51
|
Etchegaray JP, Zhong L, Li C, Henriques T, Ablondi E, Nakadai T, Van Rechem C, Ferrer C, Ross KN, Choi JE, Samarakkody A, Ji F, Chang A, Sadreyev RI, Ramaswamy S, Nechaev S, Whetstine JR, Roeder RG, Adelman K, Goren A, Mostoslavsky R. The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Mol Cell 2019; 75:683-699.e7. [PMID: 31399344 PMCID: PMC6907403 DOI: 10.1016/j.molcel.2019.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation in eukaryotes occurs at promoter-proximal regions wherein transcriptionally engaged RNA polymerase II (Pol II) pauses before proceeding toward productive elongation. The role of chromatin in pausing remains poorly understood. Here, we demonstrate that the histone deacetylase SIRT6 binds to Pol II and prevents the release of the negative elongation factor (NELF), thus stabilizing Pol II promoter-proximal pausing. Genetic depletion of SIRT6 or its chromatin deficiency upon glucose deprivation causes intragenic enrichment of acetylated histone H3 at lysines 9 (H3K9ac) and 56 (H3K56ac), activation of cyclin-dependent kinase 9 (CDK9)-that phosphorylates NELF and the carboxyl terminal domain of Pol II-and enrichment of the positive transcription elongation factors MYC, BRD4, PAF1, and the super elongation factors AFF4 and ELL2. These events lead to increased expression of genes involved in metabolism, protein synthesis, and embryonic development. Our results identified SIRT6 as a Pol II promoter-proximal pausing-dedicated histone deacetylase.
Collapse
Affiliation(s)
- Jean-Pierre Etchegaray
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Li
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Telmo Henriques
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Capucine Van Rechem
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Eun Choi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ann Samarakkody
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Chang
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sergei Nechaev
- University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Johnathan R Whetstine
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
52
|
Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 2019; 8:e43235. [PMID: 31294688 PMCID: PMC6650244 DOI: 10.7554/elife.43235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.
Collapse
Affiliation(s)
- Nikolai Petkau
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Harun Budak
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Xunlei Zhou
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Henrik Oster
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
53
|
Qiu H, Zhang B, Zhou T. Analytical results for a generalized model of bursty gene expression with molecular memory. Phys Rev E 2019; 100:012128. [PMID: 31499786 DOI: 10.1103/physreve.100.012128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Indexed: 06/10/2023]
Abstract
The activation of a gene is a complex biochemical process and could involve small steps, creating a memory between individual events. However, the effect of this molecular memory was often neglected in previous work. How the molecular memory affects gene expression remains not fully explored. We analyze a stochastic model of bursty gene expression, where the waiting time from inactivation to activation is assumed to follow a nonexponential (in fact, Erlang) distribution. We derive the analytical expression for the gene-product distribution, which explicitly traces the effect of molecule memory. Interestingly, we find that the effect of molecular memory is equivalent to the introduction of feedback. In addition, we analytically show that the stationary distribution is always super-Poissonian, independent of the detail of the waiting-time distribution, and there is the optimal step size that minimizes the Fano factor for any given mean burst size and is a decreasing function of the mean burst size. These analytical results indicate that molecular memory is an unneglectable factor affecting gene expression.
Collapse
Affiliation(s)
- Huahai Qiu
- School of Mathematics and Computers, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Bengong Zhang
- School of Mathematics and Computers, Wuhan Textile University, Wuhan 430200, People's Republic of China
| | - Tianshou Zhou
- School of Mathematics and Computers, Wuhan Textile University, Wuhan 430200, People's Republic of China
- Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
54
|
Chen H, Einstein LC, Little SC, Good MC. Spatiotemporal Patterning of Zygotic Genome Activation in a Model Vertebrate Embryo. Dev Cell 2019; 49:852-866.e7. [PMID: 31211992 PMCID: PMC6655562 DOI: 10.1016/j.devcel.2019.05.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
A defining feature of early embryogenesis is the transition from maternal to zygotic control. This transition requires embryo-wide zygotic genome activation (ZGA), but the extent of spatiotemporal coordination of ZGA between individual cells is unknown. Multiple interrelated parameters, including elapsed time, completed cycles of cell division, and cell size may impact ZGA onset; however, the principal determinant of ZGA during vertebrate embryogenesis is debated. Here, we perform single-cell imaging of large-scale ZGA in whole-mount Xenopus embryos. We find a striking new spatiotemporal pattern of ZGA whose onset tightly correlates with cell size but not with elapsed time or number of cell divisions. Further, reducing cell size induces premature ZGA, dose dependently. We conclude that large-scale ZGA is not spatially uniform and that its onset is determined at the single-cell level, primarily by cell size. Our study suggests that spatial patterns of ZGA onset may be a common feature of embryonic systems.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C Einstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shawn C Little
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
55
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
56
|
Scheidegger A, Dunn CJ, Samarakkody A, Koney NKK, Perley D, Saha RN, Nechaev S. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics 2019; 20:477. [PMID: 31185909 PMCID: PMC6558777 DOI: 10.1186/s12864-019-5829-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5′-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. However, apart from the most well studied genomes of human and mouse, mammalian transcription has not been profiled with sufficiently high precision. Results We prepared and sequenced Start-seq libraries from rat (Rattus norgevicus) primary neural progenitor cells. Over 48 million uniquely mappable reads from two independent biological replicates allowed us to define the TSSs of 7365 known genes in the rn6 genome, reannotating 2503 TSSs by more than 5 base pairs, characterize promoter-associated antisense transcription, and profile Pol II pausing. By combining TSS data with polyA-selected RNA sequencing, we also identified thousands of potential new genes producing stable RNA as well as non-genic transcripts representing possible regulatory elements. Conclusions Our study has produced the first Start-seq dataset for the rat. Apart from profiling transcription initiation, our data reaffirm the prevalence of Pol II pausing across the rat genome and indicate conservation of pausing mechanisms across metazoan genomes. We suggest that pausing location, at least in mammals, is constrained by a distance from initiation of transcription, whether it occurs at or outside of a gene promoter. Abundant antisense transcription initiation around protein coding genes indicates that Pol II recruited to the vicinity of a promoter is distributed to available start sites of transcription at either DNA strand. Transcriptome profiling of neural progenitors presented here will facilitate further studies of other rat cell types as well as other organisms. Electronic supplementary material The online version of this article (10.1186/s12864-019-5829-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Omega Therapeutics, Cambridge, MA, 02139, USA
| | - Carissa J Dunn
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Ann Samarakkody
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.,Present address: Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nii Koney-Kwaku Koney
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, 58202, USA.
