51
|
Sidhu C, Kirstein IV, Meunier CL, Rick J, Fofonova V, Wiltshire KH, Steinke N, Vidal-Melgosa S, Hehemann JH, Huettel B, Schweder T, Fuchs BM, Amann RI, Teeling H. Dissolved storage glycans shaped the community composition of abundant bacterioplankton clades during a North Sea spring phytoplankton bloom. MICROBIOME 2023; 11:77. [PMID: 37069671 PMCID: PMC10108472 DOI: 10.1186/s40168-023-01517-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance. RESULTS In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified β-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts. CONCLUSIONS We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.
Collapse
Affiliation(s)
- Chandni Sidhu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Inga V. Kirstein
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, P.O. Box 180, 27483 Helgoland, Germany
| | - Cédric L. Meunier
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, P.O. Box 180, 27483 Helgoland, Germany
| | - Johannes Rick
- Alfred Wegener Institute for Polar and Marine Research, Hafenstraße 43, 25992 List/Sylt, Germany
| | - Vera Fofonova
- Alfred Wegener Institute for Polar and Marine Research, Klußmannstraße 3, 27570 Bremerhaven, Germany
| | - Karen H. Wiltshire
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, P.O. Box 180, 27483 Helgoland, Germany
| | - Nicola Steinke
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- Center for Marine Environmental Sciences, MARUM, University of Bremen, Leobener Straße 8, 28359 Bremen, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl Von Linné-Weg 10, 50829 Cologne, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17489 Greifswald, Germany
- Institute of Marine Biotechnology, Walther-Rathenau-Straße 49a, 17489 Greifswald, Germany
| | - Bernhard M. Fuchs
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Rudolf I. Amann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
52
|
Lanclos VC, Rasmussen AN, Kojima CY, Cheng C, Henson MW, Faircloth BC, Francis CA, Thrash JC. Ecophysiology and genomics of the brackish water adapted SAR11 subclade IIIa. THE ISME JOURNAL 2023; 17:620-629. [PMID: 36739346 PMCID: PMC10030771 DOI: 10.1038/s41396-023-01376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.
Collapse
Affiliation(s)
- V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anna N Rasmussen
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Conner Y Kojima
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael W Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
53
|
Sood A, Sharma V, Ray P, Angrup A. Can beta-lactamase resistance genes in anaerobic Gram-negative gut bacteria transfer to gut aerobes? J Antibiot (Tokyo) 2023; 76:355-359. [PMID: 36997726 DOI: 10.1038/s41429-023-00608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/20/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The study was conceived with the hypothesis that human aerobic gut flora could act as a reservoir of ß-lactamases and contribute to the emergence of ß-lactam resistance by transferring ß-lactamase genes to resident anaerobes. Thus, we studied the repertoire of ß-lactam resistance determinants (ß-lactamases associated with aerobes and anaerobes) in Gram-negative anaerobes. The phenotypic resistance against ß-lactams and the presence of aerobic and anaerobic ß-lactamases were tested in Gram-negative anaerobic isolates (n = 200) by agar dilution method and targeted PCR, respectively. In addition, whole-genome sequencing (WGS) was used to study the ß-lactam resistance determinants in 4/200 multi-drug resistant (MDR) strains. The resistance to ß-lactams was as follows: imipenem (0.5%), cefoxitin (26.5%), and piperacillin-tazobactam (27.5%). None of the isolates showed the presence of ß-lactamases found in aerobic microorganisms. The presence of anaerobic ß-lactamase genes viz. cfiA, cepA, cfxA, cfiAIS [the intact segment containing cfiA gene (350 bp) and upstream IS elements (1.6-1.7 kb)] was detected in 10%, 9.5%, 21.5%, and 0% isolates, respectively. The WGS data showed the presence of cfiA, cfiA4, cfxA, cfxA2, cfxA3, cfxA4, cfxA5 in MDR strains. The study showed a distinct dichotomy in repertoires of ß-lactamases between aerobes and anaerobes.
Collapse
Affiliation(s)
- Anshul Sood
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vikas Sharma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
54
|
Rodríguez-Gijón A, Buck M, Andersson AF, Izabel-Shen D, Nascimento FJA, Garcia SL. Linking prokaryotic genome size variation to metabolic potential and environment. ISME COMMUNICATIONS 2023; 3:25. [PMID: 36973336 PMCID: PMC10042847 DOI: 10.1038/s43705-023-00231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
While theories and models have appeared to explain genome size as a result of evolutionary processes, little work has shown that genome sizes carry ecological signatures. Our work delves into the ecological implications of microbial genome size variation in benthic and pelagic habitats across environmental gradients of the brackish Baltic Sea. While depth is significantly associated with genome size in benthic and pelagic brackish metagenomes, salinity is only correlated to genome size in benthic metagenomes. Overall, we confirm that prokaryotic genome sizes in Baltic sediments (3.47 Mbp) are significantly bigger than in the water column (2.96 Mbp). While benthic genomes have a higher number of functions than pelagic genomes, the smallest genomes coded for a higher number of module steps per Mbp for most of the functions irrespective of their environment. Some examples of this functions are amino acid metabolism and central carbohydrate metabolism. However, we observed that nitrogen metabolism was almost absent in pelagic genomes and was mostly present in benthic genomes. Finally, we also show that Bacteria inhabiting Baltic sediments and water column not only differ in taxonomy, but also in their metabolic potential, such as the Wood-Ljungdahl pathway or the presence of different hydrogenases. Our work shows how microbial genome size is linked to abiotic factors in the environment, metabolic potential and taxonomic identity of Bacteria and Archaea within aquatic ecosystems.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
55
|
Durán-Viseras A, Sánchez-Porro C, Viver T, Konstantinidis KT, Ventosa A. Discovery of the Streamlined Haloarchaeon Halorutilus salinus, Comprising a New Order Widespread in Hypersaline Environments across the World. mSystems 2023; 8:e0119822. [PMID: 36943059 PMCID: PMC10134839 DOI: 10.1128/msystems.01198-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The class Halobacteria is one of the most diverse groups within the Euryarchaeota phylum, whose members are ubiquitously distributed in hypersaline environments, where they often constitute the major population. Here, we report the discovery and isolation of a new halophilic archaeon, strain F3-133T exhibiting ≤86.3% 16S rRNA gene identity to any previously cultivated archaeon, and, thus, representing a new order. Analysis of available 16S rRNA gene amplicon and metagenomic data sets showed that the new isolate represents an abundant group in intermediate-to-high salinity ecosystems and is widely distributed across the world. The isolate presents a streamlined genome, which probably accounts for its ecological success in nature and its fastidious growth in culture. The predominant osmoprotection mechanism appears to be the typical salt-in strategy used by other haloarchaea. Furthermore, the genome contains the complete gene set for nucleotide monophosphate degradation pathway through archaeal RuBisCO, being within the first halophilic archaea representatives reported to code this enzyme. Genomic comparisons with previously described representatives of the phylum Euryarchaeota were consistent with the 16S rRNA gene data in supporting that our isolate represents a novel order within the class Halobacteria for which we propose the names Halorutilales ord. nov., Halorutilaceae fam. nov., Halorutilus gen. nov. and Halorutilus salinus sp. nov. IMPORTANCE The discovery of the new halophilic archaeon, Halorutilus salinus, representing a novel order, family, genus, and species within the class Halobacteria and phylum Euryarchaeota clearly enables insights into the microbial dark matter, expanding the current taxonomical knowledge of this group of archaea. The in-depth comparative genomic analysis performed on this new taxon revealed one of the first known examples of an Halobacteria representative coding the archaeal RuBisCO gene and with a streamlined genome, being ecologically successful in nature and explaining its previous non-isolation. Altogether, this research brings light into the understanding of the physiology of the Halobacteria class members, their ecological distribution, and capacity to thrive in hypersaline environments.
Collapse
Affiliation(s)
- Ana Durán-Viseras
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
56
|
Wisnoski NI, Lennon JT. Scaling up and down: movement ecology for microorganisms. Trends Microbiol 2023; 31:242-253. [PMID: 36280521 DOI: 10.1016/j.tim.2022.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Movement is critical for the fitness of organisms, both large and small. It dictates how individuals acquire resources, evade predators, exchange genetic material, and respond to stressful environments. Movement also influences ecological and evolutionary dynamics at higher organizational levels, such as populations and communities. However, the links between individual motility and the processes that generate and maintain microbial diversity are poorly understood. Movement ecology is a framework linking the physiological and behavioral properties of individuals to movement patterns across scales of space, time, and biological organization. By synthesizing insights from cell biology, ecology, and evolution, we expand theory from movement ecology to predict the causes and consequences of microbial movements.
Collapse
Affiliation(s)
- Nathan I Wisnoski
- Wyoming Geographic Information Science Center, University of Wyoming, Laramie, WY 82071, USA; Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
57
|
Engelberts JP, Robbins SJ, Herbold CW, Moeller FU, Jehmlich N, Laffy PW, Wagner M, Webster NS. Metabolic reconstruction of the near complete microbiome of the model sponge Ianthella basta. Environ Microbiol 2023; 25:646-660. [PMID: 36480164 PMCID: PMC10947273 DOI: 10.1111/1462-2920.16302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing >90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe-host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host-microbe interactions and provide a basis for in-depth physiological experiments.
