51
|
Nozawa M, Aotsuka T, Tamura K. A novel chimeric gene, siren, with retroposed promoter sequence in the Drosophila bipectinata complex. Genetics 2005; 171:1719-27. [PMID: 16143626 PMCID: PMC1456098 DOI: 10.1534/genetics.105.041699] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Accepted: 08/09/2005] [Indexed: 12/30/2022] Open
Abstract
Retrotransposons often produce a copy of host genes by their reverse transcriptase activity operating on host gene transcripts. Since transcripts normally do not contain promoter, a retroposed gene copy usually becomes a retropseudogene. However, in Drosophila bipectinata and a closely related species we found a new chimeric gene, whose promoter was likely produced by retroposition. This chimeric gene, named siren, consists of a tandem duplicate of Adh and a retroposed fragment of CG11779 containing the promoter and a partial intron in addition to the first exon. We found that this unusual structure of a retroposed fragment was obtained by retroposition of nanos, which overlaps with CG11779 on the complementary strand. The potential of retroposition to produce a copy of promoter and intron sequences in the context of gene overlapping was demonstrated.
Collapse
Affiliation(s)
- Masafumi Nozawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
52
|
Zhang C, Miki T, Shibasaki T, Yokokura M, Saraya A, Seino S. Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiol Genomics 2005; 24:290-7. [PMID: 16317080 DOI: 10.1152/physiolgenomics.00228.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP-sensitive K+ (KATP) channels play a crucial role in coupling cellular metabolism to membrane potential. In addition to the orthologs corresponding to Kir6.1 and Kir6.2 of mammals, we have identified a novel member, designated Kir6.3 (zKir6.3), of the inward rectifier K+ channel subfamily Kir6.x in zebrafish. zKir6.3 is a protein of 432 amino acids that shares 66% identity with mammalian Kir6.2 but differs considerably from mammalian Kir6.1 and Kir6.2 in the COOH terminus, which contain an Arg-Lys-Arg (RKR) motif, an endoplasmic reticulum (ER) retention signal. Single-channel recordings of reconstituted channels show that zKir6.3 requires the sulfonylurea receptor 1 (SUR1) subunit to produce KATP channel currents with single-channel conductance of 57.5 pS. Confocal microscopic analysis shows that zebrafish Kir6.3 requires the SUR1 subunit for its trafficking to the plasma membrane. Analyses of chimeric protein between human Kir6.2 and zKir6.3 and a COOH-terminal deletion of zKir6.3 indicate that interaction between the COOH terminus of zKir6.3 and SUR1 is critical for both channel activity and trafficking to the plasma membrane. We also identified zebrafish orthologs corresponding to mammalian SUR1 (zSUR1) and SUR2 (zSUR2) by the genomic database. Both Kir6.3 and SUR1 are expressed in embryonic brain of zebrafish, as assessed by whole mount in situ hybridization. These data indicate that Kir6.3 and SUR1 form functional KATP channels at the plasma membrane in zebrafish through a mechanism independent from ER retention by the RKR motif.
Collapse
Affiliation(s)
- Changliang Zhang
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Brosius J. Echoes from the past--are we still in an RNP world? Cytogenet Genome Res 2005; 110:8-24. [PMID: 16093654 DOI: 10.1159/000084934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022] Open
Abstract
Availability of the human genome sequence and those of other species is unmeasured in their value for a comprehensive understanding of the architecture, function and evolution of genomes and cells. Various mechanisms keep genomes in flux and generate intra- and interspecies variation. The conversion of RNA modules into DNA and their more or less random integration into chromosomes (retroposition) is in many lineages including our own the most pervasive and perhaps the most enigmatic. The proclivity of such events in extant multicellular eukaryotes, even in more recent evolutionary times, gives the impression that the transition period from the RNP (ribonucleoprotein) world to the emergence of modern cells, where DNA became the predominant carrier of genetic information, has lasted billions of years and is an endlessly drawn-out process rather than the punctuated event one might expect. Apart from the impact of such RNA-mediated processes as retroposition, the role of RNA in a wide variety of cellular functions has only recently become more widely appreciated.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology, ZMBE, University of Munster, Munster, Germany.
| |
Collapse
|
54
|
Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Pääbo S, Rocchi M, Eichler EE. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 2005; 437:88-93. [PMID: 16136132 DOI: 10.1038/nature04000] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/30/2005] [Indexed: 11/09/2022]
Abstract
We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).
Collapse
Affiliation(s)
- Ze Cheng
- Howard Hughes Medical Institute, Department of Genome Sciences, University of Washington School of Medicine, 1705 NE Pacific Street, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Stuppia L, Gatta V, Scarciolla O, Antonucci I, Morizio E, Calabrese G, Palka G. Identification in chromosome 8q11 of a region of homology with the g1 amplicon of the Y chromosome and functional analysis of the BEYLA gene. Genomics 2005; 85:280-3. [PMID: 15676287 DOI: 10.1016/j.ygeno.2004.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 10/27/2004] [Indexed: 11/28/2022]
Abstract
The male-specific region (MSY) of the Y chromosome contains genes involved mainly in male sex determination and in spermatogenesis. The majority of genes involved in male fertility are localized in multiple copies in the long arm of the Y chromosome, within specific regions defined as "ampliconic regions." It has been suggested that these genes derived from X-linked or autosomal ancestors during evolution, providing a benefit for male fertility when transposed onto the Y chromosome. So far, the autosomal origin has been demonstrated only for two MSY genes, DAZ and CDY. In the present study we report on the identification within chromosome 8q11.2 of a region homologous to the g amplicon, containing the VCY2 (approved gene symbol BPY2), TTTY4, and TTTY17 genes. A search for ancestor genes within the 8q11.2 region allowed us to identify a gene named BEYLA and to characterize the genomic organization and the expression patterns of this gene.
