51
|
Shi XX, Guo SK, Wang PY, Chen H, Xie P. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state. Proteins 2019; 88:545-557. [PMID: 31589786 DOI: 10.1002/prot.25833] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
Burute M, Kapitein LC. Cellular Logistics: Unraveling the Interplay Between Microtubule Organization and Intracellular Transport. Annu Rev Cell Dev Biol 2019; 35:29-54. [DOI: 10.1146/annurev-cellbio-100818-125149] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules are core components of the cytoskeleton and serve as tracks for motor protein–based intracellular transport. Microtubule networks are highly diverse across different cell types and are believed to adapt to cell type–specific transport demands. Here we review how the spatial organization of different subsets of microtubules into higher-order networks determines the traffic rules for motor-based transport in different animal cell types. We describe the interplay between microtubule network organization and motor-based transport within epithelial cells, oocytes, neurons, cilia, and the spindle apparatus.
Collapse
Affiliation(s)
- Mithila Burute
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C. Kapitein
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
53
|
Mickolajczyk KJ, Cook ASI, Jevtha JP, Fricks J, Hancock WO. Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors. Biophys J 2019; 117:331-345. [PMID: 31301807 DOI: 10.1016/j.bpj.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023] Open
Abstract
High-resolution tracking of gold nanoparticle-labeled proteins has emerged as a powerful technique for measuring the structural kinetics of processive enzymes and other biomacromolecules. These techniques use point spread function (PSF) fitting methods borrowed from single-molecule fluorescence imaging to determine molecular positions below the diffraction limit. However, compared to fluorescence, gold nanoparticle tracking experiments are performed at significantly higher frame rates and utilize much larger probes. In the current work, we use Brownian dynamics simulations of nanoparticle-labeled proteins to investigate the regimes in which the fundamental assumptions of PSF fitting hold and where they begin to break down. We find that because gold nanoparticles undergo tethered diffusion around their anchor point, PSF fitting cannot be extended to arbitrarily fast frame rates. Instead, camera exposure times that allow the nanoparticle to fully populate its stationary positional distribution achieve a spatial averaging that increases fitting precision. We furthermore find that changes in the rotational freedom of the tagged protein can lead to artifactual translations in the fitted particle position. Finally, we apply these lessons to dissect a standing controversy in the kinesin field over the structure of a dimer in the ATP waiting state. Combining new experiments with simulations, we determine that the rear kinesin head in the ATP waiting state is unbound but not displaced from its previous microtubule binding site and that apparent differences in separately published reports were simply due to differences in the gold nanoparticle attachment position. Our results highlight the importance of gold conjugation decisions and imaging parameters to high-resolution tracking results and will serve as a useful guide for the design of future gold nanoparticle tracking experiments.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering
| | - Annan S I Cook
- Department of Biomedical Engineering; Department of Physics, Pennsylvania State University, University Park, Pennsylvania
| | | | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - William O Hancock
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering.
| |
Collapse
|
54
|
Siddiqui N, Zwetsloot AJ, Bachmann A, Roth D, Hussain H, Brandt J, Kaverina I, Straube A. PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport. Nat Commun 2019; 10:2693. [PMID: 31217419 PMCID: PMC6584639 DOI: 10.1038/s41467-019-10644-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/23/2019] [Indexed: 12/31/2022] Open
Abstract
The kinesin-3 KIF1C is a fast organelle transporter implicated in the transport of dense core vesicles in neurons and the delivery of integrins to cell adhesions. Here we report the mechanisms of autoinhibition and release that control the activity of KIF1C. We show that the microtubule binding surface of KIF1C motor domain interacts with its stalk and that these autoinhibitory interactions are released upon binding of protein tyrosine phosphatase PTPN21. The FERM domain of PTPN21 stimulates dense core vesicle transport in primary hippocampal neurons and rescues integrin trafficking in KIF1C-depleted cells. In vitro, human full-length KIF1C is a processive, plus-end directed motor. Its landing rate onto microtubules increases in the presence of either PTPN21 FERM domain or the cargo adapter Hook3 that binds the same region of KIF1C tail. This autoinhibition release mechanism allows cargo-activated transport and might enable motors to participate in bidirectional cargo transport without undertaking a tug-of-war.
