51
|
Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine 2016; 11:5931-5944. [PMID: 27877039 PMCID: PMC5108609 DOI: 10.2147/ijn.s119618] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Deinococcus radiodurans is an extreme bacterium known for its high resistance to stresses including radiation and oxidants. The ability of D. radiodurans to reduce Au(III) and biosynthesize gold nanoparticles (AuNPs) was investigated in aqueous solution by ultraviolet and visible (UV/Vis) absorption spectroscopy, electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). D. radiodurans efficiently synthesized AuNPs from 1 mM Au(III) solution in 8 h. The AuNPs were of spherical, triangular and irregular shapes with an average size of 43.75 nm and a polydispersity index of 0.23 as measured by DLS. AuNPs were distributed in the cell envelope, across the cytosol and in the extracellular space. XRD analysis confirmed the crystallite nature of the AuNPs from the cell supernatant. Data from the FTIR and XPS showed that upon binding to proteins or compounds through interactions with carboxyl, amine, phospho and hydroxyl groups, Au(III) may be reduced to Au(I), and further reduced to Au(0) with the capping groups to stabilize the AuNPs. Biosynthesis of AuNPs was optimized with respect to the initial concentration of gold salt, bacterial growth period, solution pH and temperature. The purified AuNPs exhibited significant antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria by damaging their cytoplasmic membrane. Therefore, the extreme bacterium D. radiodurans can be used as a novel bacterial candidate for efficient biosynthesis of AuNPs, which exhibited potential in biomedical application as an antibacterial agent.
Collapse
Affiliation(s)
- Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Qinghao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Xiaoqiong Ma
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Jiangliu Yu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Yulan Weng
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University
| |
Collapse
|
52
|
Gómez Gómez JM, Medina J, Rull F. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications. ASTROBIOLOGY 2016; 16:513-524. [PMID: 27248296 DOI: 10.1089/ast.2015.1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed. KEY WORDS Biosaline formations-Biosaline drying patterns-Escherichia coli-Bacillus subtilis-Bacterial biofilms-Morphological biosaline biosignatures-Morphoprinting-Dormant life. Astrobiology 16, 513-524.
Collapse
Affiliation(s)
- José María Gómez Gómez
- 1 Laboratory of BioMineralogy and Astrobiological Research (LBMARS), Unidad Asociada UVA-CSIC , Edificio INDITI, Boecillo, Valladolid, Spain
- 2 OAS-BioAstronomy Group, Observatorio Astronómico de Segurilla (OAS) , Segurilla, Toledo, Spain
| | - Jesús Medina
- 1 Laboratory of BioMineralogy and Astrobiological Research (LBMARS), Unidad Asociada UVA-CSIC , Edificio INDITI, Boecillo, Valladolid, Spain
| | - Fernando Rull
- 1 Laboratory of BioMineralogy and Astrobiological Research (LBMARS), Unidad Asociada UVA-CSIC , Edificio INDITI, Boecillo, Valladolid, Spain
| |
Collapse
|
53
|
Rea MA, Zammit CM, Reith F. Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold. FEMS Microbiol Ecol 2016; 92:fiw082. [PMID: 27098381 DOI: 10.1093/femsec/fiw082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 01/21/2023] Open
Abstract
The biogeochemical cycling of gold (Au), i.e. its solubilization, transport and re-precipitation, leading to the (trans)formation of Au grains and nuggets has been demonstrated under a range of environmental conditions. Biogenic (trans)formations of Au grains are driven by (geo)biochemical processes mediated by distinct biofilm consortia living on these grains. This review summarizes the current knowledge concerning the composition and functional capabilities of Au-grain communities, and identifies contributions of key-species involved in Au-cycling. To date, community data are available from grains collected at 10 sites in Australia, New Zealand and South America. The majority of detected operational taxonomic units detected belong to the α-, β- and γ-Proteobacteria and the Actinobacteria. A range of organisms appears to contribute predominantly to biofilm establishment and nutrient cycling, some affect the mobilization of Au via excretion of Au-complexing ligands, e.g. organic acids, thiosulfate and cyanide, while a range of resident Proteobacteria, especially Cupriavidus metallidurans and Delftia acidovorans, have developed Au-specific biochemical responses to deal with Au-toxicity and reductively precipitate mobile Au-complexes. This leads to the biomineralization of secondary Au and drives the environmental cycle of Au.
