51
|
Abbondanzieri EA, Le Grice SFJ. Unraveling the gymnastics of reverse transcription through single molecule spectroscopy. AIDS Res Hum Retroviruses 2014; 30:209-10. [PMID: 24588577 DOI: 10.1089/aid.2014.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elio A Abbondanzieri
- 1 Department of Bionanoscience, Delft University of Technology , Delft, The Netherlands
| | | |
Collapse
|
52
|
Zheng X, Mueller GA, DeRose EF, London RE. Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP. Biophys J 2014; 104:2695-705. [PMID: 23790378 DOI: 10.1016/j.bpj.2013.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 11/27/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) play a central role in the treatment of AIDS, but their mechanisms of action are incompletely understood. The interaction of the NNRTI nevirapine (NVP) with HIV-1 reverse transcriptase (RT) is characterized by a preference for the open conformation of the fingers/thumb subdomains, and a reported variation of three orders of magnitude between the binding affinity of NVP for RT in the presence or absence of primer/template DNA. To investigate the relationship between conformation and ligand binding, we evaluated the use of methionine NMR probes positioned near the tip of the fingers or thumb subdomains. Such probes would be expected to be sensitive to changes in the local environment depending on the fractions of open and closed RT. Comparisons of the NMR spectra of three conservative mutations, I63M, L74M, and L289M, indicated that M63 showed the greatest shift sensitivity to the addition of NVP. The exchange kinetics of the M63 resonance are fast on the chemical shift timescale, but become slow in the presence of NVP due to the slow binding of RT with the inhibitor. The simplest model consistent with this behavior involves a rapid open/closed equilibrium coupled with a slow interaction of the inhibitor with the open conformation. Studies of RT in the presence of both NVP and MgATP indicate a strong negative cooperativity. Binding of MgATP reduces the fraction of RT bound to NVP, as indicated by the intensity of the NVP-perturbed M230 resonance, and enhances the dissociation rate constant of the NVP, resulting in an increase of the open/closed interconversion rate, so that the M63 resonance moves into the fast/intermediate-exchange regime. Protein-mediated interactions appear to explain most of the affinity variation of NVP for RT.
Collapse
Affiliation(s)
- Xunhai Zheng
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | |
Collapse
|
53
|
Schauer G, Leuba S, Sluis-Cremer N. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. Biomolecules 2013; 3:889-904. [PMID: 24970195 PMCID: PMC4030976 DOI: 10.3390/biom3040889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA)-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs), which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s) of NNRTIs.
Collapse
Affiliation(s)
- Grant Schauer
- Program in Molecular Biophysics and Structural Biology, Hillman Cancer Center, University of Pittsburgh, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| | - Sanford Leuba
- Program in Molecular Biophysics and Structural Biology, Hillman Cancer Center, University of Pittsburgh, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| | - Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
54
|
Monroe JI, El-Nahal WG, Shirts MR. Investigating the mutation resistance of nonnucleoside inhibitors of HIV-RT using multiple microsecond atomistic simulations. Proteins 2013; 82:130-44. [PMID: 23775803 DOI: 10.1002/prot.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 11/06/2022]
Abstract
Inhibiting HIV reverse transcriptase through the use of nonnucleoside reverse transcriptase inhibitors (NNRTIs) has become an essential component in drug regimens for the treatment of HIV. Older NNRTIs, such as nevirapine, are structurally rigid, exhibiting decreased inhibitory function on development of common mutations in the NNRTI-binding pocket, which is located around 10 Å from the catalytically active binding site. The newer generation of drugs, such as rilpivirine, are more flexible and resistant to binding pocket mutations but the mechanism by which they actually inhibit protein function and avoid mutations is not well-understood. To this end, we have performed 2-2.4 µs simulations with explicit solvent in an isobaric-isothermal ensemble of six different systems: apo wild-type, apo K103N/Y181C mutant, nevirapine-bound wild-type, nevirapine-bound mutant, rilpivirine-bound wild type, and rilpivirine-bound mutant. Analysis of protein conformations, principal components of motion, and mutual information between residues points to an inhibitory mechanism in which the primer grip stretches away from the catalytic triad of aspartic acids necessary for polymerization of HIV-encoding DNA, but is still unable to reveal a specific structural mechanism behind mutation resistance.
Collapse
Affiliation(s)
- Jacob I Monroe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
55
|
Masaoka T, Chung S, Caboni P, Rausch JW, Wilson JA, Taskent-Sezgin H, Beutler JA, Tocco G, Le Grice SFJ. Exploiting drug-resistant enzymes as tools to identify thienopyrimidinone inhibitors of human immunodeficiency virus reverse transcriptase-associated ribonuclease H. J Med Chem 2013; 56:5436-45. [PMID: 23631411 PMCID: PMC3880631 DOI: 10.1021/jm400405z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thienopyrimidinone 5,6-dimethyl-2-(4-nitrophenyl)thieno[2,3-d]pyrimidin-4(3H)-one (DNTP) occupies the interface between the p66 ribonuclease H (RNase H) domain and p51 thumb of human immunodeficiency virus reverse transcriptase (HIV RT), thereby inducing a conformational change incompatible with catalysis. Here, we combined biochemical characterization of 39 DNTP derivatives with antiviral testing of selected compounds. In addition to wild-type HIV-1 RT, derivatives were evaluated with rationally designed, p66/p51 heterodimers exhibiting high-level DNTP sensitivity or resistance. This strategy identified 3',4'-dihydroxyphenyl (catechol) substituted thienopyrimidinones with submicromolar in vitro activity against both wild type HIV-1 RT and drug-resistant variants. Thermal shift analysis indicates that, in contrast to active site RNase H inhibitors, these thienopyrimidinones destabilize the enzyme, in some instances reducing the Tm by 5 °C. Importantly, catechol-containing thienopyrimidinones also inhibit HIV-1 replication in cells. Our data strengthen the case for allosteric inhibition of HIV RNase H activity, providing a platform for designing improved antagonists for use in combination antiviral therapy.
