51
|
Barra M, Tomaiuolo G, Villella VR, Esposito S, Liboà A, D'Angelo P, Marasso SL, Cocuzza M, Bertana V, Camilli E, Preziosi V. Organic Electrochemical Transistor Immuno-Sensors for Spike Protein Early Detection. BIOSENSORS 2023; 13:739. [PMID: 37504137 PMCID: PMC10377135 DOI: 10.3390/bios13070739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The global COVID-19 pandemic has had severe consequences from the social and economic perspectives, compelling the scientific community to focus on the development of effective diagnostics that can combine a fast response and accurate sensitivity/specificity performance. Presently available commercial antigen-detecting rapid diagnostic tests (Ag-RDTs) are very fast, but still face significant criticisms, mainly related to their inability to amplify the protein signal. This translates to a limited sensitive outcome and, hence, a reduced ability to hamper the spread of SARS-CoV-2 infection. To answer the urgent need for novel platforms for the early, specific and highly sensitive detection of the virus, this paper deals with the use of organic electrochemical transistors (OECTs) as very efficient ion-electron converters and amplifiers for the detection of spike proteins and their femtomolar concentration. The electrical response of the investigated OECTs was carefully analyzed, and the changes in the parameters associated with the transconductance (i.e., the slope of the transfer curves) in the gate voltage range between 0 and 0.3 V were found to be more clearly correlated with the spike protein concentration. Moreover, the functionalization of OECT-based biosensors with anti-spike and anti-nucleocapside proteins, the major proteins involved in the disease, demonstrated the specificity of these devices, whose potentialities should also be considered in light of the recent upsurge of the so-called "long COVID" syndrome.
Collapse
Affiliation(s)
- Mario Barra
- CNR-SPIN, c/o Department of Physics ''Ettore Pancini'', P.le Tecchio, 80, 80125 Napoli, Italy
| | - Giovanna Tomaiuolo
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| | - Valeria Rachela Villella
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| | - Speranza Esposito
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Graduate School in Science and Technologies of Materials and Department of Physics, University of Parma, Parco Area delle Scienze, 7/A, 43121 Parma, Italy
| | | | - Simone Luigi Marasso
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Matteo Cocuzza
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Valentina Bertana
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Elena Camilli
- ChiLab, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Valentina Preziosi
- Department of Chemical, Materials and Production Engineering-University Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE, Advanced Biotechnologies, 80145 Napoli, Italy
| |
Collapse
|
52
|
Shen Q, Hossain F, Fang C, Shu T, Zhang X, Law JLM, Logan M, Houghton M, Tyrrell DL, Joyce MA, Serpe MJ. Bovine Serum Albumin-Protected Gold Nanoclusters for Sensing of SARS-CoV-2 Antibodies and Virus. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37314985 DOI: 10.1021/acsami.3c03705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An approach to assess severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (and past infection) was developed. For virus detection, the SARS-CoV-2 virus nucleocapsid protein (NP) was targeted. To detect the NP, antibodies were immobilized on magnetic beads to capture the NPs, which were subsequently detected using rabbit anti-SARS-CoV-2 nucleocapsid antibodies and alkaline phosphatase (AP)-conjugated anti-rabbit antibodies. A similar approach was used to assess SARS-CoV-2-neutralizing antibody levels by capturing spike receptor-binding domain (RBD)-specific antibodies utilizing RBD protein-modified magnetic beads and detecting them using AP-conjugated anti-human IgG antibodies. The sensing mechanism for both assays is based on cysteamine etching-induced fluorescence quenching of bovine serum albumin-protected gold nanoclusters where cysteamine is generated in proportion to the amount of either SARS-CoV-2 virus or anti-SARS-CoV-2 receptor-binding domain-specific immunoglobulin antibodies (anti-RBD IgG antibodies). High sensitivity can be achieved in 5 h 15 min for the anti-RBD IgG antibody detection and 6 h 15 min for virus detection, although the assay can be run in "rapid" mode, which takes 1 h 45 min for the anti-RBD IgG antibody detection and 3 h 15 min for the virus. By spiking the anti-RBD IgG antibodies and virus in serum and saliva, we demonstrate that the assay can detect the anti-RBD IgG antibodies with a limit of detection (LOD) of 4.0 and 2.0 ng/mL in serum and saliva, respectively. For the virus, we can achieve an LOD of 8.5 × 105 RNA copies/mL and 8.8 × 105 RNA copies/mL in serum and saliva, respectively. Interestingly, this assay can be easily modified to detect myriad analytes of interest.
Collapse
Affiliation(s)
- Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Faisal Hossain
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Changhao Fang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tong Shu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - John Lok Man Law
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Logan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
53
|
Salahandish R, Hyun JE, Haghayegh F, Tabrizi HO, Moossavi S, Khetani S, Ayala‐Charca G, Berenger BM, Niu YD, Ghafar‐Zadeh E, Nezhad AS. CoVSense: Ultrasensitive Nucleocapsid Antigen Immunosensor for Rapid Clinical Detection of Wildtype and Variant SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206615. [PMID: 36995043 PMCID: PMC10214237 DOI: 10.1002/advs.202206615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2023] [Indexed: 05/27/2023]
Abstract
The widespread accessibility of commercial/clinically-viable electrochemical diagnostic systems for rapid quantification of viral proteins demands translational/preclinical investigations. Here, Covid-Sense (CoVSense) antigen testing platform; an all-in-one electrochemical nano-immunosensor for sample-to-result, self-validated, and accurate quantification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N)-proteins in clinical examinations is developed. The platform's sensing strips benefit from a highly-sensitive, nanostructured surface, created through the incorporation of carboxyl-functionalized graphene nanosheets, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive polymers, enhancing the overall conductivity of the system. The nanoengineered surface chemistry allows for compatible direct assembly of bioreceptor molecules. CoVSense offers an inexpensive (<$2 kit) and fast/digital response (<10 min), measured using a customized hand-held reader (<$25), enabling data-driven outbreak management. The sensor shows 95% clinical sensitivity and 100% specificity (Ct<25), and overall sensitivity of 91% for combined symptomatic/asymptomatic cohort with wildtype SARS-CoV-2 or B.1.1.7 variant (N = 105, nasal/throat samples). The sensor correlates the N-protein levels to viral load, detecting high Ct values of ≈35, with no sample preparation steps, while outperforming the commercial rapid antigen tests. The current translational technology fills the gap in the workflow of rapid, point-of-care, and accurate diagnosis of COVID-19.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Laboratory of Advanced Biotechnologies for Health Assessments (LAB‐HA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Jae Eun Hyun
- Department of Ecosystem and Public HealthFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Hamed Osouli Tabrizi
- Biologically Inspired Sensors and Actuators (BioSA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Shirin Moossavi
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryABT2N 1N4Canada
- International Microbiome CentreCumming School of MedicineHealth Sciences CentreUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Sultan Khetani
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Giancarlo Ayala‐Charca
- Biologically Inspired Sensors and Actuators (BioSA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Byron M. Berenger
- Alberta Public Health LaboratoryAlberta Precision Laboratories3330 Hospital DriveCalgaryABT2N 4W4Canada
- Department of Pathology and Laboratory MedicineFaculty of MedicineUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Yan Dong Niu
- Department of Ecosystem and Public HealthFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Ebrahim Ghafar‐Zadeh
- Biologically Inspired Sensors and Actuators (BioSA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryABT2N 1N4Canada
| |
Collapse
|
54
|
Sun C, Wang T. Organic thin-film transistors and related devices in life and health monitoring. NANO RESEARCH 2023:1-19. [PMID: 37359073 PMCID: PMC10102697 DOI: 10.1007/s12274-023-5606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s12274-023-5606-1.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| |
Collapse
|
55
|
Yuan C, Xu YT, Huang YT, Zhou H, Jiang XW, Ju P, Zhu YC, Zhang L, Lin P, Chen G, Zhao WW. Polymer Dot-Gated Accumulation-Type Organic Photoelectrochemical Transistor for Urea Biosensing. ACS Sens 2023; 8:1835-1840. [PMID: 37011305 DOI: 10.1021/acssensors.3c00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Organic photoelectrochemical transistor (OPECT) biosensing represents a new platform interfacing optoelectronics and biological systems with essential amplification, which, nevertheless, are concentrated on depletion-type operation to date. Here, a polymer dot (Pdot)-gated accumulation-type OPECT biosensor is devised and applied for sensitive urea detection. In such a device, the as-designed Pdot/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) is validated as a superior gating module against the diethylenetriamine (DETA) de-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, and the urea-dependent status of Pdots has been shown to be sensitively correlated with the device's response. High-performance urea detection is thus realized with a wide linear range of 1 μM-50 mM and a low detection limit of 195 nM. Given the diversity of the Pdot family and its immense interactions with other species, this work represents a generic platform for developing advanced accumulation-type OPECT and beyond.