| |
Collapse
|
57
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
58
|
Ebadi H, Perry M, Short K, Klemm K, Desplan C, Stadler PF, Mehta A. Patterning the insect eye: From stochastic to deterministic mechanisms. PLoS Comput Biol 2018; 14:e1006363. [PMID: 30439954 PMCID: PMC6264902 DOI: 10.1371/journal.pcbi.1006363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/29/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023] Open
Abstract
While most processes in biology are highly deterministic, stochastic mechanisms are sometimes used to increase cellular diversity. In human and Drosophila eyes, photoreceptors sensitive to different wavelengths of light are distributed in stochastic patterns, and one such patterning system has been analyzed in detail in the Drosophila retina. Interestingly, some species in the dipteran family Dolichopodidae (the “long legged” flies, or “Doli”) instead exhibit highly orderly deterministic eye patterns. In these species, alternating columns of ommatidia (unit eyes) produce corneal lenses of different colors. Occasional perturbations in some individuals disrupt the regular columns in a way that suggests that patterning occurs via a posterior-to-anterior signaling relay during development, and that specification follows a local, cellular-automaton-like rule. We hypothesize that the regulatory mechanisms that pattern the eye are largely conserved among flies and that the difference between unordered Drosophila and ordered dolichopodid eyes can be explained in terms of relative strengths of signaling interactions rather than a rewiring of the regulatory network itself. We present a simple stochastic model that is capable of explaining both the stochastic Drosophila eye and the striped pattern of Dolichopodidae eyes and thereby characterize the least number of underlying developmental rules necessary to produce both stochastic and deterministic patterns. We show that only small changes to model parameters are needed to also reproduce intermediate, semi-random patterns observed in another Doli species, and quantification of ommatidial distributions in these eyes suggests that their patterning follows similar rules. A simple model is able to account for a diversity of photoreceptor patterns in different fly species, ranging from highly deterministic to fully random.
Collapse
Affiliation(s)
- Haleh Ebadi
- Bioinformatics, Institute for Computer Science, Leipzig University, Leipzig, Germany
- * E-mail:
| | - Michael Perry
- Department of Biology, New York University, New York, New York, United States of America
| | - Keith Short
- Department of Biology, New York University, New York, New York, United States of America
| | - Konstantin Klemm
- Department of Computer Science, School of Science and Technology, Nazarbayev University, Astana, Republic of Kazakhstan
- Instituto de Física Interdisciplinar y Sistemas Complejos, Palma de Mallorca, Spain
| | - Claude Desplan
- Department of Biology, New York University, New York, New York, United States of America
| | - Peter F. Stadler
- Bioinformatics, Institute for Computer Science, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Anita Mehta
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| |
Collapse
|
59
|
Snell-Rood EC, Kobiela, ME, Sikkink, KL, Shephard AM. Mechanisms of Plastic Rescue in Novel Environments. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062622] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive phenotypic plasticity provides a mechanism of developmental rescue in novel and rapidly changing environments. Understanding the underlying mechanism of plasticity is important for predicting both the likelihood that a developmental response is adaptive and associated life-history trade-offs that could influence patterns of subsequent evolutionary rescue. Although evolved developmental switches may move organisms toward a new adaptive peak in a novel environment, such mechanisms often result in maladaptive responses. The induction of generalized physiological mechanisms in new environments is relatively more likely to result in adaptive responses to factors such as novel toxins, heat stress, or pathogens. Developmental selection forms of plasticity, which rely on within-individual selective processes, such as shaping of tissue architecture, trial-and-error learning, or acquired immunity, are particularly likely to result in adaptive plasticity in a novel environment. However, both the induction of plastic responses and the ability to be plastic through developmental selection come with significant costs, resulting in delays in reproduction, increased individual investment, and reduced fecundity. Thus, we might expect complex interactions between plastic responses that allow survival in novel environments and subsequent evolutionary responses at the population level.
Collapse
Affiliation(s)
- Emilie C. Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA;, , ,
| | - Megan E. Kobiela,
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA;, , ,
| | - Kristin L. Sikkink,
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA;, , ,
| | - Alexander M. Shephard
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA;, , ,
| |
Collapse
|
60
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
61
|
Sabino AU, Vasconcelos MFS, Sittoni MY, Lautenschlager WW, Queiroga AS, Morais MCC, Ramos AF. Lessons and perspectives for applications of stochastic models in biological and cancer research. Clinics (Sao Paulo) 2018; 73:e536s. [PMID: 30281699 PMCID: PMC6131223 DOI: 10.6061/clinics/2018/e536s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022] Open
Abstract
The effects of randomness, an unavoidable feature of intracellular environments, are observed at higher hierarchical levels of living matter organization, such as cells, tissues, and organisms. Additionally, the many compounds interacting as a well-orchestrated network of reactions increase the difficulties of assessing these systems using only experiments. This limitation indicates that elucidation of the dynamics of biological systems is a complex task that will benefit from the establishment of principles to help describe, categorize, and predict the behavior of these systems. The theoretical machinery already available, or ones to be discovered to help solve biological problems, might play an important role in these processes. Here, we demonstrate the application of theoretical tools by discussing some biological problems that we have approached mathematically: fluctuations in gene expression and cell proliferation in the context of loss of contact inhibition. We discuss the methods that have been employed to provide the reader with a biologically motivated phenomenological perspective of the use of theoretical methods. Finally, we end this review with a discussion of new research perspectives motivated by our results.
