51
|
Giraud-Panis MJ, Teixeira MT, Géli V, Gilson E. CST meets shelterin to keep telomeres in check. Mol Cell 2010; 39:665-76. [PMID: 20832719 DOI: 10.1016/j.molcel.2010.08.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022]
Abstract
Telomere protection in budding yeast requires the heterotrimer named CST (for Cdc13-Stn1-Ten1). Recent data show that CST components are conserved and required for telomere stability in a wide range of eukaryotes, even those utilizing the shelterin complex to protect their telomeres. A common function of these proteins might be to stimulate priming at the C-strand gap that remains after telomerase elongation, replication termination, and terminal processing. In light of the budding yeast situation, another conserved function of CST might well be the regulation of telomerase. The cohabitation at telomeres of CST and shelterin components highlights the complexity of telomere biology.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- Laboratory of Biology and Pathology of Genomes, University of Nice, CNRS UMR 6267, U998 INSERM, 28 Avenue Valombrose Faculté de Médecine, 06107 Nice, Cedex 2, France
| | | | | | | |
Collapse
|
52
|
Sun J, Yang Y, Wan K, Mao N, Yu TY, Lin YC, DeZwaan DC, Freeman BC, Lin JJ, Lue NF, Lei M. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res 2010; 21:258-74. [PMID: 20877309 DOI: 10.1038/cr.2010.138] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase α (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.
Collapse
Affiliation(s)
- Jia Sun
- Howard Hughes Medical Institute, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.
Collapse
|
54
|
Abstract
Proteins that specifically bind the single-stranded overhang at the ends of telomeres have been identified in a wide range of eukaryotes and play pivotal roles in chromosome end protection and telomere length regulation. Here we summarize recent findings regarding the functions of POT1 proteins in vertebrates and discuss the functional evolution of POT1 proteins following gene duplication in protozoa, plants, nematodes and mice.
Collapse
Affiliation(s)
- Peter Baumann
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, KS 66160, U.S.A
| | - Carolyn Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
55
|
Price CM, Boltz KA, Chaiken MF, Stewart JA, Beilstein MA, Shippen DE. Evolution of CST function in telomere maintenance. Cell Cycle 2010; 9:3157-65. [PMID: 20697207 DOI: 10.4161/cc.9.16.12547] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomeres consist of an elaborate, higher-order DNA architecture, and a suite of proteins that provide protection for the chromosome terminus by blocking inappropriate recombination and nucleolytic attack. In addition, telomeres facilitate telomeric DNA replication by physical interactions with telomerase and the lagging strand replication machinery. The prevailing view has been that two distinct telomere capping complexes evolved, shelterin in vertebrates and a trimeric complex comprised of Cdc13, Stn1 and Ten1 (CST) in yeast. The recent discovery of a CST-like complex in plants and humans raises new questions about the composition of telomeres and their regulatory mechanisms in multicellular eukaryotes. In this review we discuss the evolving functions and interactions of CST components and their contributions to chromosome end protection and DNA replication.
Collapse
Affiliation(s)
- Carolyn M Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E. Structural identity of telomeric complexes. FEBS Lett 2010; 584:3785-99. [PMID: 20696167 DOI: 10.1016/j.febslet.2010.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 02/01/2023]
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- University de Nice, Laboratory of Biology and Pathology of Genomes, UMR 6267 CNRS U998 INSERM, Faculté de Médecine, Nice, France
| | | | | | | | | |
Collapse
|
57
|
Raffa GD, Raimondo D, Sorino C, Cugusi S, Cenci G, Cacchione S, Gatti M, Ciapponi L. Verrocchio, a Drosophila OB fold-containing protein, is a component of the terminin telomere-capping complex. Genes Dev 2010; 24:1596-601. [PMID: 20679394 PMCID: PMC2912556 DOI: 10.1101/gad.574810] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/09/2010] [Indexed: 12/29/2022]
Abstract
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the terminal DNA sequence. Drosophila telomeres are protected by terminin, a complex that includes the HOAP (Heterochromatin Protein 1/origin recognition complex-associated protein) and Moi (Modigliani) proteins and shares the properties of human shelterin. Here we show that Verrocchio (Ver), an oligonucleotide/oligosaccharide-binding (OB) fold-containing protein related to Rpa2/Stn1, interacts physically with HOAP and Moi, is enriched only at telomeres, and prevents telomere fusion. These results indicate that Ver is a new terminin component; we speculate that, concomitant with telomerase loss, Drosophila evolved terminin to bind chromosome ends independently of the DNA sequence.
Collapse
Affiliation(s)
- Grazia D. Raffa
- Dipartimento di Genetica e Biologia Molecolare “Charles Darwin” Sapienza, Università di Roma, Roma 00185, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma, Roma 00185, Italy
| | - Domenico Raimondo
- Dipartimento di Scienze Biochimiche “A. Rossi-Fanelli”, Sapienza, Università di Roma, Roma 00185, Italy
| | - Cristina Sorino
- Dipartimento di Genetica e Biologia Molecolare “Charles Darwin” Sapienza, Università di Roma, Roma 00185, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma, Roma 00185, Italy
| | - Simona Cugusi
- Dipartimento di Genetica e Biologia Molecolare “Charles Darwin” Sapienza, Università di Roma, Roma 00185, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma, Roma 00185, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, Coppito, L'Aquila 67010, Italy
| | - Stefano Cacchione
- Dipartimento di Genetica e Biologia Molecolare “Charles Darwin” Sapienza, Università di Roma, Roma 00185, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma, Roma 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Genetica e Biologia Molecolare “Charles Darwin” Sapienza, Università di Roma, Roma 00185, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma, Roma 00185, Italy
| | - Laura Ciapponi
- Dipartimento di Genetica e Biologia Molecolare “Charles Darwin” Sapienza, Università di Roma, Roma 00185, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma, Roma 00185, Italy
| |
Collapse
|
58
|
Khair L, Chang YT, Subramanian L, Russell P, Nakamura TM. Roles of the checkpoint sensor clamp Rad9-Rad1-Hus1 (911)-complex and the clamp loaders Rad17-RFC and Ctf18-RFC in Schizosaccharomyces pombe telomere maintenance. Cell Cycle 2010; 9:2237-48. [PMID: 20505337 PMCID: PMC3133598 DOI: 10.4161/cc.9.11.11920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While telomeres must provide mechanisms to prevent DNA repair and DNA damage checkpoint factors from fusing chromosome ends and causing permanent cell cycle arrest, these factors associate with functional telomeres and play critical roles in the maintenance of telomeres. Previous studies have established that Tel1 (ATM) and Rad3 (ATR) kinases play redundant but essential roles for telomere maintenance in fission yeast. In addition, the Rad9-Rad1-Hus1 (911) and Rad17-RFC complexes work downstream of Rad3 (ATR) in fission yeast telomere maintenance. Here, we investigated how 911, Rad17-RFC and another RFC-like complex Ctf18-RFC contribute to telomere maintenance in fission yeast cells lacking Tel1 and carrying a novel hypomorphic allele of rad3 (DBD-rad3), generated by the fusion between the DNA binding domain (DBD) of the fission yeast telomere capping protein Pot1 and Rad3. Our investigations have uncovered a surprising redundancy for Rad9 and Hus1 in allowing Rad1 to contribute to telomere maintenance in DBD-rad3 tel1 cells. In addition, we found that Rad17-RFC and Ctf18-RFC carry out redundant telomere maintenance functions in DBD-rad3 tel1 cells. Since checkpoint sensor proteins are highly conserved, genetic redundancies uncovered here may be relevant to telomere maintenance and detection of DNA damage in other eukaryotes.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ya-Ting Chang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Paul Russell
- Departments of Molecular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Toru M. Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
59
|
Linger BR, Price CM. Conservation of telomere protein complexes: shuffling through evolution. Crit Rev Biochem Mol Biol 2009; 44:434-46. [PMID: 19839711 DOI: 10.3109/10409230903307329] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The rapid evolution of telomere proteins has hindered identification of orthologs from diverse species and created the impression that certain groups of eukaryotes have largely non-overlapping sets of telomere proteins. However, the recent identification of additional telomere proteins from various model organisms has dispelled this notion by expanding our understanding of the composition, architecture and range of telomere protein complexes present in individual species. It is now apparent that versions of the budding yeast CST complex and mammalian shelterin are present in multiple phyla. While the precise subunit composition and architecture of these complexes vary between species, the general function is often conserved. Despite the overall conservation of telomere protein complexes, there is still considerable species-specific variation, with some organisms having lost a particular subunit or even an entire complex. In some cases, complex components appear to have migrated between the telomere and the telomerase RNP. Finally, gene duplication has created telomere protein paralogs with novel functions. While one paralog may be part of a conserved telomere protein complex and have the expected function, the other paralog may serve in a completely different aspect of telomere biology.