Collapse
Affiliation(s)
- Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xing-Wu Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, Ministry of Natural Resources, First Institute of Oceanography, No. 6 Xianxialing Road, Qingdao, Shandong 266061, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, Ministry of Natural Resources, First Institute of Oceanography, No. 6 Xianxialing Road, Qingdao, Shandong 266061, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangxu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
56
|
Ji X, Lin X, Rivnay J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat Commun 2023; 14:1665. [PMID: 36966131 PMCID: PMC10039935 DOI: 10.1038/s41467-023-37402-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Electrochemical aptamer-based sensors are typically deployed as individual, passive, surface-functionalized electrodes, but they exhibit limited sensitivity especially when the area of the electrode is reduced for miniaturization purposes. We demonstrate that organic electrochemical transistors (electrolyte gated transistors with volumetric gating) can serve as on-site amplifiers to improve the sensitivity of electrochemical aptamer-based sensors. By monolithically integrating an Au working/sensing electrode, on-chip Ag/AgCl reference electrode, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) counter electrode - also serving as the channel of an organic electrochemical transistor- we can simultaneously perform testing of organic electrochemical transistors and traditional electroanalytical measurement on electrochemical aptamer-based sensors including cyclic voltammetry and square-wave voltammetry. This device can directly amplify the current from the electrochemical aptamer-based sensor via the in-plane current modulation in the counter electrode/transistor channel. The integrated sensor can sense transforming growth factor beta 1 with 3 to 4 orders of magnitude enhancement in sensitivity compared to that in an electrochemical aptamer-based sensor (292 μA/dec vs. 85 nA/dec). This approach is believed to be universal, and can be applied to a wide range of tethered electrochemical reporter-based sensors to enhance sensitivity, aiding in sensor miniaturization and easing the burden on backend signal processing.
Collapse
Affiliation(s)
- Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
57
|
Xi X, Tang W, Wu D, Shen C, Ji W, Li J, Su Y, Guo X, Liu R, Yan F. All-Carbon Solution-Gated Transistor with Low Operating Voltages for Highly Selective and Stable Dopamine Sensing. ACS Sens 2023; 8:1211-1219. [PMID: 36763821 DOI: 10.1021/acssensors.2c02608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The diversity of carbon materials makes it possible to prepare all-carbon electronic devices requiring components with different properties and functions. In this work, we fabricate an all-carbon solution-gated transistor (AC-SGT) based dopamine (DA) sensor with Nafion coated nitrogen and oxygen co-doped carbon yarn (Nafion/NOCY) as the gate electrode and graphene as the channel. The carbon materials in AC-SGT render the usage of a variety of strategies to improve its electrochemical sensing capability including the modification of the gate electrode and the modulation of the operating voltage. With a low gate-source voltage of 0.02 V as well as a low drain-source voltage of 0.05 V, AC-SGT manifests the outstanding DA sensing performances in terms of sensitivity, selectivity, limit of detection (3 nM, S/N > 3), linear range (3 nM to 300 μM), long-term stability (over 30 days), and preconditioning time (60 s). Furthermore, a smartphone controlled portable sensing system integrated with AC-SGT is fabricated herein, which shows the excellent in vitro sensing capability of DA in urine, proving the potential of all-carbon transistors in smart wearable biosensors.
Collapse
Affiliation(s)
- Xin Xi
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Tang
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaochao Shen
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Ji
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Li
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuezeng Su
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojun Guo
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruili Liu
- Department of Electronic Engineering, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| |
Collapse
|
58
|
Fan J, Parr S, Kang S, Gupta M. Point-of-care (POC) SARS-CoV-2 antigen detection using functionalized aerosol jet-printed organic electrochemical transistors (OECTs). NANOSCALE 2023; 15:5476-5485. [PMID: 36852643 DOI: 10.1039/d2nr06485e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The continuous spread of coronavirus disease 2019 (COVID-19) has highlighted the need for simple and reliable diagnostic technologies for point-of-care (POC) virus detection applications. Here, we report a COVID-19 diagnostic platform based on aerosol jet-printed antibody-functionalized organic electrochemical transistors (OECTs) for rapidly identifying severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens. Selective sensing of SARS-CoV-2 spike S1 protein is achieved in phosphate-buffered saline (PBS) with a detectable range of 1 fg mL-1 to 1 μg mL-1. We used the sensors to detect the antigens in unprocessed patient nasopharyngeal swab samples in universal transport medium (UTM) and achieved an overall accuracy of 70%. In addition, these patient sample tests clearly demonstrate that our OECT threshold voltage shift is correlated with the sample SARS-CoV-2 viral load. Hence, we have demonstrated an accurate POC biosensor for detecting SARS-CoV-2 antigens, which holds great promise towards developing on-site and at-home rapid SARS-CoV-2 infection screening and COVID-19 prognosis.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Sheldon Parr
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Seongdae Kang
- Department of Chemical and Materials, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
59
|
Lim DU, Jo SB, Cho JH. Monolithic Tandem Vertical Electrochemical Transistors for Printed Multi-Valued Logic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208757. [PMID: 36484362 DOI: 10.1002/adma.202208757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs) have recently emerged as a feasible candidate to realize the next generation of printable electronics. Especially, their chemical versatility and the unique redox-based operating principle have provided new possibilities in high-functioning logic circuitry beyond the traditional binary Boolean logic. Here, a simple strategy to electrochemically realize monolithic multi-valued logic transistors is presented, which is one of the most promising branches of transistor technology in the forthcoming era of hyper Moore's law. A vertically stacked heterogeneous dual-channel architecture is introduced with a patterned reference electrode, which enables a facile manifestation of stable and equiprobable ternary logic states with a reduced transistor footprint. The dual-ion-penetration mechanism coupled with ultrashort vertical channel even allows a very-high accessing frequency to multiple logic states reaching over 10 MHz. Furthermore, printed arrays of ternary logic gates with full voltage swing within 1 V are demonstrated.
Collapse
Affiliation(s)
- Dong Un Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, Republic of Korea
| | - Sae Byeok Jo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
60
|
Nawaz A, Merces L, Ferro LMM, Sonar P, Bufon CCB. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204804. [PMID: 36124375 DOI: 10.1002/adma.202204804] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The development of flexible and conformable devices, whose performance can be maintained while being continuously deformed, provides a significant step toward the realization of next-generation wearable and e-textile applications. Organic field-effect transistors (OFETs) are particularly interesting for flexible and lightweight products, because of their low-temperature solution processability, and the mechanical flexibility of organic materials that endows OFETs the natural compatibility with plastic and biodegradable substrates. Here, an in-depth review of two competing flexible OFET technologies, planar and vertical OFETs (POFETs and VOFETs, respectively) is provided. The electrical, mechanical, and physical properties of POFETs and VOFETs are critically discussed, with a focus on four pivotal applications (integrated logic circuits, light-emitting devices, memories, and sensors). It is pointed out that the flexible function of the relatively newer VOFET technology, along with its perspective on advancing the applicability of flexible POFETs, has not been reviewed so far, and the direct comparison regarding the performance of POFET- and VOFET-based flexible applications is most likely absent. With discussions spanning printed and wearable electronics, materials science, biotechnology, and environmental monitoring, this contribution is a clear stimulus to researchers working in these fields to engage toward the plentiful possibilities that POFETs and VOFETs offer to flexible electronics.