Collapse
Affiliation(s)
- Nida Siddiqui
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Alexander James Zwetsloot
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- MRC-DTP in Interdisciplinary Biomedical Research, Warwick Medical School, Coventry, CV4 7AL, UK
| | - Alice Bachmann
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel Roth
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Hamdi Hussain
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jonathan Brandt
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
55
|
Scarborough EA, Davis TN, Asbury CL. Tight bending of the Ndc80 complex provides intrinsic regulation of its binding to microtubules. eLife 2019; 8:44489. [PMID: 31045495 PMCID: PMC6516834 DOI: 10.7554/elife.44489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of the outer kinetochore complex Ndc80 is essential to ensure correct kinetochore-microtubule attachments during mitosis. Here, we present a novel mechanism of regulation that is intrinsic to its structure; tight bending of the Ndc80 complex inhibits its microtubule binding. Using single molecule Förster resonance energy transfer (FRET), we show that the Saccharomyces cerevisiae Ndc80 complex can fluctuate between straight and bent forms, and that binding of the complex to microtubules selects for straightened forms. The loop region of the complex enables its bent conformation, as deletion of the loop promotes straightening. In addition, the kinetochore complex MIND enhances microtubule binding by opposing the tightly bent, auto-inhibited conformation of the Ndc80 complex. We suggest that prior to its assembly at the kinetochore, the Ndc80 complex interchanges between bent (auto-inhibited) and open conformations. Once assembled, its association with MIND stabilizes the Ndc80 complex in a straightened form for higher affinity microtubule binding.
Collapse
Affiliation(s)
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
56
|
Tafoya S, Bustamante C. Molecular switch-like regulation in motor proteins. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0181. [PMID: 29735735 DOI: 10.1098/rstb.2017.0181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Motor proteins are powered by nucleotide hydrolysis and exert mechanical work to carry out many fundamental biological tasks. To ensure their correct and efficient performance, the motors' activities are allosterically regulated by additional factors that enhance or suppress their NTPase activity. Here, we review two highly conserved mechanisms of ATP hydrolysis activation and repression operating in motor proteins-the glutamate switch and the arginine finger-and their associated regulatory factors. We examine the implications of these regulatory mechanisms in proteins that are formed by multiple ATPase subunits. We argue that the regulatory mechanisms employed by motor proteins display features similar to those described in small GTPases, which require external regulatory elements, such as dissociation inhibitors, exchange factors and activating proteins, to switch the protein's function 'on' and 'off'. Likewise, similar regulatory roles are taken on by the motor's substrate, additional binding factors, and even adjacent subunits in multimeric complexes. However, in motor proteins, more than one regulatory factor and the two mechanisms described here often underlie the machine's operation. Furthermore, ATPase regulation takes place throughout the motor's cycle, which enables a more complex function than the binary 'active' and 'inactive' states.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Sara Tafoya
- Jason L. Choy Laboratory of Single Molecule Biophysics and Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics and Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA .,Departments of Molecular and Cell Biology, Physics and Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, California Institute for Quantitative Biosciences and Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
57
|
Lin R, Duan Z, Sun H, Fung ML, Chen H, Wang J, Lau CF, Yang D, Liu Y, Ni Y, Wang Z, Cui J, Wu W, Yung WH, Chan YS, Lo ACY, Xia J, Shen J, Huang JD. Kinesin-1 Regulates Extrasynaptic Targeting of NMDARs and Neuronal Vulnerability Toward Excitotoxicity. iScience 2019; 13:82-97. [PMID: 30826728 PMCID: PMC6402234 DOI: 10.1016/j.isci.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor (NMDAR) is highly compartmentalized in neurons, and its dysfunction has been implicated in various neuropsychiatric and neurodegenerative disorders. Recent failure to exploit NMDAR antagonization as a potential therapeutic target has driven the need to identify molecular mechanisms that regulate NMDAR compartmentalization. Here, we report that the reduction of Kif5b, the heavy chain of kinesin-1, protected neurons against NMDA-induced excitotoxicity and ischemia-provoked neurodegeneration. Direct binding of kinesin-1 to the GluN2B cytoplasmic tails regulated the levels of NMDAR at extrasynaptic sites and the subsequent influx of calcium mediated by extrasynaptic NMDAR by regulating the insertion of NMDARs into neuronal surface. Transient increase of Kif5b restored the surface levels of NMDAR and the decreased neuronal susceptibility to NMDA-induced excitotoxicity. The expression of Kif5b was repressed in cerebral ischemia preconditioning. Our findings reveal that kinesin-1 regulates extrasynaptic NMDAR targeting and signaling, and the reduction of kinesin-1 could be exploited to defer neurodegeneration. Kif5b directly binds with GluN2B-containing NMDAR Kinesin-1 mediates extrasynaptic NMDAR targeting and function Reduction of kinesin-1 protects neurons against NMDAR-elicited excitotoxicity Reduction of kinesin-1 protects brain against ischemia-elicited neurodegeneration