Collapse
Affiliation(s)
- Benjamin R Linger
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267-0521, USA
| | | |
Collapse
|
60
|
Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R, Leehy K, Heacock M, Price CM, Shippen DE. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 2009; 36:207-18. [PMID: 19854131 DOI: 10.1016/j.molcel.2009.09.017] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/16/2009] [Accepted: 09/02/2009] [Indexed: 12/20/2022]
Abstract
Orthologs of the yeast telomere protein Stn1 are present in plants, but other components of the Cdc13/Stn1/Ten1 (CST) complex have only been found in fungi. Here we report the identification of conserved telomere maintenance component 1 (CTC1) in plants and vertebrates. CTC1 encodes an approximately 140 kDa telomere-associated protein predicted to contain multiple OB-fold domains. Arabidopsis mutants null for CTC1 display a severe telomere deprotection phenotype accompanied by a rapid onset of developmental defects and sterility. Telomeric and subtelomeric tracts are dramatically eroded, and chromosome ends exhibit increased G overhangs, recombination, and end-to-end fusions. AtCTC1 both physically and genetically interacts with AtSTN1. Depletion of human CTC1 by RNAi triggers a DNA damage response, chromatin bridges, increased G overhangs, and sporadic telomere loss. These data indicate that CTC1 participates in telomere maintenance in diverse species and that a CST-like complex is required for telomere integrity in multicellular organisms.
Collapse
Affiliation(s)
- Yulia V Surovtseva
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. Proc Natl Acad Sci U S A 2009; 106:19298-303. [PMID: 19884503 DOI: 10.1073/pnas.0909203106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.
Collapse
|
62
|
Croy JE, Altschuler SE, Grimm NE, Wuttke DS. Nonadditivity in the recognition of single-stranded DNA by the schizosaccharomyces pombe protection of telomeres 1 DNA-binding domain, Pot1-DBD. Biochemistry 2009; 48:6864-75. [PMID: 19518131 PMCID: PMC2756145 DOI: 10.1021/bi900307x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Schizosaccharomyces pombe protection of telomeres 1 (SpPot1) protein recognizes the 3' single-stranded ends of telomeres and provides essential protective and regulatory functions. The ssDNA-binding activity of SpPot1 is conferred by its ssDNA-binding domain, Pot1-DBD (residues 1-389), which can be further separated into two distinct domains, Pot1pN (residues 1-187) and Pot1pC (residues 188-389). Here we show that Pot1pC, like Pot1pN, can function independently of Pot1-DBD and binds specifically to a minimal nonameric oligonucleotide, d(GGTTACGGT), with a K(D) of 400 +/- 70 nM (specifically recognized nucleotides in bold). NMR chemical shift perturbation analysis indicates that the overall structures of the isolated Pot1pN and Pot1pC domains remain intact in Pot1-DBD. Furthermore, alanine scanning reveals modest differences in the ssDNA-binding contacts provided by isolated Pot1pN and within Pot1-DBD. Although the global character of both Pot1pN and Pot1pC is maintained in Pot1-DBD, chemical shift perturbation analysis highlights localized structural differences within the G1/G2 and T3/T4 binding pockets of Pot1pN in Pot1-DBD, which correlate with its distinct ssDNA-binding activity. Furthermore, we find evidence for a putative interdomain interface on Pot1pN that mediates interactions with Pot1pC that ultimately result in the altered ssDNA-binding activity of Pot1-DBD. Together, these data provide insight into the mechanisms underlying the activity and regulation of SpPot1 at the telomere.
Collapse
Affiliation(s)
- Johnny E. Croy
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Sarah E. Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Nicole E. Grimm
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| |
Collapse
|
63
|
Qian W, Wang J, Jin NN, Fu XH, Lin YC, Lin JJ, Zhou JQ. Ten1p promotes the telomeric DNA-binding activity of Cdc13p: implication for its function in telomere length regulation. Cell Res 2009; 19:849-63. [DOI: 10.1038/cr.2009.67] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
64
|
Shakirov EV, McKnight TD, Shippen DE. POT1-independent single-strand telomeric DNA binding activities in Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:1004-15. [PMID: 19228335 PMCID: PMC5880214 DOI: 10.1111/j.1365-313x.2009.03837.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single-strand protrusion, termed the G-overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1-like proteins. Here we show that the single-strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, recombinant POT1a and POT1b proteins from A. thaliana, and from two additional Brassicaceae species, Arabidopsis lyrata and Brassica oleracea (cauliflower), fail to bind single-strand telomeric DNA in vitro under the conditions tested. Finally, although we detected four single-strand telomeric DNA binding activities in nuclear extracts from B. oleracea, partial purification and DNA cross-linking analysis of these complexes identified proteins that are smaller than the predicted sizes of BoPOT1a or BoPOT1b. Taken together, these data suggest that POT1 proteins are not the major single-strand telomeric DNA binding activities in A. thaliana and its close relatives, underscoring the remarkable functional divergence of POT1 proteins from plants and other eukaryotes.