Collapse
Affiliation(s)
- Ali Nawaz
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Letícia M M Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Carlos C B Bufon
- MackGraphe - Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, São Paulo, 01302-907, Brazil
| |
Collapse
|
61
|
Martinez-Sade E, Martinez-Rojas F, Ramos D, Aguirre MJ, Armijo F. Formation of a Conducting Polymer by Different Electrochemical Techniques and Their Effect on Obtaining an Immunosensor for Immunoglobulin G. Polymers (Basel) 2023; 15:polym15051168. [PMID: 36904408 PMCID: PMC10007133 DOI: 10.3390/polym15051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.
Collapse
Affiliation(s)
- Erika Martinez-Sade
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Francisco Martinez-Rojas
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Danilo Ramos
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Maria Jesus Aguirre
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química de Los Materiales, Faculta de Química y Biología, Universidad de Santiago de Chile, USACH, Av. L.B. O’Higgins 3363, Santiago 9170022, Chile
| | - Francisco Armijo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
62
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
63
|
Deng M, Ren Z, Zhang H, Li Z, Xue C, Wang J, Zhang D, Yang H, Wang X, Li J. Unamplified and Real-Time Label-Free miRNA-21 Detection Using Solution-Gated Graphene Transistors in Prostate Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205886. [PMID: 36480308 PMCID: PMC9896035 DOI: 10.1002/advs.202205886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The incidence of prostate cancer (PCa) in men globally increases as the standard of living improves. Blood serum biomarker prostate-specific antigen (PSA) detection is the gold standard assay that do not meet the requirements of early detection. Herein, a solution-gated graphene transistor (SGGT) biosensor for the ultrasensitive and rapid quantification detection of the early prostate cancer-relevant biomarker, miRNA-21 is reported. The designed single-stranded DNA (ssDNA) probes immobilized on the Au gate can hybridize effectively with the miRNA-21 molecules targets and induce the Dirac voltage shifts of SGGT transfer curves. The limit of detection (LOD) of the sensor can reach 10-20 M without amplification and any chemical or biological labeling. The detection linear range is from 10-20 to 10-12 M. The sensor can realize real-time detection of the miRNA-21 molecules in less than 5 min and can well distinguish one-mismatched miRNA-21 molecule. The blood serum samples from the patients without RNA extraction and amplification are measured. The results demonstrated that the biosensor can well distinguish the cancer patients from the control group and has higher sensitivity (100%) than PSA detection (58.3%). Contrastingly, it can be found that the PSA level is not directly related to PCa.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Chenglong Xue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Dan Zhang
- School of Computer Science and Information EngineeringHubei UniversityWuhan430062P. R. China
| | - Huan Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| |
Collapse
|
64
|
Truong PL, Yin Y, Lee D, Ko SH. Advancement in COVID-19 detection using nanomaterial-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20210232. [PMID: 37323622 PMCID: PMC10191025 DOI: 10.1002/exp.20210232] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.
Collapse
Affiliation(s)
- Phuoc Loc Truong
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Yiming Yin
- New Materials InstituteDepartment of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboChina
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
| | - Daeho Lee
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
- Institute of Advanced Machinery and Design (SNU‐IAMD)/Institute of Engineering ResearchSeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
65
|
Dong T, Matos Pires NM, Yang Z, Jiang Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205429. [PMID: 36585368 PMCID: PMC9951322 DOI: 10.1002/advs.202205429] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Indexed: 06/02/2023]
Abstract
The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.
Collapse
Affiliation(s)
- Tao Dong
- Department of Microsystems‐ IMSFaculty of TechnologyNatural Sciences and Maritime SciencesUniversity of South‐Eastern Norway‐USNP.O. Box 235Kongsberg3603Norway
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologyXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
66
|
Guo J, Flagg LQ, Tran DK, Chen SE, Li R, Kolhe NB, Giridharagopal R, Jenekhe SA, Richter LJ, Ginger DS. Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer Driven by Electrochemical Doping. J Am Chem Soc 2023; 145:1866-1876. [PMID: 36630664 DOI: 10.1021/jacs.2c11468] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We study the organic electrochemical transistor (OECT) performance of the ladder polymer poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Regardless of molecular mass, both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance gravimetry, in-operando atomic force microscopy, and both ex-situ and in-operando grazing incidence wide-angle X-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.
Collapse
Affiliation(s)
- Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Lucas Q Flagg
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Duyen K Tran
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Shinya E Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Nagesh B Kolhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States.,Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| |
Collapse
|
67
|
Ban R, Li CJ, Xu YT, Zhu YY, Ju P, Li YM, Du HJ, Hu J, Chen G, Lin P, Zhao WW. Alkaline Phosphatase-Mediated Bioetching of CoOOH/BiVO 4 for Signal-On Organic Photoelectrochemical Transistor Bioanalysis. Anal Chem 2023; 95:1454-1460. [PMID: 36538530 DOI: 10.1021/acs.analchem.2c04447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organic photoelectrochemical transistor (OPECT) bioanalytics has recently appeared as a promising route for biological measurements, which has major implications in both next-generation photoelectrochemical (PEC) bioanalysis and futuristic biorelated implementations. Via biological dissociation of materials, bioetching is a useful technique for bio-manufacturing and bioanalysis. The intersection of these two domains is expected to be a possible way to achieve innovative OPECT bioanalytics. Herein, we validate such a possibility, which is exemplified by alkaline phosphatase (ALP)-mediated bioetching of a CoOOH/BiVO4 gate for a signal-on OPECT immunoassay of human immunoglobulin G (HIgG) as the model target. Specifically, target-dependent bioetching of the upper CoOOH layer could result into an enhanced electrolyte contact and light accessibility to BiVO4, leading to the modulated response of the polymeric poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel that could be monitored by the channel current. The introduced biosensor achieves sensitive detection of HIgG with high selectivity and sensitivity. This work features bioetching-enabled high-efficacy OPECT bioanalysis and is anticipated to serve as a generic protocol, considering the diverse bioetching routes.
Collapse
Affiliation(s)
- Rui Ban
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang550018, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,School of Chemistry and Materials Science, Guizhou Education University, Guiyang550018, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yu-Yue Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao266061, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao266061, China
| | - Yu-Mei Li
- School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Hai-Jun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang550025, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China.,Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou510006, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
68
|
Song J, Liu H, Zhao Z, Guo X, Liu CK, Griggs S, Marks A, Zhu Y, Law HKW, McCulloch I, Yan F. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. SCIENCE ADVANCES 2023; 9:eadd9627. [PMID: 36630506 PMCID: PMC9833676 DOI: 10.1126/sciadv.add9627] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical transistors (ECTs) have shown broad applications in bioelectronics and neuromorphic devices due to their high transconductance, low working voltage, and versatile device design. To further improve the device performance, semiconductor materials with both high carrier mobilities and large capacitances in electrolytes are needed. Here, we demonstrate ECTs based on highly oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs). The ion-conductive vertical nanopores formed within the 2D c-MOFs films lead to the most convenient ion transfer in the bulk and high volumetric capacitance, endowing the devices with fast speeds and ultrahigh transconductance. Ultraflexible device arrays are successfully used for wearable on-skin recording of electrocardiogram (ECG) signals along different directions, which can provide various waveforms comparable with those of multilead ECG measurement systems for monitoring heart conditions. These results indicate that 2D c-MOFs are excellent semiconductor materials for high-performance ECTs with promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Chun-ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Helen Ka-wai Law
- Department of Health Technology and Informatics Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| |
Collapse
|
69
|
Xu YT, Yuan C, Zhou BY, Li Z, Hu J, Lin P, Zhao WW, Chen HY, Xu JJ. Silicon solar cell-enabled organic photoelectrochemical transistor optoelectronics. SCIENCE CHINA MATERIALS 2023; 66:1861-1869. [PMID: 36685049 PMCID: PMC9838416 DOI: 10.1007/s40843-022-2295-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/21/2022] [Indexed: 05/20/2023]
Abstract
Organic electrochemical transistors (OECTs) have been increasingly explored for innovative electronic devices. However, they inherently demand two power suppliers, which is unfavorable for the utilization of portable and wearable systems with strict energy requirements. Herein, by assembling a monocrystalline silicon solar cell into the OECT circuit with light as fuel, we demonstrated the possibility of a self-powered and light-modulated operation of organic photoelectrochemical transistor (OPECT) optoelectronics. Exemplified by poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based depletion-mode and accumulation-mode OECTs, different light-addressable configurations were constructed, and the corresponding characteristics were systematically studied and compared. Different device behaviors with distinct characteristics could be achieved with the appropriate usage of light stimulation. Toward applications, optologics were designed with various parameters depending on the incident irradiance. Light-controlled OPECT unipolar inverters were further demonstrated and optimized with respect to the power source and resistance. This work features new OPECT optoelectronics combined with proper flexible substrates and solar cells for potential applications in portable and wearable devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s40843-022-2295-8.