Collapse
Affiliation(s)
- Alan U Sabino
- Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Miguel FS Vasconcelos
- Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Misaki Yamada Sittoni
- Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Alexandre S Queiroga
- Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Mauro CC Morais
- Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alexandre F Ramos
- Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
62
|
Pichon X, Lagha M, Mueller F, Bertrand E. A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. Mol Cell 2018; 71:468-480. [DOI: 10.1016/j.molcel.2018.07.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
|
63
|
Yin C, Jia X, Miron RJ, Long Q, Xu H, Wei Y, Wu M, Zhang Y, Li Z. Setd7 and its contribution to Boron-induced bone regeneration in Boron-mesoporous bioactive glass scaffolds. Acta Biomater 2018; 73:522-530. [PMID: 29684621 DOI: 10.1016/j.actbio.2018.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Boron (B), a trace element found in the human body, plays an important role for health of bone by promoting the proliferation and differentiation of osteoblasts. Our research group previously fabricated B-mesoporous bioactive glass (MBG) scaffolds, which successfully promoted osteogenic differentiation of osteoblasts when compared to pure MBG scaffolds without boron. However, the mechanisms of the positive effect of B-MBG scaffolds on osteogenesis remain unknown. Therefore, we performed in-vivo experiments in OVX rat models with pure MBG scaffolds and compared them to B-MBG scaffold. As a result, we found that B-MBG scaffold induced more new bone regeneration compared to pure MBG scaffold and examined genes related to bone regeneration induced by B-MBG scaffold through RNA-seq to obtain target genes and epigenetic mechanisms. The results demonstrated an increased expression and affiliation of Setd7 in the B-MBG group when compared to the MBG group. Immunofluorescent staining from our in vivo samples further demonstrated a higher localization of Setd7 and H3K4me3 in Runx2-positive cells in defects treated with B-MBG scaffolds. KEGG results suggested that specifically Wnt/β-catenin signaling pathway was highly activated in new bone area associated with B-MBG scaffolds. Thereafter, in vitro studies with human bone marrow stem cells (hBMSCs) stimulated by extracted liquid of B-MBG scaffolds was associated with significantly elevated levels of Setd7, as well as H3K4me3 when compared to MBG scaffolds alone. To verify the role of Setd7 in new bone formation in the presence of Boron, Setd7 was knocked down in hBMSCs with stimulation of the extracted liquids of B-MBG or MBG scaffolds. The result showed that osteoblast differentiation of hBMSCs was inhibited when Setd7 was knocked down, which could not be rescued by the extracted liquids of B-MBG scaffolds confirming its role in osteoblast differentiation and bone regeneration. As a histone methylase, Setd7 may be expected to be a potential epigenetic target for new treatment schemes of osteoporosis. STATEMENT OF SIGNIFICANCE Boron-containing MBG scaffold has already been proved to promote bone regeneration in femoral defects of OVX rats by our research group, however, the epigenetic mechanism of Boron's positive effects on bone generation remains ill-informed. In our present study, we found an increased expression and affiliation of Setd7 and H3K4me3 in Runx2-positive osteoblasts in vivo. And in vitro, the higher expression of Setd7 enhanced osteogenic differentiation of human BMSCs stimulated by extracted liquids of B-MBG scaffold compared to MBG scaffold, which was associated with the activation of Wnt/β-catenin signaling pathway. Above all, it suggests that Setd7 plays an positive role in osteogenic differentiation and it may become a potential epigenetic target for new schemes for osteoporosis.
Collapse
|
64
|
Shinkai Y, Kuramochi M, Doi M. Regulation of chromatin states and gene expression during HSN neuronal maturation is mediated by EOR-1/PLZF, MAU-2/cohesin loader, and SWI/SNF complex. Sci Rep 2018; 8:7942. [PMID: 29786685 PMCID: PMC5962631 DOI: 10.1038/s41598-018-26149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Newborn neurons mature by distinct and sequential steps through the timely induction of specific gene expression programs in concert with epigenetic changes. However, it has been difficult to investigate the relationship between gene expression and epigenetic changes at a single-cell resolution during neuronal maturation. In this study, we investigated the maturation of hermaphrodite-specific neurons (HSNs) in C. elegans, which provided the link between chromatin dynamics, gene expression, and the degree of neuronal maturation at a single-cell resolution. Our results demonstrated that chromatin composition in the promoter region of several genes acting for neuronal terminal maturation was modulated at an early developmental stage, and is dependent on the function of the transcription factor EOR-1/PLZF and the cohesin loader MAU-2/MAU2. Components of the SWI/SNF chromatin remodeling complex were also required for the proper expression of terminal maturation genes. Epistasis analyses suggested that eor-1 functions with mau-2 and swsn-1 in the same genetic pathway to regulate the maturation of HSNs. Collectively, our study provides a novel approach to analyze neuronal maturation and proposes that predefined epigenetic modifications, mediated by EOR-1, MAU-2, and the SWI/SNF complex, are important for the preparation of future gene expression programs in neuronal terminal maturation.
Collapse
Affiliation(s)
- Yoichi Shinkai
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masahiro Kuramochi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8565, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAI-Lab, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
65
|
Fabrèges D, Daniel N, Duranthon V, Peyriéras N. Control of the proportion of inner cells by asymmetric divisions and the ensuing resilience of cloned rabbit embryos. Development 2018; 145:dev.152041. [PMID: 29567671 PMCID: PMC5964649 DOI: 10.1242/dev.152041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/13/2018] [Indexed: 01/14/2023]
Abstract
Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. Summary: A unique quantitative approach based on complete reconstruction of the cell lineage that unveils an unknown mechanism of size control in cell populations of rabbit blastocysts, wild types or clones.
Collapse
Affiliation(s)
- Dimitri Fabrèges
- BioEmergences Laboratory, CNRS USR 3695, 91190 Gif-sur-Yvette, France
| | - Nathalie Daniel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | | | - Nadine Peyriéras
- BioEmergences Laboratory, CNRS USR 3695, 91190 Gif-sur-Yvette, France
| |
Collapse
|
66
|
Abstract
The activation of the zygotic genome and onset of transcription in blastula embryos is linked to changes in cell behavior and remodeling of the cell cycle and constitutes a transition from exclusive maternal to zygotic control of development. This step in development is referred to as mid-blastula transition and has served as a paradigm for the link between developmental program and cell behavior and morphology. Here, we discuss the mechanism and functional relationships between the zygotic genome activation and cell cycle control during mid-blastula transition with a focus on Drosophila embryos.
Collapse
Affiliation(s)
- Boyang Liu
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig-Weg11, Göttingen 37077, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig-Weg11, Göttingen 37077, Germany.
| |
Collapse
|
67
|
Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a neural crest stem cell niche by Spatial Genomic Analysis. Nat Commun 2017; 8:1830. [PMID: 29184067 PMCID: PMC5705662 DOI: 10.1038/s41467-017-01561-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022] Open
Abstract
The neural crest is an embryonic population of multipotent stem cells that form numerous defining features of vertebrates. Due to lack of reliable techniques to perform transcriptional profiling in intact tissues, it remains controversial whether the neural crest is a heterogeneous or homogeneous population. By coupling multiplex single molecule fluorescence in situ hybridization with machine learning algorithm based cell segmentation, we examine expression of 35 genes at single cell resolution in vivo. Unbiased hierarchical clustering reveals five spatially distinct subpopulations within the chick dorsal neural tube. Here we identify a neural crest stem cell niche that centers around the dorsal midline with high expression of neural crest genes, pluripotency factors, and lineage markers. Interestingly, neural and neural crest stem cells express distinct pluripotency signatures. This Spatial Genomic Analysis toolkit provides a straightforward approach to study quantitative multiplex gene expression in numerous biological systems, while offering insights into gene regulatory networks via synexpression analysis.
