single and disposal vessel. It was proved that our proposed nanobioassay was able to detect SARS-CoV-2 as low as 200 copies/mL without any pre-amplification within 45 min. In addition, the proposed nanobioassay was confirmed by clinical swab samples and challenged for SARS-CoV-2 detection in simulated complex environmental and food samples. This work enriches the arsenal of CRISPR-based diagnostics (CRISPR-Dx) and provides a novel and robust platform for SARS-CoV-2 decentralized detection, which can be put into practice in the near future.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianwen Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition, Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
83
|
Tian T, Zhou X. CRISPR-Based Biosensing Strategies: Technical Development and Application Prospects. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:311-332. [PMID: 37018798 DOI: 10.1146/annurev-anchem-090822-014725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biosensing based on CRISPR-Cas systems is a young but rapidly evolving technology. The unprecedented properties of the CRISPR-Cas system provide an innovative tool for developing new-generation biosensing strategies. To date, a series of nucleic acid and non-nucleic acid detection methods have been developed based on the CRISPR platform. In this review, we first introduce the core biochemical properties underpinning the development of CRISPR bioassays, such as diverse reaction temperatures, programmability in design, high reaction efficiency, and recognition specificity, and highlight recent efforts to improve these parameters. We then introduce the technical developments, including how to improve sensitivity and quantification capabilities, develop multiplex assays, achieve convenient one-pot assays, create advanced sensors, and extend the applications of detection. Finally, we analyze obstacles to the commercial application of CRISPR detection technology and explore development opportunities and directions.
Collapse
Affiliation(s)
- Tian Tian
- School of Life Sciences, South China Normal University, Guangzhou, China;
| | - Xiaoming Zhou
- School of Life Sciences, South China Normal University, Guangzhou, China;
| |
Collapse
|
84
|
Xiong Y, Zeng X, Yan L, Wang Y, Lin Y, Ao K, Feng P, Xie Y, Chen P. Target Enzyme-Triggered Click Chemistry and Hybridization Chain Reaction for Fluorescence Nonculture Homogeneous Analysis of E. coli in Bloodstream Infections. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262009 DOI: 10.1021/acsami.3c04065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Escherichia coli is the major pathogen that causes bloodstream infections (BSI). It is critical to develop nonculture identification methods which can meet the urgent need of clinical diagnosis and treatment. In this study, we reported a homogeneous fluorescence E. coli analysis system using β-galactosidase (β-Gal) as the biomarker and double-stranded DNA-templated copper nanoparticles (dsDNA-Cu NPs) as the signal output. The product of the enzymatic hydrolysis reaction, p-aminophenol (PAP), could reduce Cu2+ to Cu+, triggering the alkyne-azido cycloaddition reaction (CuAAC). Subsequently, the hybrid chain reaction (HCR) was initiated, producing the dsDNA template used to generate Cu NPs in situ. The system achieved a wide linear range for β-Gal and E. coli 1-104 mU/L and 10-2-10 colony-forming unit (CFU)/mL, and a detection limit of 0.3 mU/L and 0.003 CFU/mL, respectively. 65 samples (45 blood and 20 urine) were collected to evaluate the clinical practicality. The results demonstrated remarkable area under the curve (AUC) values of 0.95 and 0.916 from uncultured urine and blood, respectively. It had 100% specificity and 83.3% sensitivity. The whole duration of the strategy was 3.5 h, which significantly reduced the turnaround time (TAT) and facilitated early BSI diagnosis to improve patients' prognosis. Our work had the potential to be an alternative to culture-based methods in clinics.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghu Zeng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuling Lin
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Keping Ao
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pan Feng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
85
|
Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R. CRISPR-based biosensors for pathogenic biosafety. Biosens Bioelectron 2023; 228:115189. [PMID: 36893718 DOI: 10.1016/j.bios.2023.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Pathogenic biosafety is a worldwide concern. Tools for analyzing pathogenic biosafety, that are precise, rapid and field-deployable, are highly demanded. Recently developed biotechnological tools, especially those utilizing CRISPR/Cas systems which can couple with nanotechnologies, have enormous potential to achieve point-of-care (POC) testing for pathogen infection. In this review, we first introduce the working principle of class II CRISPR/Cas system for detecting nucleic acid and non-nucleic acid biomarkers, and highlight the molecular assays that leverage CRISPR technologies for POC detection. We summarize the application of CRISPR tools in detecting pathogens, including pathogenic bacteria, viruses, fungi and parasites and their variants, and highlight the profiling of pathogens' genotypes or phenotypes, such as the viability, and drug-resistance. In addition, we discuss the challenges and opportunities of CRISPR-based biosensors in pathogenic biosafety analysis.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
86
|
Feng J, Shu Y, An Y, Niu Q, Fan Q, Lei Y, Gong Y, Hu X, Zhang P, Liu Y, Yang C, Wu L. Encoded Fusion-Mediated MicroRNA Signature Profiling of Tumor-Derived Extracellular Vesicles for Pancreatic Cancer Diagnosis. Anal Chem 2023; 95:7743-7752. [PMID: 37147770 DOI: 10.1021/acs.analchem.3c00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
MicroRNAs (miRNAs) in tumor-derived extracellular vesicles (tEVs) are important cancer biomarkers for cancer screening and early diagnosis. Multiplex detection of miRNAs in tEVs facilitates accurate diagnosis but remains a challenge. Herein, we propose an encoded fusion strategy to profile the miRNA signature in tEVs for pancreatic cancer diagnosis. A panel of encoded-targeted-fusion beads was fabricated for the selective recognition and fusion of tEVs, with the turn-on fluorescence signals of molecule beacons for miRNA quantification and barcode signals for miRNA identification using readily accessible flow cytometers. Using this strategy, six types of pancreatic-cancer-associated miRNAs can be profiled in tEVs from 2 μL plasma samples (n = 36) in an isolation-free and lysis-free manner with only 2 h of processing, offering a high accuracy (98%) to discriminate pancreatic cancer, pancreatitis, and healthy donors. This encoded fusion strategy exhibits great potential for multiplex profiling of miRNA in tEVs, offering new avenues for cancer diagnosis and screening.
Collapse
Affiliation(s)
- Jianzhou Feng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi Niu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanmei Lei
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanli Gong
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Peng Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
87
|
CRISPR/Cas12a-based MUSCA-PEC strategy for HSV-1 assay. Anal Chim Acta 2023; 1250:340955. [PMID: 36898814 DOI: 10.1016/j.aca.2023.340955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
In the photoelectrochemical sensing, constant potential excitation to get the photoelectrochemical signal is the main excitation signal mode. Novel method for photoelectrochemical signal obtaining is needed. Inspired by this ideal, a photoelectrochemical strategy for Herpes simplex virus (HSV-1) detection with multiple potential step chronoamperometry (MUSCA) pattern was fabricated using CRISPR/Cas12a cleavage coupled with entropy-driven target recycling. In the presence of target, HSV-1, the Cas12a was activated by the H1-H2 complex obtained by entropy-driven, then digesting the circular fragment of csRNA to expose single-stranded crRNA2 and alkaline phosphatase (ALP). The inactive Cas12a was self-assembled with crRNA2 and activated again with the help of assistant dsDNA. After multiple rounds of CRISPR/Cas12a cleavage and magnetic separation, MUSCA, as a signal amplifier, collected the enhanced photocurrent responses generated by catalyzed p-Aminophenol (p-AP). Different from the reported signal enhancement strategies based on photoactive nanomaterials and sensing mechanisms, MUSCA technique endowed the strategy with unique advantages of direct, fast and ultrasensitive. A superior detection limit of 3 aM toward HSV-1 was achieved. This strategy was successfully applied for HSV-1 detection in Human serum samples. The combination of MUSCA technique and CRISPR/Cas12a assay brings broader potential prospect for the detection of nucleic acids.