Collapse
Affiliation(s)
- Joan Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Steven J. Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Patrick W. Laffy
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Nicole S. Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Antarctic DivisionKingstonTasmaniaAustralia
| |
Collapse
|
58
|
Noell SE, Brennan E, Washburn Q, Davis EW, Hellweger FL, Giovannoni SJ. Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility. Environ Microbiol 2023. [PMID: 36826469 DOI: 10.1111/1462-2920.16357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.
Collapse
Affiliation(s)
- Stephen E Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth Brennan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Quinn Washburn
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Oregon, USA
| | | | | |
Collapse
|
59
|
Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya. Nat Commun 2023; 14:838. [PMID: 36792581 PMCID: PMC9931769 DOI: 10.1038/s41467-023-36487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Asgard archaea include the closest known archaeal relatives of eukaryotes. Here, we investigate the evolution and function of Asgard thymidylate synthases and other folate-dependent enzymes required for the biosynthesis of DNA, RNA, amino acids and vitamins, as well as syntrophic amino acid utilization. Phylogenies of Asgard folate-dependent enzymes are consistent with their horizontal transmission from various bacterial groups. We experimentally validate the functionality of thymidylate synthase ThyX of the cultured 'Candidatus Prometheoarchaeum syntrophicum'. The enzyme efficiently uses bacterial-like folates and is inhibited by mycobacterial ThyX inhibitors, even though the majority of experimentally tested archaea are known to use carbon carriers distinct from bacterial folates. Our phylogenetic analyses suggest that the eukaryotic thymidylate synthase, required for de novo DNA synthesis, is not closely related to archaeal enzymes and might have been transferred from bacteria to protoeukaryotes during eukaryogenesis. Altogether, our study suggests that the capacity of eukaryotic cells to duplicate their genetic material is a sum of archaeal (replisome) and bacterial (thymidylate synthase) characteristics. We also propose that recent prevalent lateral gene transfer from bacteria has markedly shaped the metabolism of Asgard archaea.
Collapse
|
60
|
How Many Factors Influence Genomic GC Content Among Prokaryotes? J Mol Evol 2023; 91:6-9. [PMID: 36370165 DOI: 10.1007/s00239-022-10077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 11/14/2022]
|
61
|
Abad N, Uranga A, Ayo B, Arrieta JM, Baña Z, Azúa I, Artolozaga I, Iriberri J, González-Rojí SJ, Unanue M. Kinetic modulation of bacterial hydrolases by microbial community structure in coastal waters. Environ Microbiol 2023; 25:548-561. [PMID: 36478509 PMCID: PMC10108013 DOI: 10.1111/1462-2920.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In this study, we hypothesized that shifts in the kinetic parameters of extracellular hydrolytic enzymes may occur as a consequence of seasonal environmental disturbances and would reflect the level of adaptation of the bacterial community to the organic matter of the ecosystem. We measured the activities of enzymes that play a key role in the bacterial growth (leucine aminopeptidase, β- and α-glucosidases) in surface coastal waters of the Eastern Cantabrian Sea and determined their kinetic parameters by computing kinetic models of distinct complexity. Our results revealed the existence of two clearly distinct enzymatic systems operating at different substrate concentrations: a high-affinity system prevailing at low substrate concentrations and a low-affinity system characteristic of high substrate concentrations. These findings could be the result of distinct functional bacterial assemblages growing concurrently under sharp gradients of high-molecular-weight compounds. We constructed an ecological network based on contemporaneous and time-delayed correlations to explore the associations between the kinetic parameters and the environmental variables. The analysis revealed that the recurring phytoplankton blooms registered throughout the seasonal cycle trigger the wax and wane of those members of the bacterial community able to synthesize and secrete specific enzymes.
Collapse
Affiliation(s)
- Naiara Abad
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Alava, Spain
| | - Ainhoa Uranga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña Ayo
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Jesús Maria Arrieta
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz, Spain
| | - Zuriñe Baña
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Iñigo Azúa
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Itxaso Artolozaga
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Iriberri
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology PiE-UPV/EHU, Plentzia, Spain
| | - Santos J González-Rojí
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
- Climate and Environmental Physics (CEP), University of Bern, Bern, Switzerland
| | - Marian Unanue
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
62
|
Kavagutti VS, Bulzu PA, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, Grujčić V, Mehrshad M, Kasalický V, Andrei AS, Jezberová J, Seďa J, Rychtecký P, Znachor P, Šimek K, Ghai R. High-resolution metagenomic reconstruction of the freshwater spring bloom. MICROBIOME 2023; 11:15. [PMID: 36698172 PMCID: PMC9878933 DOI: 10.1186/s40168-022-01451-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Cecilia M Chiriac
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vesna Grujčić
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Microbial Evogenomics Lab (MiEL), University of Zurich, Kilchberg, Switzerland
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jaromir Seďa
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
63
|
Cho CH, Park SI, Huang TY, Lee Y, Ciniglia C, Yadavalli HC, Yang SW, Bhattacharya D, Yoon HS. Genome-wide signatures of adaptation to extreme environments in red algae. Nat Commun 2023; 14:10. [PMID: 36599855 DOI: 10.1038/s41467-022-35566-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
The high temperature, acidity, and heavy metal-rich environments associated with hot springs have a major impact on biological processes in resident cells. One group of photosynthetic eukaryotes, the Cyanidiophyceae (Rhodophyta), has successfully thrived in hot springs and associated sites worldwide for more than 1 billion years. Here, we analyze chromosome-level assemblies from three representative Cyanidiophyceae species to study environmental adaptation at the genomic level. We find that subtelomeric gene duplication of functional genes and loss of canonical eukaryotic traits played a major role in environmental adaptation, in addition to horizontal gene transfer events. Shared responses to environmental stress exist in Cyanidiales and Galdieriales, however, most of the adaptive genes (e.g., for arsenic detoxification) evolved independently in these lineages. Our results underline the power of local selection to shape eukaryotic genomes that may face vastly different stresses in adjacent, extreme microhabitats.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Tzu-Yen Huang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
64
|
Unique H 2-utilizing lithotrophy in serpentinite-hosted systems. THE ISME JOURNAL 2023; 17:95-104. [PMID: 36207493 PMCID: PMC9751293 DOI: 10.1038/s41396-022-01197-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Serpentinization of ultramafic rocks provides molecular hydrogen (H2) that can support lithotrophic metabolism of microorganisms, but also poses extremely challenging conditions, including hyperalkalinity and limited electron acceptor availability. Investigation of two serpentinization-active systems reveals that conventional H2-/CO2-dependent homoacetogenesis is thermodynamically unfavorable in situ due to picomolar CO2 levels. Through metagenomics and thermodynamics, we discover unique taxa capable of metabolism adapted to the habitat. This included a novel deep-branching phylum, "Ca. Lithacetigenota", that exclusively inhabits serpentinite-hosted systems and harbors genes encoding alternative modes of H2-utilizing lithotrophy. Rather than CO2, these putative metabolisms utilize reduced carbon compounds detected in situ presumably serpentinization-derived: formate and glycine. The former employs a partial homoacetogenesis pathway and the latter a distinct pathway mediated by a rare selenoprotein-the glycine reductase. A survey of microbiomes shows that glycine reductases are diverse and nearly ubiquitous in serpentinite-hosted environments. "Ca. Lithacetigenota" glycine reductases represent a basal lineage, suggesting that catabolic glycine reduction is an ancient bacterial innovation by Terrabacteria for gaining energy from geogenic H2 even under hyperalkaline, CO2-poor conditions. Unique non-CO2-reducing metabolisms presented here shed light on potential strategies that extremophiles may employ for overcoming a crucial obstacle in serpentinization-associated environments, features potentially relevant to primordial lithotrophy in early Earth.
Collapse
|
65
|
Bolaños LM, Tait K, Somerfield PJ, Parsons RJ, Giovannoni SJ, Smyth T, Temperton B. Influence of short and long term processes on SAR11 communities in open ocean and coastal systems. ISME COMMUNICATIONS 2022; 2:116. [PMID: 37938786 PMCID: PMC9723719 DOI: 10.1038/s43705-022-00198-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 07/18/2023]
Abstract
SAR11 bacteria dominate the surface ocean and are major players in converting fixed carbon back to atmospheric carbon dioxide. The SAR11 clade is comprised of niche-specialized ecotypes that display distinctive spatiotemporal transitions. We analyzed SAR11 ecotype seasonality in two long-term 16S rRNA amplicon time series representing different North Atlantic regimes: the Sargasso Sea (subtropical ocean-gyre; BATS) and the temperate coastal Western English Channel (WEC). Using phylogenetically resolved amplicon sequence variants (ASVs), we evaluated seasonal environmental constraints on SAR11 ecotype periodicity. Despite large differences in temperature and nutrient availability between the two sites, at both SAR11 succession was defined by summer and winter clusters of ASVs. The summer cluster was dominated by ecotype Ia.3 in both sites. Winter clusters were dominated by ecotypes Ib and IIa.A at BATS and Ia.1 and IIa.B at WEC. A 2-year weekly analysis within the WEC time series showed that the response of SAR11 communities to short-term environmental fluctuations was variable. In 2016, community shifts were abrupt and synchronized to environmental shifts. However, in 2015, changes were gradual and decoupled from environmental fluctuations, likely due to increased mixing from strong winds. We demonstrate that interannual weather variability disturb the pace of SAR11 seasonal progression.