Collapse
Affiliation(s)
- Antti Lignell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Laura Kerosuo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sebastian J Streichan
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
68
|
Bentovim L, Harden TT, DePace AH. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 2017; 144:3855-3866. [PMID: 29089359 PMCID: PMC5702068 DOI: 10.1242/dev.146563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During development, genes are transcribed at specific times, locations and levels. In recent years, the emergence of quantitative tools has significantly advanced our ability to measure transcription with high spatiotemporal resolution in vivo. Here, we highlight recent studies that have used these tools to characterize transcription during development, and discuss the mechanisms that contribute to the precision and accuracy of the timing, location and level of transcription. We attempt to disentangle the discrepancies in how physicists and biologists use the term ‘precision' to facilitate interactions using a common language. We also highlight selected examples in which the coupling of mathematical modeling with experimental approaches has provided important mechanistic insights, and call for a more expansive use of mathematical modeling to exploit the wealth of quantitative data and advance our understanding of animal transcription. Summary: This Review highlights how high-resolution quantitative tools and theoretical models have formed our current view of the mechanisms determining precision and accuracy in the timing, location and level of transcription in the Drosophila embryo.
Collapse
Affiliation(s)
- Lital Bentovim
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
69
|
He G, Yang X, Wang G, Qi J, Mao R, Wu Z, Zhou Z. Cdk7 Is Required for Activity-Dependent Neuronal Gene Expression, Long-Lasting Synaptic Plasticity and Long-Term Memory. Front Mol Neurosci 2017; 10:365. [PMID: 29163040 PMCID: PMC5681959 DOI: 10.3389/fnmol.2017.00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
In the brain, de novo gene expression driven by learning-associated neuronal activities is critical for the formation of long-term memories. However, the signaling machinery mediating neuronal activity-induced gene expression, especially the rapid transcription of immediate-early genes (IEGs) remains unclear. Cyclin-dependent kinases (Cdks) are a family of serine/threonine kinases that have been firmly established as key regulators of transcription processes underling coordinated cell cycle entry and sequential progression in nearly all types of proliferative cells. Cdk7 is a subunit of transcriptional initiation factor II-H (TFIIH) and the only known Cdk-activating kinase (CAK) in metazoans. Recent studies using a novel Cdk7 specific covalent inhibitor, THZ1, revealed important roles of Cdk7 in transcription regulation in cancer cells. However, whether Cdk7 plays a role in the regulation of transcription in neurons remains unknown. In this study, we present evidence demonstrating that, in post-mitotic neurons, Cdk7 activity is positively correlated with neuronal activities in cultured primary neurons, acute hippocampal slices and in the brain. Cdk7 inhibition by THZ1 significantly suppressed mRNA levels of IEGs, selectively impaired long-lasting synaptic plasticity induced by 4 trains of high frequency stimulation (HFS) and prevented the formation of long-term memories.
Collapse
Affiliation(s)
- Guiqin He
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiangyu Yang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Guo Wang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Junxia Qi
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Rui Mao
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zhengping Wu
- School of Innovations, Sanjiang University, Nanjing, China
| | - Zikai Zhou
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
70
|
Stapel LC, Zechner C, Vastenhouw NL. Uniform gene expression in embryos is achieved by temporal averaging of transcription noise. Genes Dev 2017; 31:1635-1640. [PMID: 28903980 PMCID: PMC5647934 DOI: 10.1101/gad.302935.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/16/2017] [Indexed: 11/25/2022]
Abstract
Here, Stapel et al. investigated how stochastic transcription activation can result in uniform expression during development of cellularized embryos. Using smFISH and mathematical modeling, the authors show that during zebrafish embryogenesis, transcription activation is stochastic due to (1) genes acquiring transcriptional competence at different times in different cells, (2) differences in cell cycle stage between cells, and (3) the stochastic nature of transcription. Transcription is often stochastic. This is seemingly incompatible with the importance of gene expression during development. Here we show that during zebrafish embryogenesis, transcription activation is stochastic due to (1) genes acquiring transcriptional competence at different times in different cells, (2) differences in cell cycle stage between cells, and (3) the stochastic nature of transcription. Initially, stochastic transcription causes large cell-to-cell differences in transcript levels. However, variability is reduced by lengthening cell cycles and the accumulation of transcription events in each cell. Temporal averaging might provide a general context in which to understand how embryos deal with stochastic transcription.
Collapse
Affiliation(s)
- L Carine Stapel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
71
|
Symmons O, Raj A. What's Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism. Mol Cell 2017; 62:788-802. [PMID: 27259209 DOI: 10.1016/j.molcel.2016.05.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The field of single-cell biology has morphed from a philosophical digression at its inception, to a playground for quantitative biologists, to a major area of biomedical research. The last several years have witnessed an explosion of new technologies, allowing us to apply even more of the modern molecular biology toolkit to single cells. Conceptual progress, however, has been comparatively slow. Here, we provide a framework for classifying both the origins of the differences between individual cells and the consequences of those differences. We discuss how the concept of "random" differences is context dependent, and propose that rigorous definitions of inputs and outputs may bring clarity to the discussion. We also categorize ways in which probabilistic behavior may influence cellular function, highlighting studies that point to exciting future directions in the field.
Collapse
Affiliation(s)
- Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
72
|
Paused RNA polymerase II inhibits new transcriptional initiation. Nat Genet 2017; 49:1045-1051. [PMID: 28504701 DOI: 10.1038/ng.3867] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
RNA polymerase II (Pol II) pauses downstream of the transcription initiation site before beginning productive elongation. This pause is a key component of metazoan gene expression regulation. Some promoters have a strong disposition for Pol II pausing and often mediate faster, more synchronous changes in expression. This requires multiple rounds of transcription and thus cannot rely solely on pause release. However, it is unclear how pausing affects the initiation of new transcripts during consecutive rounds of transcription. Using our recently developed ChIP-nexus method, we find that Pol II pausing inhibits new initiation. We propose that paused Pol II helps prevent new initiation between transcription bursts, which may reduce noise.