Collapse
Affiliation(s)
- Eugene V. Shakirov
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | - Thomas D. McKnight
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, USA
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
- For correspondence (fax +1 979 845 9274; )
| |
Collapse
|
65
|
Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey PD, Shi Y. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 2009; 34:473-84. [PMID: 19481527 PMCID: PMC3268689 DOI: 10.1016/j.molcel.2009.04.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 03/08/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Eukaryotic proteasome consists of a core particle (CP), which degrades unfolded protein, and a regulatory particle (RP), which is responsible for recognition, ATP-dependent unfolding, and translocation of polyubiquitinated substrate protein. In the archaea Methanocaldococcus jannaschii, the RP is a homohexameric complex of proteasome-activating nucleotidase (PAN). Here, we report the crystal structures of essential elements of the archaeal proteasome: the CP, the ATPase domain of PAN, and a distal subcomplex that is likely the first to encounter substrate. The distal subcomplex contains a coiled-coil segment and an OB-fold domain, both of which appear to be conserved in the eukaryotic proteasome. The OB domains of PAN form a hexameric ring with a 13 A pore, which likely constitutes the outermost constriction of the substrate translocation channel. These studies reveal structural codes and architecture of the complete proteasome, identify potential substrate-binding sites, and uncover unexpected asymmetry in the RP of archaea and eukaryotes.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Min Hu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Ping Zhang
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Philip D. Jeffrey
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Yigong Shi
- Center for Structural Biology, Department of Biological Sciences and Biotechnology, and School and Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
66
|
Wu TJ, Chiang YH, Lin YC, Tsai CR, Yu TY, Sung MT, Lee YHW, Lin JJ. Sequential loading of Saccharomyces cerevisiae Ku and Cdc13p to telomeres. J Biol Chem 2009; 284:12801-8. [PMID: 19276071 PMCID: PMC2676010 DOI: 10.1074/jbc.m809131200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/05/2009] [Indexed: 11/06/2022] Open
Abstract
Ku is a heterodimeric protein involved in nonhomologous end-joining of the DNA double-stranded break repair pathway. It binds to the double-stranded DNA ends and then activates a series of repair enzymes that join the broken DNA. In addition to its function in DNA repair, the yeast Saccharomyces cerevisiae Ku (Yku) is also a component of telomere protein-DNA complexes that affect telomere function. The yeast telomeres are composed of duplex C(1-3)(A/T)G(1-3) telomeric DNA repeats plus single-stranded TG(1-3) telomeric DNA tails. Here we show that Yku is capable of binding to a tailed-duplex DNA formed by telomeric DNA that mimics the structure of telomeres. Addition of Cdc13p, a single-stranded telomeric DNA-binding protein, to the Yku-DNA complex enables the formation of a ternary complex with Cdc13p binding to the single-stranded tail of the DNA substrate. Because pre-loading of Cdc13p to the single-stranded telomeric tail inhibits the binding of Yku, the results suggested that loading of Yku and Cdc13p to telomeres is sequential. Through generating a double-stranded break near telomeric DNA sequences, we found that Ku protein appears to bind to the de novo synthesized telomeres earlier than that of Cdc13p in vivo. Thus, our results indicated that Yku interacts directly with telomeres and that sequential loading of Yku followed by Cdc13p to telomeres is required for both proteins to form a ternary complex on telomeres. Our results also offer a mechanism that the binding of Cdc13p to telomeres might prevent Yku from initiating DNA double-stranded break repair pathway on telomeres.
Collapse
Affiliation(s)
- Tzung-Ju Wu
- Institute of Biopharmaceutical Science and Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Insights into the dynamics of specific telomeric single-stranded DNA recognition by Pot1pN. J Mol Biol 2009; 387:935-48. [PMID: 19232358 DOI: 10.1016/j.jmb.2009.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/22/2009] [Accepted: 02/10/2009] [Indexed: 11/23/2022]
Abstract
The N-terminal oligonucleotide/oligosaccharide-binding fold domain of the Schizosaccharomyces pombe protection of telomeres 1 (Pot1) protein, Pot1pN (residues 1-187 of full-length Pot1), specifically recognizes telomeric single-stranded DNA (ssDNA) via a complex series of molecular interactions that are punctuated by unusual internucleotide hydrogen bonds. While the structure of ssDNA-bound Pot1pN provides an initial model for understanding how the Pot1pN-ssDNA complex is assembled and how specific nucleotide recognition occurs, further refinement requires knowledge of the ssDNA-free state of Pot1pN and the dynamic changes that accompany the binding of ssDNA. Using NMR strategies, we found that ssDNA-free Pot1pN adopts a similar overall protein backbone topology as ssDNA-bound Pot1pN does. Although the backbone structure remained relatively unchanged, we observed unexpected differential dynamic changes within the ssDNA-binding pockets of Pot1pN upon binding of cognate ssDNA. These studies support a model in which conformational selection and induced fit play important roles in the recognition of ssDNA by Pot1pN. Furthermore, the studies presented here provide a more comprehensive understanding of how specific nucleotide recognition is achieved by the telomere-end protection family of essential proteins.
Collapse
|
68
|
Stewart AL, Waters ML. Structural Effects on ss- and dsDNA Recognition by a β-Hairpin Peptide. Chembiochem 2009; 10:539-44. [DOI: 10.1002/cbic.200800524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
69
|
Abstract
The genomes of prokaryotes and eukaryotic organelles are usually circular as are most plasmids and viral genomes. In contrast, the nuclear genomes of eukaryotes are organized on linear chromosomes, which require mechanisms to protect and replicate DNA ends. Eukaryotes navigate these problems with the advent of telomeres, protective nucleoprotein complexes at the ends of linear chromosomes, and telomerase, the enzyme that maintains the DNA in these structures. Mammalian telomeres contain a specific protein complex, shelterin, that functions to protect chromosome ends from all aspects of the DNA damage response and regulates telomere maintenance by telomerase. Recent experiments, discussed here, have revealed how shelterin represses the ATM and ATR kinase signaling pathways and hides chromosome ends from nonhomologous end joining and homology-directed repair.
Collapse
Affiliation(s)
- Wilhelm Palm
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
70
|
Zappulla DC, Roberts JN, Goodrich KJ, Cech TR, Wuttke DS. Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Res 2009; 37:354-67. [PMID: 19043074 PMCID: PMC2632905 DOI: 10.1093/nar/gkn830] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/16/2008] [Accepted: 10/14/2008] [Indexed: 01/07/2023] Open
Abstract
Appropriate control of the chromosome end-replicating enzyme telomerase is crucial for maintaining telomere length and genomic stability. The essential telomeric DNA-binding protein Cdc13p both positively and negatively regulates telomere length in budding yeast. Here we test the effect of purified Cdc13p on telomerase action in vitro. We show that the full-length protein and its DNA-binding domain (DBD) inhibit primer extension by telomerase. This inhibition occurs by competitive blocking of telomerase access to DNA. To further understand the requirements for productive telomerase 3'-end access when Cdc13p or the DBD is bound to a telomerase substrate, we constrained protein binding at various distances from the 3'-end on two sets of increasingly longer oligonucleotides. We find that Cdc13p inhibits the action of telomerase through three distinct biochemical modes, including inhibiting telomerase even when a significant tail is available, representing a novel 'action at a distance' inhibitory activity. Thus, while yeast Cdc13p exhibits the same general activity as human POT1, providing an off switch for telomerase when bound near the 3'-end, there are significant mechanistic differences in the ways telomere end-binding proteins inhibit telomerase action.
Collapse
Affiliation(s)
- David C. Zappulla
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Jennifer N. Roberts
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Karen J. Goodrich
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R. Cech
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
71
|
Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein. Proc Natl Acad Sci U S A 2008; 105:18296-301. [PMID: 19015535 DOI: 10.1073/pnas.0803279105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The far upstream element (FUSE) binding protein (FBP), a single-stranded nucleic acid binding protein, is recruited to the c-myc promoter after melting of FUSE by transcriptionally generated dynamic supercoils. Via interactions with TFIIH and FBP-interacting repressor (FIR), FBP modulates c-myc transcription. Here, we investigate the contributions of FBP's 4 K Homology (KH) domains to sequence selectivity. EMSA and missing contact point analysis revealed that FBP contacts 4 separate patches spanning a large segment of FUSE. A SELEX procedure using paired KH-domains defined the preferred subsequences for each KH domain. Unexpectedly, there was also a strong selection for the noncontacted residues between these subsequences, showing that the contact points must be optimally presented in a backbone that minimizes secondary structure. Strategic mutation of contact points defined in this study disabled FUSE activity in vivo. Because the biological specificity of FBP is tuned at several layers: (i) accessibility of the site; (ii) supercoil-driven melting; (iii) presentation of unhindered bases for recognition; and (iv) modular interaction of KH-domains with cognate bases, the FBP-FIR system and sequence-specific, single-strand DNA binding proteins in general are likely to prove versatile tools for adjusting gene expression.