Collapse
Affiliation(s)
- Liborio Stuppia
- Department of Biomedical Sciences, Gabriele d'Annunzio University Foundation, Chieti-Pescara, Via dei Vestini 35, 66013 Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
56
|
Kojima KK, Fujiwara H. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol 2005; 22:2157-65. [PMID: 16014872 DOI: 10.1093/molbev/msi210] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
R2 is a non-long-terminal-repeat (LTR) retrotransposon that inserts specifically into 28S rDNA. R2 has been identified in many species of arthropods and three species of chordates. R2 may be even more widely distributed in animals, and its origin may be traceable to early animal evolution. In this study, we identified R2 elements in medaka fish, White Cloud Mountain minnow, Reeves' turtle, hagfish, sea lilies, and some arthropod species, using degenerate polymerase chain reaction methods. We also identified two R2 elements from the public genomic sequence database of the bloodfluke Schistosoma mansoni. One of the two bloodfluke R2 elements has two zinc-finger motifs at the N-terminus; this differs from other known R2 elements, which have one or three zinc-finger motifs. Phylogenetic analysis revealed that the whole phylogeny of R2 can be divided into 11 parts (subclades), in which the local R2 phylogeny and the corresponding host phylogeny are consistent. Divergence-versus-age analysis revealed that there is no reliable evidence for the horizontal transfer of R2 but supports the proposition that R2 has been vertically transferred since before the divergence of the deuterostomes and protostomes. The seeming inconsistency between the R2 phylogeny and the phylogeny of their hosts is due to the existence of paralogous lineages. The number of N-terminal zinc-finger motifs is consistent with the deep phylogeny of R2 and indicates that the common ancestor of R2 had three zinc-finger motifs at the N-terminus. This study revealed the long-term vertical inheritance and the ancient origin of sequence specificity of R2, both of which seem applicable to some other non-LTR retrotransposons.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | |
Collapse
|
57
|
Ludwig A, Rozhdestvensky TS, Kuryshev VY, Schmitz J, Brosius J. An Unusual Primate Locus that Attracted Two Independent Alu Insertions and Facilitates their Transcription. J Mol Biol 2005; 350:200-14. [PMID: 15922354 DOI: 10.1016/j.jmb.2005.03.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 03/18/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
BC200 RNA, a neuronal, small non-messenger RNA that originated from a monomeric Alu element is specific to anthropoid primates. Tarsiers lack an insert at the orthologous genomic position, whereas strepsirrhines (Lemuriformes and Lorisiformes) acquired a dimeric Alu element, independently from anthropoids. In Galago moholi, the CpG dinucleotides are conspicuously conserved, while in Eulemur coronatus a large proportion is changed, indicating that the G.moholi Alu is under purifying selection and might be transcribed. Indeed, Northern blot analysis of total brain RNA from G.moholi with a specific probe revealed a prominent signal. In contrast, a corresponding signal was absent from brain RNA from E.coronatus. Isolation and sequence analysis of additional strepsirrhine loci confirmed the differential sequence conservation including CpG patterns of the orthologous dimeric Alu elements in Lorisiformes and Lemuriformes. Interestingly, all examined Alu elements from Lorisiformes were transcribed, while all from Lemuriformes were silent when transiently transfected into HeLa cells. Upstream sequences, especially those between the transcriptional start site and -22 upstream, were important for basal transcriptional activity. Thus, the BC200 RNA gene locus attracted two independent Alu insertions during its evolutionary history and provided upstream promoter elements required for their transcription.
Collapse
Affiliation(s)
- A Ludwig
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
58
|
Chen JM, Stenson PD, Cooper DN, Férec C. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 2005; 117:411-27. [PMID: 15983781 DOI: 10.1007/s00439-005-1321-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
Diverse long interspersed element-1 (LINE-1 or L1)-dependent mutational mechanisms have been extensively studied with respect to L1 and Alu elements engineered for retrotransposition in cultured cells and/or in genome-wide analyses. To what extent the in vitro studies can be held to accurately reflect in vivo events in the human genome, however, remains to be clarified. We have attempted to address this question by means of a systematic analysis of recent L1-mediated retrotranspositional events that have caused human genetic disease, with a view to providing a more complete picture of how L1-mediated retrotransposition impacts upon the architecture of the human genome. A total of 48 such mutations were identified, including those described as L1-mediated retrotransposons, as well as insertions reported to contain a poly(A) tail: 26 were L1 trans-driven Alu insertions, 15 were direct L1 insertions, four were L1 trans-driven SVA insertions, and three were associated with simple poly(A) insertions. The systematic study of these lesions, when combined with previous in vitro and genome-wide analyses, has strengthened several important conclusions regarding L1-mediated retrotransposition in humans: (a) approximately 25% of L1 insertions are associated with the 3' transduction of adjacent genomic sequences, (b) approximately 25% of the new L1 inserts are full-length, (c) poly(A) tail length correlates inversely with the age of the element, and (d) the length of target site duplication in vivo is rarely longer than 20 bp. Our analysis also suggests that some 10% of L1-mediated retrotranspositional events are associated with significant genomic deletions in humans. Finally, the identification of independent retrotranspositional events that have integrated at the same genomic locations provides new insight into the L1-mediated insertional process in humans.
Collapse
Affiliation(s)
- Jian-Min Chen
- INSERM U613-Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang-Bretagne, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, 29220, France.
| | | | | | | |
Collapse
|
59
|
Jones CD, Custer AW, Begun DJ. Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D. madeirensis and D. guanche. Genetics 2005; 170:207-19. [PMID: 15781692 PMCID: PMC1449717 DOI: 10.1534/genetics.104.037283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5' promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions.