Collapse
Affiliation(s)
- Takashi Masaoka
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences-Unit of Drug Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - Jennifer A. Wilson
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD21702, USA
| | - Humeyra Taskent-Sezgin
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| | - John A. Beutler
- Molecular Targets Laboratory, National Cancer Institute, Frederick, MD21702, USA
| | - Graziella Tocco
- Department of Life and Environmental Sciences-Unit of Drug Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Stuart F. J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD21702, USA
| |
Collapse
|
56
|
Bec G, Meyer B, Gerard MA, Steger J, Fauster K, Wolff P, Burnouf D, Micura R, Dumas P, Ennifar E. Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action of non-nucleoside inhibitors. J Am Chem Soc 2013; 135:9743-52. [PMID: 23742167 DOI: 10.1021/ja4018418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a heterodimeric enzyme that converts the genomic viral RNA into proviral DNA. Despite intensive biochemical and structural studies, direct thermodynamic data regarding RT interactions with its substrates are still lacking. Here we addressed the mechanism of action of RT and of non-nucleoside RT inhibitors (NNRTIs) by isothermal titration calorimetry (ITC). Using a new incremental-ITC approach, a step-by-step thermodynamic dissection of the RT polymerization activity showed that most of the driving force for DNA synthesis is provided by initial dNTP binding. Surprisingly, thermodynamic and kinetic data led to a reinterpretation of the mechanism of inhibition of NNRTIs. Binding of NNRTIs to preformed RT/DNA complexes is hindered by a kinetic barrier and NNRTIs mostly interact with free RT. Once formed, RT/NNRTI complexes bind DNA either in a seemingly polymerase-competent orientation or form high-affinity dead-end complexes, both RT/NNRTI/DNA complexes being unable to bind the incoming nucleotide substrate.
Collapse
Affiliation(s)
- Guillaume Bec
- Architecture et Réactivité des ARN, CNRS/Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Retroviral restriction factor APOBEC3G delays the initiation of DNA synthesis by HIV-1 reverse transcriptase. PLoS One 2013; 8:e64196. [PMID: 23717565 PMCID: PMC3662766 DOI: 10.1371/journal.pone.0064196] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023] Open
Abstract
It is well established that the cytosine deaminase APOBEC3G can restrict HIV-1 virions in the absence of the virion infectivity factor (Vif) by inducing genome mutagenesis through deamination of cytosine to uracil in single-stranded HIV-1 (−)DNA. However, whether APOBEC3G is able to restrict HIV-1 using a deamination-independent mode remains an open question. In this report we use in vitro primer extension assays on primer/templates that model (−)DNA synthesis by reverse transcriptase from the primer binding site (PBS) and within the protease gene of HIV-1. We find that APOBEC3G is able to decrease the initiation of DNA synthesis by reverse transcriptase approximately 2-fold under conditions where reverse transcriptase is in excess to APOBEC3G, as found in HIV-1 virions. However, the delay in the initiation of DNA synthesis on RNA templates up to 120 nt did not decrease the total amount of primer extended after extended incubation unless the concentration of reverse transcriptase was equal to or less than that of APOBEC3G. By determining apparent Kd values of reverse transcriptase and APOBEC3G for the primer/templates and of reverse transcriptase binding to APOBEC3G we conclude that APOBEC3G is able to decrease the efficiency of reverse transcriptase-mediated DNA synthesis by binding to the RNA template, rather than by physically interacting with reverse transcriptase. All together the data support a model in which this deamination-independent mode of APOBEC3G would play a minor role in restricting HIV-1. We propose that the deamination-independent inhibition of reverse transcriptase we observed can be a mechanism used by APOBEC3G to slow down proviral DNA formation and increase the time in which single-stranded (−)DNA is available for deamination by APOBEC3G, rather than a direct mechanism used by APOBEC3G for HIV-1 restriction.
Collapse
|
58
|
Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3:119-28. [PMID: 23602470 DOI: 10.1016/j.coviro.2013.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
Structures of RT and its complexes combined with biochemical and clinical data help in illuminating the molecular mechanisms of different drug-resistance mutations. The NRTI drugs that are used in combinations have different primary mutation sites. RT mutations that confer resistance to one drug can be hypersensitive to another RT drug. Structure of an RT-DNA-nevirapine complex revealed how NNRTI binding forbids RT from forming a polymerase competent complex. Collective knowledge about various mechanisms of drug resistance by RT has broader implications for understanding and targeting drug resistance in general. In Part 1, we discussed the role of RT in developing HIV-1 drug resistance, structural and functional states of RT, and the nucleoside/nucleotide analog (NRTI) and non-nucleoside (NNRTI) drugs used in treating HIV-1 infections. In this part, we discuss structural understanding of various mechanisms by which RT confers antiviral drug resistance.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
59
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 2013; 98:93-120. [PMID: 23403210 DOI: 10.1016/j.antiviral.2013.01.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
60
|
Kim H, Ha T. Single-molecule nanometry for biological physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:016601. [PMID: 23249673 PMCID: PMC3549428 DOI: 10.1088/0034-4885/76/1/016601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precision measurement is a hallmark of physics but the small length scale (∼nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single-molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ∼0.3 nm precision at ∼1 ms time resolution, as well as how these new tools are providing fundamental insights into how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate the movements of multiple components. Finally, we will discuss recent progress in combining angstrom-precision optical tweezers with single-molecule fluorescent detection, opening new windows for multi-dimensional single-molecule nanometry for biological physics.
Collapse
Affiliation(s)
- Hajin Kim
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | | |
Collapse
|
61
|
De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:317-58. [PMID: 23886005 DOI: 10.1016/b978-0-12-405880-4.00009-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the drugs currently used for the treatment of HIV infections (AIDS) belong to either of the following three classes: nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). At present, there are 7 NRTIs, 5 NNRTIs, and 10 PIs approved for clinical use. They are discussed from the following viewpoints: (i) chemical formulae; (ii) mechanism of action; (iii) drug combinations; (iv) clinical aspects; (v) preexposure prophylaxis; (vi) prevention of mother-to-child transmission; (vii) their use in children; (viii) toxicity; (ix) adherence (compliance); (x) resistance; (xi) new NRTIs, NNRTIs, or PIs in (pre)clinical development; and (xii) the prospects for a "cure" of the disease.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
62
|
Abstract
The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replication, protein kinase R(PKR)-mediated immune response, and RNA silencing. Here we report an ATP-independent diffusion activity of TRBP exclusively on dsRNA in a length-dependent manner. The first two dsRBDs of TRBP are essential for diffusion, whereas the third dsRBD is dispensable. Two homologs of TRBP, PKR activator and R3D1-L, displayed the same diffusion, implying a universality of the diffusion activity among this protein family. Furthermore, a Dicer-TRBP complex on dsRNA exhibited dynamic diffusion, which was correlated with Dicer's catalytic activity. These results implicate the dsRNA-specific diffusion activity of TRBP that contributes to enhancing siRNA and miRNA processing by Dicer.