Collapse
|
72
|
Rhodin Edsö J, Tati R, Cohn M. Highly sequence-specific binding is retained within the DNA-binding domain of the Saccharomyces castellii Cdc13 telomere-binding protein. FEMS Yeast Res 2008; 8:1289-302. [PMID: 18759744 DOI: 10.1111/j.1567-1364.2008.00431.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The essential protein Cdc13p binds the single-stranded telomeric 3' overhangs in Saccharomyces cerevisiae and takes part in the regulation of telomere length. The DNA-binding domain (DBD) of Cdc13p is structurally established by an oligonucleotide/oligosaccharide-binding (OB)-fold domain. The sequence homolog in Saccharomyces castellii (scasCDC13) was characterized previously, and the full-length protein was found to bind telomeric DNA specifically. Here, the DBD of scasCdc13p was defined to the central part (402-658) of the protein. The region necessary for forming the scasCdc13p-DBD is larger than the minimal DBD of S. cerevisiae Cdc13p. Deletion of this extended DBD region from the full-length protein completely abolished the DNA binding, indicating the importance of the extended region for the correct formation of a binding-competent DBD. The scasCdc13p-DBD bound the same 8-mer minimal binding site as the full-length protein, but an extension of the target site in the 3' end increased the stability of the DNA-protein complex. Significantly, scasCdc13p-DBD showed a retained high sequence specific binding, where the four nucleotides of most importance for the sequence specificity are highly conserved in eukaryotic telomeric repeats. Thus, the unique single-stranded DNA-binding properties of the full-length protein are entirely retained within the isolated scasCdc13p-DBD.
Collapse
Affiliation(s)
- Jenny Rhodin Edsö
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
73
|
Croy JE, Fast JL, Grimm NE, Wuttke DS. Deciphering the mechanism of thermodynamic accommodation of telomeric oligonucleotide sequences by the Schizosaccharomyces pombe protection of telomeres 1 (Pot1pN) protein. Biochemistry 2008; 47:4345-4358. [PMID: 18355038 PMCID: PMC3987967 DOI: 10.1021/bi701778x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linear chromosomes terminate in specialized nucleoprotein structures called telomeres, which are required for genomic stability and cellular proliferation. Telomeres end in an unusual 3' single-strand overhang that requires a special capping mechanism to prevent inappropriate recognition by the DNA damage machinery. In Schizosaccharomyces pombe, this protective function is mediated by the Pot1 protein, which binds specifically and with high affinity to telomeric ssDNA. We have characterized the thermodynamics and accommodation of both cognate and noncognate telomeric single-stranded DNA (ssDNA) sequences by Pot1pN, an autonomous ssDNA-binding domain (residues 1-187) found in full-length S. pombe Pot1. Direct calorimetric measurements of cognate telomeric ssDNA binding to Pot1pN show favorable enthalpy, unfavorable entropy, and a negative heat-capacity change. Thermodynamic analysis of the binding of noncognate telomeric ssDNA to Pot1pN resulted in unexpected changes in free energy, enthalpy, and entropy. Chemical-shift perturbation and structural analysis of these bound noncognate sequences show that these thermodynamic changes result from the structural rearrangement of both Pot1pN and the bound oligonucleotide. These data suggest that the ssDNA-binding interface is highly dynamic and, in addition to the conformation observed in the crystal structure of the Pot1pN/d(GGTTAC) complex, capable of adopting alternative thermodynamically equivalent conformations.
Collapse
Affiliation(s)
- Johnny E. Croy
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | | | - Nicole E. Grimm
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
74
|
Eldridge AM, Wuttke DS. Probing the mechanism of recognition of ssDNA by the Cdc13-DBD. Nucleic Acids Res 2008; 36:1624-33. [PMID: 18250086 PMCID: PMC2275150 DOI: 10.1093/nar/gkn017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Saccharomyces cerevisiae protein Cdc13 tightly and specifically binds the conserved G-rich single-stranded overhang at telomeres and plays an essential role in telomere end-protection and length regulation. The 200 residue DNA-binding domain of Cdc13 (Cdc13-DBD) binds an 11mer single-stranded representative of the yeast telomeric sequence [Tel11, d(GTGTGGGTGTG)] with a 3 pM affinity and specificity for three bases (underlined) at the 5′ end. The structure of the Cdc13-DBD bound to Tel11 revealed a large, predominantly aromatic protein interface with several unusual features. The DNA adopts an irregular, extended structure, and the binding interface includes a long (∼30 amino acids) structured loop between strands β2-β3 (L2–3) of an OB-fold. To investigate the mechanism of ssDNA binding, we studied the free and bound states of Cdc13-DBD using NMR spectroscopy. Chemical shift changes indicate that the basic topology of the domain, including L2–3, is essentially intact in the free state. Changes in slow and intermediate time scale dynamics, however, occur in L2–3, while conformational changes distant from the DNA interface suggest an induced fit mechanism for binding in the ‘hot spot’ for binding affinity and specificity. These data point to an overall binding mechanism well adapted to the heterogeneous nature of yeast telomeres.
Collapse
Affiliation(s)
- Aimee M Eldridge
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
75
|
Grandin N, Charbonneau M. Protection against chromosome degradation at the telomeres. Biochimie 2008; 90:41-59. [PMID: 17764802 DOI: 10.1016/j.biochi.2007.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS no. 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 46, allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
76
|
Martín V, Du LL, Rozenzhak S, Russell P. Protection of telomeres by a conserved Stn1-Ten1 complex. Proc Natl Acad Sci U S A 2007; 104:14038-43. [PMID: 17715303 PMCID: PMC1955774 DOI: 10.1073/pnas.0705497104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends. Critical among telomere proteins are those that bind the telomeric single-strand DNA (ssDNA) overhangs. These proteins are thought to differ among eukaryotes. Three interacting proteins (Cdc13, Stn1, and Ten1) associate with the telomeric overhang in budding yeast, a single protein known as Pot1 (protection of telomeres-1) performs this function in fission yeast, and a two-subunit complex consisting of POT1 and TPP1 associates with telomeric ssDNA in humans. Cdc13 and Pot1 have related oligonucleotide/oligosaccharide-binding fold (OB-fold) domains that bind the telomeric ssDNA overhang. Here we show that Schizosaccharomyces pombe has Stn1- and Ten1-like proteins that are essential for chromosome end protection. Stn1 orthologs exist in all species that have Pot1, whereas Ten1-like proteins can be found in all fungi. Fission yeast Stn1 and Ten1 localize at telomeres in a manner that correlates with the length of the ssDNA overhang, suggesting that they specifically associate with the telomeric ssDNA. Unlike in budding yeast, in which Cdc13, Stn1, and Ten1 all interact, fission yeast Stn1 and Ten1 associate with each other, but not with Pot1. Our findings suggest that two separate protein complexes are required for chromosome end protection in fission yeast. Structural profiling studies detect OB-fold domains in Stn1 and Ten1 orthologs, indicating that protection of telomeres by multiple proteins with OB-fold domains is conserved in eukaryotic evolution.