Collapse
|
73
|
Trinh LA, Chong-Morrison V, Gavriouchkina D, Hochgreb-Hägele T, Senanayake U, Fraser SE, Sauka-Spengler T. Biotagging of Specific Cell Populations in Zebrafish Reveals Gene Regulatory Logic Encoded in the Nuclear Transcriptome. Cell Rep 2017; 19:425-440. [PMID: 28402863 PMCID: PMC5400779 DOI: 10.1016/j.celrep.2017.03.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Interrogation of gene regulatory circuits in complex organisms requires precise tools for the selection of individual cell types and robust methods for biochemical profiling of target proteins. We have developed a versatile, tissue-specific binary in vivo biotinylation system in zebrafish termed biotagging that uses genetically encoded components to biotinylate target proteins, enabling in-depth genome-wide analyses of their molecular interactions. Using tissue-specific drivers and cell-compartment-specific effector lines, we demonstrate the specificity of the biotagging toolkit at the biochemical, cellular, and transcriptional levels. We use biotagging to characterize the in vivo transcriptional landscape of migratory neural crest and myocardial cells in different cellular compartments (ribosomes and nucleus). These analyses reveal a comprehensive network of coding and non-coding RNAs and cis-regulatory modules, demonstrating that tissue-specific identity is embedded in the nuclear transcriptomes. By eliminating background inherent to complex embryonic environments, biotagging allows analyses of molecular interactions at high resolution. Biotagging enables cell- and compartment-specific in vivo biotinylation in zebrafish Technique yields comprehensive nuclear transcriptional analysis of cardiomyocytes Biotagging finds bidirectionally transcribed neural crest cis-regulatory modules System reveals tissue-specific regulation of noncoding RNA species
Collapse
Affiliation(s)
- Le A Trinh
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Vanessa Chong-Morrison
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatiana Hochgreb-Hägele
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Upeka Senanayake
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Scott E Fraser
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
74
|
Abstract
The leap from simple unicellularity to complex multicellularity remains one of life's major enigmas. The origins of metazoan developmental gene regulatory mechanisms are sought by analyzing gene regulation in extant eumetazoans, sponges, and unicellular organisms. The main hypothesis of this manuscript is that, developmental enhancers evolved from unicellular inducible promoters that diversified the expression of regulatory genes during metazoan evolution. Promoters and enhancers are functionally similar; both can regulate the transcription of distal promoters and both direct local transcription. Additionally, enhancers have experimentally characterized structural features that reveal their origin from inducible promoters. The distal co-operative regulation among promoters identified in unicellular opisthokonts possibly represents the precursor of distal regulation of promoters by enhancers. During metazoan evolution, constitutive-type promoters of regulatory genes would have acquired novel receptivity to distal regulatory inputs from promoters of inducible genes that eventually specialized as enhancers. The novel regulatory interactions would have caused constitutively expressed genes controlling differential gene expression in unicellular organisms to become themselves differentially expressed. The consequence of the novel regulatory interactions was that regulatory pathways of unicellular organisms became interlaced and ultimately evolved into the intricate developmental gene regulatory networks (GRNs) of extant metazoans.
Collapse
Affiliation(s)
- César Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center, The City University of New York (CUNY), Staten Island, NY 10314, USA
| |
Collapse
|
75
|
Hang S, Gergen JP. Different modes of enhancer-specific regulation by Runt and Even-skipped during Drosophila segmentation. Mol Biol Cell 2017; 28:681-691. [PMID: 28077616 PMCID: PMC5328626 DOI: 10.1091/mbc.e16-09-0630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 12/04/2022] Open
Abstract
Expression of the Drosophila slp1 gene depends on nonadditive interactions between two cis-regulatory enhancers. These enhancers are repressed by preventing either Pol II recruitment or release of promoter-proximal paused Pol II in a manner that is both enhancer and transcription factor specific and can account for their nonadditive interaction. The initial metameric expression of the Drosophila sloppy paired 1 (slp1) gene is controlled by two distinct cis-regulatory DNA elements that interact in a nonadditive manner to integrate inputs from transcription factors encoded by the pair-rule segmentation genes. We performed chromatin immunoprecipitation on reporter genes containing these elements in different embryonic genotypes to investigate the mechanism of their regulation. The distal early stripe element (DESE) mediates both activation and repression by Runt. We find that the differential response of DESE to Runt is due to an inhibitory effect of Fushi tarazu (Ftz) on P-TEFb recruitment and the regulation of RNA polymerase II (Pol II) pausing. The proximal early stripe element (PESE) is also repressed by Runt, but in this case, Runt prevents PESE-dependent Pol II recruitment and preinitiation complex (PIC) assembly. PESE is also repressed by Even-skipped (Eve), but, of interest, this repression involves regulation of P-TEFb recruitment and promoter-proximal Pol II pausing. These results demonstrate that the mode of slp1 repression by Runt is enhancer specific, whereas the mode of repression of the slp1 PESE enhancer is transcription factor specific. We propose a model based on these differential regulatory interactions that accounts for the nonadditive interactions between the PESE and DESE enhancers during Drosophila segmentation.
Collapse
Affiliation(s)
- Saiyu Hang
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics and.,Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics and
| |
Collapse
|
76
|
Lee C, Sorensen EB, Lynch TR, Kimble J. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. eLife 2016; 5:e18370. [PMID: 27705743 PMCID: PMC5094854 DOI: 10.7554/elife.18370] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling.
Collapse
Affiliation(s)
- ChangHwan Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Erika B Sorensen
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Tina R Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
77
|
Hilgers V. Alternative polyadenylation coupled to transcription initiation: Insights from ELAV-mediated 3' UTR extension. RNA Biol 2016; 12:918-21. [PMID: 26158379 DOI: 10.1080/15476286.2015.1060393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Transcription initiation and mRNA maturation were long considered co-occurring but separately regulated events of gene control. In the past decade, gene promoters, the platforms of transcription initiation, have been assigned additional functions such as the regulation of splicing and 3' end processing. In a recent study, Oktaba and Zhang and al. reveal that neural 3' UTR extension is dependent on promoter sequences. In Drosophila neurons, promoter regions of a subset of genes recruit the RNA-binding protein ELAV, which is required for subsequent ELAV-mediated alternative polyadenylation. Intriguingly, RNA Polymerase II pausing at promoters seems to facilitate ELAV recruitment. How transcription initiation and alternative polyadenylation, processes separated by an entire gene length, are functionally linked, remains unsolved. In this article, I summarize recent findings and discuss possible mechanisms.