Collapse
Affiliation(s)
- Luis M Bolaños
- School of Biosciences, University of Exeter, Exeter, UK.
| | - Karen Tait
- Plymouth Marine Laboratory, Plymouth, UK
| | | | | | | | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
66
|
Bohlin J. A simple stochastic model describing the evolution of genomic GC content in asexually reproducing organisms. Sci Rep 2022; 12:18569. [PMID: 36329129 PMCID: PMC9631610 DOI: 10.1038/s41598-022-21709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A genome's nucleotide composition can usually be summarized with (G)uanine + (C)ytosine (GC) or (A)denine + (T)hymine (AT) frequencies as GC% = 100% - AT%. Genomic AT/GC content has been linked to environment and selective processes in asexually reproducing organisms. A model is presented relating the evolution of genomic GC content over time to AT [Formula: see text] GC and GC [Formula: see text] AT mutation rates. By employing Itô calculus it is shown that if mutation rates are subject to random perturbations, that can vary over time, several implications follow. In particular, an extra Brownian motion term appears influencing genomic nucleotide variability; the greater the random perturbations the more genomic nucleotide variability. This can have several interpretations depending on the context. For instance, reducing the influence of the random perturbations on the AT/GC mutation rates and thus genomic nucleotide variability, to limit fitness decreasing and deleterious mutations, will likely suggest channeling of resources. On the other hand, increased genomic nucleotide diversity may be beneficial in variable environments. In asexually reproducing organisms, the Brownian motion term can be considered to be inversely reflective of the selective pressures an organism is subjected to at the molecular level. The presented model is a generalization of a previous model, limited to microbial symbionts, to all asexually reproducing, non-recombining organisms. Last, a connection between the presented model and the classical Luria-Delbrück mutation model is presented in an Itô calculus setting.
Collapse
Affiliation(s)
- Jon Bohlin
- grid.418193.60000 0001 1541 4204Division of Infection Control, Department of Methods Development and Analysis, Norwegian Institute of Public Health, Oslo, Norway ,grid.418193.60000 0001 1541 4204Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. Box 4404, Lovisenberggata 8, 0403 Oslo, Norway
| |
Collapse
|
67
|
Lerch BA, Smith DA, Koffel T, Bagby SC, Abbott KC. How public can public goods be? Environmental context shapes the evolutionary ecology of partially private goods. PLoS Comput Biol 2022; 18:e1010666. [PMID: 36318525 PMCID: PMC9651594 DOI: 10.1371/journal.pcbi.1010666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/11/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The production of costly public goods (as distinct from metabolic byproducts) has largely been understood through the realization that spatial structure can minimize losses to non-producing "cheaters" by allowing for the positive assortment of producers. In well-mixed systems, where positive assortment is not possible, the stable production of public goods has been proposed to depend on lineages that become indispensable as the sole producers of those goods while their neighbors lose production capacity through genome streamlining (the Black Queen Hypothesis). Here, we develop consumer-resource models motivated by nitrogen-fixing, siderophore-producing bacteria that consider the role of colimitation in shaping eco-evolutionary dynamics. Our models demonstrate that in well-mixed environments, single "public goods" can only be ecologically and evolutionarily stable if they are partially privatized (i.e., if producers reserve a portion of the product pool for private use). Colimitation introduces the possibility of subsidy: strains producing a fully public good can exclude non-producing strains so long as the producing strain derives sufficient benefit from the production of a second partially private good. We derive a lower bound for the degree of privatization necessary for production to be advantageous, which depends on external resource concentrations. Highly privatized, low-investment goods, in environments where the good is limiting, are especially likely to be stably produced. Coexistence emerges more rarely in our mechanistic model of the external environment than in past phenomenological approaches. Broadly, we show that the viability of production depends critically on the environmental context (i.e., external resource concentrations), with production of shared resources favored in environments where a partially-privatized resource is scarce.
Collapse
Affiliation(s)
- Brian A. Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek A. Smith
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas Koffel
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
| | - Sarah C. Bagby
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karen C. Abbott
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
68
|
Beier S, Werner J, Bouvier T, Mouquet N, Violle C. Trait-trait relationships and tradeoffs vary with genome size in prokaryotes. Front Microbiol 2022; 13:985216. [PMID: 36338105 PMCID: PMC9634001 DOI: 10.3389/fmicb.2022.985216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
We report genomic traits that have been associated with the life history of prokaryotes and highlight conflicting findings concerning earlier observed trait correlations and tradeoffs. In order to address possible explanations for these contradictions we examined trait-trait variations of 11 genomic traits from ~18,000 sequenced genomes. The studied trait-trait variations suggested: (i) the predominance of two resistance and resilience-related orthogonal axes and (ii) at least in free living species with large effective population sizes whose evolution is little affected by genetic drift an overlap between a resilience axis and an oligotrophic-copiotrophic axis. These findings imply that resistance associated traits of prokaryotes are globally decoupled from resilience related traits and in the case of free-living communities also from traits associated with resource availability. However, further inspection of pairwise scatterplots showed that resistance and resilience traits tended to be positively related for genomes up to roughly five million base pairs and negatively for larger genomes. Genome size distributions differ across habitats and our findings therefore point to habitat dependent tradeoffs between resistance and resilience. This in turn may preclude a globally consistent assignment of prokaryote genomic traits to the competitor - stress-tolerator - ruderal (CSR) schema that sorts species depending on their location along disturbance and productivity gradients into three ecological strategies and may serve as an explanation for conflicting findings from earlier studies. All reviewed genomic traits featured significant phylogenetic signals and we propose that our trait table can be applied to extrapolate genomic traits from taxonomic marker genes. This will enable to empirically evaluate the assembly of these genomic traits in prokaryotic communities from different habitats and under different productivity and disturbance scenarios as predicted via the resistance-resilience framework formulated here.
Collapse
Affiliation(s)
- Sara Beier
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
- UMR 7621 Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
- High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Thierry Bouvier
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Nicolas Mouquet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Centre for the Synthesis and Analysis of Biodiversity, Montpellier, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
69
|
Weber L, Soule MK, Longnecker K, Becker CC, Huntley N, Kujawinski EB, Apprill A. Benthic exometabolites and their ecological significance on threatened Caribbean coral reefs. ISME COMMUNICATIONS 2022; 2:101. [PMID: 37938276 PMCID: PMC9723752 DOI: 10.1038/s43705-022-00184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 09/02/2023]
Abstract
Benthic organisms are the architectural framework supporting coral reef ecosystems, but their community composition has recently shifted on many reefs. Little is known about the metabolites released from these benthic organisms and how compositional shifts may influence other reef life, including prolific microorganisms. To investigate the metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting alga, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry. Incubations with reef seawater microorganisms were conducted to monitor changes in microbial abundances and community composition using 16 S rRNA gene sequencing in relation to exudate source and three specific metabolites. Exudates were enriched in amino acids, nucleosides, vitamins, and indole-based metabolites, showing that benthic organisms contribute labile organic matter to reefs. Furthermore, exudate compositions were species-specific, and riboflavin and pantothenic acid emerged as significant coral-produced metabolites, while caffeine emerged as a significant invasive algal-produced metabolite. Microbial abundances and individual microbial taxa responded differently to exudates from stony corals and octocorals, demonstrating that exudate mixtures released from different coral species select for specific bacteria. In contrast, microbial communities did not respond to individual additions of riboflavin, pantothenic acid, or caffeine. This work indicates that recent shifts in benthic organisms alter exudate composition and likely impact microbial communities on coral reefs.