Collapse
Affiliation(s)
- Corbin D Jones
- Center for Population Biology, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|
60
|
Ciccarelli FD, von Mering C, Suyama M, Harrington ED, Izaurralde E, Bork P. Complex genomic rearrangements lead to novel primate gene function. Genome Res 2005; 15:343-51. [PMID: 15710750 PMCID: PMC551560 DOI: 10.1101/gr.3266405] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orthologous genes that maintain a single-copy status in a broad range of species may indicate a selection against gene duplication. If this is the case, then duplicates of such genes that do survive may have escaped the dosage control by rapid and sizable changes in their function. To test this hypothesis and to develop a strategy for the identification of novel gene functions, we have analyzed 22 primate-specific intrachromosomal duplications of genes with a single-copy ortholog in all other completely sequenced metazoans. When comparing this set to genes not exposed to the single-copy status constraint, we observed a higher tendency of the former to modify their gene structure, often through complex genomic rearrangements. The analysis of the most dramatic of these duplications, affecting approximately 10% of human Chromosome 2, enabled a detailed reconstruction of the events leading to the appearance of a novel gene family. The eight members of this family originated from the highly conserved nucleoporin RanBP2 by several genetic rearrangements such as segmental duplications, inversions, translocations, exon loss, and domain accretion. We have experimentally verified that at least one of the newly formed proteins has a cellular localization different from RanBP2's, and we show that positive selection did act on specific domains during evolution.
Collapse
|
61
|
Stankiewicz P, Shaw CJ, Withers M, Inoue K, Lupski JR. Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 2005; 14:2209-20. [PMID: 15520286 PMCID: PMC525679 DOI: 10.1101/gr.2746604] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human genome is particularly rich in low-copy repeats (LCRs) or segmental duplications (5%-10%), and this characteristic likely distinguishes us from lower mammals such as rodents. How and why the complex human genome architecture consisting of multiple LCRs has evolved remains an open question. Using molecular and computational analyses of human and primate genomic regions, we analyzed the structure and evolution of LCRs that resulted in complex architectural features of the human genome in proximal 17p. We found that multiple LCRs of different origins are situated adjacent to one another, whereas each LCR changed at different time points between >25 to 3-7 million years ago (Mya) during primate evolution. Evolutionary studies in primates suggested communication between the LCRs by gene conversion. The DNA transposable element MER1-Charlie3 and retroviral ERVL elements were identified at the breakpoint of the t(4;19) chromosome translocation in Gorilla gorilla, suggesting a potential role for transpositions in evolution of the primate genome. Thus, a series of consecutive segmental duplication events during primate evolution resulted in complex genome architecture in proximal 17p. Some of the more recent events led to the formation of novel genes that in human are expressed primarily in the brain. Our observations support the contention that serial segmental duplication events might have orchestrated primate evolution by the generation of novel fusion/fission genes as well as potentially by genomic inversions associated with decreased recombination rates facilitating gene divergence.
Collapse
Affiliation(s)
- Pawełl Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
62
|
Gianfrancesco F, Esposito T, Casu G, Maninchedda G, Roberto R, Pirastu M. Emergence of Talanin protein associated with human uric acid nephrolithiasis in the Hominidae lineage. Gene 2004; 339:131-8. [PMID: 15363853 DOI: 10.1016/j.gene.2004.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/06/2004] [Accepted: 06/17/2004] [Indexed: 02/04/2023]
Abstract
Recently, we identified a susceptibility locus for human uric acid nephrolithiasis (UAN) on 10q21-q22 and demonstrated that a novel gene (ZNF365) included in this region produces through alternative splicing several transcripts coding for four protein isoforms. Mutation analysis showed that one of them (Talanin) is associated with UAN. We examined the evolutionary conservation of ZNF365 gene through a comparative genomic approach. Searching for mouse homologs of ZNF365 transcripts, we identified a highly conserved mouse ortholog of ZNF365A transcript, expressed specifically in brain. We did not found a mouse homolog for ZNF365D transcript encoding the Talanin protein, even if we were able to identify the corresponding genomic region in mouse and rat not yet organized in canonical gene structure suggesting that ZNF365D was originated after the branching of hominoid from rodent lineage. In mouse and in most mammals, a functional uricase degrades the uric acid to allantoin, but uricase activity was lost during the Miocene epoch in hominoids. Searching for the presence of Talanin in Primates, we found a canonical intron-exon structure with several stop codons preventing protein production in Old World and New World monkeys. In humans, we observe expression and we have evidence that ZNF365D transcript produces a functional protein. It seems therefore that ZNF365D transcript emerged during primate evolution from a noncoding genomic sequence that evolved in a standard gene structure and assumed its role in parallel with the disappearance of uricase, probably against a disadvantageous excessive hyperuricemia.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Mammalian/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- Evolution, Molecular
- Humans
- Kidney Diseases/blood
- Kidney Diseases/genetics
- Kidney Diseases/pathology
- Mice
- Molecular Sequence Data
- Phylogeny
- Primates/genetics
- Protein Isoforms/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Synteny
- Transcription Factors/genetics
- Uric Acid/blood
- Zinc Fingers/genetics
Collapse
|
63
|
Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental duplications within mammalian organisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:115-24. [PMID: 15338609 DOI: 10.1101/sqb.2003.68.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J A Bailey
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
64
|
Abstract
Retroelement transposition is a major source of diversity in genome evolution. Among the retrotransposable elements, the retroviruses are distinct in that their "transposition" extends from their initial host cells to neighboring cells and organisms. A determining step in the conversion of a retrotransposable element into an infectious retrovirus is the acquisition of an envelope glycoprotein, designated Env. Here, we review some examples of envelope "capture" by mammal retroviruses and provide evidence for such a mechanism by HTLV. This phenomenon may explain the notable conservation of env genes observed between phylogenetically distant retroviruses. Elucidation of these recombination processes should help to clarify retroviral phylogeny, better understand retroviral pathogenesis, and may lead to the identification of new retroelements.