Collapse
Affiliation(s)
- Valérie Hilgers
- a Division of Genetics, Genomics, and Development; Department of Molecular and Cell Biology; Center for Integrative Genomics; University of California ; Berkeley , CA USA
| |
Collapse
|
78
|
Hatch VL, Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S, van Kruijsbergen I, Veenstra GJC, Münsterberg AE, Wheeler GN. The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification. Dev Biol 2016; 416:361-72. [PMID: 27343897 DOI: 10.1016/j.ydbio.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/06/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.
Collapse
Affiliation(s)
- Victoria L Hatch
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Christopher T Ford
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nicole J Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew L Tomlinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ines Desanlis
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Adam E Hendry
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Saartje Hontelez
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Andrea E Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
79
|
Day DS, Zhang B, Stevens SM, Ferrari F, Larschan EN, Park PJ, Pu WT. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016; 17:120. [PMID: 27259512 PMCID: PMC4893286 DOI: 10.1186/s13059-016-0984-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/12/2016] [Indexed: 01/02/2023] Open
Abstract
Background For many genes, RNA polymerase II stably pauses before transitioning to productive elongation. Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure remain poorly understood. Results Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes (pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably, in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters. Conclusions Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian gene regulation and chromatin structure. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0984-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel S Day
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard/MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Bing Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Sean M Stevens
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Francesco Ferrari
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
80
|
Nguyen D, Fayol O, Buisine N, Lecorre P, Uguen P. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development. PLoS One 2016; 11:e0155438. [PMID: 27176767 PMCID: PMC4866710 DOI: 10.1371/journal.pone.0155438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.
Collapse
Affiliation(s)
- Duy Nguyen
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | - Olivier Fayol
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | | | - Pierrette Lecorre
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | - Patricia Uguen
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
- * E-mail:
| |
Collapse
|
81
|
Liu T, Zhang J, Zhou T. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression. PLoS Comput Biol 2016; 12:e1004917. [PMID: 27153118 PMCID: PMC4859557 DOI: 10.1371/journal.pcbi.1004917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023] Open
Abstract
According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.
Collapse
Affiliation(s)
- Tuoqi Liu
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
82
|
Dao P, Wojtowicz D, Nelson S, Levens D, Przytycka TM. Ups and Downs of Poised RNA Polymerase II in B-Cells. PLoS Comput Biol 2016; 12:e1004821. [PMID: 27078128 PMCID: PMC4831825 DOI: 10.1371/journal.pcbi.1004821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5' end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated "on demand". Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation.
Collapse
Affiliation(s)
- Phuong Dao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steevenson Nelson
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
83
|
Ferraro T, Lucas T, Clémot M, De Las Heras Chanes J, Desponds J, Coppey M, Walczak AM, Dostatni N. New methods to image transcription in living fly embryos: the insights so far, and the prospects. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:296-310. [PMID: 26894441 PMCID: PMC5021148 DOI: 10.1002/wdev.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022]
Abstract
The regulation of transcription is a fundamental process underlying the determination of cell identity and its maintenance during development. In the last decades, most of the transcription factors, which have to be expressed at the right place and at the right time for the proper development of the fly embryo, have been identified. However, mostly because of the lack of methods to visualize transcription as the embryo develops, their coordinated spatiotemporal dynamics remains largely unexplored. Efforts have been made to decipher the transcription process with single molecule resolution at the single cell level. Recently, the fluorescent labeling of nascent RNA in developing fly embryos allowed the direct visualization of ongoing transcription at single loci within each nucleus. Together with powerful imaging and quantitative data analysis, these new methods provide unprecedented insights into the temporal dynamics of the transcription process and its intrinsic noise. Focusing on the Drosophila embryo, we discuss how the detection of single RNA molecules enhanced our comprehension of the transcription process and we outline the potential next steps made possible by these new imaging tools. In combination with genetics and theoretical analysis, these new imaging methods will aid the search for the mechanisms responsible for the robustness of development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Teresa Ferraro
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Tanguy Lucas
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Marie Clémot
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Jose De Las Heras Chanes
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Jonathan Desponds
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Aleksandra M Walczak
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| |
Collapse
|
84
|
Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, Gao X, Haug JS, Jaspersen SL, Shilatifard A. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. Mol Cell 2016; 60:435-45. [PMID: 26527278 DOI: 10.1016/j.molcel.2015.09.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.
Collapse
Affiliation(s)
- Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
85
|
Zhou J, Troyanskaya OG. Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states. Nat Commun 2016; 7:10528. [PMID: 26841971 PMCID: PMC4742914 DOI: 10.1038/ncomms10528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/23/2015] [Indexed: 01/27/2023] Open
Abstract
Interpreting the functional state of chromatin from the combinatorial binding patterns of chromatin factors, that is, the chromatin codes, is crucial for decoding the epigenetic state of the cell. Here we present a systematic map of Drosophila chromatin states derived from data-driven probabilistic modelling of dependencies between chromatin factors. Our model not only recapitulates enhancer-like chromatin states as indicated by widely used enhancer marks but also divides these states into three functionally distinct groups, of which only one specific group possesses active enhancer activity. Moreover, we discover a strong association between one specific enhancer state and RNA Polymerase II pausing, linking transcription regulatory potential and chromatin organization. We also observe that with the exception of long-intron genes, chromatin state transition positions in transcriptionally active genes align with an absolute distance to their corresponding transcription start site, regardless of gene length. Using our method, we provide a resource that helps elucidate the functional and spatial organization of the chromatin code landscape. The chromatin functional state can be derived from the binding patterns of chromatin factors. Here, Zhou and Troyanskaya report a data-driven probabilistic modelling of dependencies between chromatin factors that can divide enhancer-like chromatin states into three functionally distinct groups.