Collapse
Affiliation(s)
| | - Li-Lin Du
- Departments of *Molecular Biology and
| | | | - Paul Russell
- Departments of *Molecular Biology and
- Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
77
|
Lira CBB, Giardini MA, Neto JLS, Conte FF, Cano MIN. Telomere biology of trypanosomatids: beginning to answer some questions. Trends Parasitol 2007; 23:357-62. [PMID: 17580124 DOI: 10.1016/j.pt.2007.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 11/26/2022]
Abstract
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Collapse
Affiliation(s)
- Cristina B B Lira
- Laboratório de Telômeros, Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | | | | | | | | |
Collapse
|
78
|
Surovtseva YV, Shakirov EV, Vespa L, Osbun N, Song X, Shippen DE. Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance. EMBO J 2007; 26:3653-61. [PMID: 17627276 PMCID: PMC1949013 DOI: 10.1038/sj.emboj.7601792] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 06/04/2007] [Indexed: 02/07/2023] Open
Abstract
POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather exhibit progressive loss of telomeric DNA. Genetic analysis indicates that AtPOT1 acts in the same pathway as telomerase. In vitro levels of telomerase activity in pot1 mutants are significantly reduced and are more variable than wild-type. Consistent with this observation, AtPOT1 physically associates with active telomerase particles. Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase, when telomerase is thought to act at telomeres. Our findings indicate that AtPOT1 is a novel accessory factor for telomerase required for positive telomere length regulation, and they underscore the coordinate and extraordinarily rapid evolution of telomere proteins and the telomerase enzyme.
Collapse
Affiliation(s)
- Yulia V Surovtseva
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Eugene V Shakirov
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Laurent Vespa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Nathan Osbun
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xiangyu Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA. Tel.: +1 979 862 2342; Fax: +1 979 845 9274; E-mail:
| |
Collapse
|
79
|
Mou TC, Shen M, Abdalla S, Delamora D, Bochkareva E, Bochkarev A, Gray DM. Effects of ssDNA sequences on non-sequence-specific protein binding. Chirality 2007; 18:370-82. [PMID: 16575881 DOI: 10.1002/chir.20262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The circular dichroism (CD) spectra of single-stranded DNAs (ssDNAs) are significantly perturbed by the binding of single-stranded DNA binding proteins such as the Ff bacteriophage gene 5 protein (g5p) and the A domain of the 70 kDa subunit of human replication protein A (RPA70-A). These two proteins have similar OB-fold secondary structures, although their CD spectra at wavelengths below 250 nm differ greatly. The spectrum of g5p is dominated by a tyrosyl L(a) band at 229 nm, while that of RPA70-A is dominated by its beta secondary structure. Despite differences in their inherent spectral properties, these two proteins similarly perturb the spectra of bound nucleic acid oligomers. CD spectra of free, non-protein-bound ssDNAs are dependent on interactions of the nearest-neighboring nucleotides in the sequence. The CD spectra (per mol of nucleotide) of simple repetitive sequences 48 nucleotides in length and containing simple combinations of A and C are related by nearest-neighbor equations. For example, 3 x Deltaepsilon[d(AAC)(16)] = 3 x Deltaepsilon[d(ACC)(16)] + Deltaepsilon[d(A)(48)] - Deltaepsilon[d(C)(48)]. Moreover, nearest-neighbor equations relate the spectra of ssDNAs when they are bound by g5p, indicating that each type of perturbed nearest neighbor has a similar average structure within the binding site of the protein.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Neto JLS, Lira CBB, Giardini MA, Khater L, Perez AM, Peroni LA, dos Reis JRR, Freitas-Junior LH, Ramos CHI, Cano MIN. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA. Biochem Biophys Res Commun 2007; 358:417-23. [PMID: 17498665 DOI: 10.1016/j.bbrc.2007.04.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.
Collapse
Affiliation(s)
- J L Siqueira Neto
- Departamento de Genética, Instituto de Biociências, Universidade Estadual de São Paulo, UNESP, 18618-000 Botucatu, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Zellinger B, Riha K. Composition of plant telomeres. ACTA ACUST UNITED AC 2007; 1769:399-409. [PMID: 17383025 DOI: 10.1016/j.bbaexp.2007.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/01/2007] [Accepted: 02/09/2007] [Indexed: 12/15/2022]
Abstract
Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.
Collapse
Affiliation(s)
- Barbara Zellinger
- Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | | |
Collapse
|
82
|
Lin YC, Wu Lee YH, Lin JJ. Genetic analysis reveals essential and non-essential amino acids within the telomeric DNA-binding interface of Cdc13p. Biochem J 2007; 403:289-95. [PMID: 17166094 PMCID: PMC1874236 DOI: 10.1042/bj20061698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cdc13p is a specific single-stranded telomeric DNA-binding protein of Saccharomyces cerevisiae. It is involved in protecting telomeres and regulating telomere length. The telomere-binding domain of Cdc13p is located between residues 497 and 693, and its structure has been resolved by NMR spectroscopy. A series of aromatic, hydrophobic and basic residues located at the DNA-binding surface of Cdc13p are involved in binding to telomeres. Here we applied a genetic approach to analyse the involvements of these residues in telomere binding. A series of mutants within the telomere-binding domain of Cdc13p were identified that failed to complement cdc13 mutants in vivo. Among the amino acids that were isolated, the Tyr522, Arg635, and Ile633 residues were shown to locate at the DNA-binding surface. We further demonstrated that Y522C and R635A mutants failed to bind telomeric DNA in vitro, indicating that these residues are indeed required for telomere binding. We did not, however, isolate other mutant residues located at the DNA-binding surface of Cdc13p beyond these three residues. Instead, a mutant on Lys568 was isolated that did not affect the essential function of Cdc13p. The Lys568 is also located on the DNA-binding surface of Cdc13p. Thus these results suggested that other DNA-binding residues are not essential for telomere binding. In the present study, we have established a genetic test that enabled the identification of telomere-binding residues of Cdc13p in vivo. This type of analysis provides information on those residues that indeed contribute to telomere binding in vivo.
Collapse
Affiliation(s)
- Yi-Chien Lin
- *Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, People's Republic of China
| | - Yan-Hwa Wu Lee
- *Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, People's Republic of China
- Correspondence may be addressed to either of these authors (email or )
| | - Jing-Jer Lin
- †Institute of Biopharmaceutical Science, National Yang-Ming University, Shih-Pai 112, Taipei, Taiwan, People's Republic of China
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
83
|
Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V. RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 2007; 14:208-14. [PMID: 17293872 DOI: 10.1038/nsmb1205] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/22/2007] [Indexed: 11/09/2022]
Abstract
Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA-binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.