Collapse
Affiliation(s)
- Felix J Kim
- Institut de Génétique moléculaire de Montpellier (IGMM), CNRS-UMR5535, IFR122 et Université de Montpellier II, 1919, route de Mende, 34293 Montpellier 05, France.
| | | | | | | |
Collapse
|
65
|
Shi Y. Beyond skin color: emerging roles of melanin-concentrating hormone in energy homeostasis and other physiological functions. Peptides 2004; 25:1605-11. [PMID: 15476927 DOI: 10.1016/j.peptides.2004.02.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide that mediates its effects by the activation of two G-protein-coupled seven transmembrane receptors (MCHR1 and MCHR2) in humans. In contrast to its primary role in regulating skin color in fish, MCH has evolved in mammals to regulate dynamic physiological functions, from food intake and energy expenditure to behavior and emotion. Chronic infusion or transgenic expression of MCH stimulates feeding and increases adipocity, whereas targeted deletion of MCH or its receptor (MCHR1) leads to resistance to diet-induced obesity with increased energy expenditure and thermogenesis. The involvement of MCH in energy homeostasis and in brain activity has also been validated in mice treated with non-peptide antagonists, suggesting that blockade of MCHR1 could provide a viable approach for treatment of obesity and certain neurological disorders. This review focuses on emerging roles of MCH in regulating central and peripheral mechanisms.
Collapse
Affiliation(s)
- Yuguang Shi
- Endocrine Research, Lilly Research Laboratories, DC 0545, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
66
|
Li X, Yang S, Peng L, Chen H, Wang W. Origin and evolution of new genes. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Abstract
Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.
Collapse
Affiliation(s)
- J J Emerson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
68
|
Xu J, Gong ZZ. Intron requirement for AFP gene expression in Trichoderma viride. MICROBIOLOGY-SGM 2004; 149:3093-3097. [PMID: 14600221 DOI: 10.1099/mic.0.26514-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 430 bp ORF of the Aspergillus giganteus antifungal protein (AFP) gene, containing two small introns, was fused between the promoter and the terminator of the Aspergillus nidulans trpC gene. The AFP gene in this vector produced detectable levels of spliced mRNA in Trichoderma viride. In contrast, in the same vector configuration, its 285 bp intronless derivative showed no accumulation of mRNA when transformed into T. viride. Such expression results were confirmed at the protein level. This fact demonstrated that the introns were required for AFP gene expression in T. viride. This is thought to be a novel phenomenon found in filamentous fungi. Although the mechanism of splicing in filamentous fungi might be similar to that in other eukaryotes, little is known of how it affects expression. This study suggests that the small introns in filamentous fungal genes may not only act as intervening elements, but may also play crucial roles in gene expression by affecting mRNA accumulation. Furthermore, it may provide new evidence for intron-dependent evolution.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Molecular Biology, Box 16, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | - Zhen Zhen Gong
- State Key Laboratory of Molecular Biology, Box 16, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| |
Collapse
|
69
|
Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003; 4:865-75. [PMID: 14634634 DOI: 10.1038/nrg1204] [Citation(s) in RCA: 674] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
70
|
Jackson M. Duplicate, decouple, disperse: the evolutionary transience of human centromeric regions. Curr Opin Genet Dev 2003; 13:629-35. [PMID: 14638326 DOI: 10.1016/j.gde.2003.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human centromeric regions are enriched for segmental duplications, which elsewhere in the genome precipitate both genetic disease and gene formation. Molecular cytogenetic analyses of primate chromosomes have established that centromeres frequently move without altering the surrounding gene order. Recently, the positions of two ancestral centromeres have been mapped to regions of the human genome that are both rich in segmental duplications and are associated with duplication-based clinical phenotypes. This suggests a model for the evolution of euchromatic segmental duplication families involving the localised elevation of recombination rates within the duplication-rich heterochromatin of recently inactivated centromeres, and raises the possibility that the distribution of duplication/deletion syndromes within our genome has been heavily influenced by such events. The relaxation of the heterochromatin environment that must accompany centromere inactivation would also increase the transcriptional activity within previously pericentromeric DNA, increasing the likelihood of chimaeric gene creation through pericentromeric-directed duplication events.
Collapse
Affiliation(s)
- Michael Jackson
- The Institute Of Human Genetics, The International Centre For Life, University Of Newcastle Upon Tyne, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK.
| |
Collapse
|
71
|
Hervieu G. Melanin-concentrating hormone functions in the nervous system: food intake and stress. Expert Opin Ther Targets 2003; 7:495-511. [PMID: 12885269 DOI: 10.1517/14728222.7.4.495] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, which centrally regulates food intake and stress. MCH induces food intake in rodents and, more generally, acts as an anabolic signal in energy regulation. In addition, MCH seems to be activatory on the stress axis. Two receptors for MCH in humans have very recently been characterised, namely, MCH-R1 and MCH-R2. MCH-R1 has received considerable attention, as potent and selective antagonists acting at that receptor display anxiolytic, antidepressant and/or anorectic properties. Feeding and affective disorders are both debilitating conditions that have become serious worldwide health threats. There are as yet no efficient and/or safe cures that could contain the near-pandemia phenomen of both diseases. Thus, the discovery of MCH-R1 antagonists may lead to the development of valuable drugs to treat obesity, anxiety and depressive syndromes. In addition, it opens wide avenues to probe additional functions of the peptide, both in the brain and in the peripheral nervous system.