Collapse
|
63
|
Ragunathan K, Liu C, Ha T. RecA filament sliding on DNA facilitates homology search. eLife 2012; 1:e00067. [PMID: 23240082 PMCID: PMC3510455 DOI: 10.7554/elife.00067] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/04/2012] [Indexed: 01/07/2023] Open
Abstract
During homologous recombination, RecA forms a helical filament on a single stranded (ss) DNA that searches for a homologous double stranded (ds) DNA and catalyzes the exchange of complementary base pairs to form a new heteroduplex. Using single molecule fluorescence imaging tools with high spatiotemporal resolution we characterized the encounter complex between the RecA filament and dsDNA. We present evidence in support of the 'sliding model' wherein a RecA filament diffuses along a dsDNA track. We further show that homology can be detected during sliding. Sliding occurs with a diffusion coefficient of approximately 8000 bp(2)/s allowing the filament to sample several hundred base pairs before dissociation. Modeling suggests that sliding can accelerate homology search by as much as 200 fold. Homology recognition can occur for as few as 6 nt of complementary basepairs with the recognition efficiency increasing for higher complementarity. Our data represents the first example of a DNA bound multi-protein complex which can slide along another DNA to facilitate target search.DOI:http://dx.doi.org/10.7554/eLife.00067.001.
Collapse
Affiliation(s)
- Kaushik Ragunathan
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States [corrected]
| | | | | |
Collapse
|
64
|
Le Grice SFJ. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 2012; 287:40850-7. [PMID: 23043108 DOI: 10.1074/jbc.r112.389056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of integration-competent, double-stranded DNA from the (+)-RNA strand genome of retroviruses and long terminal repeat-containing retrotransposons reflects a multistep process catalyzed by the virus-encoded reverse transcriptase (RT). In conjunction with RNA- and DNA-templated DNA synthesis, a hydrolytic activity of the same enzyme (RNase H) is required to remove genomic RNA of the RNA/DNA replication intermediate. Together, these combined synthetic and degradative functions ensure correct selection, extension, and removal of the RNA primers of (-)- and (+)-strand DNA synthesis (tRNA and the polypurine tract, respectively). For HIV-1 RT, a quarter century of research has not only illuminated the biochemical properties, structure, and conformational dynamics of this highly versatile enzyme but has also witnessed drug discovery advances from the first Food and Drug Administration-approved anti-RT drug to recent use of RT inhibitors as potential colorectal microbicides. Salient features of HIV-1 RT and extension of these findings into programs of drug discovery are reviewed here.
Collapse
Affiliation(s)
- Stuart F J Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA.
| |
Collapse
|
65
|
Lee G, Bratkowski MA, Ding F, Ke A, Ha T. Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science 2012; 336:1726-9. [PMID: 22745434 DOI: 10.1126/science.1216848] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rrp44 (Dis3) is a key catalytic subunit of the yeast exosome complex and can processively digest structured RNA one nucleotide at a time in the 3' to 5' direction. Its motor function is powered by the energy released from the hydrolytic nuclease reaction instead of adenosine triphosphate hydrolysis as in conventional helicases. Single-molecule fluorescence analysis revealed that instead of unwinding RNA in single base pair steps, Rrp44 accumulates the energy released by multiple single nucleotide step hydrolysis reactions until about four base pairs are unwound in a burst. Kinetic analyses showed that RNA unwinding, not cleavage or strand release, determines the overall RNA degradation rate and that the unwinding step size is determined by the nonlinear elasticity of the Rrp44/RNA complex, but not by duplex stability.
Collapse
Affiliation(s)
- Gwangrog Lee
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
66
|
Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG. Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 2012; 287:38110-23. [PMID: 22955279 DOI: 10.1074/jbc.m112.398180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proc Natl Acad Sci U S A 2012; 109:14458-63. [PMID: 22908248 DOI: 10.1073/pnas.1208950109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequence and secondary structure of the 5'-end of mRNAs regulate translation by controlling ribosome initiation on the mRNA. Ribosomal protein S1 is crucial for ribosome initiation on many natural mRNAs, particularly for those with structured 5'-ends, or with no or weak Shine-Dalgarno sequences. Besides a critical role in translation, S1 has been implicated in several other cellular processes, such as transcription recycling, and the rescuing of stalled ribosomes by tmRNA. The mechanisms of S1 functions are still elusive but have been widely considered to be linked to the affinity of S1 for single-stranded RNA and its corresponding destabilization of mRNA secondary structures. Here, using optical tweezers techniques, we demonstrate that S1 promotes RNA unwinding by binding to the single-stranded RNA formed transiently during the thermal breathing of the RNA base pairs and that S1 dissociation results in RNA rezipping. We measured the dependence of the RNA unwinding and rezipping rates on S1 concentration, and the force applied to the ends of the RNA. We found that each S1 binds 10 nucleotides of RNA in a multistep fashion implying that S1 can facilitate ribosome initiation on structured mRNA by first binding to the single strand next to an RNA duplex structure ("stand-by site") before subsequent binding leads to RNA unwinding. Unwinding by multiple small substeps is much less rate limited by thermal breathing than unwinding in a single step. Thus, a multistep scheme greatly expedites S1 unwinding of an RNA structure compared to a single-step mode.
Collapse
|
68
|
Uppuladinne MVN, Sonavane UB, Joshi RR. MD simulations of HIV-1 RT primer-template complex: effect of modified nucleosides and antisense PNA oligomer. J Biomol Struct Dyn 2012; 31:539-60. [PMID: 22888964 DOI: 10.1080/07391102.2012.706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the human tRNA(3)(Lys) as a reverse transcriptase (RT) primer. The annealing of 3' terminal 18 nucleotides of tRNA(3)(Lys) with the primer binding site (PBS) of viral RNA (vRNA) is crucial for reverse transcription. Additional contacts between the A rich (A-loop) region of vRNA and the anticodon domain of tRNA(3)(Lys) are necessary, which show the specific requirement of tRNA(3)(Lys). The importance of modified nucleosides, present in tRNA(3)(Lys), in giving stability to the primer-template complex has been determined in earlier experiments. It has been observed that the PNA oligomer targeted to PBS of vRNA destabilized the crucial interactions between primer and template due to which the reverse transcription is inhibited. Molecular dynamics simulations have been carried out to study the effect of modified nucleosides on the vRNA-tRNA(3)(Lys) complex stability and the destabilization effect of PNA oligomer on the vRNA-tRNA(3)(Lys)-PNA complex. The root-mean-square deviation, hydrogen bonding, tertiary interactions, and free energy calculations of the simulation data support the experimental results. The analyses have revealed the structural changes in PBS region of vRNA which might be another strong reason for the inability of RT binding to 7F helix for its normal functioning of reverse transcription.