Collapse
Affiliation(s)
- Hua Gao
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
84
|
Yoo HH, Kwon C, Lee MM, Chung IK. Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:442-51. [PMID: 17217467 DOI: 10.1111/j.1365-313x.2006.02974.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Telomere homeostasis, a process that is essential for the maintenance of chromosome integrity, is regulated by telomerase and a collection of associated proteins. By mass spectrometry we have identified a new telomeric protein encoded by the AtWHY1 (Arabidopsis thaliana Whirly 1) gene in Arabidopsis. AtWHY1 specifically binds the single-stranded plant telomeric DNA sequences, but not double-stranded telomeric DNA. To gain insights into the function of AtWHY1 in telomere biogenesis, we have identified two Arabidopsis lines harboring T-DNA insertions in AtWHY1. These lines exhibit neither growth nor developmental defects. However, AtWHY1-deficient plants show a steady increase in the length of telomere tracts over generations. This telomere elongation is correlated with a significant increase in telomerase activity. On the contrary, transgenic plants expressing AtWHY1 show a decreased telomerase activity and shortened telomeres. The evidence presented here indicates that AtWHY1 is a new family of telomere end-binding proteins that plays a role in regulating telomere-length homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Hyun Hee Yoo
- Department of Biology and Molecular Aging Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
85
|
Mannino C, Nievo M, Machetti F, Papakyriakou A, Calderone V, Fragai M, Guarna A. Synthesis of bicyclic molecular scaffolds (BTAa): An investigation towards new selective MMP-12 inhibitors. Bioorg Med Chem 2006; 14:7392-403. [PMID: 16899369 DOI: 10.1016/j.bmc.2006.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Starting from 3-aza-6,8-dioxa-bicyclo[3.2.1]octane scaffold (BTAa) a virtual library of molecules was generated and screened in silico against the crystal structure of the Human Macrophage Metalloelastase (MMP-12). The molecules obtaining high score were synthesized and the affinity for the catalytic domain of MMP-12 was experimentally proved by NMR experiments. A BTAa scaffold 20 having a N-hydroxyurea group in position 3 and a p-phenylbenzylcarboxy amide in position 7 showed a fair inhibition potency (IC50 = 149 microM) for MMP-12 and some selectivity towards five different MMPs. These results, taken together with the X-ray structure of the adduct between MMP-12, the inhibitor 20 and the acetohydroxamic acid (AHA), suggest that bicyclic scaffold derivatives may be exploited for the design of new selective matrix metalloproteinase inhibitors (MMPIs).
Collapse
Affiliation(s)
- Claudia Mannino
- Department of Organic Chemistry U. Schiff, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | |
Collapse
|
86
|
He H, Multani AS, Cosme-Blanco W, Tahara H, Ma J, Pathak S, Deng Y, Chang S. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J 2006; 25:5180-90. [PMID: 17053789 PMCID: PMC1630418 DOI: 10.1038/sj.emboj.7601294] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 07/24/2006] [Indexed: 11/09/2022] Open
Abstract
POT1 (protection of telomere 1) is a highly conserved single-stranded telomeric binding protein that is essential for telomere end protection. Here, we report the cloning and characterization of a second member of the mouse POT family. POT1b binds telomeric DNA via conserved DNA binding oligonucleotide/oligosaccharide (OB) folds. Compared to POT1a, POT1b OB-folds possess less sequence specificity for telomeres. In contrast to POT1a, truncated POT1b possessing only the OB-folds can efficiently localize to telomeres in vivo. Overexpression of a mutant Pot1b allele that cannot bind telomeric DNA initiated a DNA damage response at telomeres that led to p53-dependent senescence. Furthermore, a reduction of the 3' G-rich overhang, increased chromosomal fusions and elevated homologous recombination (HR) were observed at telomeres. shRNA mediated depletion of endogenous Pot1b in Pot1a deficient cells resulted in increased chromosomal aberrations. Our results indicate that POT1b plays important protective functions at telomeres and that proper maintenance of chromosomal stability requires both POT proteins.
Collapse
Affiliation(s)
- Hua He
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asha S Multani
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wilfredo Cosme-Blanco
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Program for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Jin Ma
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sen Pathak
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibin Deng
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandy Chang
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1006, Houston, TX 77030, USA. Tel.: +1 713 834 6361; Fax: +1 713 834 6319; E-mail:
| |
Collapse
|
87
|
Churikov D, Wei C, Price CM. Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol Cell Biol 2006; 26:6971-82. [PMID: 16943437 PMCID: PMC1592853 DOI: 10.1128/mcb.01011-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although vertebrate POT1 is thought to play a role in both telomere capping and length regulation, its function has proved difficult to analyze. We therefore generated a conditional cell line that lacks wild-type POT1 but expresses an estrogen receptor-POT1 fusion. The cells grow normally in tamoxifen, but drug removal causes loss of POT1 from the telomere, rapid cell cycle arrest, and eventual cell death. The arrested cells have a 4N DNA content, and addition of caffeine causes immediate entry into mitosis, suggesting a G(2) arrest due to an ATM- and/or ATR-mediated checkpoint. gammaH2AX accumulates at telomeres, indicating a telomeric DNA damage response, the likely cause of the checkpoint. However, POT1 loss does not cause degradation of the G-strand overhang. Instead, the amount of G overhang increases two- to threefold. Some cells eventually escape the cell cycle arrest and enter mitosis. They rarely exhibit telomere fusions but show severe chromosome segregation defects due to centrosome amplification. Our data indicate that vertebrate POT1 is required for telomere capping but that it functions quite differently from TRF2. Instead of being required for G-overhang protection, POT1 is required to suppress a telomeric DNA damage response. Our results also indicate significant functional similarities between POT1 and Cdc13 from budding yeast (Saccharomyces cerevisiae).
Collapse
Affiliation(s)
- Dmitri Churikov
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
88
|
Zeeb M, Max KE, Weininger U, Löw C, Sticht H, Balbach J. Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Nucleic Acids Res 2006; 34:4561-71. [PMID: 16956971 PMCID: PMC1636342 DOI: 10.1093/nar/gkl376] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cold shock proteins (CSP) belong to the family of single-stranded nucleic acid binding proteins with OB-fold. CSP are believed to function as 'RNA chaperones' and during anti-termination. We determined the solution structure of Bs-CspB bound to the single-stranded DNA (ssDNA) fragment heptathymidine (dT7) by NMR spectroscopy. Bs-CspB reveals an almost invariant conformation when bound to dT7 with only minor reorientations in loop beta1-beta2 and beta3-beta4 and of few aromatic side chains involved in base stacking. Binding studies of protein variants and mutated ssDNA demonstrated that Bs-CspB associates with ssDNA at almost diffusion controlled rates and low sequence specificity consistent with its biological function. A variation of the ssDNA affinity is accomplished solely by changes of the dissociation rate. 15N NMR relaxation and H/D exchange experiments revealed that binding of dT7 increases the stability of Bs-CspB and reduces the sub-nanosecond dynamics of the entire protein and especially of loop beta3-beta4.
Collapse
Affiliation(s)
| | - Klaas E.A. Max
- Max-Delbrück-Centrum für Molekulare Medizin13125 Berlin, Germany
| | | | | | - Heinrich Sticht
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen–Nürnberg91054 Erlangen, Germany
| | - Jochen Balbach
- To whom correspondence should be addressed. Tel: +49 345 55 25353; Fax: +49 345 55 27383;
| |
Collapse
|
89
|
Croy JE, Wuttke DS. Themes in ssDNA recognition by telomere-end protection proteins. Trends Biochem Sci 2006; 31:516-25. [PMID: 16890443 DOI: 10.1016/j.tibs.2006.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The ends of eukaryotic linear chromosomes are unique structures that require special management by the cell. If left unattended, the ends are inappropriately processed, leading to genomic instability and problems with proliferation. Telomeres are specialized nucleoprotein structures that restore chromosome stability by protecting and maintaining chromosome ends. Proper telomere function is facilitated, in part, by the telomere-end protection (TEP) family of proteins, which targets the 3' single-stranded (ss) overhang region of the telomere via a specialized ssDNA-binding domain (DBD). With the recent availability of the structures of these DBDs, the ssDNA-binding characteristics of TEP proteins can be compared and the common underlying mechanisms of ssDNA recognition identified, thus providing insights into telomere function.