Collapse
Affiliation(s)
- Guillaume Hervieu
- GlaxoSmithKline R&D, Drug Discovery, Neurology Centre of Excellence for Drug Discovery, New Frontiers Science Park - North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
72
|
Golfier G, Chibon F, Aurias A, Chen XN, Korenberg J, Rossier J, Potier MC. The 200-kb segmental duplication on human chromosome 21 originates from a pericentromeric dissemination involving human chromosomes 2, 18 and 13. Gene 2003; 312:51-9. [PMID: 12909340 DOI: 10.1016/s0378-1119(03)00673-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regions close to human centromeres contain DNA fragments spanning hundreds of kilobases that exhibit a high degree of sequence identity (>95%). Here we report the genomic structure and evolution of a family of four paralogous regions related to a 220-kb genomic fragment present on the long arm of human chromosome 21 (21q22.1). Phylogenetic classification of the paralogous sequences obtained from the draft of the Human Genome Project are in agreement with results from comparative fluorescence in situ hybridization on metaphase chromosomes from human and great apes. The original copy present in 21q22.1 in human was duplicated in great apes after the divergence of the orang-utan and inserted in a pericentromeric region, most likely the ancestor of HSA2q, then disseminated by transposition of a larger fragment to other pericentromeric locations: HSA18p11, HSA13q11 and HSA21q11.1. The degree of dissemination varies among species.
Collapse
MESH Headings
- Animals
- Chromosome Aberrations
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 21/genetics
- Gene Duplication
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence
- Pan paniscus/genetics
- Phylogeny
Collapse
Affiliation(s)
- Geoffroy Golfier
- Neurobiologie et Diversité Cellulaire, CNRS UMR7637, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
73
|
Brun ME, Ruault M, Ventura M, Roizès G, De Sario A. Juxtacentromeric region of human chromosome 21: a boundary between centromeric heterochromatin and euchromatic chromosome arms. Gene 2003; 312:41-50. [PMID: 12909339 DOI: 10.1016/s0378-1119(03)00530-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analysed the genomic structure and transcriptional activity of a 2.3-Mb genomic sequence in the juxtacentromeric region of human chromosome 21. Our work shows that this region comprises two different chromosome domains. The 1.5-Mb proximal domain: (i) is a patchwork of chromosome duplications; (ii) shares sequence similarity with several chromosomes; (iii) contains several gene fragments (truncated genes having an intron/exon structure) intermingled with retrotransposed pseudogenes; and (iv) harbours two genes (TPTE and BAGE2) that belong to gene families and have a cancer and/or testis expression profile. The TPTE gene family was generated before the branching of Old World monkeys from the great ape lineage, by intra- and interchromosome duplications of the ancestral TPTE gene mapping to phylogenetic chromosome XIII. By contrast, the 0.8-Mb distal domain: (i) is devoid of chromosome duplications; (ii) has a chromosome 21-specific sequence; (iii) contains no gene fragments and only one retrotransposed pseudogene; and (iv) harbours six genes including housekeeping genes. G-rich sequences commonly associated with duplication termini cluster at the boundary between the two chromosome domains. These structural and transcriptional features lead us to suggest that the proximal domain has heterochromatic properties, whereas the distal domain has euchromatic properties.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- Adaptor Proteins, Vesicular Transport/genetics
- Alternative Splicing
- Animals
- Antigens, Neoplasm/genetics
- Base Composition
- Blotting, Northern
- Cell Line
- Centromere/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 21/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Databases, Nucleic Acid
- Euchromatin/genetics
- Female
- Gene Duplication
- Gene Expression
- Heterochromatin/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Membrane Proteins/genetics
- Molecular Sequence Data
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases
- Protein Tyrosine Phosphatases/genetics
- Pseudogenes/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Marie-Elisabeth Brun
- Institut de Génétique Humaine, CNRS UPR 1142, 141, rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | |
Collapse
|
74
|
Ruault M, Ventura M, Galtier N, Brun ME, Archidiacono N, Roizès G, De Sario A. BAGE genes generated by juxtacentromeric reshuffling in the Hominidae lineage are under selective pressure. Genomics 2003; 81:391-9. [PMID: 12676563 DOI: 10.1016/s0888-7543(03)00025-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, we show that the BAGE (B melanoma antigen) gene family was generated by chromosome rearrangements that occurred during the evolution of hominoids. An 84-kb DNA fragment derived from the phylogenetic 7q36 region was duplicated in the juxtacentromeric region of either chromosome 13 or chromosome 21. The duplicated region contained a fragment of the MLL3 gene, which, after juxtacentromeric reshuffling, generated the ancestral BAGE gene. Then, this ancestral gene gave rise to several independent genes through successive rounds of inter- and intrachromosome duplications. Comparison of synonymous and nonsynonymous mutations in putative coding regions shows that BAGE genes, but not the BAGE gene fragments, are under selective pressure. Our data strongly suggest that BAGE proteins have a function and that juxtacentromeric regions, whose plasticity is now largely proved, are not a simple junkyard of gene fragments, but may be the birth site of novel genes.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Centromere/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 7/genetics
- Cluster Analysis
- DNA Primers
- Electrophoresis, Gel, Pulsed-Field
- Gene Duplication
- Gene Rearrangement/genetics
- Hominidae/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Phylogeny
- Selection, Genetic
Collapse
Affiliation(s)
- Myriam Ruault
- Institut de Génétique Humaine, CNRS UPR 1142, 141, Rue de la Cardonille, 34396 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Paulding CA, Ruvolo M, Haber DA. The Tre2 (USP6) oncogene is a hominoid-specific gene. Proc Natl Acad Sci U S A 2003; 100:2507-11. [PMID: 12604796 PMCID: PMC151371 DOI: 10.1073/pnas.0437015100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene duplication and domain accretion are thought to be the major mechanisms for the emergence of novel genes during evolution. Such events are thought to have occurred at early stages in the vertebrate lineage, but genomic sequencing has recently revealed extensive amplification events during the evolution of higher primates. We report here that the Tre2 (USP6) oncogene is derived from the chimeric fusion of two genes, USP32 (NY-REN-60), and TBC1D3. USP32 is an ancient, highly conserved gene, whereas TBC1D3 is derived from a recent segmental duplication, which is absent in most other mammals and shows rapid amplification and dispersal through the primate lineage. Remarkably, the chimeric gene Tre2 exists only in the hominoid lineage of primates. This hominoid-specific oncogene arose as recently as 21-33 million years ago, after proliferation of the TBC1D3 segmental duplication in the primate lineage. In contrast to the broad expression pattern of USP32 and TBC1D3, expression of Tre2 is testis-specific, a pattern proposed for novel genes implicated in the emergence of reproductive barriers. The sudden emergence of chimeric proteins, such as that encoded by Tre2, may have contributed to hominoid speciation.