Collapse
Affiliation(s)
- Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Bing-Yu Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
| |
Collapse
|
70
|
Roe DG, Ho DH, Choi YY, Choi YJ, Kim S, Jo SB, Kang MS, Ahn JH, Cho JH. Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing. Nat Commun 2023; 14:5. [PMID: 36596783 PMCID: PMC9810717 DOI: 10.1038/s41467-022-34324-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2022] [Indexed: 01/05/2023] Open
Abstract
With advances in robotic technology, the complexity of control of robot has been increasing owing to fundamental signal bottlenecks and limited expressible logic state of the von Neumann architecture. Here, we demonstrate coordinated movement by a fully parallel-processable synaptic array with reduced control complexity. The synaptic array was fabricated by connecting eight ion-gel-based synaptic transistors to an ion gel dielectric. Parallel signal processing and multi-actuation control could be achieved by modulating the ionic movement. Through the integration of the synaptic array and a robotic hand, coordinated movement of the fingers was achieved with reduced control complexity by exploiting the advantages of parallel multiplexing and analog logic. The proposed synaptic control system provides considerable scope for the advancement of robotic control systems.
Collapse
Affiliation(s)
- Dong Gue Roe
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Hae Ho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Young Jin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seongchan Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sae Byeok Jo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
71
|
Duan J, Zhu G, Lan L, Chen J, Zhu X, Chen C, Yu Y, Liao H, Li Z, McCulloch I, Yue W. Electron-Deficient Polycyclic Molecules via Ring Fusion for n-Type Organic Electrochemical Transistors. Angew Chem Int Ed Engl 2023; 62:e202213737. [PMID: 36349830 DOI: 10.1002/anie.202213737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 11/11/2022]
Abstract
The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V-1 s-1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable μC* of 10.3 F cm-1 V-1 s-1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.
Collapse
Affiliation(s)
- Jiayao Duan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Genming Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liuyuan Lan
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Junxin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiuyuan Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chaoyue Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yaping Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
72
|
Li D, Sun C, Mei X, Yang L. Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis. Trends Analyt Chem 2023; 158:116878. [PMID: 36506266 PMCID: PMC9728015 DOI: 10.1016/j.trac.2022.116878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
With the development of COVID-19, widely available tests are in great demand. Naked-eye SARS-CoV-2 test kits have recently been developed as home tests, but their sensitivity and accuracy are sometimes limited. Smartphones can convert various signals into digital information, potentially improving the sensitivity and accuracy of these home tests. Herein, we summarize smartphone-based detections for SARS-CoV-2. Optical detections of non-nucleic acids using various sensors and portable imaging systems, as well as nucleic acid analyses based on LAMP, CRISP, CATCH, and biosensors are discussed. Furthermore, different electrochemical detections were compared. We show results obtained using relatively complex equipment, complicated programming procedures, or custom smartphone apps, and describe methods for obtaining information with only simple setups and free software on smartphones. Then, the combined costs of typical smartphone-based detections are evaluated. Finally, the prospect of improving smartphone-based strategies to achieve broad availability of SARS-CoV-2 detection is proposed.
Collapse
Affiliation(s)
- Dan Li
- Jinzhou Medical University, Jinzhou, China
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co, Ltd., Shenyang, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China,Corresponding author
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Corresponding author
| |
Collapse
|
73
|
Li Z, Xu YT, Hu J, Wang T, Liu FQ, Zhou H, Chen GX, Lin P, Zhao WW, Xu JJ, Chen HY. High-gain signal-on PEDOT:PSS organic photoelectrochemical transistor biosensing modulated by a MXene/MOFs/NiO Schottky heterojunction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
74
|
Liu J, Tang Y, Cheng Y, Huang W, Xiang L. Electrochemical biosensors based on saliva electrolytes for rapid detection and diagnosis. J Mater Chem B 2022; 11:33-54. [PMID: 36484271 DOI: 10.1039/d2tb02031a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, electrochemical biosensors (ECBSs) have shown significant potential for real-time disease diagnosis and in situ physical condition monitoring. As a multi-constituent oral fluid comprising various disease signaling biomarkers, saliva has drawn much attention in the field of point-of-care (POC) testing. In particular, during the outbreak of the COVID-19 pandemic, ECBSs which hold the simplicity of a single-step assay compared with the multi-step assay of traditional testing methods are expected to relieve the human and economic burden caused by the massive and long-term sample testing process. Noteworthily, ECBSs for the detection of SARS-CoV-2 in saliva have already been developed and may replace current testing methods. Furthermore, the detection scope has expanded from routine indices such as sugar and uric acid to abnormal biomarkers for early-stage disease detection and drug level monitoring, which further facilitated the evolution of ECBSs in the last 5 years. This review is divided into several main sections. First, we discussed the latest advancements and representative research on ECBSs for saliva testing. Then, we focused on a novel kind of ECBS, organic electrochemical transistors (OECTs), which hold great advantages of high sensitivity and signal-to-noise ratio and on-site detection. Finally, application of ECBSs with integrated portable platforms in oral cavities, which lead to powerful auxiliary testing means for telemedicine, has also been discussed.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China.
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
75
|
Nan J, Sun W, Liu X, Che Y, Shan H, Yue Y, Liu J, Wang L, Liu K, Xu W, Zhang W, Zhang S, Liu B, Hettie KS, Zhu S, Zhang J, Yang B. Thickness-Sensing Sandwiched Plasmonic Biosensors Enable Label-Free Naked-Eye Antibody Quantification. NANO LETTERS 2022; 22:9596-9605. [PMID: 36394551 PMCID: PMC9805804 DOI: 10.1021/acs.nanolett.2c03732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Clinical serology assays for detecting the antibodies of the virus are time-consuming, are less sensitive/selective, or rely on sophisticated detection instruments. Here, we develop a sandwiched plasmonic biosensor (SPB) for supersensitive thickness-sensing via utilizing the distance-dependent electromagnetic coupling in sandwiched plasmonic nanostructures. SPBs quantitatively amplify the thickness changes on the nanoscale range (sensitivity: ∼2% nm-1) into macroscopically visible signals, thereby enabling the rapid, label-free, and naked-eye detection of targeted biomolecular species (via the thickness change caused by immunobinding events). As a proof of concept, this assay affords a broad dynamic range (7 orders of magnitude) and a low LOD (∼0.3 pM), allowing for the extremely accurate SARS-CoV-2 antibody quantification (sensitivity/specificity: 100%/∼99%, with a portable optical fiber device). This strategy is suitable for high-throughput multiplexed detection and smartphone-based sensing at the point-of-care, which can be expanded for various sensing applications beyond the fields of viral infections and vaccination.
Collapse
Affiliation(s)
- Jingjie Nan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Weihong Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | | | | | | | - Ying Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiaxin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | | | | | | | | | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
76
|
Wang B, Yang D, Chang Z, Zhang R, Dai J, Fang Y. Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. MATTER 2022; 5:4347-4362. [PMID: 36157685 PMCID: PMC9484046 DOI: 10.1016/j.matt.2022.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 05/17/2023]
Abstract
Respiratory infectious diseases (H1N1, H5N1, COVID-19, etc.) are pandemics that can continually spread in the air through micro-droplets or aerosols. However, the detection of samples in gaseous media is hampered by the requirement for trace amounts and low concentrations. Here, we develop a wearable bioelectronic mask device integrated with ion-gated transistors. Based on the sensitive gating effect of ion gels, our aptamer-functionalized transistors can measure trace-level liquid samples (0.3 μL) and even gaseous media samples at an ultra-low concentration (0.1 fg/mL). The ion-gated transistor with multi-channel analysis can respond to multiple targets simultaneously within as fast as 10 min, especially without sample pretreatment. Integrating a wireless internet of things system enables the wearable mask to achieve real-time and on-site detection of the surrounding air, providing an alert before infection. The wearable bioelectronic masks hold promise to serve as an early warning system to prevent outbreaks of respiratory infectious diseases.