Collapse
|
88
|
Wang Z, Wei L, Ruan S, Chen Y. CRISPR/Cas12a-Assisted Chemiluminescence Sensor for Aflatoxin B 1 Detection in Cereal Based on Functional Nucleic Acid and In-Pipet Rolling Circle Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4417-4425. [PMID: 36853759 DOI: 10.1021/acs.jafc.3c00341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we report a CRISPR/Cas12a-assisted chemiluminescence sensor for aflatoxin B1 (AFB1) detection based on functional nucleic-acid-mediated target recognition and in-pipet rolling circle amplification-mediated signal amplification. In this sensor, we performed rolling circle amplification on the inside of the pipet to enrich horseradish peroxidase (pipet-poly-HRP). When AFB1 is present, it interacts with functional nucleic acids and results in the release of the activator. The activator is designed to activate the CRISPR/Cas12a system, which cleaves the pipet-poly-HRP to liberate HRP. The freed HRP can then be measured by chemiluminescence to quantify AFB1. This CRISPR/Cas12a-assisted chemiluminescence sensor enables facile, highly sensitive, and specific detection of AFB1, with a linear range from 50 pg/mL to 100 ng/mL and a detection limit of 5.2 pg/mL. Furthermore, it exhibits satisfactory recovery and has successfully challenged AFB1 detection in cereal samples. The proposed sensor offers a novel rapid screening approach that holds great promise for food security monitoring.
Collapse
Affiliation(s)
- Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye, Hubei 435100, People's Republic of China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| |
Collapse
|
89
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
90
|
Avaro AS, Santiago JG. A critical review of microfluidic systems for CRISPR assays. LAB ON A CHIP 2023; 23:938-963. [PMID: 36601854 DOI: 10.1039/d2lc00852a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reviewed are nucleic acid detection assays that incorporate clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics and microfluidic devices and techniques. The review serves as a reference for researchers who wish to use CRISPR-Cas systems for diagnostics in microfluidic devices. The review is organized in sections reflecting a basic five-step workflow common to most CRISPR-based assays. These steps are analyte extraction, pre-amplification, target recognition, transduction, and detection. The systems described include custom microfluidic chips and custom (benchtop) chip control devices for automated assays steps. Also included are partition formats for digital assays and lateral flow biosensors as a readout modality. CRISPR-based, microfluidics-driven assays offer highly specific detection and are compatible with parallel, combinatorial implementation. They are highly reconfigurable, and assays are compatible with isothermal and even room temperature operation. A major drawback of these assays is the fact that reports of kinetic rates of these enzymes have been highly inconsistent (many demonstrably erroneous), and the low kinetic rate activity of these enzymes limits achievable sensitivity without pre-amplification. Further, the current state-of-the-art of CRISPR assays is such that nearly all systems rely on off-chip assays steps, particularly off-chip sample preparation.
Collapse
Affiliation(s)
- Alexandre S Avaro
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
91
|
Shi K, Yi Z, Han Y, Chen J, Hu Y, Cheng Y, Liu S, Wang W, Song J. PAM-free cascaded strand displacement coupled with CRISPR-Cas12a for amplified electrochemical detection of SARS-CoV-2 RNA. Anal Biochem 2023; 664:115046. [PMID: 36641031 PMCID: PMC9833854 DOI: 10.1016/j.ab.2023.115046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The early diagnosis of coronavirus disease 2019 (COVID-19) is dependent on the specific and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Herein, we develop a highly sensitive and specific electrochemical biosensor for SARS-CoV-2 target RNA detection based on the integration of protospacer adjacent motif (PAM)-free cascaded toehold-mediated strand displacement reaction (TSDR) and CRISPR-Cas12a (PfTSDR-CRISPR). In this study, each target is transformed into multiple DNA substrates with bubble structure in the seed region by the cascaded TSDR, which can directly hybridize with guide RNA (gRNA) without PAM requirement and then activate CRISPR-Cas12a's trans-cleavage activity. Subsequently, the hairpin DNA modified with methylene blue (MB-HP) is cleaved by activated CRISPR-Cas12a. Therefore, as MB leaves the electrode surface, a decreased current signal is obtained. With the involvement of PAM-free cascaded TSDRs and CRISPR-Cas12a amplification strategy, the PfTSDR-CRISPR-based electrochemical biosensor achieves the detection of target RNA as low as 40 aM. The biosensor has high sequence specificity, reliability and robustness. Thanks to the PAM-free cascaded TSDR, the biosensor can achieve universal detection of different target RNA without redesigning gRNA sequence of CRISPR-Cas12a. In addition, this biosensor successfully detects SARS-CoV-2 target RNA in complex samples, which highlights its potential for diagnosing COVID-19.