Collapse
|
69
|
HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions. Mol Biol Int 2012; 2012:586401. [PMID: 22778958 PMCID: PMC3388302 DOI: 10.1155/2012/586401] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022] Open
Abstract
During the retrotranscription process, characteristic of all retroviruses, the viral ssRNA genome is converted into integration-competent dsDNA. This process is accomplished by the virus-coded reverse transcriptase (RT) protein, which is a primary target in the current treatments for HIV-1 infection. In particular, in the approved therapeutic regimens two classes of drugs target RT, namely, nucleoside RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). Both classes inhibit the RT-associated polymerase activity: the NRTIs compete with the natural dNTP substrate and act as chain terminators, while the NNRTIs bind to an allosteric pocket and inhibit polymerization noncompetitively. In addition to these two classes, other RT inhibitors (RTIs) that target RT by distinct mechanisms have been identified and are currently under development. These include translocation-defective RTIs, delayed chain terminators RTIs, lethal mutagenesis RTIs, dinucleotide tetraphosphates, nucleotide-competing RTIs, pyrophosphate analogs, RT-associated RNase H function inhibitors, and dual activities inhibitors. This paper describes the HIV-1 RT function and molecular structure, illustrates the currently approved RTIs, and focuses on the mechanisms of action of the newer classes of RTIs.
Collapse
|
70
|
Sleiman D, Goldschmidt V, Barraud P, Marquet R, Paillart JC, Tisné C. Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Res 2012; 169:324-39. [PMID: 22721779 DOI: 10.1016/j.virusres.2012.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
HIV-1 reverse transcription is initiated from a tRNA(Lys)(3) molecule annealed to the viral RNA at the primer binding site (PBS). The annealing of tRNA(Lys)(3) requires the opening of its three-dimensional structure and RNA rearrangements to form an efficient initiation complex recognized by the reverse transcriptase. This annealing is mediated by the nucleocapsid protein (NC). In this paper, we first review the actual knowledge about HIV-1 viral RNA and tRNA(Lys)(3) structures. Then, we summarize the studies explaining how NC chaperones the formation of the tRNA(Lys)(3)/PBS binary complex. Additional NMR data that investigated the NC interaction with tRNA(Lys)(3) D-loop are presented. Lastly, we focused on the additional interactions occurring between tRNA(Lys)(3) and the viral RNA and showed that they are dependent on HIV-1 isolates, i.e. the sequence and the structure of the viral RNA.
Collapse
Affiliation(s)
- Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, Université Paris-Descartes, CNRS UMR 8015, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
71
|
Wang H, Musier-Forsyth K, Falk C, Barbara PF. Single-molecule spectroscopic study of dynamic nanoscale DNA bending behavior of HIV-1 nucleocapsid protein. J Phys Chem B 2012; 117:4183-96. [PMID: 22591315 DOI: 10.1021/jp3018259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have studied the conformational dynamics associated with the nanoscale DNA bending induced by human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein using single-molecule Förster resonance energy transfer (SM-FRET). To gain molecular-level insights into how the HIV-1 NC locally distorts the structures of duplexed DNA segments, the dynamics, reversibility, and sequence specificity of the DNA bending behavior of NC have been systematically studied. We have performed SM-FRET measurements on a series of duplexed DNA segments with varying sequences, lengths, and local structures in the presence of the wide-type HIV-1 NC and NC mutants lacking either the basic N-terminal domain or the zinc fingers. On the basis of the SM-FRET results, we have proposed a possible mechanism for the NC-induced DNA bending in which both NC's zinc fingers and N-terminal domain are found to play crucial roles. The SM-FRET results reported here add new mechanistic insights into the biological behaviors and functions of HIV-1 NC as a retroviral DNA-architectural protein which may play critical roles in the compaction, nuclear import, and integration of the proviral DNA during the retroviral life cycle.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
72
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
73
|
Abstract
The advent of new technologies allowing the study of single biological molecules continues to have a major impact on studies of interacting systems as well as enzyme reactions. These approaches (fluorescence, optical, and magnetic tweezers), in combination with ensemble methods, have been particularly useful for mechanistic studies of protein-nucleic acid interactions and enzymes that function on nucleic acids. We review progress in the use of single-molecule methods to observe and perturb the activities of proteins and enzymes that function on flexible single-stranded DNA. These include single-stranded DNA binding proteins, recombinases (RecA/Rad51), and helicases/translocases that operate as motor proteins and play central roles in genome maintenance. We emphasize methods that have been used to detect and study the movement of these proteins (both ATP-dependent directional and random movement) along the single-stranded DNA and the mechanistic and functional information that can result from detailed analysis of such movement.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
74
|
Ingargiola A, Colyer RA, Kim D, Panzeri F, Lin R, Gulinatti A, Rech I, Ghioni M, Weiss S, Michalet X. Parallel multispot smFRET analysis using an 8-pixel SPAD array. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2012; 8228. [PMID: 24382989 DOI: 10.1117/12.909470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for extracting distance information between two fluorophores (a donor and acceptor dye) on a nanometer scale. This method is commonly used to monitor binding interactions or intra- and intermolecular conformations in biomolecules freely diffusing through a focal volume or immobilized on a surface. The diffusing geometry has the advantage to not interfere with the molecules and to give access to fast time scales. However, separating photon bursts from individual molecules requires low sample concentrations. This results in long acquisition time (several minutes to an hour) to obtain sufficient statistics. It also prevents studying dynamic phenomena happening on time scales larger than the burst duration and smaller than the acquisition time. Parallelization of acquisition overcomes this limit by increasing the acquisition rate using the same low concentrations required for individual molecule burst identification. In this work we present a new two-color smFRET approach using multispot excitation and detection. The donor excitation pattern is composed of 4 spots arranged in a linear pattern. The fluorescent emission of donor and acceptor dyes is then collected and refocused on two separate areas of a custom 8-pixel SPAD array. We report smFRET measurements performed on various DNA samples synthesized with various distances between the donor and acceptor fluorophores. We demonstrate that our approach provides identical FRET efficiency values to a conventional single-spot acquisition approach, but with a reduced acquisition time. Our work thus opens the way to high-throughput smFRET analysis on freely diffusing molecules.