Collapse
Affiliation(s)
- Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| | - Melissa Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
| | - Naomi Huntley
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Marine and Environmental Science Department, University of the Virgin Islands, Charlotte Amalie West, St Thomas, Charlotte Amalie, VI, 00802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| |
Collapse
|
70
|
Scicchitano D, Lo Martire M, Palladino G, Nanetti E, Fabbrini M, Dell’Anno A, Rampelli S, Corinaldesi C, Candela M. Microbiome network in the pelagic and benthic offshore systems of the northern Adriatic Sea (Mediterranean Sea). Sci Rep 2022; 12:16670. [PMID: 36198901 PMCID: PMC9535000 DOI: 10.1038/s41598-022-21182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractBecause of their recognized global importance, there is now the urgent need to map diversity and distribution patterns of marine microbial communities. Even if available studies provided some advances in the understanding the biogeographical patterns of marine microbiomes at the global scale, their degree of plasticity at the local scale it is still underexplored, and functional implications still need to be dissected. In this scenario here we provide a synoptical study on the microbiomes of the water column and surface sediments from 19 sites in a 130 km2 area located 13.5 km afar from the coast in the North-Western Adriatic Sea (Italy), providing the finest-scale mapping of marine microbiomes in the Mediterranean Sea. Pelagic and benthic microbiomes in the study area showed sector specific-patterns and distinct assemblage structures, corresponding to specific variations in the microbiome network structure. While maintaining a balanced structure in terms of potential ecosystem services (e.g., hydrocarbon degradation and nutrient cycling), sector-specific patterns of over-abundant modules—and taxa—were defined, with the South sector (the closest to the coast) characterized by microbial groups of terrestrial origins, both in the pelagic and the benthic realms. By the granular assessment of the marine microbiome changes at the local scale, we have been able to describe, to our knowledge at the first time, the integration of terrestrial microorganisms in the marine microbiome networks, as a possible natural process characterizing eutrophic coastal area. This raises the question about the biological threshold for terrestrial microorganisms to be admitted in the marine microbiome networks, without altering the ecological balance.
Collapse
|
71
|
Jiang C, Kasai H, Mino S, Romalde JL, Sawabe T. The pan‐genome of Splendidus clade species in the family
Vibrionaceae
: insights into evolution, adaptation, and pathogenicity. Environ Microbiol 2022; 24:4587-4606. [DOI: 10.1111/1462-2920.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS‐Facultad de Biología. Universidade de Santiago de Compostela Spain
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences Hokkaido University Hakodate Japan
| |
Collapse
|
72
|
RRAP: RPKM Recruitment Analysis Pipeline. Microbiol Resour Announc 2022; 11:e0064422. [PMID: 35993706 PMCID: PMC9476942 DOI: 10.1128/mra.00644-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A common method for quantifying microbial abundances in situ is through metagenomic read recruitment to genomes and normalizing read counts as reads per kilobase (of genome) per million (bases of recruited sequences) (RPKM). We created RRAP (RPKM Recruitment Analysis Pipeline), a wrapper that automates this process using Bowtie2 and SAMtools.
Collapse
|
73
|
Finn DR, App M, Hertzog L, Tebbe CC. Reconciling concepts of black queen and tragedy of the commons in simulated bulk soil and rhizosphere prokaryote communities. Front Microbiol 2022; 13:969784. [PMID: 36187971 PMCID: PMC9520196 DOI: 10.3389/fmicb.2022.969784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Black Queen hypothesis describes the evolutionary strategy to lose costly functions in favour of improving growth efficiency. This results in mutants (cheaters) becoming obligately dependent upon a provider (black queen) to produce a necessary resource. Previous analyses demonstrate black queens and cheaters reach a state of equilibrium in pair-wise systems. However, in complex communities, accumulation of cheaters likely poses a serious burden on shared resources. This should result in a Tragedy of the Commons (ToC), whereby over-utilisation of public resources risks making them growth-limiting. With a collection of differential equations, microbial communities composed of twenty prokaryote ‘species’ either from rhizosphere, characterised by abundant carbon and energy sources, or bulk soil, with limited carbon and energy supply, were simulated. Functional trait groups differed based on combinations of cellulase and amino acid production, growth and resource uptake. Randomly generated communities were thus composed of species that acted as cellulolytic prototrophic black queens, groups that were either cellulolytic or prototrophic, or non-cellulolytic auxotrophic cheaters. Groups could evolve to lose functions over time. Biomass production and biodiversity were tracked in 8,000 Monte Carlo simulations over 500 generations. Bulk soil favoured oligotrophic co-operative communities where biodiversity was positively associated with growth. Rhizosphere favoured copiotrophic cheaters. The most successful functional group across both environments was neither black queens nor cheaters, but those that balanced providing an essential growth-limiting function at a relatively low maintenance cost. Accumulation of loss of function mutants in bulk soil risked resulting in loss of cumulative growth by ToC, while cumulative growth increased in the rhizosphere. In the bulk soil, oligotrophic adaptations assisted species in avoiding extinction. This demonstrated that loss of function by mutation is a successful evolutionary strategy in host-associated and/or resource-rich environments, but poses a risk to communities that must co-operate with each other for mutual co-existence. It was concluded that microbial communities must follow different evolutionary and community assembly strategies in bulk soil versus rhizosphere, with bulk soil communities more dependent on traits that promote co-operative interactions between microbial species.
Collapse
|
74
|
|
75
|
Climate-Endangered Arctic Epishelf Lake Harbors Viral Assemblages with Distinct Genetic Repertoires. Appl Environ Microbiol 2022; 88:e0022822. [PMID: 36005820 PMCID: PMC9469726 DOI: 10.1128/aem.00228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Milne Fiord, located on the coastal margin of the Last Ice Area (LIA) in the High Arctic (82°N, Canada), harbors an epishelf lake, a rare type of ice-dependent ecosystem in which a layer of freshwater overlies marine water connected to the open ocean. This microbe-dominated ecosystem faces catastrophic change due to the deterioration of its ice environment related to warming temperatures. We produced the first assessment of viral abundance, diversity, and distribution in this vulnerable ecosystem and explored the niches available for viral taxa and the functional genes underlying their distribution. We found that the viral community in the freshwater layer was distinct from, and more diverse than, the community in the underlying seawater and contained a different set of putative auxiliary metabolic genes, including the sulfur starvation-linked gene tauD and the gene coding for patatin-like phospholipase. The halocline community resembled the freshwater more than the marine community, but harbored viral taxa unique to this layer. We observed distinct viral assemblages immediately below the halocline, at a depth that was associated with a peak of prasinophyte algae and the viral family Phycodnaviridae. We also assembled 15 complete circular genomes, including a putative Pelagibacter phage with a marine distribution. It appears that despite its isolated and precarious situation, the varied niches in this epishelf lake support a diverse viral community, highlighting the importance of characterizing underexplored microbiota in the Last Ice Area before these ecosystems undergo irreversible change. IMPORTANCE Viruses are key to understanding polar aquatic ecosystems, which are dominated by microorganisms. However, studies of viral communities are challenging to interpret because the vast majority of viruses are known only from sequence fragments, and their taxonomy, hosts, and genetic repertoires are unknown. Our study establishes a basis for comparison that will advance understanding of viral ecology in diverse global environments, particularly in the High Arctic. Rising temperatures in this region mean that researchers have limited time remaining to understand the biodiversity and biogeochemical cycles of ice-dependent environments and the consequences of these rapid, irreversible changes. The case of the Milne Fiord epishelf lake has special urgency because of the rarity of this type of “floating lake” ecosystem and its location in the Last Ice Area, a region of thick sea ice with global importance for conservation efforts.
Collapse
|
76
|
Goldberg SR, Haltli BA, Correa H, Kerr RG. Pseudovibrio flavus sp. nov. isolated from the sea sponge Verongula gigantea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, motile, rod-shaped marine bacterium, designated RKSG542T, was isolated from the sea sponge Verongula gigantea collected at a depth of 20 m off the west coast of San Salvador, The Bahamas. Phylogenetic analyses based on 16S rRNA gene and genome sequences place RKSG542T in a monophyletic clade with members of the genus
Pseudovibrio
. Strain RKSG542T shared <96.7 % 16S rRNA gene sequence similarity,<72.2 % average nucleotide identity,<66.7 % average amino acid identity, and <24.8 % digital DNA–DNA hybridization with type strains of the family
Stappiaceae
. Growth occurred at 22–37 °C (22–30 °C optimum), at pH 7–9 (pH 7 optimum), and with 0.5–5 % (w/v) NaCl (2 % optimum). The predominant fatty acids (>10 %) were summed feature 8 (C18 : 1
ω6c and/or C18 : 1
ω7c), C18 : 0 and C16 : 0, and the respiratory lipoquinone was Q-10. The polar lipid composition comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unknown aminolipids, six unknown phospholipids and four unknown lipids. The DNA G+C content of the genome sequence was 52.5 mol%. Based on the results of biochemical, phylogenetic and genomic analyses, RKSG542T (=TSD-76T=LMG 29867T) is presented here as the type strain of a novel species within the genus
Pseudovibrio
(family
Stappiaceae
, order
Hyphomicrobiales
, class
Alphaproteobacteria
), for which the name Pseudovibrio flavus sp. nov. is proposed.