Collapse
Affiliation(s)
- Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08540, USA
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA.,242 Carl Icahn Laboratory, Department of Computer Science, Princeton University, Princeton, New Jersey 08540, USA.,Simons Center for Data Analysis, Simons Foundation, New York, New York 10010, USA
| |
Collapse
|
86
|
Vogt G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 2015; 40:159-204. [PMID: 25740150 DOI: 10.1007/s12038-015-9506-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most pathogens are asexuals that exploit this third source of phenotypic variation to modify infectivity and resistance to antibiotics. Since SDV affects all types of organisms and almost all aspects of life, it urgently requires more intense research and a better integration into biological thinking.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany,
| |
Collapse
|
87
|
Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr Biol 2015; 26:38-51. [PMID: 26687625 PMCID: PMC4712172 DOI: 10.1016/j.cub.2015.11.034] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Embryogenesis is remarkably robust to segregating mutations and environmental variation; under a range of conditions, embryos of a given species develop into stereotypically patterned organisms. Such robustness is thought to be conferred, in part, through elements within regulatory networks that perform similar, redundant tasks. Redundant enhancers (or "shadow" enhancers), for example, can confer precision and robustness to gene expression, at least at individual, well-studied loci. However, the extent to which enhancer redundancy exists and can thereby have a major impact on developmental robustness remains unknown. Here, we systematically assessed this, identifying over 1,000 predicted shadow enhancers during Drosophila mesoderm development. The activity of 23 elements, associated with five genes, was examined in transgenic embryos, while natural structural variation among individuals was used to assess their ability to buffer against genetic variation. Our results reveal three clear properties of enhancer redundancy within developmental systems. First, it is much more pervasive than previously anticipated, with 64% of loci examined having shadow enhancers. Their spatial redundancy is often partial in nature, while the non-overlapping function may explain why these enhancers are maintained within a population. Second, over 70% of loci do not follow the simple situation of having only two shadow enhancers-often there are three (rols), four (CadN and ade5), or five (Traf1), at least one of which can be deleted with no obvious phenotypic effects. Third, although shadow enhancers can buffer variation, patterns of segregating variation suggest that they play a more complex role in development than generally considered.
Collapse
|
88
|
Shaped 3D singular spectrum analysis for quantifying gene expression, with application to the early zebrafish embryo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:986436. [PMID: 26495320 PMCID: PMC4606214 DOI: 10.1155/2015/986436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field.
Collapse
|
89
|
Imashimizu M, Shimamoto N, Oshima T, Kashlev M. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications. Transcription 2015; 5:e28285. [PMID: 25764114 PMCID: PMC4214235 DOI: 10.4161/trns.28285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.
Collapse
|
90
|
Vance KW, Woodcock DJ, Reid JE, Bretschneider T, Ott S, Koentges G. Conserved Cis-Regulatory Modules Control Robustness in Msx1 Expression at Single-Cell Resolution. Genome Biol Evol 2015; 7:2762-78. [PMID: 26342140 PMCID: PMC4607535 DOI: 10.1093/gbe/evv179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The process of transcription is highly stochastic leading to cell-to-cell variations and noise in gene expression levels. However, key essential genes have to be precisely expressed at the correct amount and time to ensure proper cellular development and function. Studies in yeast and bacterial systems have shown that gene expression noise decreases as mean expression levels increase, a relationship that is controlled by promoter DNA sequence. However, the function of distal cis-regulatory modules (CRMs), an evolutionary novelty of metazoans, in controlling transcriptional robustness and variability is poorly understood. In this study, we used live cell imaging of transfected reporters combined with a mathematical modelling and statistical inference scheme to quantify the function of conserved Msx1 CRMs and promoters in modulating single-cell real-time transcription rates in C2C12 mouse myoblasts. The results show that the mean expression–noise relationship is solely promoter controlled for this key pluripotency regulator. In addition, we demonstrate that CRMs modulate single-cell basal promoter rate distributions in a graded manner across a population of cells. This extends the rheostatic model of CRM action to provide a more detailed understanding of CRM function at single-cell resolution. We also identify a novel CRM transcriptional filter function that acts to reduce intracellular variability in transcription rates and show that this can be phylogenetically separable from rate modulating CRM activities. These results are important for understanding how the expression of key vertebrate developmental transcription factors is precisely controlled both within and between individual cells.
Collapse
Affiliation(s)
- Keith W Vance
- Department of Biology and Biochemistry, University of Bath, United Kingdom Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Dan J Woodcock
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - John E Reid
- MRC Biostatistics Unit, Robinson Way, Cambridge, United Kingdom
| | - Till Bretschneider
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Georgy Koentges
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
91
|
Liu X, Kraus WL, Bai X. Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 2015; 40:516-25. [PMID: 26254229 DOI: 10.1016/j.tibs.2015.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/07/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a well-established mechanism to control the timing, rate, and possibly the magnitude of transcriptional responses. Recent studies have shown that cellular signaling pathways can regulate gene transcription and signaling outcomes by controlling Pol II pausing in a wide array of biological systems. Identification of the proteins and small molecules that affect the establishment and release of paused Pol II is shedding new light on the mechanisms and biology of Pol II pausing. This review focuses on the interplay between cellular signaling pathways and Pol II pausing during normal development and under disease conditions.
Collapse
Affiliation(s)
- Xiuli Liu
- Molecular Genetics of Blood Development Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Signaling and Gene Regulation Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoying Bai
- Molecular Genetics of Blood Development Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
92
|
Boija A, Mannervik M. A time of change: Dynamics of chromatin and transcriptional regulation during nuclear programming in earlyDrosophiladevelopment. Mol Reprod Dev 2015; 82:735-46. [DOI: 10.1002/mrd.22517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ann Boija
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
93
|
Hsu HT, Chen HM, Yang Z, Wang J, Lee NK, Burger A, Zaret K, Liu T, Levine E, Mango SE. TRANSCRIPTION. Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4. Science 2015; 348:1372-6. [PMID: 26089518 PMCID: PMC4861314 DOI: 10.1126/science.aab1223] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pioneer transcription factors initiate cell-fate changes by binding to silent target genes. They are among the first factors to bind key regulatory sites and facilitate chromatin opening. Here, we identify an additional role for pioneer factors. In early Caenorhabditis elegans foregut development, the pioneer factor PHA-4/FoxA binds promoters and recruits RNA polymerase II (Pol II), often in a poised configuration in which Pol II accumulates near transcription start sites. At a later developmental stage, PHA-4 promotes chromatin opening. We found many more genes with poised RNA polymerase than had been observed previously in unstaged embryos, revealing that early embryos accumulate poised Pol II and that poising is dynamic. Our results suggest that Pol II recruitment, in addition to chromatin opening, is an important feature of PHA-4 pioneer factor activity.