Collapse
Affiliation(s)
- Maria Angelica Rea
- School of Biological Sciences, The Sprigg Geobiology Centre, The University of Adelaide, Adelaide, South Australia 5005, Australia CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Carla M Zammit
- School of Earth Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Frank Reith
- School of Biological Sciences, The Sprigg Geobiology Centre, The University of Adelaide, Adelaide, South Australia 5005, Australia CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
54
|
Zammit CM, Weiland F, Brugger J, Wade B, Winderbaum LJ, Nies DH, Southam G, Hoffmann P, Reith F. Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics 2016; 8:1204-1216. [DOI: 10.1039/c6mt00142d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
55
|
Herzberg M, Bauer L, Kirsten A, Nies DH. Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics 2016; 8:313-26. [DOI: 10.1039/c5mt00295h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
56
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
57
|
Ikuma K, Decho AW, Lau BLT. When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol 2015; 6:591. [PMID: 26136732 PMCID: PMC4468922 DOI: 10.3389/fmicb.2015.00591] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 02/02/2023] Open
Abstract
Bacteria are essential components of all natural and many engineered systems. The most active fractions of bacteria are now recognized to occur as biofilms, where cells are attached and surrounded by a secreted matrix of “sticky” extracellular polymeric substances. Recent investigations have established that significant accumulation of nanoparticles (NPs) occurs in aquatic biofilms. These studies point to the emerging roles of biofilms for influencing partitioning and possibly transformations of NPs in both natural and engineered systems. While attached biofilms are efficient “sponges” for NPs, efforts to elucidate the fundamental mechanisms guiding interactions between NPs and biofilms have just begun. In this mini review, special attention is focused on NP–biofilm interactions within the aquatic environment. We highlight key physical, chemical, and biological processes that affect interactions and accumulation of NPs by bacterial biofilms. We posit that these biofilm processes present the likely possibility for unique biological and chemical transformations of NPs. Ultimately, the environmental fate of NPs is influenced by biofilms, and therefore requires a more in-depth understanding of their fundamental properties.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst , Amherst, MA, USA
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina , Columbia, SC, USA
| | - Boris L T Lau
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst , Amherst, MA, USA
| |
Collapse
|
58
|
The History of Cupriavidus metallidurans Strains Isolated from Anthropogenic Environments. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2015. [DOI: 10.1007/978-3-319-20594-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
59
|
Herzberg M, Dobritzsch D, Helm S, Baginsky S, Nies DH. The zinc repository of Cupriavidus metallidurans. Metallomics 2014; 6:2157-65. [DOI: 10.1039/c4mt00171k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
60
|
Srivastava N, Mukhopadhyay M. Ralstonia eutropha (Cupriavidus metallidurans) Mediated Biosynthesis of Gold Nanoparticles and Catalytic Treatment of 2, 4 Dichlorophenol. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/15533174.2013.831879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nishant Srivastava
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Mausumi Mukhopadhyay
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
61
|
Weiland F, Zammit CM, Reith F, Hoffmann P. High resolution two-dimensional electrophoresis of native proteins. Electrophoresis 2014; 35:1893-902. [DOI: 10.1002/elps.201400060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Florian Weiland
- Adelaide Proteomics Centre; University of Adelaide; Adelaide Australia
| | - Carla M. Zammit
- Earth Sciences; University of Queensland; Brisbane Australia
| | - Frank Reith
- School of Earth and Environmental Sciences; University of Adelaide; Adelaide Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre; University of Adelaide; Adelaide Australia
| |
Collapse
|
62
|
Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2001-2010. [PMID: 24452932 DOI: 10.1002/adma.201304568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Indexed: 06/03/2023]
Abstract
The chronological progresses in single-cell nanocoating are described. The historical developments in the field are divided into biotemplating, cytocompatible nanocoating, and cells in nano-nutshells, depending on the main research focuses. Each subfield is discussed in conjunction with the others, regarding how and why to manipulate living cells by nanocoating at the single-cell level.