Collapse
Affiliation(s)
- Stacey R. Goldberg
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Brad A. Haltli
- Nautilus Biosciences Croda, Duffy Research Centre, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hebelin Correa
- Nautilus Biosciences Croda, Duffy Research Centre, Charlottetown, Prince Edward Island, Canada
| | - Russell G. Kerr
- Nautilus Biosciences Croda, Duffy Research Centre, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
77
|
de la Haba RR, Antunes A, Hedlund BP. Editorial: Extremophiles: Microbial genomics and taxogenomics. Front Microbiol 2022; 13:984632. [PMID: 35983330 PMCID: PMC9379316 DOI: 10.3389/fmicb.2022.984632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
- *Correspondence: Rafael R. de la Haba
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, Macau SAR, China
- André Antunes
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
- Brian P. Hedlund
| |
Collapse
|
78
|
Mahajan S, Agashe D. Evolutionary jumps in bacterial GC content. G3 (BETHESDA, MD.) 2022; 12:jkac108. [PMID: 35579351 PMCID: PMC9339322 DOI: 10.1093/g3journal/jkac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Genomic GC (Guanine-Cytosine) content is a fundamental molecular trait linked with many key genomic features such as codon and amino acid use. Across bacteria, GC content is surprisingly diverse and has been studied for many decades; yet its evolution remains incompletely understood. Since it is difficult to observe GC content evolve on laboratory time scales, phylogenetic comparative approaches are instrumental; but this dimension is rarely studied systematically in the case of bacterial GC content. We applied phylogenetic comparative models to analyze GC content evolution in multiple bacterial groups across 2 major bacterial phyla. We find that GC content diversifies via a combination of gradual evolution and evolutionary "jumps." Surprisingly, unlike prior reports that solely focused on reductions in GC, we found a comparable number of jumps with both increased and decreased GC content. Overall, many of the identified jumps occur in lineages beyond the well-studied peculiar examples of endosymbiotic and AT-rich marine bacteria and do not support the predicted role of oxygen dependence. Our analysis of rapid and large shifts in GC content thus identifies new clades and novel contexts to further understand the ecological and evolutionary drivers of this important genomic trait.
Collapse
Affiliation(s)
- Saurabh Mahajan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Atria University, Bengaluru 560024, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
79
|
Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biol 2022; 12:220041. [PMID: 35857930 PMCID: PMC9277239 DOI: 10.1098/rsob.220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
Collapse
Affiliation(s)
- Matthew Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Thomas A. Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alyson E. Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
80
|
Hu W, Zhang H, Lin X, Liu R, Bartlam M, Wang Y. Characteristics, Biodiversity, and Cultivation Strategy of Low Nucleic Acid Content Bacteria. Front Microbiol 2022; 13:900669. [PMID: 35783413 PMCID: PMC9240426 DOI: 10.3389/fmicb.2022.900669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Low nucleic acid content (LNA) bacteria are ubiquitous and estimated to constitute 20%–90% of the total bacterial community in marine and freshwater environment. LNA bacteria with unique physiological characteristics, including small cell size and small genomes, can pass through 0.45-μm filtration. The researchers came up with different terminologies for low nucleic acid content bacteria based on different research backgrounds, such as: filterable bacteria, oligotrophic bacteria, and low-DNA bacteria. LNA bacteria have an extremely high level of genetic diversity and play an important role in material circulation in oligotrophic environment. However, the majority of LNA bacteria in the environment remain uncultivated. Thus, an important challenge now is to isolate more LNA bacteria from oligotrophic environments and gain insights into their unique metabolic mechanisms and ecological functions. Here, we reviewed LNA bacteria in aquatic environments, focusing on their characteristics, community structure and diversity, functions, and cultivation strategies. Exciting future prospects for LNA bacteria are also discussed.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Xiaowen Lin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
- *Correspondence: Yingying Wang,
| |
Collapse
|
81
|
Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME COMMUNICATIONS 2022; 2:36. [PMID: 37938286 PMCID: PMC9723720 DOI: 10.1038/s43705-022-00121-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/18/2023]
Abstract
Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005-2018), using SSU rRNA gene sequencing from two size fractions (0.2-1 and 1-80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46-93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.
| |
Collapse
|
82
|
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B. A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Appl Environ Microbiol 2022; 88:e0025522. [PMID: 35311512 PMCID: PMC9004378 DOI: 10.1128/aem.00255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The methylotrophic OM43 clade are Gammaproteobacteria that comprise some of the smallest free-living cells known and have highly streamlined genomes. OM43 represents an important microbial link between marine primary production and remineralization of carbon back to the atmosphere. Bacteriophages shape microbial communities and are major drivers of mortality and global marine biogeochemistry. Recent cultivation efforts have brought the first viruses infecting members of the OM43 clade into culture. Here, we characterize a novel myophage infecting OM43 called Melnitz. Melnitz was isolated independently from water samples from a subtropical ocean gyre (Sargasso Sea) and temperate coastal (Western English Channel) systems. Metagenomic recruitment from global ocean viromes confirmed that Melnitz is globally ubiquitous, congruent with patterns of host abundance. Bacteria with streamlined genomes such as OM43 and the globally dominant SAR11 clade use riboswitches as an efficient method to regulate metabolism. Melnitz encodes a two-piece tmRNA (ssrA), controlled by a glutamine riboswitch, providing evidence that riboswitch use also occurs for regulation during phage infection of streamlined heterotrophs. Virally encoded tRNAs and ssrA found in Melnitz were phylogenetically more closely related to those found within the alphaproteobacterial SAR11 clade and their associated myophages than those within their gammaproteobacterial hosts. This suggests the possibility of an ancestral host transition event between SAR11 and OM43. Melnitz and a related myophage that infects SAR11 were unable to infect hosts of the SAR11 and OM43, respectively, suggesting host transition rather than a broadening of host range. IMPORTANCE Isolation and cultivation of viruses are the foundations on which the mechanistic understanding of virus-host interactions and parameterization of bioinformatic tools for viral ecology are based. This study isolated and characterized the first myophage known to infect the OM43 clade, expanding our knowledge of this understudied group of microbes. The nearly identical genomes of four strains of Melnitz isolated from different marine provinces and the global abundance estimations from metagenomic data suggest that this viral population is globally ubiquitous. Genome analysis revealed several unusual features in Melnitz and related genomes recovered from viromes, such as a curli operon and virally encoded tmRNA controlled by a glutamine riboswitch, neither of which are found in the host. Further phylogenetic analysis of shared genes indicates that this group of viruses infecting the gammaproteobacterial OM43 shares a recent common ancestor with viruses infecting the abundant alphaproteobacterial SAR11 clade. Host ranges are affected by compatible cell surface receptors, successful circumvention of superinfection exclusion systems, and the presence of required accessory proteins, which typically limits phages to singular narrow groups of closely related bacterial hosts. This study provides intriguing evidence that for streamlined heterotrophic bacteria, virus-host transitioning may not be necessarily restricted to phylogenetically related hosts but is a function of shared physical and biochemical properties of the cell.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Allen
- University of Exeter, School of Biosciences, Exeter, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Ben Temperton
- University of Exeter, School of Biosciences, Exeter, UK
| |
Collapse
|
83
|
Exchange of Vitamin B 1 and Its Biosynthesis Intermediates Shapes the Composition of Synthetic Microbial Cocultures and Reveals Complexities of Nutrient Sharing. J Bacteriol 2022; 204:e0050321. [PMID: 35357164 DOI: 10.1128/jb.00503-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Microbial communities occupy diverse niches in nature, and community members routinely exchange a variety of nutrients among themselves. While large-scale metagenomic and metabolomic studies shed some light on these exchanges, the contribution of individual species and the molecular details of specific interactions are difficult to track. In this study, we follow the exchange of vitamin B1 (thiamin) and its intermediates between microbes within synthetic cocultures of Escherichia coli and Vibrio anguillarum. Thiamin contains two moieties, 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), which are synthesized by distinct pathways using enzymes ThiC and ThiG, respectively, and then coupled by ThiE to form thiamin. Even though E. coli ΔthiC, ΔthiE, and ΔthiG mutants are thiamin auxotrophs, we observed that cocultures of ΔthiC-ΔthiE and ΔthiC-ΔthiG mutants are able to grow in a thiamin-deficient medium, whereas the ΔthiE-ΔthiG coculture does not. Further, the exchange of thiamin and its intermediates in V. anguillarum cocultures and in mixed cocultures of V. anguillarum and E. coli revealed that there exist specific patterns for thiamin metabolism and exchange among these microbes. Our findings show that HMP is shared more frequently than THZ, concurrent with previous observations that free HMP and HMP auxotrophy is commonly found in various environments. Furthermore, we observe that the availability of exogenous thiamin in the media affects whether these strains interact with each other or grow independently. These findings collectively underscore the importance of the exchange of essential metabolites as a defining factor in building and modulating synthetic or natural microbial communities. IMPORTANCE Vitamin B1 (thiamin) is an essential nutrient for cellular metabolism. Microorganisms that are unable to synthesize thiamin either fully or in part exogenously obtain it from their environment or via exchanges with other microbial members in their community. In this study, we created synthetic microbial cocultures that rely on sharing thiamin and its biosynthesis intermediates and observed that some of them are preferentially exchanged. We also observed that the coculture composition is dictated by the production and/or availability of thiamin and its intermediates. Our studies with synthetic cocultures provide the molecular basis for understanding thiamin sharing among microorganisms and lay out broad guidelines for setting up synthetic microbial cocultures by using the exchange of an essential metabolite as their foundation.