Collapse
Affiliation(s)
- Johnny E Croy
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, UCB 215, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
90
|
Suzuki T, McKenzie M, Ott E, Ilkun O, Horvath MP. DNA binding affinity and sequence permutation preference of the telomere protein from Euplotes crassus. Biochemistry 2006; 45:8628-38. [PMID: 16834337 PMCID: PMC2621274 DOI: 10.1021/bi060388w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomere end binding proteins from diverse organisms use various forms of an ancient protein structure to recognize and bind with single-strand DNA found at the ends of telomeres. To further understand the biochemistry and evolution of these proteins, we have characterized the DNA binding properties of the telomere end binding protein from Euplotes crassus (EcTEBP). EcTEBP and its predicted amino-terminal DNA-binding domain, EcTEBP-N, were expressed in Escherichia coli and purified. Each protein formed stoichiometric (1:1) complexes with single-strand DNA oligos derived from the precisely defined d(TTTTGGGGTTTTGG) sequence found at DNA termini in Euplotes. Dissociation constants for DNA x EcTEBP and DNA x EcTEBP-N complexes were comparable: K(D-DNA) = 38 +/- 2 nM for the full-length protein and K(D-DNA) = 60 +/- 4 nM for the N-terminal domain, indicating that the N-terminal domain retains a high affinity for DNA even in the absence of potentially stabilizing moieties located in the C-terminal domain. Rate constants for DNA association and DNA dissociation corroborated a slightly improved DNA binding performance for the full-length protein (ka = 45 +/- 4 microM(-1) s(-1), kd = 0.10 +/- 0.02 s(-1)) relative to that of the N-terminal domain (ka = 18 +/- 1 microM(-1) s(-1), kd = 0.15 +/- 0.01 s(-1)). Equilibrium dissociation constants measured for sequence permutations of the telomere repeat spanned the range of 55-1400 nM, with EcTEBP and EcTEBP-N binding most tightly to d(TTGGGGTTTTGG), the sequence corresponding to that of mature DNA termini. Additionally, competition experiments showed that EcTEBP recognizes and binds the telomere-derived 14-nucleotide DNA in preference to shorter 5'-truncation variants. Compared with the results for multisubunit complexes assembled with telomere single-strand DNA from Oxytricha nova, our results highlight the relative simplicity of the E. crassus system where a telomere end binding protein has biochemical properties indicating one protein subunit caps the single-strand DNA.
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | |
Collapse
|
91
|
Buczek P, Horvath MP. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain. J Mol Biol 2006; 359:1217-34. [PMID: 16678852 PMCID: PMC2953474 DOI: 10.1016/j.jmb.2006.02.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/06/2006] [Accepted: 02/17/2006] [Indexed: 11/26/2022]
Abstract
The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.
Collapse
Affiliation(s)
- Pawel Buczek
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA
| | - Martin P. Horvath
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA
| |
Collapse
|
92
|
Eldridge AM, Halsey WA, Wuttke DS. Identification of the determinants for the specific recognition of single-strand telomeric DNA by Cdc13. Biochemistry 2006; 45:871-9. [PMID: 16411763 PMCID: PMC3514546 DOI: 10.1021/bi0512703] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The single-strand overhang present at telomeres plays a critical role in mediating both the capping and telomerase regulation functions of telomeres. The telomere end-binding proteins, Cdc13 in Saccharomyces cerevisiae, Pot1 in higher eukaryotes, and TEBP in the ciliated protozoan Oxytricha nova, exhibit sequence-specific binding to their respective single-strand overhangs. S. cerevisiae telomeres are composed of a heterogeneous mixture of GT-rich telomeric sequence, unlike in higher eukaryotes which have a simple repeat that is maintained with high fidelity. In yeast, the telomeric overhang is recognized by the essential protein Cdc13, which coordinates end-capping and telomerase activities at the telomere. The Cdc13 DNA-binding domain (Cdc13-DBD) binds these telomere sequences with high affinity (3 pM) and sequence specificity. To better understand the basis for this remarkable recognition, we have investigated the binding of the Cdc13-DBD to a series of altered DNA substrates. Although an 11-mer of GT-rich sequence is required for full binding affinity, only three of these 11 bases are recognized with high specificity. This specificity differs from that observed in the other known telomere end-binding proteins, but is well suited to the specific role of Cdc13 at yeast telomeres. These studies expand our understanding of telomere recognition by the Cdc13-DBD and of the unique molecular recognition properties of ssDNA binding.
Collapse
Affiliation(s)
| | | | - Deborah S. Wuttke
- To whom all correspondence should be addressed. Phone: 303-492-4576, Fax: 303-492-5894.
| |
Collapse
|
93
|
Abstract
Telomeres are multifunctional genetic elements that cap chromosome ends, playing essential roles in genome stability, chromosome higher-order organization and proliferation control. The telomere field has largely benefited from the study of unicellular eukaryotic organisms such as yeasts. Easy cultivation in laboratory conditions and powerful genetics have placed mainly Saccharomyces cerevisiae, Kluveromyces lactis and Schizosaccharomyces pombe as crucial model organisms for telomere biology research. Studies in these species have made it possible to elucidate the basic mechanisms of telomere maintenance, function and evolution. Moreover, comparative genomic analyses show that telomeres have evolved rapidly among yeast species and functional plasticity emerges as one of the driving forces of this evolution. This provides a precious opportunity to further our understanding of telomere biology.
Collapse
Affiliation(s)
- M T Teixeira
- Laboratoire de Biologie Moléculaire de la Cellule of Ecole Normale Supérieure de Lyon, UMR CNRS/INRA/ENS, IFR 128 BioSciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France.
| | | |
Collapse
|
94
|
Rhodin J, Astromskas E, Cohn M. Characterization of the DNA binding features of Saccharomyces castellii Cdc13p. J Mol Biol 2005; 355:335-46. [PMID: 16318854 DOI: 10.1016/j.jmb.2005.10.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/19/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
The principal function of Saccharomyces cerevisiae Cdc13p is to provide a loading platform to recruit complexes that provide end protection and telomere replication. We isolated the Saccharomyces castellii Cdc13p homolog (scasCdc13p) and characterized the in vitro DNA binding features of the purified recombinant scasCdc13p. The full-length scasCdc13p binds specifically to G-rich single-stranded telomeric DNA, and not to double-stranded DNA or the C-rich strand. Moreover, the minimal binding site for scasCdc13p is the octamer 5'-GTGTCTGG-3' of the S.castellii telomeric sequence. The scasCdc13p displayed a high affinity binding, where four individual nucleotide residues were found to be of most importance for the sequence specificity. Nonetheless, scasCdc13p binds the telomeric repeats from various other species, including the human. In spite of considerable divergence in telomere repeat length and sequence between these species, a conserved Cdc13p binding motif was detected. Among the budding yeasts this conserved Cdc13p binding site overlaps the Rap1p binding site. Together, these data implicate scasCdc13p as a telomere end-binding protein with a potential role in the regulation of telomere maintenance in vivo. Moreover, the results suggest that Rap1p and Cdc13p act together to preserve the conserved core present within the otherwise highly divergent btelomeric sequences among a wide variety of yeasts.