Collapse
Affiliation(s)
- Ji Hun Park
- Center for Cell-Encapsulation Research, Department of Chemistry KAIST, Daejeon, 305-701, Korea
| | | | | | | | | | | |
Collapse
|
63
|
Lal D, Nayyar N, Kohli P, Lal R. Cupriavidus metallidurans: A Modern Alchemist. Indian J Microbiol 2014; 53:114-5. [PMID: 24426088 DOI: 10.1007/s12088-013-0355-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Devi Lal
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Namita Nayyar
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Puneet Kohli
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
64
|
Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions. MINERALS 2013. [DOI: 10.3390/min3040367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
65
|
Shuster J, Marsden S, Maclean LCW, Ball J, Bolin T, Southam G. The immobilization of gold from gold (III) chloride by a halophilic sulphate-reducing bacterial consortium. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp393.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractA consortium containing halophilic, dissimilatory sulphate-reducing bacteria was enriched from Basque Lake #1, located near Ashcroft, British Columbia, Canada to evaluate the role these bacteria have on the immobilization of soluble gold. The consortium immobilized increasing amounts of gold from gold (III) chloride solutions, under saline to hypersaline conditions, over time. Gold (III) chloride was reduced to elemental gold in all experimental systems. Salinity did not affect gold immobilization. Scanning electron microscopy and transmission electron microscopy demonstrated that reduced gold (III) chloride was immobilized as c. 3–10 nm gold colloids and c. 100 nm colloidal aggregates at the fluid–biofilm interface. The precipitation of gold at this organic interface protected cells within the biofilm from the ‘toxic effect’ of ionic gold. Analysis of these experimental systems using X-ray absorption near-edge spectroscopy confirmed that elemental gold with varying colloidal sizes formed within minutes. The immobilization of gold by halophilic sulphate-reducing bacteria highlights a possible role for the biosphere in ‘intercepting’ mobile gold complexes within natural, hydraulic flow paths. Based on the limited toxicity demonstrated in this experimental model, significant concentrations of elemental gold could accumulate over geological time in natural systems where soluble gold concentrations are more dilute and presumably ‘non-toxic’ to the biosphere.
Collapse
Affiliation(s)
- Jeremiah Shuster
- Department of Earth Sciences, The University of Western Ontario, London, ON, Canada N6A 5B7
| | - Sian Marsden
- Department of Geological Sciences, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | - James Ball
- Physics Department, John F. Ross Collegiate Vocational Institute, Guelph, ON, Canada N1E 4H1
| | - Trudy Bolin
- CMC-XOR-Sector 9, Advanced Photon Source, Argonne Laboratory, Argonne, IL 60439, USA
| | - Gordon Southam
- School of Earth Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
66
|
Zammit CM, Quaranta D, Gibson S, Zaitouna AJ, Ta C, Brugger J, Lai RY, Grass G, Reith F. A whole-cell biosensor for the detection of gold. PLoS One 2013; 8:e69292. [PMID: 23950889 PMCID: PMC3739760 DOI: 10.1371/journal.pone.0069292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric β-galactosidase and an electrochemical assay. Measurements of the β-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 µM (equivalent to 20 to 1000 ng g(-1) or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 µM) and a detection limit of 2 ppb (0.01 µM).