Collapse
|
84
|
Cortez D, Neira G, González C, Vergara E, Holmes DS. A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH. Front Microbiol 2022; 13:803241. [PMID: 35387071 PMCID: PMC8978632 DOI: 10.3389/fmicb.2022.803241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The genome streamlining theory suggests that reduction of microbial genome size optimizes energy utilization in stressful environments. Although this hypothesis has been explored in several cases of low-nutrient (oligotrophic) and high-temperature environments, little work has been carried out on microorganisms from low-pH environments, and what has been reported is inconclusive. In this study, we performed a large-scale comparative genomics investigation of more than 260 bacterial high-quality genome sequences of acidophiles, together with genomes of their closest phylogenetic relatives that live at circum-neutral pH. A statistically supported correlation is reported between reduction of genome size and decreasing pH that we demonstrate is due to gene loss and reduced gene sizes. This trend is independent from other genome size constraints such as temperature and G + C content. Genome streamlining in the evolution of acidophilic bacteria is thus supported by our results. The analyses of predicted Clusters of Orthologous Genes (COG) categories and subcellular location predictions indicate that acidophiles have a lower representation of genes encoding extracellular proteins, signal transduction mechanisms, and proteins with unknown function but are enriched in inner membrane proteins, chaperones, basic metabolism, and core cellular functions. Contrary to other reports for genome streamlining, there was no significant change in paralog frequencies across pH. However, a detailed analysis of COG categories revealed a higher proportion of genes in acidophiles in the following categories: "replication and repair," "amino acid transport," and "intracellular trafficking". This study brings increasing clarity regarding the genomic adaptations of acidophiles to life at low pH while putting elements, such as the reduction of average gene size, under the spotlight of streamlining theory.
Collapse
Affiliation(s)
- Diego Cortez
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
85
|
Mechanisms Generating Dichotomies in the Life Strategies of Heterotrophic Marine Prokaryotes. DIVERSITY 2022. [DOI: 10.3390/d14030217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the mechanisms that generate and maintain diversity in marine prokaryotic communities is one of the main challenges for contemporary marine microbiology. We here review how observational, experimental, and theoretical evidence converge on the conclusion that the marine pelagic community of heterotrophic prokaryotes consists of organisms with two main types of life strategies. We illustrate this dichotomy by SAR11 and Vibrio spp. as typical representatives of the two strategies. A theory for life strategy dichotomy exists in classical r/K-selection. We here discuss an additional dichotomy introduced by what we term S/L-selection (for Small and Large, respectively). While r/K-selection focuses on the role of environmental disturbances, steady-state models suggest that high abundance at species level should be closely related to a low trade-off between competition and defense. We summarize literature indicating that the high availability of organic C is an essential environmental factor favoring Vibrio spp. and suggest that the essence of the generalized L-strategy is to reduce the competition-predator defense trade-off by using non-limiting organic C to increase size. The “streamlining” theory that has been suggested for the S-strategist SAR11 proposes the opposite: that low trade-off is achieved by a reduction in size. We show how this apparent contradiction disappears when the basic assumptions of diffusion-limited uptake are considered. We propose a classification scheme that combines S/L and r/K-selection using the two dimensions of organic C availability and environmental disturbance. As organic C in terrestrial runoff and size of the oligotrophic oceanic gyres are both changing, habitat size for both S- and L-strategists are affected by global change. A theory capturing the main aspects of prokaryote life strategies is therefore crucial for predicting responses of the marine microbial food web to climate change and other anthropogenic influences.
Collapse
|
86
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
87
|
Scaling laws in enzyme function reveal a new kind of biochemical universality. Proc Natl Acad Sci U S A 2022; 119:2106655119. [PMID: 35217602 PMCID: PMC8892295 DOI: 10.1073/pnas.2106655119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Known examples of life all share the same core biochemistry going back to the last universal common ancestor (LUCA), but whether this feature is universal to other examples, including at the origin of life or alien life, is unknown. We show how a physics-inspired statistical approach identifies universal scaling laws across biochemical reactions that are not defined by common chemical components but instead, as macroscale patterns in the reaction functions used by life. The identified scaling relations can be used to predict statistical features of LUCA, and network analyses reveal some of the functional principles that underlie them. They are, therefore, prime candidates for developing new theory on the “laws of life” that might apply to all possible biochemistries. All life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to known biochemistry and does not allow quantitative predictions about examples not yet observed. Here, we introduce a more generalizable concept of biochemical universality that is more akin to the kind of universality found in physics. Using annotated genomic datasets including an ensemble of 11,955 metagenomes, 1,282 archaea, 11,759 bacteria, and 200 eukaryotic taxa, we show how enzyme functions form universality classes with common scaling behavior in their relative abundances across the datasets. We verify that these scaling laws are not explained by the presence of compounds, reactions, and enzyme functions shared across known examples of life. We demonstrate how these scaling laws can be used as a tool for inferring properties of ancient life by comparing their predictions with a consensus model for the last universal common ancestor (LUCA). We also illustrate how network analyses shed light on the functional principles underlying the observed scaling behaviors. Together, our results establish the existence of a new kind of biochemical universality, independent of the details of life on Earth’s component chemistry, with implications for guiding our search for missing biochemical diversity on Earth or for biochemistries that might deviate from the exact chemical makeup of life as we know it, such as at the origins of life, in alien environments, or in the design of synthetic life.
Collapse
|
88
|
Repetti SI, Iha C, Uthanumallian K, Jackson CJ, Chen Y, Chan CX, Verbruggen H. Nuclear genome of a pedinophyte pinpoints genomic innovation and streamlining in the green algae. THE NEW PHYTOLOGIST 2022; 233:2144-2154. [PMID: 34923642 DOI: 10.1111/nph.17926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The genomic diversity underpinning high ecological and species diversity in the green algae (Chlorophyta) remains little known. Here, we aimed to track genome evolution in the Chlorophyta, focusing on loss and gain of homologous genes, and lineage-specific innovations of the core Chlorophyta. We generated a high-quality nuclear genome for pedinophyte YPF701, a sister lineage to others in the core Chlorophyta and incorporated this genome in a comparative analysis with 25 other genomes from diverse Viridiplantae taxa. The nuclear genome of pedinophyte YPF701 has an intermediate size and gene number between those of most prasinophytes and the remainder of the core Chlorophyta. Our results suggest positive selection for genome streamlining in the Pedinophyceae, independent from genome minimisation observed among prasinophyte lineages. Genome expansion was predicted along the branch leading to the UTC clade (classes Ulvophyceae, Trebouxiophyceae and Chlorophyceae) after divergence from their last common ancestor with pedinophytes, with genomic novelty implicated in a range of basic biological functions. Results emphasise multiple independent signals of genome minimisation within the Chlorophyta, as well as the genomic novelty arising before diversification in the UTC clade, which may underpin the success of this species-rich clade in a diversity of habitats.