Collapse
Affiliation(s)
- A Ingargiola
- Dipartimento Elettronica ed Informazione, Politecnico di Milano, Milan, Italy ; Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA USA
| | - R A Colyer
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA USA
| | - D Kim
- Nesher Technologies Inc, Los Angeles, CA USA
| | - F Panzeri
- Dipartimento Elettronica ed Informazione, Politecnico di Milano, Milan, Italy
| | - R Lin
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA USA
| | - A Gulinatti
- Dipartimento Elettronica ed Informazione, Politecnico di Milano, Milan, Italy
| | - I Rech
- Dipartimento Elettronica ed Informazione, Politecnico di Milano, Milan, Italy
| | - M Ghioni
- Dipartimento Elettronica ed Informazione, Politecnico di Milano, Milan, Italy
| | - S Weiss
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA USA
| | - X Michalet
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA USA
| |
Collapse
|
75
|
Radzvilavicius T, Lagunavicius A. Selective inactivation of M-MuLV RT RNase H activity by site-directed PEGylation: an improved ability to synthesize long cDNA molecules. N Biotechnol 2012; 29:285-92. [DOI: 10.1016/j.nbt.2011.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
76
|
Das K, Martinez SE, Bauman JD, Arnold E. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 2012; 19:253-9. [PMID: 22266819 PMCID: PMC3359132 DOI: 10.1038/nsmb.2223] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/05/2011] [Indexed: 12/13/2022]
Abstract
Combinations of nucleoside and non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT) are widely used in anti-AIDS therapies. Five NNRTIs, including nevirapine, are clinical drugs; however, the molecular mechanism of inhibition by NNRTIs is not clear. We determined the crystal structures of RT-DNA-nevirapine, RT-DNA, and RT-DNA-AZT-triphosphate complexes at 2.85-, 2.70- and 2.80-Å resolution, respectively. The RT-DNA complex in the crystal could bind nevirapine or AZT-triphosphate but not both. Binding of nevirapine led to opening of the NNRTI-binding pocket. The pocket formation caused shifting of the 3' end of the DNA primer by ~5.5 Å away from its polymerase active site position. Nucleic acid interactions with fingers and palm subdomains were reduced, the dNTP-binding pocket was distorted and the thumb opened up. The structures elucidate complementary roles of nucleoside and non-nucleoside inhibitors in inhibiting RT.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
77
|
von Kleist M, Metzner P, Marquet R, Schütte C. HIV-1 polymerase inhibition by nucleoside analogs: cellular- and kinetic parameters of efficacy, susceptibility and resistance selection. PLoS Comput Biol 2012; 8:e1002359. [PMID: 22275860 PMCID: PMC3261923 DOI: 10.1371/journal.pcbi.1002359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate, increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations. NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription process, or analogous processes in other viruses and help to guide drug development and improve our understanding of the mechanisms of resistance development during treatment. Nucleoside analogs (NAs) represent an important drug class for the treatment of viral infections and cancer. They inhibit DNA/RNA polymerization after being incorporated into nascent DNA/RNA, which prevents primer extension. Viruses are particularly versatile and frequently develop mutations enabling them to avert the effects of NAs. The mechanisms of resistance development are, however, still poorly understood. Through mathematical modeling, we assess the mechanisms by which HIV-1 can develop resistance against nucleoside analog reverse transcriptase inhibitors (NRTI). We quantify the effects of treatment and estimate the fitness of drug resistant mutants. We correctly predict that HIV-1 can develop resistance by decreasing NRTI incorporation rate, increasing its excision rate, or decreasing its affinity for the viral polymerase enzyme. Our model also allows quantification of the cell specific factors affecting NRTI efficacy. Resistance development also changes drug susceptibility distinctly and we show, for the first time, that selection of drug resistance can occur in particular target cells. This finding could provide an explanation of how clinically observed resistant viral mutants may arise. It also pin-points important parameters that may impact clinical efficacy of NAs used to treat other viruses.
Collapse
Affiliation(s)
- Max von Kleist
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
78
|
Fairman-Williams ME, Jankowsky E. Unwinding initiation by the viral RNA helicase NPH-II. J Mol Biol 2011; 415:819-32. [PMID: 22155080 DOI: 10.1016/j.jmb.2011.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
Abstract
Viral RNA helicases of the NS3/NPH-II group unwind RNA duplexes by processive, directional translocation on one of the duplex strands. The translocation is preceded by a poorly understood unwinding initiation phase. For NPH-II from vaccinia virus, unwinding initiation is rate limiting for the overall unwinding reaction. To develop a mechanistic understanding of the unwinding initiation, we studied kinetic and thermodynamic aspects of this reaction phase for NPH-II in vitro, using biochemical and single molecule fluorescence approaches. Our data show that NPH-II functions as a monomer and that different stages of the ATP hydrolysis cycle dictate distinct binding preferences of NPH-II for duplex versus single-stranded RNA. We further find that the NPH-II-RNA complex does not adopt a single conformation but rather at least two distinct conformations in each of the analyzed stages of ATP hydrolysis. These conformations interconvert with rate constants that depend on the stage of the ATP hydrolysis cycle. Our data establish a basic mechanistic framework for unwinding initiation by NPH-II and suggest that the various stages of the ATP hydrolysis cycle do not induce single, stage-specific conformations in the NPH-II-RNA complex but primarily control transitions between multiple states.
Collapse
Affiliation(s)
- Margaret E Fairman-Williams
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
79
|
Altered strand transfer activity of a multiple-drug-resistant human immunodeficiency virus type 1 reverse transcriptase mutant with a dipeptide fingers domain insertion. J Mol Biol 2011; 415:248-62. [PMID: 22100453 DOI: 10.1016/j.jmb.2011.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/01/2011] [Accepted: 11/06/2011] [Indexed: 11/23/2022]
Abstract
Prolonged highly active anti-retroviral therapy with multiple nucleoside reverse transcriptase inhibitors for the treatment of patients infected with human immunodeficiency virus type 1 (HIV-1) can induce the development of an HIV-1 reverse transcriptase (RT) harboring a dipeptide insertion at the RT fingers domain with a background thymidine analog mutation. This mutation renders viral resistance to multiple nucleoside reverse transcriptase inhibitors. We investigated the effect of the dipeptide fingers domain insertion mutation on strand transfer activity using two clinical RT variants isolated during the pre-treatment and post-treatment of an infected patient, termed pre-drug RT without dipeptide insertion and post-drug RT with Ser-Gly insertion, respectively. First, the post-drug RT displayed elevated strand transfer activity compared to the pre-drug RT, with two different RNA templates. Second, the post-drug RT exhibited less RNA template degradation than the pre-drug RT but higher polymerization-dependent RNase H activity. Third, the post-drug RT had a faster association rate (k(on)) for template binding and a lower equilibrium binding constant K(d) for the template, leading to a template binding affinity tighter than that of the pre-drug RT. The k(off) values for the pre-drug RT and the post-drug RT were similar. Finally, the removal of the dipeptide insertion from the post-drug RT abolished the elevated strand transfer activity and RNase H activity, in addition to the loss of azidothymidine resistance. These biochemical data suggest that the dipeptide insertion elevates strand transfer activity by increasing the interaction of the RT with the RNA donor template, promoting cleavage that generates more invasion sites for the acceptor template during DNA synthesis.