Collapse
Affiliation(s)
- Carla M. Zammit
- The University of Adelaide, School of Earth and Environmental Sciences, Centre of Tectonics, Resources and Exploration (TRaX), Adelaide, South Australia, Australia
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Environmental Biogeochemistry, PMB2, Glen Osmond, South Australia, Australia
- * E-mail: (CMZ); (FR)
| | - Davide Quaranta
- The University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, Nebraska, United States of America
| | - Shane Gibson
- The University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, Nebraska, United States of America
| | - Anita J. Zaitouna
- The University of Nebraska-Lincoln, Department of Chemistry, Lincoln, Nebraska, United States of America
| | - Christine Ta
- Flinders University, School of Chemical and Physical Sciences, Adelaide, South Australia, Australia
| | - Joël Brugger
- The University of Adelaide, School of Earth and Environmental Sciences, Centre of Tectonics, Resources and Exploration (TRaX), Adelaide, South Australia, Australia
- Mineralogy, South Australian Museum, Adelaide, South Australia, Australia
| | - Rebecca Y. Lai
- The University of Nebraska-Lincoln, Department of Chemistry, Lincoln, Nebraska, United States of America
| | - Gregor Grass
- The University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, Nebraska, United States of America
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Frank Reith
- The University of Adelaide, School of Earth and Environmental Sciences, Centre of Tectonics, Resources and Exploration (TRaX), Adelaide, South Australia, Australia
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Environmental Biogeochemistry, PMB2, Glen Osmond, South Australia, Australia
- * E-mail: (CMZ); (FR)
| |
Collapse
|
67
|
Fairbrother L, Etschmann B, Brugger J, Shapter J, Southam G, Reith F. Biomineralization of gold in biofilms of Cupriavidus metallidurans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2628-2635. [PMID: 23405956 DOI: 10.1021/es302381d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cupriavidus metallidurans, a bacterium capable of reductively precipitating toxic, aqueous gold(I/III)-complexes, dominates biofilm communities on gold (Au) grains from Australia. To examine the importance of C. metallidurans biofilms in secondary Au formation, we assessed the biomineralization potential of biofilms growing in quartz-sand-packed columns to periodic amendment with Au(I)-thiosulfate. In these experiments, >99 wt % of Au, was retained compared to <30 wt % in sterilized and abiotic controls. Biomineralization of Au occurred in the presence of viable biofilms via the formation of intra- and extra-cellular spherical nanoparticles, which aggregated into spheroidal and framboidal microparticles of up to 2 μm in diameter. Aggregates of Au formed around cells, eventually encapsulating and ultimately replacing them. These particles were morphologically analogous to Au-particles commonly observed on natural Au grains. Bacterial cells were connected via exopolymer or nanowires to μm-sized, extracellular Au-aggregates, which would intuitively improve the flow of electrons through the biofilm. This study demonstrates the importance of C. metallidurans biofilms for the detoxification of Au-complexes and demonstrates a central role for bacterial biomineralization in the formation of highly pure Au in surface environments.
Collapse
Affiliation(s)
- L Fairbrother
- School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5001, Australia
| | | | | | | | | | | |
Collapse
|
68
|
Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J Bacteriol 2013; 195:2298-308. [PMID: 23475973 DOI: 10.1128/jb.01951-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757-17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems.
Collapse
|
69
|
Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 2013; 9:241-3. [PMID: 23377039 DOI: 10.1038/nchembio.1179] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/07/2013] [Indexed: 11/08/2022]
Abstract
Microorganisms produce and secrete secondary metabolites to assist in their survival. We report that the gold resident bacterium Delftia acidovorans produces a secondary metabolite that protects from soluble gold through the generation of solid gold forms. This finding is the first demonstration that a secreted metabolite can protect against toxic gold and cause gold biomineralization.
Collapse
|
70
|
Nies DH, Herzberg M. A fresh view of the cell biology of copper in enterobacteria. Mol Microbiol 2012; 87:447-54. [PMID: 23217080 DOI: 10.1111/mmi.12123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper-binding metal chaperones, which deliver copper ions to efflux systems or metal-binding sites of copper-requiring proteins. In their publication in this issue, Osman et al. (2013) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P-type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. (2013) change our view of the cell biology of copper in enterobacteria.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
| | | |
Collapse
|
71
|
Inorganic materials using 'unusual' microorganisms. Adv Colloid Interface Sci 2012; 179-182:150-68. [PMID: 22818492 DOI: 10.1016/j.cis.2012.06.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/06/2012] [Accepted: 06/27/2012] [Indexed: 11/23/2022]
Abstract