Collapse
Affiliation(s)
- Charles A Paulding
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
76
|
Abstract
Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
77
|
Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL. Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome Res 2003; 13:369-81. [PMID: 12618367 PMCID: PMC430257 DOI: 10.1101/gr.490303] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent analyses of the structure of pericentromeric and subtelomeric regions have revealed that these particular regions of human chromosomes are often composed of blocks of duplicated genomic segments that have been associated with rapid evolutionary turnover among the genomes of closely related primates. In the present study, we show that euchromatic regions of human chromosome 5-5p14, 5p13, 5q13, 5q15-5q21-also display such an accumulation of segmental duplications. The structure, organization and evolution of those primate-specific sequences were studied in detail by combining in silico and comparative FISH analyses on human, chimpanzee, gorilla, orangutang, macaca, and capuchin chromosomes. Our results lend support to a two-step model of transposition duplication in the euchromatic regions, with a founder insertional event at the time of divergence between Platyrrhini and Catarrhini (25-35 million years ago) and an apparent burst of inter- and intrachromosomal duplications in the Hominidae lineage. Furthermore, phylogenetic analysis suggests that the chronology and, likely, molecular mechanisms, differ regarding the region of primary insertion-euchromatic versus pericentromeric regions. Lastly, we show that as their counterparts located near the heterochromatic region, the euchromatic segmental duplications have consistently reshaped their region of insertion during primate evolution, creating putative mosaic genes, and they are obvious candidates for causing ectopic rearrangements that have contributed to evolutionary/genomic instability.
Collapse
Affiliation(s)
- Anouk Courseaux
- Institut de Pharmacologie Moléculaire et Cellulaire Unité Mixte de Recherche-Centre National de la Recherche Scientifique, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Birth of ‘human-specific’ genes during primate evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
79
|
Thompson RF, Langford GM. Myosin superfamily evolutionary history. THE ANATOMICAL RECORD 2002; 268:276-89. [PMID: 12382324 DOI: 10.1002/ar.10160] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The superfamily of myosin proteins found in eukaryotic cells is known to contain at least 18 different classes. Members are classified based on the phylogenetic analysis of the head domains located at the amino terminus of the polypeptide. While phylogenetic relationships provide insights into the functional relatedness of myosins within and between families, the evolutionary history of the myosin superfamily is not revealed by such studies. In order to establish the evolutionary history of the superfamily, we analyzed the representation of myosin gene families in a range of organisms covering the taxonomic spectrum. The amino acid sequences of 232 myosin heavy chains, as well as 65 organisms representing the protist, plant, and animal kingdoms, were included in this study. A phylogenetic tree of organisms was constructed based on several complementary taxonomic classification schemes. The results of the analysis support an evolutionary hypothesis in which myosins II and I evolved the earliest of all the myosin groups. Myosins V and XI evolved from a common myosin II-like ancestor, but the two families diverged to either the plant (XI) or animal (V) lineage. Class VII myosin appeared fourth among the families, and classes VI and IX appeared later during the early period of metazoan radiation. Myosins III, XV, and XVIII appeared after this group, and X appeared during the formative phases of vertebrate evolution. The remaining members of the myosin superfamily (IV, VI, XII, XIII, XIV, XVI, and XVII) are limited in distribution to one or more groups of organisms. The evolutionary data permits one to predict the likelihood that myosin genes absent from a given species are either missing (not found yet because of insufficient data) or lost due to a mutation that removed the gene from an organism's lineage. In conclusion, an analysis of the evolutionary history of the myosin superfamily suggests that early-appearing myosin families function as generalists, carrying out a number of functions in a variety of cell types, while more recently evolved myosin families function as specialists and are limited to a few organisms or a few cell types within organisms.
Collapse
Affiliation(s)
- Reid F Thompson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
80
|
Abstract
Molecular studies of unstable regions in the human genome have identified region-specific low-copy repeats (LCRs). Unlike highly repetitive sequences (e.g. Alus and LINEs), LCRs are usually of 10-400 kb in size and exhibit > or = 95-97% similarity. According to computer analyses of available sequencing data, LCRs may constitute >5% of the human genome. Through the process of non-allelic homologous recombination using paralogous genomic segments as substrates, LCRs have been shown to facilitate meiotic DNA rearrangements associated with disease traits, referred to as genomic disorders. In addition, this LCR-based complex genome architecture appears to play a major role in both primate karyotype evolution and human tumorigenesis.
Collapse
Affiliation(s)
- Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Room 604B, One Baylor Plaza, and Texas Children Hospital, Houston, Texas 77030-3498, USA
| | | |
Collapse
|
81
|
Boutin JA, Suply T, Audinot V, Rodriguez M, Beauverger P, Nicolas JP, Galizzi JP, Fauchère JL. Melanin-concentrating hormone and its receptors: state of the art. Can J Physiol Pharmacol 2002; 80:388-95. [PMID: 12056544 DOI: 10.1139/y02-056] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide of nineteen amino acids in mammals. Its involvement in the feeding behaviour has been well established during the last few years. A first receptor subtype, now termed MCHIR, was discovered in 1999, following the desorphanisation of the SLCI orphan receptor, using either reverse pharmacology or systematic screening of agonist candidates. A second MCH receptor, MCH2R, has been discovered recently, by several groups working on data mining of genomic banks. The molecular pharmacology of these two receptors is only described on the basis of the action of peptides derived from MCH. The present review tentatively summarizes the knowledge on these two receptors and presents the first attempts to discover new classes of antagonists that might have major roles in the control of obesity and feeding behaviour.