Collapse
Affiliation(s)
- H-T Hsu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - H-M Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Z Yang
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Wang
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | - N K Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - A Burger
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - K Zaret
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - T Liu
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA. Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA
| | - E Levine
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - S E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
94
|
Abstract
Recently, major progress has been made to develop computational models to predict and explain the mechanisms and behaviors of gene regulation. Here, we review progress on how these mechanisms and behaviors have been interpreted with analog models, where cell properties continuously modulate transcription, and digital models, where gene modulation involves discrete activation and inactivation events. We introduce recent experimental approaches, which measure these gene regulatory behaviors at single-cell and single-molecule resolution, and we discuss the integration of these approaches with computational models to reveal biophysical insight. By analyzing simple toy models in the context of existing experimental capabilities, we discuss the interplay between different experiments and different models to measure and interpret gene regulatory behaviors. Finally, we review recent successes in the development of predictive computational models for the control of gene regulation behaviors.
Collapse
Affiliation(s)
- Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA. School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA
| | | |
Collapse
|
95
|
Lee JEA, Mitchell NC, Zaytseva O, Chahal A, Mendis P, Cartier-Michaud A, Parsons LM, Poortinga G, Levens DL, Hannan RD, Quinn LM. Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nat Commun 2015; 6:7404. [PMID: 26074141 DOI: 10.1038/ncomms8404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
Nucleotide excision DNA repair (NER) pathway mutations cause neurodegenerative and progeroid disorders (xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD)), which are inexplicably associated with (XP) or without (CS/TTD) cancer. Moreover, cancer progression occurs in certain patients, but not others, with similar C-terminal mutations in the XPB helicase subunit of transcription and NER factor TFIIH. Mechanisms driving overproliferation and, therefore, cancer associated with XPB mutations are currently unknown. Here using Drosophila models, we provide evidence that C-terminally truncated Hay/XPB alleles enhance overgrowth dependent on reduced abundance of RNA recognition motif protein Hfp/FIR, which transcriptionally represses the MYC oncogene homologue, dMYC. The data demonstrate that dMYC repression and dMYC-dependent overgrowth in the Hfp hypomorph is further impaired in the C-terminal Hay/XPB mutant background. Thus, we predict defective transcriptional repression of MYC by the Hfp orthologue, FIR, might provide one mechanism for cancer progression in XP/CS.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Naomi C Mitchell
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Olga Zaytseva
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Arjun Chahal
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Peter Mendis
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | | | - Linda M Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Victoria 3002, Australia
| | - David L Levens
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Ross D Hannan
- 1] Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Victoria 3002, Australia [2] Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra Australian Capital Territory 2600, Australia
| | - Leonie M Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
96
|
Ben-Omran T, Alsulaiman R, Kamel H, Shaheen R, Alkuraya FS. Intrafamilial clinical heterogeneity of CSPP1-related ciliopathy. Am J Med Genet A 2015; 167A:2478-80. [PMID: 25997910 DOI: 10.1002/ajmg.a.37175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Tawfeg Ben-Omran
- Department of Pediatrics, Section of Clinical and Metabolic Genetics, Doha, Qatar
| | - Reem Alsulaiman
- Department of Pediatrics, Section of Clinical and Metabolic Genetics, Doha, Qatar
| | - Hussein Kamel
- Department of Radiology, Hamad Medical Corporation, and Weill Cornell Medical College, Doha, Qatar
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
97
|
Samarakkody A, Abbas A, Scheidegger A, Warns J, Nnoli O, Jokinen B, Zarns K, Kubat B, Dhasarathy A, Nechaev S. RNA polymerase II pausing can be retained or acquired during activation of genes involved in the epithelial to mesenchymal transition. Nucleic Acids Res 2015; 43:3938-49. [PMID: 25820424 PMCID: PMC4417172 DOI: 10.1093/nar/gkv263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
Promoter-proximal RNA polymerase II (Pol II) pausing is implicated in the regulation of gene transcription. However, the mechanisms of pausing including its dynamics during transcriptional responses remain to be fully understood. We performed global analysis of short capped RNAs and Pol II Chromatin Immunoprecipitation sequencing in MCF-7 breast cancer cells to map Pol II pausing across the genome, and used permanganate footprinting to specifically follow pausing during transcriptional activation of several genes involved in the epithelial to mesenchymal transition (EMT). We find that the gene for EMT master regulator Snail (SNAI1), but not Slug (SNAI2), shows evidence of Pol II pausing before activation. Transcriptional activation of the paused SNAI1 gene is accompanied by a further increase in Pol II pausing signal, whereas activation of non-paused SNAI2 gene results in the acquisition of a typical pausing signature. The increase in pausing signal reflects increased transcription initiation without changes in Pol II pausing. Activation of the heat shock HSP70 gene involves pausing release that speeds up Pol II turnover, but does not change pausing location. We suggest that Pol II pausing is retained during transcriptional activation and can further undergo regulated release in a signal-specific manner.
Collapse
Affiliation(s)
- Ann Samarakkody
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Ata Abbas
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Jessica Warns
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Oscar Nnoli
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Bradley Jokinen
- Department of Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kris Zarns
- Department of Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Brooke Kubat
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Archana Dhasarathy
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| |
Collapse
|
98
|
Ramos AF, Hornos JEM, Reinitz J. Gene regulation and noise reduction by coupling of stochastic processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:020701. [PMID: 25768447 PMCID: PMC4476401 DOI: 10.1103/physreve.91.020701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.
Collapse
Affiliation(s)
- Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Departamento de Radiologia, Faculdade de Medicina, Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, Av. Arlindo Béttio, 1000, CEP 03828-000, São Paulo, S.P., Brazil
| | - José Eduardo M. Hornos
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, BR-13560-970 São Carlos, S.P., Brazil
| | - John Reinitz
- Departments of Statistics, Ecology and Evolution, Molecular Genetics and Cell Biology, and the Institute of Genomics and Systems Biology, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA
| |
Collapse
|
99
|
Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo. Proc Natl Acad Sci U S A 2015; 112:785-90. [PMID: 25564665 DOI: 10.1073/pnas.1413877112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.
Collapse
|
100
|
Harrison MM, Eisen MB. Transcriptional Activation of the Zygotic Genome in Drosophila. Curr Top Dev Biol 2015; 113:85-112. [DOI: 10.1016/bs.ctdb.2015.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|