Collapse
Affiliation(s)
- Kai Shi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China.
| | - Zhigang Yi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Yaoxia Han
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Jiaxuan Chen
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Yu Hu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Ying Cheng
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Sujun Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Wei Wang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Jiuhua Song
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China.
| |
Collapse
|
92
|
Zhang Y, Chen Y, Zhang Q, Liu Y, Zhang X. An aM-level sensitive cascade CRISPR-Dx system (ASCas) for rapid detection of RNA without pre-amplification. Biosens Bioelectron 2023; 230:115248. [PMID: 37004283 DOI: 10.1016/j.bios.2023.115248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
The CRISPR/Cas system is known as one of the directions of the next generation of mainstream molecular diagnostic technology. However, most current CRISPR/Cas molecular diagnostics still rely on the pre-amplification of nucleic acid due to the limited sensitivity of CRISPR/Cas alone, which has no significant advantage over commercial Taqman-PCR and TwistAmp® Exo kits. Herein, we report an aM-level sensitive cascade CRISPR-Dx system (ASCas) that eliminates nucleic acid pre-amplification, thus avoiding aerosol contamination and greatly reducing the testing environment and personnel skill requirements for molecular diagnostics. Most importantly, the Cas13a nucleases with high sensitivity and trans-cleavage efficiency can rapidly cleaved RNA bubbles on the hybridized cascade probe at low concentration target RNA detection, which results in the destruction of the cascade probe and releases a large amount of trigger DNA for further signal amplification of secondary Cas12a reactions. Therefore, the ASCas system achieves amplification-free, ultra-sensitivity (1 aM), and ultra-fast (20 min) RNA detection. In addition, the ASCas system replaces the complicated screening process of primers and probes with the programmed Cas13a-crRNA design so that a suitable detection system can be constructed more quickly and straightforwardly for the mutation-prone SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Yibin Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China.
| | - Xueji Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| |
Collapse
|
93
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
94
|
Feng ZY, Liu R, Li X, Zhang J. Harnessing the CRISPR-Cas13d System for Protein Detection by Dual-Aptamer-Based Transcription Amplification. Chemistry 2023; 29:e202202693. [PMID: 36400714 DOI: 10.1002/chem.202202693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
CRISPR-based biosensing technology has been emerging as a revolutionary diagnostic tool for many disease-related biomarkers. In particular, RspCas13d, a newly identified RNA-guided Cas13d ribonuclease derived from Ruminococcus sp., has shown great promise for accurate and sensitive detection of RNA due to its RNA sequence-specific recognition and robust collateral trans-cleavage activity. However, its diagnostic utility is limited to detecting nucleic-acid-related biomarkers. To address this limitation, herein we present a proof-of-concept demonstration of a target-responsive CRISPR-Cas13d sensing system for protein biomarkers. This system was rationally designed by integrating a dual-aptamer-based transcription amplification strategy with CRISPR-Cas13d (DATAS-Cas13d), in which the protein binding initiates in-vitro RNA transcription followed by the activation of RspCas13d. Using a short fluorescent ssRNA as the signal reporter and cardiac troponin I (cTnI) as the model analyte, the DATAS-Cas13d system showed a wide linear range, low detection limit, and high specificity for the detection of cTnI in buffer and human serum. Thanks to the facile integration of various bioreceptors into the DATAS-Cas13d system, the method could be adapted to detecting a broad range of clinically relevant protein biomarkers, and thus broaden the medical applications of Cas13d-based diagnostics.