Collapse
Affiliation(s)
- Jean A Boutin
- Division de Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang W, Brunet FG, Nevo E, Long M. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 2002; 99:4448-53. [PMID: 11904380 PMCID: PMC123668 DOI: 10.1073/pnas.072066399] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-protein-coding RNA genes play an important role in various biological processes. How new RNA genes originated and whether this process is controlled by similar evolutionary mechanisms for the origin of protein-coding genes remains unclear. A young chimeric RNA gene that we term sphinx (spx) provides the first insight into the early stage of evolution of RNA genes. spx originated as an insertion of a retroposed sequence of the ATP synthase chain F gene at the cytological region 60DB since the divergence of Drosophila melanogaster from its sibling species 2-3 million years ago. This retrosequence, which is located at 102F on the fourth chromosome, recruited a nearby exon and intron, thereby evolving a chimeric gene structure. This molecular process suggests that the mechanism of exon shuffling, which can generate protein-coding genes, also plays a role in the origin of RNA genes. The subsequent evolutionary process of spx has been associated with a high nucleotide substitution rate, possibly driven by a continuous positive Darwinian selection for a novel function, as is shown in its sex- and development-specific alternative splicing. To test whether spx has adapted to different environments, we investigated its population genetic structure in the unique "Evolution Canyon" in Israel, revealing a similar haplotype structure in spx, and thus similar evolutionary forces operating on spx between environments.
Collapse
Affiliation(s)
- Wen Wang
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
83
|
Martin CL, Wong A, Gross A, Chung J, Fantes JA, Ledbetter DH. The evolutionary origin of human subtelomeric homologies--or where the ends begin. Am J Hum Genet 2002; 70:972-84. [PMID: 11875757 PMCID: PMC379127 DOI: 10.1086/339768] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2001] [Accepted: 01/17/2002] [Indexed: 11/04/2022] Open
Abstract
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.
Collapse
Affiliation(s)
- Christa Lese Martin
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Andrew Wong
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Alyssa Gross
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - June Chung
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - Judy A. Fantes
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| | - David H. Ledbetter
- Department of Human Genetics, University of Chicago, Chicago; and Medical Genetics Section, Department of Medical Sciences, University of Edinburgh, Edinburgh
| |
Collapse
|
84
|
Maston GA, Ruvolo M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol Biol Evol 2002; 19:320-35. [PMID: 11861891 DOI: 10.1093/oxfordjournals.molbev.a004085] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chorionic gonadotropin (CG) is a critical signal in establishing pregnancy in humans and some other primates, but this placentally expressed hormone has not been found in other mammalian orders. The gene for one of its two subunits (CG beta subunit [CGbeta]) arose by duplication from the luteinizing hormone beta subunit gene (LHbeta), present in all mammals tested. In this study, 14 primate and related mammalian species were examined by Southern blotting and DNA sequencing to determine where in mammalian phylogeny the CGbeta gene originated. Bats (order Chiroptera), flying lemur (order Dermoptera), strepsirrhine primates, and tarsiers do not have a CGbeta gene, although they possess one copy of the LHbeta gene. The CGbeta gene first arose in the common ancestor of the anthropoid primates (New World monkeys, Old World monkeys, apes, and humans), after the anthropoids diverged from tarsiers. At least two subsequent duplication events occurred in the catarrhine primates, all of which possess multiple CGbeta copies. The LHbeta-CGbeta family of genes has undergone frequent gene conversion among the catarrhines, as well as periods of strong positive selection in the New World monkeys (platyrrhines). In addition, newly generated DNA sequences from the promoter of the CG alpha subunit gene indicate that platyrrhine monkeys use a different mechanism of alpha gene expression control than that found in catarrhines.
Collapse
Affiliation(s)
- Glenn A Maston
- Department of Anthropology, Harvard University, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
85
|
Abstract
Initial human genome sequence analysis has revealed large segments of nearly identical sequence in particular chromosomal regions. The recent origin of these segments and their abundance (approximately 5%) has challenged investigators to elucidate their underlying mechanism and role in primate genome evolution. Although the precise fraction is unknown, some of these duplicated segments have recently been shown to be associated with rapid gene innovation and chromosomal rearrangement in the genomes of man and the great apes.
Collapse
Affiliation(s)
- Rhea Vallente Samonte
- Department of Genetics and Center for Human Genetics, School of Medicine and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
86
|
Abstract
Much progress in understanding the evolution of new genes has been accomplished in the past few years. Molecular mechanisms such as illegitimate recombination and LINE element mediated 3' transduction underlying exon shuffling, a major process for generating new genes, are better understood. The identification of young genes in invertebrates and vertebrates has revealed a significant role of adaptive evolution acting on initially rudimentary gene structures created as if by evolutionary tinkers. New genes in humans and our primate relatives add a new component to the understanding of genetic divergence between humans and non-humans.