A promising avenue of research in materials science is to follow the strategies used by Mother Nature to fabricate ornate hierarchical structures as exemplified by organisms such as diatoms, sponges and magnetotactic bacteria. Some of the strategies used in the biological world to create functional inorganic materials may well have practical implications in the world of nanomaterials. Therefore, the strive towards exploring nature's ingenious work for designing strategies to create inorganic nanomaterials in our laboratories has led to development of biological and biomimetic synthesis routes over the past decade or so. A large proportion of these relentless efforts have explored the use of those microorganisms, which are typically not known to encounter these inorganic materials in their natural environment. Therefore, one can consider these microorganisms as 'unusual' for the purpose for which they have been utilized - it is in this context that this review has been penned down. In this extensive review, we discuss the use of these 'unusual' microorganisms for deliberate biosynthesis of various nanomaterials including biominerals, metals, sulfides and oxides nanoparticles. In addition to biosynthesis approach, we have also discussed a bioleaching approach, which can provide a noble platform for room-temperature synthesis of inorganic nanomaterials using naturally available raw materials. Moreover, the unique properties and functionalities displayed by these biogenic inorganic materials have been discussed, wherever such properties have been investigated previously. Finally, towards the end of this review, we have made efforts to summarize the common outcomes of the biosynthesis process and draw conclusions, which provide a perspective on the current status of the biosynthesis research field and highlights areas where future research in this field should be directed to realize the full potential of biological routes towards nanomaterials synthesis. Furthermore, the review clearly demonstrates that the biological route to inorganic materials synthesis is not merely an addition to the existing list of synthesis routes; biological routes using 'unusual' microorganisms might in fact provide an edge over other nanomaterials synthesis routes in terms of their eco-friendliness, low energy intensiveness, and economically-viable synthesis. This review has significant importance for colloids and interface science since it underpins the synthesis of colloidal materials using 'unusual' microorganism, wherein the role of biological interfaces for controlled synthesis of technologically important nanomaterials is clearly evident.
Collapse
|
72
|
Das SK, Liang J, Schmidt M, Laffir F, Marsili E. Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS NANO 2012; 6:6165-73. [PMID: 22708541 DOI: 10.1021/nn301502s] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, there has been significant progress in the biological synthesis of nanomaterials. However, the molecular mechanism of gold biomineralization in microorganisms of industrial relevance remains largely unexplored. Here we describe the biosynthesis mechanism of gold nanoparticles (AuNPs) in the fungus Rhizopus oryzae . Reduction of AuCl(4)(-) [Au(III)] to nanoparticulate Au(0) (AuNPs) occurs in both the cell wall and cytoplasmic region of R. oryzae . The average size of the as-synthesized AuNPs is ~15 nm. The biomineralization occurs through adsorption, initial reduction to Au(I), followed by complexation [Au(I) complexes], and final reduction to Au(0). Subtoxic concentrations (up to 130 μM) of AuCl(4)(-) in the growth medium increase growth of R. oryzae and induce two stress response proteins while simultaneously down-regulating two other proteins. The induction increases mycelial growth, protein yield, and AuNP biosynthesis. At higher Au(III) concentrations (>130 μM), both mycelial and protein yield decrease and damages to the cellular ultrastructure are observed, likely due to the toxic effect of Au(III). Protein profile analysis also confirms the gold toxicity on R. oryzae at high concentrations. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis shows that two proteins of 45 and 42 kDa participate in gold reduction, while an 80 kDa protein serves as a capping agent in AuNP biosynthesis.
Collapse
Affiliation(s)
- Sujoy K Das
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
73
|
Reith F, Brugger J, Zammit CM, Gregg AL, Goldfarb KC, Andersen GL, DeSantis TZ, Piceno YM, Brodie EL, Lu Z, He Z, Zhou J, Wakelin SA. Influence of geogenic factors on microbial communities in metallogenic Australian soils. ISME JOURNAL 2012; 6:2107-18. [PMID: 22673626 DOI: 10.1038/ismej.2012.48] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.
Collapse
Affiliation(s)
- Frank Reith
- School of Earth and Environmental Sciences, Centre of Tectonics, Resources and Exploration (TRaX), The University of Adelaide, North Terrace, South Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Xavier PL, Chaudhari K, Baksi A, Pradeep T. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. NANO REVIEWS 2012; 3:NANO-3-14767. [PMID: 22312454 PMCID: PMC3272820 DOI: 10.3402/nano.v3i0.14767] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/26/2011] [Accepted: 12/30/2011] [Indexed: 11/29/2022]
Abstract
Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature.