Collapse
|
80
|
Menéndez-Arias L, Betancor G, Matamoros T. HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Res 2011; 92:139-49. [DOI: 10.1016/j.antiviral.2011.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/25/2022]
|
81
|
Sela I, Lukatsky DB. DNA sequence correlations shape nonspecific transcription factor-DNA binding affinity. Biophys J 2011; 101:160-6. [PMID: 21723826 DOI: 10.1016/j.bpj.2011.04.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/27/2022] Open
Abstract
Transcription factors (TFs) are regulatory proteins that bind DNA in promoter regions of the genome and either promote or repress gene expression. Here, we predict analytically that enhanced homooligonucleotide sequence correlations, such as poly(dA:dT) and poly(dC:dG) tracts, statistically enhance nonspecific TF-DNA binding affinity. This prediction is generic and qualitatively independent of microscopic parameters of the model. We show that nonspecific TF binding affinity is universally controlled by the strength and symmetry of DNA sequence correlations. We perform correlation analysis of the yeast genome and show that DNA regions highly occupied by TFs exhibit stronger homooligonucleotide sequence correlations, and thus a higher propensity for nonspecific binding, than do poorly occupied regions. We suggest that this effect plays the role of an effective localization potential that enhances quasi-one-dimensional diffusion of TFs in the vicinity of DNA, speeding up the stochastic search process for specific TF binding sites. The effect is also predicted to impose an upper bound on the size of TF-DNA binding motifs.
Collapse
Affiliation(s)
- Itamar Sela
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
82
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
83
|
Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening. Antimicrob Agents Chemother 2011; 55:4735-41. [PMID: 21768506 DOI: 10.1128/aac.00658-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg(2+)-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), lacking endogenous RNase HI and HII. The p51-G-TCR RNase H construct displayed Mg(2+)-dependent activity using a fluorescent nonspecific assay and showed the same cleavage pattern as HIV-1 reverse transcriptase (RT) on substrates that mimic the tRNA removal required for second-strand transfer reactions. The mutant E706Q (E478Q in RT) was purified under similar conditions and was not active. The RNase H of the p51-G-TCR RNase H construct and wild type HIV-1 RT had similar K(m)s for an RNA-DNA hybrid substrate and showed similar inhibition kinetics to two known inhibitors of the HIV-1 RT RNase H.
Collapse
|
84
|
Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophys J 2011; 100:1568-77. [PMID: 21402040 DOI: 10.1016/j.bpj.2011.01.066] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/31/2010] [Accepted: 01/20/2011] [Indexed: 12/22/2022] Open
Abstract
Histograms of single-molecule Förster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coexistence of several static structures. To this end, we introduce burst variance analysis (BVA), a method that detects dynamics by comparing the standard deviation of FRET from individual molecules over time to that expected from theory. Both simulations and experiments on DNA hairpins show that BVA can distinguish between static and dynamic sources of heterogeneity in single-molecule FRET histograms and can test models of dynamics against the observed standard deviation information. Using BVA, we analyzed the fingers-closing transition in the Klenow fragment of Escherichia coli DNA polymerase I and identified substantial dynamics in polymerase complexes formed prior to nucleotide incorporation; these dynamics may be important for the fidelity of DNA synthesis. We expect BVA to be broadly applicable to single-molecule FRET studies of molecular structure and to complement approaches such as probability distribution analysis and fluorescence correlation spectroscopy in studying molecular dynamics.
Collapse
Affiliation(s)
- Joseph P Torella
- Department of Physics and Biological Physics Research Group, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
85
|
Scarth BJ, Ehteshami M, Beilhartz GL, Götte M. HIV-1 reverse transcriptase inhibitors: beyond classic nucleosides and non-nucleosides. Future Virol 2011. [DOI: 10.2217/fvl.11.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reverse transcriptase (RT) of HIV-1 remains an important target in current treatments of HIV-1 infection. Clinically available inhibitors of HIV-1 RT include nucleoside analog RT inhibitors and non-nucleoside RT inhibitors. Nucleoside analog RT inhibitors compete with the natural dNTP substrate and act as chain terminators, while non-nucleoside RT inhibitors bind to an allosteric pocket, inhibiting polymerization noncompetitively. In addition to these two classes of approved drugs, there are a number of RT inhibitors that target the enzyme in different ways. These include nonobligate chain terminators, nucleotide-competing RT inhibitors, pyrophosphate analogs and compounds that inhibit the RT-associated RNase H activity. Here, we review the mechanisms of action associated with these compounds and discuss opportunities and challenges in drug discovery and development efforts.
Collapse
Affiliation(s)
- Brian J Scarth
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Maryam Ehteshami
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Greg L Beilhartz
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | |
Collapse
|
86
|
Götte M. Initiation of HIV reverse transcription: is enzyme flipping required? Viruses 2011; 3:331-335. [PMID: 21994735 PMCID: PMC3185700 DOI: 10.3390/v3040331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/03/2022] Open
Abstract
Liu and colleagues have recently studied dynamic changes in the orientation of HIV reverse transcriptase (RT) on its nucleic acid substrate during initiation of DNA synthesis. The authors employed a single molecule FRET assay and revealed the existence of an equilibrium between polymerase-competent and “flipped” polymerase-incompetent orientations. RT flipping correlates with enzyme pausing during initiation, while the transition to the processive elongation phase correlates with increases in the population of polymerase-competent complexes. The potential biological significance of these findings is discussed in this commentary in lieu of the entire process of reverse transcription.
Collapse
Affiliation(s)
- Matthias Götte
- Department of Microbiology and Immunology, McGill University, Duff Medical Building (D-6), 3775 University St., Montreal, QC, H3A 2B4, Canada; E-Mail: ; Tel.: +1-514-398-1365; Fax: +1-514-398-7052
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
87
|
Seckler JM, Barkley MD, Wintrode PL. Allosteric suppression of HIV-1 reverse transcriptase structural dynamics upon inhibitor binding. Biophys J 2011; 100:144-53. [PMID: 21190666 DOI: 10.1016/j.bpj.2010.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/22/2010] [Accepted: 11/03/2010] [Indexed: 11/15/2022] Open
Abstract
Efavirenz is a second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) and a common component of clinically approved anti-AIDS regimens. NNRTIs are noncompetitive inhibitors that bind in a hydrophobic pocket in the p66 subunit of reverse transcriptase (RT) ∼10 Å from the polymerase active site. Hydrogen exchange mass spectrometry (HXMS) shows that efavirenz binding reduces molecular flexibility in multiple regions of RT heterodimer in addition to the NNRTI binding site. Of the 47 peptic fragments monitored by HXMS, 15 showed significantly altered H/D exchange rates in the presence of efavirenz. The slow cooperative unfolding of a β-sheet in the NNRTI binding pocket, which was previously observed in unliganded RT, is dramatically suppressed by efavirenz. HXMS also defines an extensive network of allosterically coupled sites, including four distinct regions of allosteric stabilization, and one region of allosteric destabilization. The effects of efavirenz binding extend > 60 Å from the NNRTI binding pocket. Allosteric changes to the structural dynamics propagate to the thumb and connection subdomains and RNase H domain of the p66 subunit as well as the thumb and palm subdomains of the p51 subunit. These allosteric regions may represent potential new drug targets.