Collapse
Affiliation(s)
- Zhi-Yuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
95
|
Habimana JDD, Mukama O, Chen G, Chen M, Amissah OB, Wang L, Liu Y, Sun Y, Li AL, Deng S, Huang J, Yan XX, Rutaganda T, Mutangana D, Wu LP, Huang R, Li Z. Harnessing enhanced CRISPR/Cas12a trans-cleavage activity with extended reporters and reductants for early diagnosis of Helicobacter pylori, the causative agent of peptic ulcers and stomach cancer. Biosens Bioelectron 2023; 222:114939. [PMID: 36459819 DOI: 10.1016/j.bios.2022.114939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Developing rapid and non-invasive diagnostics for Helicobacter pylori (HP) is imperative to prevent associated diseases such as stomach gastritis, ulcers, and cancers. Owing to HP strain heterogeneity, not all HP-infected individuals incur side effects. Cytotoxin-associated gene A (CagA), and vacuolating cytotoxin A (VacA) genes predominantly drive HP pathogenicity. Therefore, diagnosing CagA and VacA genotypes could alert active infection and decide suitable therapeutics. We report an enhanced LbCas12a trans-cleavage activity with extended reporters and reductants (CEXTRAR) for early detection of HP. We demonstrate that extended ssDNA reporter acts as an excellent signal amplifier, making it a potential alternative substrate for LbCas12a collateral activity. Through a systematic investigation of various buffer components, we demonstrate that reductants improve LbCas12a trans-cleavage activity. Overall, our novel reporter and optimal buffer increased the trans-cleavage activity to an order of 16-fold, achieving picomolar sensitivity (171 pM) without target pre-amplification. Integrated with loop-mediated isothermal amplification (LAMP), CEXTRAR successfully attained attomolar sensitivity for HP detection using real-time fluorescence (43 and 96 aM), in-tube fluorescence readouts (430 and 960 aM), and lateral flow (4.3 and 9.6 aM) for CagA and VacA, respectively. We also demonstrate a rapid 2-min Triton X-100 lysis for clinical sample analysis, which could provide clinicians with actionable information for rapid diagnosis. CEXTRAR could potentially spot the 13C urea breath test false-negatives. For the first time, our study unveils an experimental outlook to manipulate reporters and reconsider precise cysteine substitution via protein engineering for Cas variants with enhanced catalytic activities for use in diagnostics and genetic engineering.
Collapse
Affiliation(s)
- Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China; Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'armée, Kigali, P.O. Box: 3900, Rwanda
| | - Guiquan Chen
- Department of Gastroenterology, Affiliated Dongguan Hospital, Southern Medical University-Dongguan People's Hospital, Dongguan, 523059, China
| | - Mengjun Chen
- Department of Gastroenterology, Affiliated Dongguan Hospital, Southern Medical University-Dongguan People's Hospital, Dongguan, 523059, China
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yujie Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Amy L Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Theobard Rutaganda
- College of Science 205 Mugar Life Sciences, Northeastern University, 360 Huntington Avenue Boston, MA, 02115, USA
| | - Dieudonne Mutangana
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'armée, Kigali, P.O. Box: 3900, Rwanda
| | - Lin-Ping Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China; Guangzhou Qiyuan Biomedical Co., Ltd, Guangzhou, China.