Collapse
|
75
|
Chaudhari K, Xavier PL, Pradeep T. Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS NANO 2011; 5:8816-27. [PMID: 22010989 DOI: 10.1021/nn202901a] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We show that the time-dependent biomineralization of Au(3+) by native lactoferrin (NLf) and bovine serum albumin (BSA) resulting in near-infrared (NIR) luminescent gold quantum clusters (QCs) occurs through a protein-bound Au(1+) intermediate and subsequent emergence of free protein. The evolution was probed by diverse tools, principally, using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The importance of alkaline pH in the formation of clusters was probed. At neutral pH, a Au(1+)-protein complex was formed (starting from Au(3+)) with the binding of 13-14 gold atoms per protein. When the pH was increased above 12, these bound gold ions were further reduced to Au(0) and nucleation and growth of cluster commenced, which was corroborated by the beginning of emission; at this point, the number of gold atoms per protein was ~25, suggesting the formation of Au(25). During the cluster evolution, at certain time intervals, for specific molar ratios of gold and protein, occurrence of free protein was noticed in the mass spectra, suggesting a mixture of products and gold ion redistribution. By providing gold ions at specific time of the reaction, monodispersed clusters with enhanced luminescence could be obtained, and the available quantity of free protein could be utilized efficiently. Monodispersed clusters would be useful in obtaining single crystals of protein-protected noble metal quantum clusters where homogeneity of the system is of primary concern.
Collapse
Affiliation(s)
- Kamalesh Chaudhari
- Department of Biotechnology, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
76
|
Wakelin SA, Anand RR, Reith F, Gregg AL, Noble RRP, Goldfarb KC, Andersen GL, DeSantis TZ, Piceno YM, Brodie EL. Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. FEMS Microbiol Ecol 2011; 79:298-311. [PMID: 22092956 DOI: 10.1111/j.1574-6941.2011.01215.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/05/2011] [Accepted: 09/25/2011] [Indexed: 11/28/2022] Open
Abstract
We investigated bacterial community assemblages and functions down a hill slope contaminated by tailings from a volcanogenic massive sulphide mine in arid Western Australia. Weathering of waste rock, high in S and Fe, had resulted in a varying elemental dispersal down a face of the tailings hill. Bacterial community assemblage, characterised by PCR-DGGE fingerprinting, was significantly associated with electrical conductivity (E.C.) (ρ = 0.664; P < 0.01). Analysis of mobile salts showed that E.C. values were driven by ionic S, Zn, Cl and Al. The bacterial community assemblage was directly characterised across an E.C. gradient using an oligonucleotide microarray (PhyloChip). The dominant taxa at the site were Proteobacteria, Actinobacteria and Firmicutes; however, 37 phyla were detected. The most responsive taxa to variation in E.C. was Acidobacteria (negative correlation). Patterns of heterotrophic processes (BioLog analysis) were also best explained by variation in E.C. (ρ = 0.53; P < 0.01), showing a link between primary mineral weathering by lithotrophic bacteria and abiotic processes, and secondary biogeochemical processes by heterotrophic taxa. These data significantly broaden our knowledge of the bacteria present in metallomorphic ecosystems, establish that mobile phase elements are key drivers of community structure, and that primary biogeochemical cycling is directly influencing other geochemical interactions in the samples.
Collapse
Affiliation(s)
- Steven A Wakelin
- AgResearch Ltd, Lincoln Science Centre, Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Stojak AR, Raftery T, Klaine SJ, McNealy TL. Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure. Nanotoxicology 2011; 5:730-42. [PMID: 21294606 DOI: 10.3109/17435390.2010.550696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Legionella pneumophila is a pathogenic bacterium that forms biofilms in natural and anthropogenic habitats. This feature not only facilitates colonization but also limits the effectiveness of biocides. L. pneumophila was exposed to three sizes of citrate-capped gold nanospheres in both planktonic and biofilm stages. TEM micrographs indicated that gold nanoparticles (AuNPs) adsorbed to the bacterial cell surface, were absorbed into the cells, aggregated within the cells, and integrated into the extrapolymeric matrix of the biofilm. Both 4 and 18 nm, but not 50 nm AuNPs caused an alteration of biofilm morphology. Treatment with 20 nm polystyrene spheres did not induce these changes suggesting that the response was a result of the gold and not just the presence of the nanosphere. The morphological changes observed in the biofilm suggest that aquatic ecosystems may be affected by nanoparticle exposure. This may compromise ecosystem functions such as nutrient cycling facilitated by natural biofilms.