Collapse
Affiliation(s)
- Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| | | | | | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Vic, 3010, Australia
| |
Collapse
|
89
|
Investigation of Citrinin and Monacolin K Gene Clusters Variation among Pigment Producer Monascus Species. Fungal Genet Biol 2022; 160:103687. [DOI: 10.1016/j.fgb.2022.103687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 01/13/2023]
|
90
|
Gao C, Zhang N, He XY, Wang N, Zhang XY, Wang P, Chen XL, Zhang YZ, Ding JM, Li CY. Characterization of the Trimethylamine N-Oxide Transporter From Pelagibacter Strain HTCC1062 Reveals Its Oligotrophic Niche Adaption. Front Microbiol 2022; 13:838608. [PMID: 35295296 PMCID: PMC8918994 DOI: 10.3389/fmicb.2022.838608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Trimethylamine N-oxide (TMAO), which was detected at nanomolar concentrations in surface seawaters, is an important carbon, nitrogen and/or energy source for marine bacteria. It can be metabolized by marine bacteria into volatile methylated amines, the second largest source of nitrogen after N2 gas in the oceans. The SAR11 bacteria are the most abundant oligotrophic plankton in the oceans, which represents approximately 30% of the bacterial cells in marine surface waters. Genomic analysis suggested that most SAR11 bacteria possess an ATP-binding cassette transporter TmoXWV that may be responsible for importing TMAO. However, it was still unclear whether SAR11 bacteria can utilize TMAO as the sole nitrogen source and how they import TMAO. Here, our results showed that Pelagibacter strain HTCC1062, a SAR11 bacterium, can grow with TMAO as the sole nitrogen source. TmoXWV from strain HTCC1062 (TmoXWV1062) was verified to be a functional TMAO importer. Furthermore, TmoX1062, the periplasmic substrate binding protein of TmoXWV1062, was shown to have high binding affinities toward TMAO at 4°C (Kd = 920 nM), 10°C (Kd = 500 nM) and 25°C (Kd = 520 nM). The high TMAO binding affinity and strong temperature adaptability of TmoX1062 reveal a possible oligotrophic niche adaptation strategy of strain HTCC1062, which may help it gain a competitive advantage over other bacteria. Structure comparison and mutational analysis indicated that the TMAO binding mechanism of TmoX1062 may have differences from the previously reported mechanism of TmoX of Ruegeria pomeroyi DSS-3. This study provides new insight into TMAO utilization by the widespread SAR11 bacteria.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nan Zhang
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun-Mei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- *Correspondence: Jun-Mei Ding,
| | - Chun-Yang Li
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Chun-Yang Li,
| |
Collapse
|
91
|
Prochlorococcus Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen. mBio 2022; 13:e0257121. [PMID: 35012332 PMCID: PMC8749424 DOI: 10.1128/mbio.02571-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine cyanobacterium Prochlorococcus numerically dominates the phytoplankton community of the nutrient-limited open ocean, establishing itself as the most abundant photosynthetic organism on Earth. This ecological success has been attributed to lower cell quotas for limiting nutrients, superior resource acquisition, and other advantages associated with cell size reduction and genome streamlining. In this study, we tested the prediction that Prochlorococcus outcompetes its rivals for scarce nutrients and that this advantage leads to its numerical success in nutrient-limited waters. Strains of Prochlorococcus and its sister genus Synechococcus grew well in both mono- and cocultures when nutrients were replete. However, in nitrogen-limited medium, Prochlorococcus outgrew Synechococcus but only when heterotrophic bacteria were also present. In the nitrogen-limited medium, the heterotroph Alteromonas macleodii outcompeted Synechococcus for nitrogen but only if stimulated by the exudate released by Prochlorococcus or if a proxy organic carbon source was provided. Genetic analysis of Alteromonas suggested that it outcompetes Synechococcus for nitrate and/or nitrite, during which cocultured Prochlorococcus grows on ammonia or other available nitrogen species. We propose that Prochlorococcus can stimulate antagonism between heterotrophic bacteria and potential phytoplankton competitors through a metabolic cross-feeding interaction, and this stimulation could contribute to the numerical success of Prochlorococcus in nutrient-limited regions of the ocean. IMPORTANCE In nutrient-poor habitats, competition for limited resources is thought to select for organisms with an enhanced ability to scavenge nutrients and utilize them efficiently. Such adaptations characterize the cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in the nutrient-limited open ocean. In this study, the competitive superiority of Prochlorococcus over a rival cyanobacterium, Synechococcus, was captured in laboratory culture. Critically, this outcome was achieved only when key aspects of the open ocean were simulated: a limited supply of nitrogen and the presence of heterotrophic bacteria. The results indicate that Prochlorococcus promotes its numerical dominance over Synechococcus by energizing the heterotroph's ability to outcompete Synechococcus for available nitrogen. This study demonstrates how interactions between trophic groups can influence interactions within trophic groups and how these interactions likely contribute to the success of the most abundant photosynthetic microorganism.
Collapse
|
92
|
Ataeian M, Liu Y, Kouris A, Hawley AK, Strous M. Ecological Interactions of Cyanobacteria and Heterotrophs Enhances the Robustness of Cyanobacterial Consortium for Carbon Sequestration. Front Microbiol 2022; 13:780346. [PMID: 35222325 PMCID: PMC8880816 DOI: 10.3389/fmicb.2022.780346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Lack of robustness is a major barrier to foster a sustainable cyanobacterial biotechnology. Use of cyanobacterial consortium increases biodiversity, which provides functional redundancy and prevents invading species from disrupting the production ecosystem. Here we characterized a cyanobacterial consortium enriched from microbial mats of alkaline soda lakes in BC, Canada, at high pH and alkalinity. This consortium has been grown in open laboratory culture for 4 years without crashes. Using shotgun metagenomic sequencing, 29 heterotrophic metagenome-assembled-genomes (MAGs) were retrieved and were assigned to Bacteroidota, Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobiota, Patescibacteria, Planctomycetota, and Archaea. In combination with metaproteomics, the overall stability of the consortium was determined under different cultivation conditions. Genome information from each heterotrophic population was investigated for six ecological niches created by cyanobacterial metabolism and one niche for phototrophy. Genome-resolved metaproteomics with stable isotope probing using 13C-bicarbonate (protein/SIP) showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated that the results may be generalized. Productivity losses associated with heterotrophic metabolism were relatively small compared to other losses during photosynthesis.
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Yihua Liu
- Department Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
93
|
Wu F, Speth DR, Philosof A, Crémière A, Narayanan A, Barco RA, Connon SA, Amend JP, Antoshechkin IA, Orphan VJ. Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol 2022; 7:200-212. [PMID: 35027677 PMCID: PMC8813620 DOI: 10.1038/s41564-021-01039-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Eukaryotic genomes are known to have garnered innovations from both archaeal and bacterial domains but the sequence of events that led to the complex gene repertoire of eukaryotes is largely unresolved. Here, through the enrichment of hydrothermal vent microorganisms, we recovered two circularized genomes of Heimdallarchaeum species that belong to an Asgard archaea clade phylogenetically closest to eukaryotes. These genomes reveal diverse mobile elements, including an integrative viral genome that bidirectionally replicates in a circular form and aloposons, transposons that encode the 5,000 amino acid-sized proteins Otus and Ephialtes. Heimdallaechaeal mobile elements have garnered various genes from bacteria and bacteriophages, likely playing a role in shuffling functions across domains. The number of archaea- and bacteria-related genes follow strikingly different scaling laws in Asgard archaea, exhibiting a genome size-dependent ratio and a functional division resembling the bacteria- and archaea-derived gene repertoire across eukaryotes. Bacterial gene import has thus likely been a continuous process unaltered by eukaryogenesis and scaled up through genome expansion. Our data further highlight the importance of viewing eukaryogenesis in a pan-Asgard context, which led to the proposal of a conceptual framework, that is, the Heimdall nucleation-decentralized innovation-hierarchical import model that accounts for the emergence of eukaryotic complexity.
Collapse
Affiliation(s)
- Fabai Wu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Daan R Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alon Philosof
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Aditi Narayanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
94
|
Wan JJ, Wang F, Zhang XY, Xin Y, Tian JW, Zhang YZ, Li CY, Fu HH. Genome sequencing and comparative genomics analysis of Halomonas sp. MT13 reveal genetic adaptation to deep-sea environment. Mar Genomics 2022; 61:100911. [DOI: 10.1016/j.margen.2021.100911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
|
95
|
Cordone A, D’Errico G, Magliulo M, Bolinesi F, Selci M, Basili M, de Marco R, Saggiomo M, Rivaro P, Giovannelli D, Mangoni O. Bacterioplankton Diversity and Distribution in Relation to Phytoplankton Community Structure in the Ross Sea Surface Waters. Front Microbiol 2022; 13:722900. [PMID: 35154048 PMCID: PMC8828583 DOI: 10.3389/fmicb.2022.722900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community. However, the number of studies reporting the simultaneous diversity of the phytoplankton and bacterioplankton in Antarctic waters are limited. Here, we report data on the bacterial diversity in relation to phytoplankton community structure in the surface waters of the Ross Sea during the Austral summer 2017. Our results show partially overlapping bacterioplankton communities between the stations located in the Terra Nova Bay (TNB) coastal waters and the Ross Sea Open Waters (RSOWs), with a dominance of members belonging to the bacterial phyla Bacteroidetes and Proteobacteria. In the TNB coastal area, microbial communities were characterized by a higher abundance of sequences related to heterotrophic bacterial genera such as Polaribacter spp., together with higher phytoplankton biomass and higher relative abundance of diatoms. On the contrary, the phytoplankton biomass in the RSOW were lower, with relatively higher contribution of haptophytes and a higher abundance of sequences related to oligotrophic and mixothrophic bacterial groups like the Oligotrophic Marine Gammaproteobacteria (OMG) group and SAR11. We show that the rate of diversity change between the two locations is influenced by both abiotic (salinity and the nitrogen to phosphorus ratio) and biotic (phytoplankton community structure) factors. Our data provide new insight into the coexistence of the bacterioplankton and phytoplankton in Antarctic waters, suggesting that specific rather than random interaction contribute to the organic matter cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppe D’Errico
- Department of Life Sciences, DISVA, Polytechnic University of Marche, Ancona, Italy
| | - Maria Magliulo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Francesco Bolinesi,
| | - Matteo Selci
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Basili
- National Research Council, Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy
| | - Rocco de Marco
- National Research Council, Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy
| | | | - Paola Rivaro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Life Sciences, DISVA, Polytechnic University of Marche, Ancona, Italy
- National Research Council, Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Donato Giovannelli,
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Naples, Italy
- Consorzio Nazionale Interuniversitario delle Scienze del Mare (CoNISMa), Rome, Italy
| |
Collapse
|
96
|
Shi JQ, Ou-Yang T, Yang SQ, Zhao L, Ji LL, Wu ZX. Transcriptomic responses to phosphorus in an invasive cyanobacterium, Raphidiopsis raciborskii: Implications for nutrient management. HARMFUL ALGAE 2022; 111:102150. [PMID: 35016763 DOI: 10.1016/j.hal.2021.102150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a vital macronutrient associated with the growth and proliferation of Raphidiopsis raciborskii, an invasive and notorious bloom-forming cyanobacterium. However, the molecular mechanisms involved in P acclimation remain largely unexplored for Raphidiopsis raciborskii. Here, transcriptome sequencing of Raphidiopsis raciborskii was conducted to reveal multifaceted mechanisms involved in mimicking dipotassium phosphate (DIP), β-glycerol phosphate (Gly), 2-aminoethylphosphonic acid (AEP), and P-free conditions (NP). Chlorophyll a fluorescence parameters showed significant differences in the NP and AEP groups compared with the DIP and Gly-groups. Expression levels of genes related to phosphate transportation and uptake, organic P utilization, nitrogen metabolism, urea cycling, carbon fixation, amino acid metabolism, environmental information, the ATP-synthesis process in glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway were remarkably upregulated, while those related to photosynthesis, phycobiliproteins, respiration, oxidative phosphorylation, sulfur metabolism, and genetic information were markedly downregulated in the NP group relative to the DIP group. However, the expression of genes involved in organic P utilization, the urea cycle, and genetic information in the Gly-group, and carbon-phosphorus lyase, genetic information and environmental information in the AEP group were significantly increased compared to the DIP group. Together, these results indicate that Raphidiopsis raciborskii exhibits the evolution of coordination of multiple metabolic pathways and certain key genes to adapt to ambient P changes, which implies that if P is reduced to control Raphidiopsis raciborskii bloom, there is a risk that external nutrients (such as nitrogen, amino acids, and urea) will stimulate the growth or metabolism of Raphidiopsis.