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China; Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China; GIBH-HKU Guangdong-HongKong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou, China; Guangzhou Qiyuan Biomedical Co., Ltd, Guangzhou, China.
| |
Collapse
|
96
|
Zhao Y, Chen D, Xu Z, Li T, Zhu J, Hu R, Xu G, Li Y, Yang Y, Liu M. Integrating CRISPR-Cas12a into a Microfluidic Dual-Droplet Device Enables Simultaneous Detection of HPV16 and HPV18. Anal Chem 2023; 95:3476-3485. [PMID: 36724385 DOI: 10.1021/acs.analchem.2c05320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fast, simplified, and multiplexed detection of human papillomaviruses (HPVs) is of great importance for both clinical management and population screening. However, current HPV detection methods often require sophisticated instruments and laborious procedures to detect multiple targets. In this work, we developed a simple microfluidic dual-droplet device (M-D3) for the simultaneous detection of HPV16 and HPV18 by combining the CRISPR-Cas12a system and multiplexed recombinase polymerase amplification (RPA) assay. A new approach of combining pressure/vacuum was proposed for efficient droplet generation with minimal sample consumption. Two groups of droplets that separately encapsulate the relevant Cas12a/crRNA and the fluorescent green or red reporters are parallelly generated, followed by automatic imaging to discriminate the HPV subtypes based on the specific fluorescence of the droplets. The M-D3 platform performs with high sensitivity (∼0.02 nM for unamplified plasmids) and specificity in detecting HPV16 and HPV18 DNA. By combining the RPA and Cas12a assay, M-D3 allows on-chip detection of HPV16 and HPV18 DNA simultaneously within 30 min, reaching a detection limit of 10-18 M (∼1 copy/reaction). Moreover, the outstanding performance of M-D3 was validated in testing 20 clinical patient samples with HPV infection risk, showing a sensitivity of 92.3% and a specificity of 100%. By integrating the dual-droplet generator, CRISPR-Cas12a, and multiplexed RPA, the M-D3 platform provides an efficient way to discriminate the two most harmful HPV subtypes and holds great potential in the applications of multiplexed nucleic acid testing.
Collapse
Affiliation(s)
- Yin Zhao
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China.,State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Optics Valley Laboratory, Wuhan 430074, Hubei, China
| |
Collapse
|
97
|
Li R, Zhu Y, Gong X, Zhang Y, Hong C, Wan Y, Liu X, Wang F. Self-Stacking Autocatalytic Molecular Circuit with Minimal Catalytic DNA Assembly. J Am Chem Soc 2023; 145:2999-3007. [PMID: 36700894 DOI: 10.1021/jacs.2c11504] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Isothermal autocatalytic DNA circuits have been proven to be versatile and powerful biocomputing platforms by virtue of their self-sustainable and self-accelerating reaction profiles, yet they are currently constrained by their complicated designs, severe signal leakages, and unclear reaction mechanisms. Herein, we developed a simpler-yet-efficient autocatalytic assembly circuit (AAC) for highly robust bioimaging in live cells and mice. The scalable and sustainable AAC system was composed of a mere catalytic DNA assembly reaction with minimal strand complexity and, upon specific stimulation, could reproduce numerous new triggers to expedite the whole reaction. Through in-depth theoretical simulations and systematic experimental demonstrations, the catalytic efficiency of these reproduced triggers was found to play a vital role in the autocatalytic profile and thus could be facilely improved to achieve more efficient and characteristic autocatalytic signal amplification. Due to its exponentially high signal amplification and minimal reaction components, our self-stacking AAC facilitated the efficient detection of trace biomolecules with low signal leakage, thus providing great clinical diagnosis and therapeutic assessment potential.