Collapse
Affiliation(s)
- James M Seckler
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
88
|
Nikolenko GN, Kotelkin AT, Oreshkova SF, Ilyichev AA. Mechanisms of HIV-1 drug resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Mol Biol 2011. [DOI: 10.1134/s0026893311010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
89
|
Bustamante C, Cheng W, Mejia YX, Meija YX. Revisiting the central dogma one molecule at a time. Cell 2011; 144:480-97. [PMID: 21335233 PMCID: PMC3063003 DOI: 10.1016/j.cell.2011.01.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/21/2011] [Accepted: 01/26/2011] [Indexed: 12/24/2022]
Abstract
The faithful relay and timely expression of genetic information depend on specialized molecular machines, many of which function as nucleic acid translocases. The emergence over the last decade of single-molecule fluorescence detection and manipulation techniques with nm and Å resolution and their application to the study of nucleic acid translocases are painting an increasingly sharp picture of the inner workings of these machines, the dynamics and coordination of their moving parts, their thermodynamic efficiency, and the nature of their transient intermediates. Here we present an overview of the main results arrived at by the application of single-molecule methods to the study of the main machines of the central dogma.
Collapse
Affiliation(s)
- Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, 94720, USA.
| | | | | | | |
Collapse
|
90
|
Pereira CF, Ellenberg PC, Jones KL, Fernandez TL, Smyth RP, Hawkes DJ, Hijnen M, Vivet-Boudou V, Marquet R, Johnson I, Mak J. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system. PLoS One 2011; 6:e17016. [PMID: 21347302 PMCID: PMC3037950 DOI: 10.1371/journal.pone.0017016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/19/2011] [Indexed: 12/01/2022] Open
Abstract
Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.
Collapse
Affiliation(s)
- Cândida F. Pereira
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Paula C. Ellenberg
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Kate L. Jones
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Tara L. Fernandez
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Redmond P. Smyth
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - David J. Hawkes
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Marcel Hijnen
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Iain Johnson
- Life Technologies Corporation, Eugene, Oregon, United States of America
| | - Johnson Mak
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
91
|
Uphoff S, Gryte K, Evans G, Kapanidis AN. Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET. Chemphyschem 2011; 12:571-9. [PMID: 21280168 DOI: 10.1002/cphc.201000834] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Indexed: 11/06/2022]
Abstract
Switchable FRET is the combination of single-molecule Förster resonance energy transfer (smFRET) with photoswitching, the reversible activation and deactivation of fluorophores by light. By photoswitching, multiple donor-acceptor fluorophore pairs can be probed sequentially, thus allowing observation of multiple distances within a single immobilized molecule. Control of the photoinduced switching rates permits adjustment of the temporal resolution of switchable FRET over a wide range of timescales, thereby facilitating application to various dynamical biological systems. We show that fast total internal reflection (TIRF) microscopy can achieve measurements of two FRET pairs with 10 ms temporal resolution within less than 2 s. The concept of switchable FRET is also compatible with confocal microscopy on immobilized molecules, providing better data quality at high temporal resolution. To identify states and extract their transitions from switchable FRET time traces, we also develop linked hidden Markov modeling (HMM) of both FRET and donor-acceptor stoichiometry. Linked HMM successfully identifies transient states in the two-dimensional FRET-stoichiometry space and reconstructs their connectivity network. Improved temporal resolution and novel data analysis make switchable FRET a valuable tool in molecular and structural biology.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Physics and Biological Physics Research Group, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | |
Collapse
|
92
|
Liu S, Harada BT, Miller JT, Le Grice SFJ, Zhuang X. Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 2010; 17:1453-60. [PMID: 21102446 PMCID: PMC3058889 DOI: 10.1038/nsmb.1937] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/23/2010] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus (HIV) initiates reverse transcription of its viral RNA (vRNA) genome from a cellular tRNA(3)(Lys) primer. This process is characterized by a slow initiation phase with specific pauses, followed by a fast elongation phase. We report a single-molecule study that monitors the dynamics of individual initiation complexes, comprised of vRNA, tRNA and HIV reverse transcriptase (RT). RT transitions between two opposite binding orientations on tRNA-vRNA complexes, and the prominent pausing events are related to RT binding in a flipped orientation opposite to the polymerization-competent configuration. A stem-loop structure within the vRNA is responsible for maintaining the enzyme predominantly in this flipped orientation. Disruption of the stem-loop structure triggers the initiation-to-elongation transition. These results highlight the important role of the structural dynamics of the initiation complex in directing transitions between early reverse transcription phases.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
93
|
Scarth B, McCormick S, Götte M. Effects of mutations F61A and A62V in the fingers subdomain of HIV-1 reverse transcriptase on the translocational equilibrium. J Mol Biol 2010; 405:349-60. [PMID: 21056575 DOI: 10.1016/j.jmb.2010.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/30/2010] [Accepted: 10/08/2010] [Indexed: 01/20/2023]
Abstract
Changes of the translocational status of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) can affect susceptibility to antiretroviral drugs. The pyrophosphate analogue phosphonoformic acid (PFA) binds specifically to and traps the pretranslocated complex of HIV-1 RT, while nucleotide-competing RT inhibitors trap the posttranslocated conformation. Here, we attempted to assess the potential role of residues in the fingers subdomain as determinants of polymerase translocation. The fingers can exist in open and closed conformations; however, the relationship between such conformational changes and the translocation status of HIV-1 RT remains elusive. We focused on substitution F61A and the neighboring A62V that is frequently associated with drug-resistance-conferring mutations. The proximity of these residues to the nucleic acid substrate suggested a possible role in translocation for these amino acid changes. We employed site-specific footprinting, binding assays, and DNA-synthesis inhibition experiments to study F61A and A62V, alone and against a background of known drug-resistance mutations. We demonstrate that F61A causes a strong bias to the posttranslocational state, while A62V shows a subtle bias toward pretranslocation regardless of the mutational background. Increases in the population of pretranslocated complexes were accompanied by increases in PFA activity, while F61A is literally resistant to PFA. Our data shed light on equilibria between pre- and posttranslocated complexes with the fingers subdomain in its open or closed conformations. We propose that a binary, pretranslocated complex in a closed conformation is stabilized with A62V and destabilized with F61A.