Collapse
Affiliation(s)
- Bingfang Wang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Deqi Yang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Ru Zhang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital affiliated to Tongji University, Shanghai 200120, China
| | - Jing Dai
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital affiliated to Tongji University, Shanghai 200120, China
| |
Collapse
|
77
|
Ali A, Zhang GF, Hu C, Yuan B, Jahan S, Kitsios GD, Morris A, Gao SJ, Panat R. Ultrarapid and ultrasensitive detection of SARS-CoV-2 antibodies in COVID-19 patients via a 3D-printed nanomaterial-based biosensing platform. J Med Virol 2022; 94:5808-5826. [PMID: 35981973 PMCID: PMC9538259 DOI: 10.1002/jmv.28075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 01/06/2023]
Abstract
Rapid detection of antibodies during infection and after vaccination is critical for the control of infectious outbreaks, understanding immune response, and evaluating vaccine efficacy. In this manuscript, we evaluate a simple ultrarapid test for SARS-CoV-2 antibodies in COVID-19 patients, which gives quantitative results (i.e., antibody concentration) in 10-12 s using a previously reported nanomaterial-based three-dimensional (3D)-printed biosensing platform. This platform consists of a micropillar array electrode fabricated via 3D printing of aerosolized gold nanoparticles and coated with nanoflakes of graphene and specific SARS-CoV-2 antigens, including spike S1, S1 receptor-binding domain (RBD) and nucleocapsid (N). The sensor works on the principle of electrochemical transduction, where the change of sensor impedance is realized by the interactions between the viral proteins attached to the sensor electrode surface and the antibodies. The three sensors were used to test samples from 17 COVID-19 patients and 3 patients without COVID-19. Unlike other serological tests, the 3D sensors quantitatively detected antibodies at a concentration as low as picomole within 10-12 s in human plasma samples. We found that the studied COVID-19 patients had higher concentrations of antibodies to spike proteins (RBD and S1) than to the N protein. These results demonstrate the enormous potential of the rapid antibody test platform for understanding patients' immunity, disease epidemiology and vaccine efficacy, and facilitating the control and prevention of infectious epidemics.
Collapse
Affiliation(s)
- Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
- Current address: Department of Animal and Poultry Sciences,
Virginia Tech, Blacksburg, VA, 24061 USA
| | - George Fei Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center and
Department of Microbiology and Molecular Genetics, University of Pittsburgh School
of Medicine, Pittsburgh, PA, 15213 USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Sanjida Jahan
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213 USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213 USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center and
Department of Microbiology and Molecular Genetics, University of Pittsburgh School
of Medicine, Pittsburgh, PA, 15213 USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA, 15213 USA
| |
Collapse
|
78
|
Zhang R, Zhang J, Tan F, Yang D, Wang B, Dai J, Qi Y, Ran L, He W, Lv Y, Wang F, Fang Y. Multi-channel AgNWs-doped interdigitated organic electrochemical transistors enable sputum-based device towards noninvasive and portable diagnosis of lung cancer. Mater Today Bio 2022; 16:100385. [PMID: 35991625 PMCID: PMC9386496 DOI: 10.1016/j.mtbio.2022.100385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022] Open
Abstract
Biochemical monitoring of bodily fluidics such as sweat, urine, and tears have been extensively developed, but reliable biochemical analysis of sputum biospecimens remains limited and challenging due to the low abundance of biomarkers in intrinsically viscous sputum. We reported a portable multi-channel sputum-based interdigitated organic electrochemical transistors (SiOECTs) device for noninvasive sputum diagnosis. We tailored the AgNWs-doped organic electrochemical transistors, integrating with multiplexed aptamer-antigen assays, to realize the signal amplification and simultaneous detection of biomarkers in raw sputum biospecimens from lung cancer patients. Clinical validation studies demonstrated favorable correlation coefficients between the sputum and serum biospecimens. By utilizing our portable multi-channel iOECTs devices, lung cancer patients were differentiated from health control with an optimum area under the curve (AUC) of 0.931, sensitivity of 87.0%, and specificity of 86.5%. Our miniaturized and portable device could even realize the continuous in-home tracking of the biomarkers change for lung cancer patients after radiotherapy/chemotherapy. It is envisaged that the SiOECTs will shed light on noninvasive diagnostics platforms for sputum-related diseases.
Collapse
Affiliation(s)
- Ru Zhang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, And School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons of England, London, UK
| | - Deqi Yang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Dai
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yin Qi
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Linyu Ran
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Wenjuan He
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai, 200444, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
79
|
Sensitive organic electrochemical transistor biosensors: Comparing single and dual gate functionalization and different COOH-functionalized bioreceptor layers. Biosens Bioelectron 2022; 216:114691. [PMID: 36113388 DOI: 10.1016/j.bios.2022.114691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
We developed new measurement configurations based on organic electrochemical transistors (OECTs). Three types of COOH-functionalized bioreceptor layers were deposited on indium tin oxide (ITO) electrodes on poly(ethylene terephthalate) (PET) substrates and their performance was tested using single gate functionalization organic electrochemical transistor (S-OECT) and dual gate functionalization organic electrochemical transistor (D-OECT) configurations. The three layers included one p-type semiconductor, one insulator, and one self-assembled layer, and the dual gates were connected in series through buffer solutions, so the solution-electrode interfaces had the opposite polarities. We investigated the sensitivities of these systems using the human IgG antigen-human IgG antibody receptor pair for main experiments, and drifts of antibody-functionalized gates without analytes as control experiments. Drifts without analyte can obscure the real sensitivity. We show that the D-OECT has the capability to cancel the drifts, and is also beneficial for showing the sensitivity more exactly. This configuration has the ability to increase the accuracy of antibody-antigen interaction detection, and further decrease or eliminate the effect of ions in the buffer solution. We also prove that the D-OECT can work well with different bioreceptor materials, which indicates that the system can be further applied to different conditions.
Collapse
|
80
|
Gao G, Chen JH, Li CJ, Wang CS, Hu J, Zhou H, Lin P, Xu Q, Zhao WW. Duplex-Specific Nuclease-Enabled Target Recycling on Semiconducting Metal–Organic Framework Heterojunctions for Energy-Transfer-Based Organic Photoelectrochemical Transistor miRNA Biosensing. Anal Chem 2022; 94:15856-15863. [DOI: 10.1021/acs.analchem.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ge Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Jia-Hao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Cheng-Jun Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Cheng-Shuang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
81
|
Zhang D, Guo Y, Zhang L, Wang Y, Peng S, Duan S, Geng L, Zhang X, Wang W, Yang M, Wu G, Chen J, Feng Z, Wang X, Wu Y, Jiang H, Zhang Q, Sun J, Li S, He Y, Xiao M, Xu Y, Wang H, Liu P, Zhou Q, Luo H. Integrated System for On-Site Rapid and Safe Screening of COVID-19. Anal Chem 2022; 94:13810-13819. [PMID: 36184789 PMCID: PMC9578365 DOI: 10.1021/acs.analchem.2c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), the epidemic has been spreading around the world for more than 2 years. Rapid, safe, and on-site detection methods of COVID-19 are in urgent demand for the control of the epidemic. Here, we established an integrated system, which incorporates a machine-learning-based Fourier transform infrared spectroscopy technique for rapid COVID-19 screening and air-plasma-based disinfection modules to prevent potential secondary infections. A partial least-squares discrimination analysis and a convolutional neural network model were built using the collected infrared spectral dataset containing 857 training serum samples. Furthermore, the sensitivity, specificity, and prediction accuracy could all reach over 94% from the results of the field test regarding 968 blind testing samples. Additionally, the disinfection modules achieved an inactivation efficiency of 99.9% for surface and airborne tested bacteria. The proposed system is conducive and promising for point-of-care and on-site COVID-19 screening in the mass population.