Collapse
Affiliation(s)
- Amber R Stojak
- Department of Biological Sciences, Institute of Environmental Toxicology, Clemson University, Pendleton, South Carolina, USA
| | | | | | | |
Collapse
|
78
|
Wei H, Wang Z, Zhang J, House S, Gao YG, Yang L, Robinson H, Tan LH, Xing H, Hou C, Robertson IM, Zuo JM, Lu Y. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. NATURE NANOTECHNOLOGY 2011; 6:93-97. [PMID: 21278750 DOI: 10.1038/nnano.2010.280] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.
Collapse
Affiliation(s)
- Hui Wei
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Wu S, Yin S, Cao H, Lu Y, Yin J, Li B. Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04535g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
81
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Phillips G, Reith F, Qualls C, Ali AM, Spilde M, Appenzeller O. Bacterial deposition of gold on hair: archeological, forensic and toxicological implications. PLoS One 2010; 5:e9335. [PMID: 20174476 PMCID: PMC2824836 DOI: 10.1371/journal.pone.0009335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/29/2010] [Indexed: 11/23/2022] Open
Abstract
Background Trace metal analyses in hair are used in archeological, forensic and toxicological investigations as proxies for metabolic processes. We show metallophilic bacteria mediating the deposition of gold (Au), used as tracer for microbial activity in hair post mortem after burial, affecting results of such analyses. Methodology/Principal Findings Human hair was incubated for up to six months in auriferous soils, in natural soil columns (Experiment 1), soils amended with mobile Au(III)-complexes (Experiment 2) and the Au-precipitating bacterium Cupriavidus metallidurans (Experiment 3), in peptone-meat-extract (PME) medium in a culture of C. metallidurans amended with Au(III)-complexes (Experiment 4), and in non-auriferous soil (Experiment 5). Hair samples were analyzed using scanning electron microscopy, confocal microscopy and inductively coupled plasma-mass spectrometry. In Experiments 1–4 the Au content increased with time (P = 0.038). The largest increase was observed in Experiment 4 vs. Experiment 1 (mean = 1188 vs. 161 µg Kg−1, Fisher's least significance 0.001). The sulfur content, a proxy for hair metabolism, remained unchanged. Notably, the ratios of Au-to-S increased with time (linear trend P = 0.02) and with added Au and bacteria (linear trend, P = 0.005), demonstrating that larger populations of Au-precipitating bacteria and increased availability of Au increased the deposition of Au on the hair. Conclusion/Significance Interactions of soil biota with hair post mortem may distort results of hair analyses, implying that metal content, microbial activities and the duration of burial must be considered in the interpretation of results of archeological, forensic and toxicological hair analyses, which have hitherto been proxies for pre-mortem metabolic processes.
Collapse
Affiliation(s)
- Genevieve Phillips
- Fluorescence Microscopy Facility, Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Frank Reith
- Centre for Tectonics, Resources and Exploration, School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, South Australia, Australia
- CSIRO Land and Water, Environmental Biogeochemistry, PMB2, Glen Osmond, South Australia, Australia
| | - Clifford Qualls
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Abdul-Mehdi Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Mike Spilde
- Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Otto Appenzeller
- New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
83
|
Brugger J, Pring A, Reith F, Ryan C, Etschmann B, Liu W, O’Neill B, Ngothai Y. Probing ore deposits formation: New insights and challenges from synchrotron and neutron studies. Radiat Phys Chem Oxf Engl 1993 2010. [DOI: 10.1016/j.radphyschem.2009.03.071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. MICROBIOLOGY-SGM 2009; 156:609-643. [PMID: 20019082 DOI: 10.1099/mic.0.037143-0] [Citation(s) in RCA: 821] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
85
|
Jian X, Wasinger EC, Lockard JV, Chen LX, He C. Highly sensitive and selective gold(I) recognition by a metalloregulator in Ralstonia metallidurans. J Am Chem Soc 2009; 131:10869-71. [PMID: 19606897 DOI: 10.1021/ja904279n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A MerR family metalloregulatory protein CupR selectively responds to gold stress in Ralstonia metallidurans. A distorted trigonal geometry appears to be used by CupR to achieve the highly sensitive (K(d) approximately 10(-35) M) and selective recognition of gold(I).