Collapse
Affiliation(s)
- Brian Scarth
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
94
|
Shi X, Lim J, Ha T. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 2010; 82:6132-8. [PMID: 20583766 PMCID: PMC2904532 DOI: 10.1021/ac1008749] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies.
Collapse
Affiliation(s)
- Xinghua Shi
- Howard Hughes Medical Institute, Department of Physics, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
95
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
96
|
Lu S, Li WW, Rotem D, Mikhailova E, Bayley H. A primary hydrogen-deuterium isotope effect observed at the single-molecule level. Nat Chem 2010; 2:921-8. [PMID: 20966947 DOI: 10.1038/nchem.821] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/22/2010] [Indexed: 11/08/2022]
Abstract
The covalent chemistry of reactants tethered within a single protein pore can be monitored by observing the time-dependence of ionic current flow through the pore, which responds to bond making and breaking in individual reactant molecules. Here we use this 'nanoreactor' approach to examine the reaction of a quinone with a thiol to form a substituted hydroquinone by reductive 1,4-Michael addition. Remarkably, a primary hydrogen-deuterium isotope effect is readily detected at the single-molecule level during prototropic rearrangement of an initial adduct. The observation of individual reaction intermediates allows the measurement of an isotope effect whether or not the step involved is rate limiting, which would not be the case in an ensemble measurement.
Collapse
Affiliation(s)
- Siran Lu
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | | | | | | |
Collapse
|
97
|
Singh DR, Raicu V. Comparison between whole distribution- and average-based approaches to the determination of fluorescence resonance energy transfer efficiency in ensembles of proteins in living cells. Biophys J 2010; 98:2127-35. [PMID: 20483320 DOI: 10.1016/j.bpj.2010.01.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/12/2010] [Accepted: 01/25/2010] [Indexed: 11/19/2022] Open
Abstract
Current methods for analysis of data from studies of protein-protein interactions using fluorescence resonance energy transfer (FRET) emerged from several decades of research using wide-field microscopes and spectrofluorometers to measure fluorescence from individual cells or cell populations. Inherent to most measurements is an averaging of the distributions of FRET efficiencies over large populations of protein complexes, which washes out information regarding the stoichiometry and structure of protein complexes. Although the introduction of laser-scanning microscopes in principle could facilitate quantification of the distributions of FRET efficiencies in live cells, only comparatively recently did this potential fully materialize, through development of spectral- or lifetime-based approaches. To exploit this new opportunity in molecular imaging, it is necessary to further develop theoretical models and methods of data analysis. Using Monte Carlo simulations, we investigated FRET in homogenous and inhomogeneous spatial distributions of molecules. Our results indicate that an analysis based on distributions of FRET efficiencies presents significant advantages over the average-based approach, which include allowing for proper identification of biologically relevant FRET. This study provides insights into the effect of molecular crowding on FRET, and it offers a basis for information extraction from distributions of FRET efficiencies using simulations-based data fitting.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
98
|
Chung S, Wendeler M, Rausch JW, Beilhartz G, Gotte M, O'Keefe BR, Bermingham A, Beutler JA, Liu S, Zhuang X, Le Grice SFJ. Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H. Antimicrob Agents Chemother 2010; 54:3913-21. [PMID: 20547794 PMCID: PMC2935023 DOI: 10.1128/aac.00434-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 06/07/2010] [Indexed: 11/20/2022] Open
Abstract
Vinylogous ureas 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide and N-[3-(aminocarbonyl)-4,5-dimethyl-2-thienyl]-2-furancarboxamide (compounds 1 and 2, respectively) were recently identified to be modestly potent inhibitors of the RNase H activity of HIV-1 and HIV-2 reverse transcriptase (RT). Both compounds shared a 3-CONH(2)-substituted thiophene ring but were otherwise structurally unrelated, which prevented a precise definition of the pharmacophore. We have therefore examined a larger series of vinylogous ureas carrying amide, amine, and cycloalkane modifications of the thiophene ring of compound 1. While cycloheptane- and cyclohexane-substituted derivatives retained potency, cyclopentane and cyclooctane substitutions eliminated activity. In the presence of a cycloheptane ring, modifying the 2-NH(2) or 3-CONH(2) functions decreased the potency. With respect to compound 2, vinylogous ureas whose dimethylthiophene ring contained modifications of the 2-NH(2) and 3-CONH(2) functions were investigated. 2-NH(2)-modified analogs displayed potency equivalent to or enhanced over that of compound 2, the most active of which, compound 16, reflected intramolecular cyclization of the 2-NH(2) and 3-CONH(2) groups. Molecular modeling was used to define an inhibitor binding site in the p51 thumb subdomain, suggesting that an interaction with the catalytically conserved His539 of the p66 RNase H domain could underlie inhibition of RNase H activity. Collectively, our data indicate that multiple functional groups of vinylogous ureas contribute to their potencies as RNase H inhibitors. Finally, single-molecule spectroscopy indicates that vinylogous ureas have the property of altering the reverse transcriptase orientation on a model RNA-DNA hybrid mimicking initiation plus-strand DNA synthesis.
Collapse
Affiliation(s)
- Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Michaela Wendeler
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Greg Beilhartz
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Matthias Gotte
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Barry R. O'Keefe
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Alun Bermingham
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - John A. Beutler
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Shixin Liu
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Xiaowei Zhuang
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Stuart F. J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada, Molecular Targets Program, National Cancer Institute—Frederick, Frederick Maryland 21702, Department of Chemistry and Chemical Biology, Department of Physics, Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
99
|
Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 2010; 17:932-8. [PMID: 20657586 PMCID: PMC2953804 DOI: 10.1038/nsmb.1858] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/20/2010] [Indexed: 11/09/2022]
Abstract
DNA-binding proteins survey genomes for targets using facilitated diffusion, which typically includes a one-dimensional (1D) scanning component for sampling local regions. Eukaryotic proteins must accomplish this task while navigating through chromatin. Yet it is unknown whether nucleosomes disrupt 1D scanning or eukaryotic DNA-binding factors can circumnavigate nucleosomes without falling off DNA. Here we use single-molecule microscopy in conjunction with nanofabricated curtains of DNA to show that the postreplicative mismatch repair protein complex Mlh1-Pms1 diffuses in 1D along DNA via a hopping/stepping mechanism and readily bypasses nucleosomes. This is the first experimental demonstration that a passively diffusing protein can traverse stationary obstacles. In contrast, Msh2-Msh6, a mismatch repair protein complex that slides while maintaining continuous contact with DNA, experiences a boundary upon encountering nucleosomes. These differences reveal important mechanistic constraints affecting intranuclear trafficking of DNA-binding proteins.
Collapse
Affiliation(s)
- Jason Gorman
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
100
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|