Collapse
Affiliation(s)
- Dongheyu Zhang
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Yuntao Guo
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Liyang Zhang
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Yao Wang
- Department
of Clinical Laboratory, Peking Union Medical
College Hospital, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Siqi Peng
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Simeng Duan
- Department
of Clinical Laboratory, Peking Union Medical
College Hospital, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Lin Geng
- JINSP
Co., Ltd., Beijing100083, China
| | | | - Wei Wang
- Shanghai
Customs Port Clinic, Shanghai International
Travel Healthcare Center, Shanghai200335, China
| | - Mengjie Yang
- Chinese
Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing102206, China
| | - Guizhen Wu
- Chinese
Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing102206, China
| | - Jiayi Chen
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Zihao Feng
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Xinyuan Wang
- Holy-shine
Technology Co., Ltd., Beijing100045, China
| | - Yue Wu
- Holy-shine
Technology Co., Ltd., Beijing100045, China
| | - Haotian Jiang
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Qikang Zhang
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Jingjun Sun
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| | - Shenwei Li
- Shanghai
Customs Port Clinic, Shanghai International
Travel Healthcare Center, Shanghai200335, China
| | - Yuping He
- Shanghai
Customs Port Clinic, Shanghai International
Travel Healthcare Center, Shanghai200335, China
| | - Meng Xiao
- Department
of Clinical Laboratory, Peking Union Medical
College Hospital, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Yingchun Xu
- Department
of Clinical Laboratory, Peking Union Medical
College Hospital, Chinese Academy of Medical Sciences, Beijing100730, China
| | | | - Peipei Liu
- Chinese
Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing102206, China
| | - Qun Zhou
- Department
of Chemistry, Tsinghua University, Beijing100084, China
| | - Haiyun Luo
- Department
of Electrical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
82
|
Demuru S, Kim J, El Chazli M, Bruce S, Dupertuis M, Binz PA, Saubade M, Lafaye C, Briand D. Antibody-Coated Wearable Organic Electrochemical Transistors for Cortisol Detection in Human Sweat. ACS Sens 2022; 7:2721-2731. [PMID: 36054907 DOI: 10.1021/acssensors.2c01250] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dysregulation of the hormone cortisol is related to several pathological states, and its monitoring could help prevent severe stress, fatigue, and mental diseases. While wearable antibody-based biosensors could allow real-time and simple monitoring of antigens, an accurate and low-cost antibody-based cortisol detection through electrochemical methods is considerably challenging due to its low concentration and the high ionic strength of real biofluids. Here, a label-free and fast sensor for cortisol detection is proposed based on antibody-coated organic electrochemical transistors. The developed devices show unprecedented high sensitivities of 50 μA/dec for cortisol sensing in high-ionic-strength solutions with effective cortisol detection demonstrated with real human sweat. The sensing mechanism is analyzed through impedance spectroscopy and confirmed with electrical models. Compared to existing methods requiring bulky and expensive laboratory equipment, these wearable devices enable point-of-care cortisol detection in 5 min with direct sweat collection for personalized well-being monitoring.
Collapse
Affiliation(s)
- Silvia Demuru
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Jaemin Kim
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Marwan El Chazli
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| | - Stephen Bruce
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Michael Dupertuis
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pierre-Alain Binz
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mathieu Saubade
- Sports Medicine Unit, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Céline Lafaye
- Sports Medicine Unit, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Danick Briand
- School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel 2000, Switzerland
| |
Collapse
|
83
|
Koklu A, Wustoni S, Guo K, Silva R, Salvigni L, Hama A, Diaz-Galicia E, Moser M, Marks A, McCulloch I, Grünberg R, Arold ST, Inal S. Convection Driven Ultrarapid Protein Detection via Nanobody-Functionalized Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202972. [PMID: 35772173 DOI: 10.1002/adma.202202972] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Conventional biosensors rely on the diffusion-dominated transport of the target analyte to the sensor surface. Consequently, they require an incubation step that may take several hours to allow for the capture of analyte molecules by sensor biorecognition sites. This incubation step is a primary cause of long sample-to-result times. Here, alternating current electrothermal flow (ACET) is integrated in an organic electrochemical transistor (OECT)-based sensor to accelerate the device operation. ACET is applied to the gate electrode functionalized with nanobody-SpyCatcher fusion proteins. Using the SARS-CoV-2 spike protein in human saliva as an example target, it is shown that ACET enables protein recognition within only 2 min of sample exposure, supporting its use in clinical practice. The ACET integrated sensor exhibits better selectivity, higher sensitivity, and lower limit of detection than the equivalent sensor with diffusion-dominated operation. The performance of ACET integrated sensors is compared with two types of organic semiconductors in the channel and grounds for device-to-device variations are investigated. The results provide guidelines for the channel material choice in OECT-based biochemical sensors, and demonstrate that ACET integration substantially decreases the detection speed while increasing the sensitivity and selectivity of transistor-based sensors.
Collapse
Affiliation(s)
- Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Keying Guo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Escarlet Diaz-Galicia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Maximilian Moser
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Raik Grünberg
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, F-34090, France
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center (CBRC), KAUST, Thuwal, Saudi Arabia
| |
Collapse
|
84
|
A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proc Natl Acad Sci U S A 2022; 119:e2208060119. [PMID: 35972962 PMCID: PMC9407321 DOI: 10.1073/pnas.2208060119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.
Collapse
|
85
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
86
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
87
|
Li H, Yang J, Wu G, Weng Z, Song Y, Zhang Y, Vanegas JA, Avery L, Gao Z, Sun H, Chen Y, Dieckhaus KD, Gao X, Zhang Y. Amplification-Free Detection of SARS-CoV-2 and Respiratory Syncytial Virus Using CRISPR Cas13a and Graphene Field-Effect Transistors. Angew Chem Int Ed Engl 2022; 61:e202203826. [PMID: 35559592 PMCID: PMC9347639 DOI: 10.1002/anie.202203826] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have recently received notable attention for their applications in nucleic acid detection. Despite many attempts, the majority of current CRISPR-based biosensors in infectious respiratory disease diagnostic applications still require target preamplifications. This study reports a new biosensor for amplification-free nucleic acid detection via harnessing the trans-cleavage mechanism of Cas13a and ultrasensitive graphene field-effect transistors (gFETs). CRISPR Cas13a-gFET achieves the detection of SARS-CoV-2 and respiratory syncytial virus (RSV) genome down to 1 attomolar without target preamplifications. Additionally, we validate the detection performance using clinical SARS-CoV-2 samples, including those with low viral loads (Ct value >30). Overall, these findings establish our CRISPR Cas13a-gFET among the most sensitive amplification-free nucleic acid diagnostic platforms to date.