Collapse
Affiliation(s)
- Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yuxuan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yanping Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yeqing Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| |
Collapse
|
98
|
Cheng X, Xia X, Ren D, Chen Q, Xu G, Wei F, Yang J, Wang L, Hu Q, Zou J, Cen Y. Programmable CRISPR-Cas12a and self-recruiting crRNA assisted dual biosensing platform for simultaneous detection of lung cancer biomarkers hOGG1 and FEN1. Anal Chim Acta 2023; 1240:340748. [PMID: 36641157 DOI: 10.1016/j.aca.2022.340748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) and flap endonuclease 1 (FEN1) are recognized as potential biomarkers in lung cancer investigations. Developing analytical platforms of simultaneously targeting hOGG1 and FEN1 with high selectivity, sensitivity, especially programmability and universality is highly valuable for clinical research. Herein, we established a signal-amplified platform for simultaneously detecting hOGG1 and FEN1 on the basis of cleavage-induced ligation of DNA dumbbell probes, rolling circle transcription (RCT) and CRISPR-Cas12a. A hOGG1 cleavable site and FEN1 cleavable flap were dexterously designed at the 5' end of DNA flapped dumbbell probes (FDP) for hOGG1 and FEN1. After cleavage, the resulting nick sites with juxtaposition of 5' phosphate and 3' hydroxyl terminus could be linked to closed DNA dumbbell probes (CDP) by DNA ligase. The CDP served as a template for RCT, producing plentiful crRNA repeats to activate the trans-cleavage activity of CRISPR-Cas12a which could cleave fluorophores (TAMRA and FAM) and quenchers (BHQ2 and BHQ1) double-labeled ssDNA reporters. Then, hOGG1 and FEN1 could be detected by the recovered fluorescence signal, allowing for the highly sensitive calculated detection limits of 0.0013 and 0.0052 U/mL, respectively. Additionally, this method made it possible to evaluate the inhibitory effects, even to measure hOGG1 and FEN1 activities at the single-cell level. This novel target enzyme-initiated, circles-transcription without promoters, real-time generation, and self-assembly features of FDP-RCT-Cas12a system suppressed nonspecific background remarkably and relieved rigorous requirement of protospacer adjacent motif site. Hence, the universality of FDP-RCT-Cas12a system toward various disease-related non-nucleic acid targets which are tested without using aptamers was extremely improved.
Collapse
Affiliation(s)
- Xia Cheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Lin Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
99
|
Wang H, Wang S, Wang H, Liang Y, Li Z. Sensitive and amplification-free detection of telomerase activity by self-extension of telomerase and trans-cleavage of CRISPR/Cas12a. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
100
|
Sun H, Zhou S, Liu Y, Lu P, Qi N, Wang G, Yang M, Huo D, Hou C. A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection. Anal Chim Acta 2023; 1239:340732. [PMID: 36628729 DOI: 10.1016/j.aca.2022.340732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
DNA methyltransferase (DNA MTase) catalyzes the process of DNA methylation, and the aberrant DNA MTase activity is closely associated with cancer incidence and progression. Inspired by the exponential amplification reaction (EXPAR) characteristics, we developed an EXPAR-initiated CRISPR/Cas12a (EIC) strategy for sensitively detecting DNA MTase activity. A hairpin probe (HP) was designed with a palindromic sequence in the stem as substrate and NH2-modified 3' end to prevent nonspecific amplification. HP could be methylated by DNA adenine methyltransferase (Dam MTase) and then digested by DpnI to generate an oligonucleotide that can serve as an EXPAR primer. With the assistance of Nt.BstNBI nicking enzyme and Vent(exo-) polymerase, this primer bound to template and induced EXPAR. Interestingly, the product of Cycle 1 in EXPAR can function as primer to initiate Cycle 2. Both EXPAR products can further activate the collateral cleavage of CRISPR/Cas12a-crRNA, resulting in the fragmentation of fluorescence reporters and fluorescence recovery. Due to the highly efficient amplification (about 5 times signal-to-noise of SDA) and the robust trans-cleavage of CRISPR/Cas12a, the EIC system owned an extreme limit of detection (LOD) of 2 × 10-4 U/mL and a broad detection range from 2 × 10-4 to 10 U/mL for Dam MTase. In addition, this method has succeeded in inhibitor screening and evaluation, showing magnificent promise in drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China
| | - Na Qi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|