Collapse
Affiliation(s)
- J Rhodin
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | | | | |
Collapse
|
95
|
Buczek P, Orr RS, Pyper SR, Shum M, Ota EKI, Gerum SE, Horvath MP. Binding linkage in a telomere DNA-protein complex at the ends of Oxytricha nova chromosomes. J Mol Biol 2005; 350:938-52. [PMID: 15967465 PMCID: PMC2939017 DOI: 10.1016/j.jmb.2005.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 05/07/2005] [Accepted: 05/16/2005] [Indexed: 11/22/2022]
Abstract
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein-protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (K(D-DNA)=1.4 nM). Another fusion protein, constructed without the C-terminal protein-protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (K(D-DNA)=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA-protein stability to protein-protein contacts at a remote site may provide a trigger point for DNA-protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase.
Collapse
|
96
|
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 2005; 12:847-54. [PMID: 16142245 DOI: 10.1038/nsmb982] [Citation(s) in RCA: 432] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/03/2005] [Indexed: 11/09/2022]
Abstract
Telomere end-binding proteins (TEBPs) bind to the guanine-rich overhang (G-overhang) of telomeres. Although the DNA binding properties of TEBPs have been investigated in vitro, little is known about their functions in vivo. Here we use RNA interference to explore in vivo functions of two ciliate TEBPs, TEBPalpha and TEBPbeta. Silencing the expression of genes encoding both TEBPs shows that they cooperate to control the formation of an antiparallel guanine quadruplex (G-quadruplex) DNA structure at telomeres in vivo. This function seems to depend on the role of TEBPalpha in attaching telomeres in the nucleus and in recruiting TEBPbeta to these sites. In vitro DNA binding and footprinting studies confirm the in vivo observations and highlight the role of the C terminus of TEBPbeta in G-quadruplex formation. We have also found that G-quadruplex formation in vivo is regulated by the cell cycle-dependent phosphorylation of TEBPbeta.
Collapse
Affiliation(s)
- Katrin Paeschke
- Institute of Cell Biology, University Witten/Herdecke, Stockumer Strasse 10, 58453 Witten, Germany
| | | | | | | | | |
Collapse
|
97
|
Bunch JT, Bae NS, Leonardi J, Baumann P. Distinct requirements for Pot1 in limiting telomere length and maintaining chromosome stability. Mol Cell Biol 2005; 25:5567-78. [PMID: 15964812 PMCID: PMC1156986 DOI: 10.1128/mcb.25.13.5567-5578.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Pot1 (protection of telomeres) protein binds to the single-stranded extensions at the ends of telomeres, where its presence is critical for the maintenance of linear chromosomes. Homologs of Pot1 have been identified in a wide variety of eukaryotes, including plants, animals, and humans. We now show that Pot1 plays dual roles in telomere length regulation and chromosome end protection. Using a series of Pot1 truncation mutants, we have defined distinct areas of the protein required for chromosome stability and for limiting access to telomere ends by telomerase. We provide evidence that a large portion of Pot1, including the N-terminal DNA binding domain and amino acids close to the C terminus, is essential for its protective function. C-terminal Pot1 fragments were found to exert a dominant-negative effect by displacing endogenous Pot1 from telomeres. Reducing telomere-bound Pot1 in this manner resulted in dramatic lengthening of the telomere tract. Upon further reduction of Pot1 at telomeres, the opposite phenotype was observed: loss of telomeric DNA and chromosome end fusions. Our results demonstrate that cells must carefully regulate the amount of telomere-bound Pot1 to differentiate between allowing access to telomerase and catastrophic loss of telomeres.
Collapse
Affiliation(s)
- Jeremy T Bunch
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
98
|
Lei M, Zaug AJ, Podell ER, Cech TR. Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem 2005; 280:20449-56. [PMID: 15792951 DOI: 10.1074/jbc.m502212200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
POT1 (protection of telomeres 1) protein binds the G-rich single-stranded telomeric DNA at the ends of chromosomes. In human cells hPOT1 is involved in telomere length regulation, but the mechanism of this regulation remains unknown. Examination of the high-resolution crystal structure of the hPOT1-TTAGGGTTAG complex suggested that it would not be extended by telomerase, a hypothesis that we confirm by in vitro assays with recombinant telomerase. On the other hand, when hPOT1 is bound at a position one telomeric repeat before the 3'-end, leaving an 8-nucleotide 3'-tail, the complex is extended with improved activity and processivity. Thus, depending on its location relative to the DNA 3'-end, hPOT1 can either inhibit telomerase action or form a preferred substrate for telomerase. We propose that another factor catalyzes the interconversion of these states in vivo.
Collapse
Affiliation(s)
- Ming Lei
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
99
|
Enokizono Y, Konishi Y, Nagata K, Ouhashi K, Uesugi S, Ishikawa F, Katahira M. Structure of hnRNP D complexed with single-stranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonucleoprotein D. J Biol Chem 2005; 280:18862-70. [PMID: 15734733 DOI: 10.1074/jbc.m411822200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein D, also known as AUF1, has two DNA/RNA-binding domains, each of which can specifically bind to single-stranded d(TTAGGG)n, the human telomeric repeat. Here, the structure of the C-terminal-binding domain (BD2) complexed with single-stranded d(TTAGGG) determined by NMR is presented. The structure has revealed that each residue of the d(TAG) segment is recognized by BD2 in a base-specific manner. The interactions deduced from the structure have been confirmed by gel retardation experiments with mutant BD2 and DNA. It is known that single-stranded DNA with the telomeric repeat tends to form a quadruplex and that the quadruplex has an inhibitory effect on telomere elongation by telomerase. This time it is revealed that BD2 unfolds the quadruplex of such DNA upon binding. Moreover, the effect of BD2 on the elongation by telomerase was examined in vitro. These results suggest the possible involvement of heterogeneous nuclear ribonucleoprotein D in maintenance of the telomere 3'-overhang either through protection of a single-stranded DNA or destabilization of the potentially deleterious quadruplex structure for the elongation by telomerase.
Collapse
Affiliation(s)
- Yoshiaki Enokizono
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
100
|
Trujillo KM, Bunch JT, Baumann P. Extended DNA binding site in Pot1 broadens sequence specificity to allow recognition of heterogeneous fission yeast telomeres. J Biol Chem 2005; 280:9119-28. [PMID: 15637058 DOI: 10.1074/jbc.m414511200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pot1 (protection of telomeres) protein binds to single-stranded telomeric DNA and is essential for the protection of chromosome ends from degradation and end-to-end fusions. The Pot1 amino-terminal DNA binding domain, Pot1N, adopts an oligonucleotide/oligosaccharide binding fold and binds GGTTAC motifs cooperatively and with exceptionally high sequence specificity. We have now examined DNA binding to naturally occurring telomeric substrates based on the analysis of 100 cloned chromosome ends and in the context of the full-length Pot1 protein. Here, we describe several important differences between Pot1 and Pot1N with apparent consequences for chromosome end protection. Specifically, full-length Pot1.DNA complexes are more stable, and the minimal binding site for a Pot1 monomer is extended into two adjacent telomeric repeats. We provide evidence that Pot1 contains a second DNA binding motif that recognizes DNA with reduced sequence specificity compared with the domain present in Pot1N. The two DNA binding motifs cooperate, whereby the amino-terminal oligonucleotide/oligosaccharide binding fold determines the registry of binding, and the internal DNA binding motif stabilizes the complex and expands the protected region toward the 3' -end. Consistent with a role in chromosome end capping, Pot1 prevents access of telomerase to the 3'-end and protects against exonucleolytic degradation.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|