Collapse
Affiliation(s)
- Huijie Li
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - Jie Yang
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTX 77005USA
| | - Guangfu Wu
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - Zhengyan Weng
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - Yang Song
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - Yuxuan Zhang
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - Jeffrey A. Vanegas
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTX 77005USA
| | - Lori Avery
- Department of Pathology and Laboratory MedicineUConn HealthFarmingtonCT 06030USA
| | - Zan Gao
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - He Sun
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| | - Yupeng Chen
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
| | - Kevin D. Dieckhaus
- Division of Infectious DiseasesDepartment of MedicineUConn HealthFarmingtonCT 06030USA
| | - Xue Gao
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTX 77005USA
- Department of BioengineeringRice UniversityHoustonTX 77005USA
- Department of ChemistryRice UniversityHoustonTX 77005USA
| | - Yi Zhang
- Department of Biomedical EngineeringUniversity of ConnecticutStorrsCT 06269USA
- Institute of Materials ScienceUniversity of ConnecticutStorrsCT 06269USA
| |
Collapse
|
88
|
Xu J, Kerr L, Jiang Y, Suo W, Zhang L, Lao T, Chen Y, Zhang Y. Rapid Antigen Diagnostics as Frontline Testing in the COVID-19 Pandemic. SMALL SCIENCE 2022; 2:2200009. [PMID: 35942171 PMCID: PMC9349911 DOI: 10.1002/smsc.202200009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
The ongoing global COVID-19 pandemic, caused by the SARS-CoV-2 virus, has resulted in significant loss of life since December 2019. Timely and precise virus detection has been proven as an effective solution to reduce the spread of the virus and to track the epidemic. Rapid antigen diagnostics has played a significant role in the frontline of COVID-19 testing because of its convenience, low cost, and high accuracy. Herein, different types of recently innovated in-lab and commercial antigen diagnostic technologies with emphasis on the strengths and limitations of these technologies including the limit of detection, sensitivity, specificity, affordability, and usability are systematically reviewed. The perspectives of assay development are looked into.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Systems BiologyBlavatnik InstituteHarvard Medical SchoolBostonMA02115USA
- Department of Molecular VirologyVirogin Biotech Ltd.3800 Wesbrook MallVancouverBCV6S 2L9Canada
| | - Liam Kerr
- Department of Mechanical EngineeringCenter for Intelligent MachinesMcGill UniversityMontrealQCH3A0C3Canada
| | - Yue Jiang
- China-Australia Institute for Advanced Materials and ManufacturingJiaxing UniversityJiaxing314001China
| | - Wenhao Suo
- Dana-Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
- Department of PathologyThe First Affiliated Hospital of Xiamen University55 Zhenhai RoadXiamen361003China
| | - Lei Zhang
- Department of Chemical EngineeringWaterloo Institute for NanotechnologyUniversity of Waterloo200 University Avenue WestWaterlooONN2L3G1Canada
| | - Taotao Lao
- Department of Molecular DiagnosticsBoston Molecules Inc.564 Main StreetWalthamMA02452USA
- Center for Immunology and Inflammatory DiseasesMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02114USA
| | - Yuxin Chen
- Department of Laboratory MedicineNanjing Drum Tower HospitalNanjing University Medical SchoolNanjingJiangsu210008China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-EfficiencyCollaborative Innovation Center of Chemical Science and EngineeringSchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072China
- Frontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072China
| |
Collapse
|
89
|
A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast and accurate point-of-care testing (POCT) of infectious diseases is crucial for diminishing the pandemic miseries. To fight the pandemic coronavirus disease 2019 (COVID-19), numerous interesting electrochemical point-of-care (POC) tests have been evolved to rapidly identify the causal organism SARS-CoV-2 virus, its nucleic acid and antigens, and antibodies of the patients. Many of those electrochemical biosensors are impressive in terms of miniaturization, mass production, ease of use, and speed of test, and they could be recommended for future applications in pandemic-like circumstances. On the other hand, self-diagnosis, sensitivity, specificity, surface chemistry, electrochemical components, device configuration, portability, small analyzers, and other features of the tests can yet be improved. Therefore, this report reviews the developmental trend of electrochemical POC tests (i.e., test platforms and features) reported for the rapid diagnosis of COVID-19 and correlates any significant advancements with relevant references. POCTs incorporating microfluidic/plastic chips, paper devices, nanomaterial-aided platforms, smartphone integration, self-diagnosis, and epidemiological reporting attributes are also surfed to help with future pandemic preparedness. This review especially screens the low-cost and easily affordable setups so that management of pandemic disease becomes faster and easier. Overall, the review is a wide-ranging package for finding appropriate strategies of electrochemical POCT targeting pandemic infectious disease detection.
Collapse
|
90
|
Wang Y, Xu H, Dong Z, Wang Z, Yang Z, Yu X, Chang L. Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 14:100116. [PMID: 35187465 PMCID: PMC8837495 DOI: 10.1016/j.medntd.2022.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) has developed into a global pandemic in the last two years, causing significant impacts on our daily life in many countries. Rapid and accurate detection of COVID-19 is of great importance to both treatments and pandemic management. Till now, a variety of point-of-care testing (POCT) approaches devices, including nucleic acid-based test and immunological detection, have been developed and some of them has been rapidly ruled out for clinical diagnosis of COVID-19 due to the requirement of mass testing. In this review, we provide a summary and commentary on the methods and biomedical devices innovated or renovated for the quick and early diagnosis of COVID-19. In particular, some of micro and nano devices with miniaturized structures, showing outstanding analytical performances such as ultra-sensitivity, rapidness, accuracy and low cost, are discussed in this paper. We also provide our insights on the further implementation of biomedical devices using advanced micro and nano technologies to meet the demand of point-of-care diagnosis and home testing to facilitate pandemic management. In general, our paper provides a comprehensive overview of the latest advances on the POCT device for diagnosis of COVID-19, which may provide insightful knowledge for researcher to further develop novel diagnostic technologies for rapid and on-site detection of pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Huiren Xu
- School of Biomedical Information and Engineering, Hainan Medical University, Haikou, 471100, China
| | - Zaizai Dong
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhiying Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom,Corresponding author
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China,Corresponding author.
| | - Lingqian Chang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China,Corresponding author.
| |
Collapse
|
91
|
Ghafouri T, Manavizadeh N. Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity. Bioelectrochemistry 2022; 145:108096. [PMID: 35316730 PMCID: PMC8923711 DOI: 10.1016/j.bioelechem.2022.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/02/2022]
Abstract
Differential diagnosis of pathogenic diseases, presently coronavirus disease 2019 (COVID-19) and influenza, is crucial with due attention to their superspreading events, presumably long incubation period, particular complications, and treatments. In this paper, a label-free, self-powered, and ultrafast immunosensor device working based on triboelectric effect is proposed. Equilibrium constants of specific antibody-antigen reactions are accompanied by IEP-relevant electric charges of antigens to recognize SARS-CoV-2 and H1N1. Simulation attributes including fluid flow and geometrical parameters are optimized so that the maximum capture efficiency of 85.63% is achieved. Accordingly, antibody-antigen complexes form electric double layers (EDLs) across the channel interfaces. The resultant built-in electric field affects the following external electric field derived from triboelectricity, leading to the variation of open-circuit voltage as a sensing metric. The device is flexible to operate in conductor-to-dielectric single-electrode and contact-separation modes simultaneously. While the detection limit is reduced utilizing the single-electrode mode compared to the latter one, surface treatment of the triboelectric pair contributes to the sensitivity enhancement. A threshold value equal to −4.113 V is featured to discriminate these two viruses in a vast detectable region; however, further surface engineering can allow the on-site detection of any electrically-charged pathogen applying the emerging triboelectric immunosensor enjoying a lower detection limit.