Collapse
Affiliation(s)
- Jun-Qiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Tian Ou-Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Song-Qi Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu-Lu Ji
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Zhong-Xing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
97
|
Chuckran PF, Hungate BA, Schwartz E, Dijkstra P. Variation in genomic traits of microbial communities among ecosystems. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT
Free-living bacteria in nutrient limited environments often exhibit traits which may reduce the cost of reproduction, such as smaller genome size, low GC content and fewer sigma (σ) factor and 16S rRNA gene copies. Despite the potential utility of these traits to detect relationships between microbial communities and ecosystem-scale properties, few studies have assessed these traits on a community-scale. Here, we analysed these traits from publicly available metagenomes derived from marine, soil, host-associated and thermophilic communities. In marine and thermophilic communities, genome size and GC content declined in parallel, consistent with genomic streamlining, with GC content in thermophilic communities generally higher than in marine systems. In contrast, soil communities averaging smaller genomes featured higher GC content and were often from low-carbon environments, suggesting unique selection pressures in soil bacteria. The abundance of specific σ-factors varied with average genome size and ecosystem type. In oceans, abundance of fliA, a σ-factor controlling flagella biosynthesis, was positively correlated with community average genome size—reflecting known trade-offs between nutrient conservation and chemotaxis. In soils, a high abundance of the stress response σ-factor gene rpoS was associated with smaller average genome size and often located in harsh and/or carbon-limited environments—a result which tracks features observed in culture and indicates an increased capacity for stress response in nutrient-poor soils. This work shows how ecosystem-specific constraints are associated with trade-offs which are embedded in the genomic features of bacteria in microbial communities, and which can be detected at the community level, highlighting the importance of genomic features in microbial community analysis.
Collapse
Affiliation(s)
- Peter F Chuckran
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Bruce A Hungate
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Egbert Schwartz
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul Dijkstra
- Center for Ecosystem Science and Society (ECOSS) and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
98
|
Moore ER, Weaver AJ, Davis EW, Giovannoni SJ, Halsey KH. Metabolism of key atmospheric volatile organic compounds by the marine heterotrophic bacterium Pelagibacter HTCC1062 (SAR11). Environ Microbiol 2021; 24:212-222. [PMID: 34845812 PMCID: PMC9300024 DOI: 10.1111/1462-2920.15837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
Plants and phytoplankton are natural sources of the volatile organic compounds (VOCs) acetone and isoprene, which are reactive and can alter atmospheric chemistry. In earlier research we reported that, when co-cultured with a diatom, the marine bacterium Pelagibacter (strain HTCC1062; 'SAR11 clade') reduced the concentration of compounds tentatively identified as acetone and isoprene. In this study, experiments with Pelagibacter monocultures confirmed that these cells are capable of metabolizing acetone and isoprene at rates similar to bacterial communities in seawater and high enough to consume substantial fractions of the total marine acetone and isoprene budgets if extrapolated to global SAR11 populations. Homologues of an acetone/cyclohexanone monooxygenase were identified in the HTCC1062 genome and in the genomes of a wide variety of other abundant marine taxa, and were expressed at substantial levels (c. 10-4 of transcripts) across TARA oceans metatranscriptomes from ocean surface samples. The HTCC1062 genome lacks the canonical isoprene degradation pathway, suggesting an unknown alternative biochemical pathway is used by these cells for isoprene uptake. Fosmidomycin, an inhibitor of bacterial isoprenoid biosynthesis, blocked HTCC1062 growth, but the cells were rescued when isoprene was added to the culture, indicating SAR11 cells may be capable of synthesizing isoprenoid compounds from exogenous isoprene.
Collapse
Affiliation(s)
- Eric R Moore
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Alec J Weaver
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Edward W Davis
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kimberly H Halsey
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
99
|
Abstract
The remarkable success of taxonomic discovery, powered by culturomics, genomics and metagenomics, creates a pressing need for new bacterial names while holding a mirror up to the slow pace of change in bacterial nomenclature. Here, I take a fresh look at bacterial nomenclature, exploring how we might create a system fit for the age of genomics, playing to the strengths of current practice while minimizing difficulties. Adoption of linguistic pragmatism-obeying the rules while treating recommendations as merely optional-will make it easier to create names derived from descriptions, from people or places or even arbitrarily. Simpler protologues and a relaxed approach to recommendations will also remove much of the need for expert linguistic quality control. Automated computer-based approaches will allow names to be created en masse before they are needed while also relieving microbiologists of the need for competence in Latin. The result will be a system that is accessible, inclusive and digital, while also fully capable of naming the unnamed millions of bacteria.
Collapse
Affiliation(s)
- M.J. Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
100
|
Microbial Plankton Community Structure and Function Responses to Vitamin B 12 and B 1 Amendments in an Upwelling System. Appl Environ Microbiol 2021; 87:e0152521. [PMID: 34495690 PMCID: PMC8552899 DOI: 10.1128/aem.01525-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B vitamins are essential cofactors for practically all living organisms on Earth and are produced by a selection of microorganisms. An imbalance between high demand and limited production, in concert with abiotic processes, may explain the low availability of these vitamins in marine systems. Natural microbial communities from surface shelf water in the productive area off northwestern Spain were enclosed in mesocosms in winter, spring, and summer 2016. In order to explore the impact of B-vitamin availability on microbial community composition (16S and 18S rRNA gene sequence analysis) and bacterial function (metatranscriptomics analysis) in different seasons, enrichment experiments were conducted with seawater from the mesocosms. Our findings revealed that significant increases in phytoplankton or prokaryote biomass associated with vitamin B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most of the microbial taxa benefited from the external B-vitamin supply. Metatranscriptome analysis suggested that many bacteria were potential consumers of vitamins B12 and B1, although the relative abundance of reads related to synthesis was ca. 3.6-fold higher than that related to uptake. Alteromonadales and Oceanospirillales accounted for important portions of vitamin B1 and B12 synthesis gene transcription, despite accounting for only minor portions of the bacterial community. Flavobacteriales appeared to be involved mostly in vitamin B12 and B1 uptake, and Pelagibacterales expressed genes involved in vitamin B1 uptake. Interestingly, the relative expression of vitamin B12 and B1 synthesis genes among bacteria strongly increased upon inorganic nutrient amendment. Collectively, these findings suggest that upwelling events intermittently occurring during spring and summer in productive ecosystems may ensure an adequate production of these cofactors to sustain high levels of phytoplankton growth and biomass. IMPORTANCE B vitamins are essential growth factors for practically all living organisms on Earth that are produced by a selection of microorganisms. An imbalance between high demand and limited production may explain the low concentration of these compounds in marine systems. In order to explore the impact of B-vitamin availability on bacteria and algae in the coastal waters off northwestern Spain, six experiments were conducted with natural surface water enclosed in winter, spring, and summer. Our findings revealed that increases in phytoplankton or bacterial growth associated with B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most microorganisms benefited from the B-vitamin supply. Our analyses confirmed the role of many bacteria as consumers of vitamins B12 and B1, although the relative abundance of genes related to synthesis was ca. 3.6-fold higher than that related to uptake. Interestingly, prokaryote expression of B12 and B1 synthesis genes strongly increased when inorganic nutrients were added. Collectively, these findings suggest that upwelling of cold and nutrient-rich waters occurring during spring and summer in this coastal area may ensure an adequate production of B vitamins to sustain high levels of algae growth and biomass.
Collapse
|