Collapse
Affiliation(s)
- M Long
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago Illinois 60637, USA.
| |
Collapse
|
87
|
Elrouby N, Bureau TE. A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J Biol Chem 2001; 276:41963-8. [PMID: 11553621 DOI: 10.1074/jbc.m105850200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery that vertebrate retroviruses could transduce cellular sequences was central to cancer etiology and research. Although not well documented, transduction of cellular sequences by retroelements has been suggested to modify cellular functions. The maize Bs1 transposon was the first non-vertebrate retroelement reported to have transduced a portion of a cellular gene (c-pma). We show that Bs1 has, in addition, transduced portions of at least two more maize cellular genes, namely for 1,3-beta-glucanase (c-bg) and 1,4-beta-xylan endohydrolase (c-xe). We also show that Bs1 has maintained a truncated gag domain with similarity to the magellan gypsy-like long terminal repeat retrotransposon and a region that may correspond to an env-like domain. Our findings suggest that, like oncogenic retroviruses, the three transduced gene fragments and the Bs1 gag domain encode a fusion protein that has the potential to be expressed. We suggest that transduction by retroelements may facilitate the formation of novel hybrid genes in plants.
Collapse
Affiliation(s)
- N Elrouby
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
88
|
Abstract
The Human Genome Project has generated both the information and technological infrastructure needed to accelerate genetic comparisons between humans and the African great apes (chimpanzees and gorillas). Sequence and chromosomal organization differences between these highly related genomes will provide clues to the genetic basis for recently evolved, specifically human traits such as bipedal gait and advanced cognitive function. Recent studies comparing the primate genomes have the potential to affect many aspects of human biomedical research and could benefit primate conservation efforts.
Collapse
Affiliation(s)
- J G Hacia
- The Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA 90089, USA.
| |
Collapse
|
89
|
Eichler EE, Johnson ME, Alkan C, Tuzun E, Sahinalp C, Misceo D, Archidiacono N, Rocchi M. Divergent origins and concerted expansion of two segmental duplications on chromosome 16. J Hered 2001; 92:462-8. [PMID: 11948212 DOI: 10.1093/jhered/92.6.462] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An unexpected finding of the human genome was the large fraction of the genome organized as blocks of interspersed duplicated sequence. We provide a comparative and phylogenetic analysis of a highly duplicated region of 16p12.2, which is composed of at least four different segmental duplications spanning in excess of 160 kb. We contrast the dispersal of two different segmental duplications (LCR16a and LCR16u). LCR16a, a 20 kb low-copy repeat sequence A from chromosome 16, was shown previously to contain a rapidly evolving novel hominoid gene family (morpheus) that had expanded within the last 10 million years of great ape/human evolution. We compare the dispersal of this genomic segment with a second adjacent duplication called LCR16u. The duplication contains a second putative gene family (KIAA0220/SMG1) that is represented approximately eight times within the human genome. A high degree of sequence identity (approximately 98%) was observed among the various copies of LCR16u. Comparative analyses with Old World monkey species show that LCR16a and LCR16u originated from two distinct ancestral loci. Within the human genome, at least 70% of the LCR16u copies were duplicated in concert with the LCR16a duplication. In contrast, only 30% of the chimpanzee loci show an association between LCR16a and LCR16u duplications. The data suggest that the two copies of genomic sequence were brought together during the chimpanzee/human divergence and were subsequently duplicated as a larger cassette specifically within the human lineage. The evolutionary history of these two chromosome-specific duplications supports a model of rapid expansion and evolutionary turnover among the genomes of man and the great apes.
Collapse
Affiliation(s)
- E E Eichler
- Department of Genetics and Center for Human Genetics, Case Western Reserve School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
An estimated 5% of the human genome consists of interspersed duplications that have arisen over the past 35 million years of evolution. Two categories of such recently duplicated segments can be distinguished: segmental duplications between nonhomologous chromosomes (transchromosomal duplications) and duplications mainly restricted to a particular chromosome (chromosome-specific duplications). Many of these duplications exhibit an extraordinarily high degree of sequence identity at the nucleotide level (>95%) and span large genomic distances (1-100 kb). Preliminary analyses indicate that these same regions are targets for rapid evolutionary turnover among the genomes of closely related primates. The dynamic nature of these regions because of recurrent chromosomal rearrangement, and their ability to create fusion genes from juxtaposed cassettes suggest that duplicative transposition was an important force in the evolution of our genome.
Collapse
Affiliation(s)
- E E Eichler
- Dept of Genetics and Center for Human Genetics, Case Western Reserve School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| |
Collapse
|
91
|
Piatigorsky J. Dual use of the transcriptional repressor (CtBP2)/ribbon synapse (RIBEYE) gene: how prevalent are multifunctional genes? Trends Neurosci 2001; 24:555-7. [PMID: 11576649 DOI: 10.1016/s0166-2236(00)01894-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vertebrates have ribbon synapses in the retina and in other sensory structures that are specialized for rapid, tonic release of synaptic vesicles (1). The lamellar sheets of the ribbon situated at right angles to the plasma membrane are lined with synaptic vesicles that undergo exocytosis under the influence of Ca(2+). Synaptic ribbons act as a conveyer belt to accelerate the release of this ready supply of synaptic vesicles at the presynaptic membranes. Although the protein composition of the terminals of ribbon synapses is generally similar to that of ordinary synapses in nervous tissue, much less is known about the composition of the ribbons themselves. RIM, a universal component of presynaptic active zones that interacts with rab3 on the synaptic vesicle, has been localized to the ribbons (2). In addition, the kinesin motor protein, KIF3A, is associated with the ribbons and other organelles in presynaptic nerve terminals (3). Recently, an approximately 120 kDa protein called RIBEYE has been identified in purified ribbons of bovine retina. The RIBEYE cDNA was cloned and its gene identified in the database.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
92
|
Eichler EE. Segmental duplications: what's missing, misassigned, and misassembled--and should we care? Genome Res 2001; 11:653-6. [PMID: 11337463 DOI: 10.1101/gr.188901] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- E E Eichler
- Department of Genetics and Center for Human Genetics, Case Western Reserve School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA.
| |
Collapse
|