Collapse
|
92
|
Li H, Yang J, Wu G, Weng Z, Song Y, Zhang Y, Vanegas JA, Avery L, Gao Z, Sun H, Chen Y, Dieckhaus KD, Gao X, Zhang Y. Amplification‐Free Detection of SARS‐CoV‐2 and Respiratory Syncytial Virus Using CRISPR Cas13a and Graphene Field‐Effect Transistors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huijie Li
- University of Connecticut Biomedical Engineering 97 N Eagleville Rd Unit 3137 06269-7012 Storrs Mansfield UNITED STATES
| | - Jie Yang
- Rice University Chemical and Biomolecular Engineering UNITED STATES
| | - Guangfu Wu
- University of Connecticut Biomedical Engineering UNITED STATES
| | - Zhengyan Weng
- University of Connecticut Biomedical Engineering UNITED STATES
| | - Yang Song
- University of Connecticut Biomedical Engineering UNITED STATES
| | - Yuxuan Zhang
- University of Connecticut Biomedical Engineering UNITED STATES
| | | | - Lori Avery
- University of Connecticut Health Center: UConn Health Pathology and Laboratory Medicine UNITED STATES
| | - Zan Gao
- University of Connecticut Biomedical Engineering UNITED STATES
| | - He Sun
- University of Connecticut Biomedical Engineering 97 N Eagleville Rd Unit 3137 06269-7012 Storrs Mansfield UNITED STATES
| | - Yupeng Chen
- University of Connecticut Biomedical Engineering UNITED STATES
| | - Kevin D. Dieckhaus
- University of Connecticut Health Center: UConn Health Medicine UNITED STATES
| | - Xue Gao
- Rice University Chemical and Biomolecular Engineering UNITED STATES
| | - Yi Zhang
- University of Connecticut 97 N Eagleville Rd Unit 3137 06269 Storrs UNITED STATES
| |
Collapse
|
93
|
Sun C, Feng G, Song Y, Cheng S, Lei S, Hu W. Single Molecule Level and Label-Free Determination of Multibiomarkers with an Organic Field-Effect Transistor Platform in Early Cancer Diagnosis. Anal Chem 2022; 94:6615-6620. [PMID: 35446018 DOI: 10.1021/acs.analchem.2c00897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The single molecule level determination with a transistor (SiMoT) platform has attracted considerable attention in the recognition of various ultralow abundance biomolecules, while complicated labeling and testing processes limit its further applications. Recently, organic field-effect transistor (OFET)-based biosensors are good candidates for constructing an advanced label-free SiMoT platform due to their facile fabrication process, rapid response time, and low sample volume with a wide range of detection. However, the sensitivity of most OFET-based biosensors is in the order of nM and pM, which cannot meet the detection requirements of ultralow abundance protein. Herein, a label-free SiMoT platform is demonstrated by integrating pillar[n]arene as a signal amplifier, and the detection limit can reach 4.75 aM. Besides, by simultaneous determination of α-fetoprotein, carcinoembryonic antigen, and prostate antigen, the proposed multiplexed OFET-based SiMoT platform provides a key step in reliable early cancer diagnosis.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yaru Song
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shanshan Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
94
|
Madhurantakam S, Muthukumar S, Prasad S. Emerging Electrochemical Biosensing Trends for Rapid Diagnosis of COVID-19 Biomarkers as Point-of-Care Platforms: A Critical Review. ACS OMEGA 2022; 7:12467-12473. [PMID: 35474766 PMCID: PMC9026073 DOI: 10.1021/acsomega.2c00638] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 05/15/2023]
Abstract
Rapid diagnosis is a critical aspect associated with controlling the spread of COVID-19. Electrochemical sensor platforms are ideally suited for rapid and highly sensitive detection of biomolecules. This review focuses on state-of-the-art of COVID-19 biomarker detection by utilizing electrochemical biosensing platforms. Point-of-care (POC) sensing is one of the most promising and emerging fields in detecting and quantifying health biomarkers. Electrochemical biosensors play a major role in the development of point-of-care devices because of their high sensitivity, specificity, and ability for rapid analysis. Integration of electrochemistry with point-of-care technologies in the context of COVID-19 diagnosis and screening has facilitated in convenient operation, miniaturization, and portability. Identification of potential biomarkers in disease diagnosis is crucial for patient monitoring concerning severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we will discuss the choice of biomarkers in addition to the various types of electrochemical sensors that have been developed to meet the needs of rapid detection and disease severity analysis.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
| | | | - Shalini Prasad
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
- E-mail:
| |
Collapse
|
95
|
Tian X, Liu D, Bai J, Chan KS, Ip LC, Chan PKL, Zhang S. Pushing OECTs toward Wearable: Development of a Miniaturized Analytical Control Unit for Wireless Device Characterization. Anal Chem 2022; 94:6156-6162. [PMID: 35385255 DOI: 10.1021/acs.analchem.1c05210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic electrochemical transistors (OECTs) have emerged as a next-generation biosensing technology because of their water-stability, cost-effectiveness, and ability to obtain high sensitivity at low operation voltage (mV). However, a miniaturized readout unit that can wirelessly characterize the overall performance of an OECT is still missing, which hinders the assembling of truly wearable OECT systems for continuous health-monitoring applications. In this work, we present a coin-sized analytical unit for remote and wireless OECT characterization, namely, a personalized electronic reader for electrochemical transistors (PERfECT). It has been verified that PERfECT can measure the transfer, output, hysteresis, and transient behavior of OECTs with resolution and sampling rate on par with the bulky equipment used in laboratories. PERfECT is also capable of characterizing other low-voltage transistors. An integrated board for multiplexed OECT characterizations (32 channels) has also been demonstrated. This work provides a missing building block for developing next-generation OECT-based bioelectronics for digital wearable applications.
Collapse
|
96
|
Deng M, Li J, Xiao B, Ren Z, Li Z, Yu H, Li J, Wang J, Chen Z, Wang X. Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal Chem 2022; 94:3320-3327. [PMID: 35147418 DOI: 10.1021/acs.analchem.1c05309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing highly sensitive, reliable, cost-effective label-free DNA biosensors is challenging with traditional fluorescence, electrochemical, and other techniques. Most conventional methods require labeling fluorescence, enzymes, or other complex modification. Herein, we fabricate carbon quantum dot (CQD)-functionalized solution-gated graphene transistors for highly sensitive label-free DNA detection. The CQDs are immobilized on the surface of the gate electrode through mercaptoacetic acid with the thiol group. A single-stranded DNA (ssDNA) probe is immobilized on CQDs by strong π-π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, which led to a shift of Dirac voltage and the channel current response. The limit of detection can reach 1 aM which is 2-5 orders of magnitude lower than those of other methods reported previously. The sensor also exhibits a good linear range from 1 aM to 0.1 nM and has good specificity. It can effectively distinguish one-base mismatched target DNA. The response time is about 326 s for the 1 aM target DNA molecules. This work provides good perspectives on the applications in biosensors.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bichen Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Haiyang Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
97
|
Wang R, Cao Y, Qu H, Wang Y, Zheng L. Label-free detection of Cu(II) in fish using a graphene field-effect transistor gated by structure-switching aptamer probes. Talanta 2022; 237:122965. [PMID: 34736690 DOI: 10.1016/j.talanta.2021.122965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Copper sulfate is a widely used agent to control insects, bacteria and algae for fishery. However, excess amount of copper ions in water accumulate in aquatic products through the ecological cycle system, highly threatening food safety and public health. Therefore, it is urgent to develop a rapid and efficient method for the determination of copper content in aquatic products. In this study, we developed a label-free biosensor for Cu(II) based on a graphene field-effect transistor gated by structure-switching aptamer probes (SSA-GFET) against Cu(II) we obtained before. The detection mechanism of the biosensor is attributed to the surface charge shift and the potential change of the gate electrode upon the specific binding of Cu(II). The SSA-GFET biosensor has a low detection limit of 10 nM and a linear range of 10 nM to 3 μM to Cu(II). In addition to the excellent selectivity to Cu(II), the biosensor also showes the advantage of high recovery rate for detection of Cu(II) in real fish samples. Because of the detection characteristics of label-free SSA-GFET, it has great advantages in the field of food safety and environmental detection.
Collapse
Affiliation(s)
- Rongrong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yong Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
98
|
Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2022; 94:3-25. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
99
|
Wang X, Zhang Z, Wu G, Xu C, Wu J, Zhang X, Liu J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:7-16. [PMID: 34877580 DOI: 10.1039/d1ay01570b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Guolin Wu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Chunxia Xu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jianping Wu
- Department of Clinical Laboratory, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xingguo Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
100
|
Tepeli Büyüksünetçi Y, Çitil BE, Anık Ü. An impedimetric approach for COVID-19 detection. Analyst 2021; 147:130-138. [PMID: 34859794 DOI: 10.1039/d1an01718g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an electrochemical approach for the determination of coronavirus disease (COVID-19) was developed. The biosensor system relied on the spike protein (S-protein) based infection mechanism of the virus and included separate interactions of receptors like angiotensin-converting enzyme 2 (ACE2) and CD147. After the optimization of experimental parameters, the analytical characteristics of both receptors ACE2 and CD147 were investigated. For ACE2 receptor, the linear detection ranges of the S-protein were found in the range of 700 ng mL-1 to 1500 ng mL-1 and from 1500 ng mL-1 to 7000 ng mL-1 with a limit of detection (LOD) value of 299.30 ng mL-1. Meanwhile, for CD147 receptor the linear range was in the range of 500 ng mL-1 to 5000 ng mL-1 with a LOD value of 38.99 ng mL-1. After the examination of analytical characteristics, the developed electrochemical approach was applied for severe acute respiratory syndrome coronavirus 2 samples and the obtained results were validated with real time polymerase chain reaction method.
Collapse
Affiliation(s)
| | - Burak Ekrem Çitil
- Mugla Sitki Kocman University, Faculty of Medicine, Department of Medical Microbiology, Kotekli-Mugla, Turkey
| | - Ülkü Anık
- Mugla Sitki Kocman University, Faculty of Science, Chemistry Department, Kotekli-Mugla, Turkey. .,Sensors, Biosensors and Nano-Diagnostic Systems Laboratory, Research Laboratory Center, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
| |
Collapse
|