Collapse
Affiliation(s)
- Xing Jian
- Department of Chemistry, 929 East 57th Street, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
86
|
Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 2009; 106:17757-62. [PMID: 19815503 DOI: 10.1073/pnas.0904583106] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters (including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au(0). Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools.
Collapse
|
87
|
Jin Y, Gao X. Plasmonic fluorescent quantum dots. NATURE NANOTECHNOLOGY 2009; 4:571-6. [PMID: 19734929 PMCID: PMC2773548 DOI: 10.1038/nnano.2009.193] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/24/2009] [Indexed: 05/12/2023]
Abstract
Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals can quench the fluorescence. So far, the combination of quantum dot fluorescence with plasmonically active gold has only been demonstrated on flat surfaces. Here, we combine fluorescent and plasmonic activities in a single nanoparticle by controlling the spacing between a quantum dot core and an ultrathin gold shell with nanometre precision through layer-by-layer assembly. Our wet-chemistry approach provides a general route for the deposition of ultrathin gold layers onto virtually any discrete nanostructure or continuous surface, and should prove useful for multimodal bioimaging, interfacing with biological systems, reducing nanotoxicity, modulating electromagnetic fields and contacting nanostructures.
Collapse
|
88
|
Valas RE, Bourne PE. Rethinking proteasome evolution: two novel bacterial proteasomes. J Mol Evol 2008; 66:494-504. [PMID: 18389302 PMCID: PMC3235984 DOI: 10.1007/s00239-008-9075-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 12/22/2022]
Abstract
The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes. Despite this variation in complexity, all the proteasomes are composed of homologous subunits. We searched 238 complete bacterial genomes for structures related to the proteasome and found evidence of two novel groups of bacterial proteasomes. The first, which we name Anbu, is sparsely distributed among cyanobacteria and proteobacteria. We hypothesize that Anbu must be very ancient because of its distribution within the cyanobacteria, and that it has been lost in many more recent species. We also present evidence for a fourth type of bacterial proteasome found in a few beta-proteobacteria, which we call beta-proteobacteria proteasome homologue (BPH). Sequence and structural analyses show that Anbu and BPH are both distinct from known bacterial proteasomes but have homologous structures. Anbu is encoded by one gene, so we postulate a duplication of Anbu created the 20S proteasome. Anbu's function appears to be related to transglutaminase activity, not the general stress response associated with HslV. We have found different combinations of Anbu, BPH, and HslV within these bacterial genomes, which raises questions about specialized protein degradation systems.
Collapse
Affiliation(s)
- Ruben E Valas
- Bioinformatics Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
89
|
Reith F, Lengke MF, Falconer D, Craw D, Southam G. The geomicrobiology of gold. ISME JOURNAL 2007; 1:567-84. [DOI: 10.1038/ismej.2007.75] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Checa SK, Espariz M, Audero MEP, Botta PE, Spinelli SV, Soncini FC. Bacterial sensing of and resistance to gold salts. Mol Microbiol 2007; 63:1307-18. [PMID: 17244194 DOI: 10.1111/j.1365-2958.2007.05590.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The MerR family is a group of bacterial transcriptional regulators that respond to different environmental stimuli, such as heavy metals, oxidative stress or antibiotics. Here we characterize a new member of this family that is highly selective for Au ions. We show that this Salmonella regulator, named GolS, directly controls the expression of at least two transcriptional units specifically required for Au resistance. By chromosomal mutagenesis, we demonstrated that Au-selectivity is accomplished by a metal-binding motif in GolS. Among the monovalent metal-ion sensing MerR regulators GolS clusters in a branch distant from enterobacterial CueR orthologues. We propose that GolS and its homologues evolved to cope with toxic concentration of Au ion, allowing microorganisms to withstand contaminated environments.
Collapse
Affiliation(s)
- Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Microbiología, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:6304-9. [PMID: 17120557 DOI: 10.1021/es061040r] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.
Collapse
Affiliation(s)
- Maggy F Lengke
- Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | | | | | | | | | | |
Collapse
|
93
|
Van Noorden R. The smallest gold-diggers in the world. Nature 2006. [DOI: 10.1038/news060710-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|