Collapse
Affiliation(s)
- Raozhou Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Haitao Sun
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Fai Lau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Di Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yanxiang Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ju Cui
- Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jun Xia
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China; Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
58
|
Malleable folding of coiled-coils regulates kinesin-3 dimerization. Proc Natl Acad Sci U S A 2018; 115:12845-12847. [PMID: 30530652 DOI: 10.1073/pnas.1818758115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
59
|
Coiled-coil 1-mediated fastening of the neck and motor domains for kinesin-3 autoinhibition. Proc Natl Acad Sci U S A 2018; 115:E11933-E11942. [PMID: 30463954 DOI: 10.1073/pnas.1811209115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In kinesin-3, the coiled-coil 1 (CC1) can sequester the preceding neck coil (NC) for autoinhibition, but the underlying mechanism is poorly understood. Here, we determined the structures of the uninhibited motor domain (MD)-NC dimer and inhibited MD-NC-CC1 monomer of kinesin-3 KIF13B. In the MD-NC-CC1 monomer, CC1 is broken into two short helices that unexpectedly interact with both the NC and the MD. Compared with the MD-NC dimer, the CC1-mediated integration of NC and MD not only blocks the NC dimer formation, but also prevents the neck linker (NL) undocking and the ADP release from the MD. Mutations of the essential residues in the interdomain interaction interface in the MD-NC-CC1 monomer restored the MD activity. Thus, CC1 fastens the neck domain and MD and inhibits both NC and NL. This CC1-mediated lockdown of the entire neck domain may represent a paradigm for kinesin autoinhibition that could be applicable to other kinesin-3 motors.
Collapse
|
60
|
Cockburn JJB, Hesketh SJ, Mulhair P, Thomsen M, O'Connell MJ, Way M. Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3. Structure 2018; 26:1486-1498.e6. [PMID: 30197037 PMCID: PMC6224480 DOI: 10.1016/j.str.2018.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/03/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Kinesin-1 transports numerous cellular cargoes along microtubules. The kinesin-1 light chain (KLC) mediates cargo binding and regulates kinesin-1 motility. To investigate the molecular basis for kinesin-1 recruitment and activation by cargoes, we solved the crystal structure of the KLC2 tetratricopeptide repeat (TPR) domain bound to the cargo JIP3. This, combined with biophysical and molecular evolutionary analyses, reveals a kinesin-1 cargo binding site, located on KLC TPR1, which is conserved in homologs from sponges to humans. In the complex, JIP3 crosslinks two KLC2 TPR domains via their TPR1s. We show that TPR1 forms a dimer interface that mimics JIP3 binding in all crystal structures of the unbound KLC TPR domain. We propose that cargo-induced dimerization of the KLC TPR domains via TPR1 is a general mechanism for activating kinesin-1. We relate this to activation by tryptophan-acidic cargoes, explaining how different cargoes activate kinesin-1 through related molecular mechanisms.
Collapse
Affiliation(s)
- Joseph J B Cockburn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Sophie J Hesketh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peter Mulhair
- Computational and Molecular Evolutionary Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Maren Thomsen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
61
|
Pernigo S, Chegkazi MS, Yip YY, Treacy C, Glorani G, Hansen K, Politis A, Bui S, Dodding MP, Steiner RA. Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors. eLife 2018; 7:38362. [PMID: 30320553 PMCID: PMC6214655 DOI: 10.7554/elife.38362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022] Open
Abstract
The light chains (KLCs) of the heterotetrameric microtubule motor kinesin-1, that bind to cargo adaptor proteins and regulate its activity, have a capacity to recognize short peptides via their tetratricopeptide repeat domains (KLCTPR). Here, using X-ray crystallography, we show how kinesin-1 recognizes a novel class of adaptor motifs that we call ‘Y-acidic’ (tyrosine flanked by acidic residues), in a KLC-isoform specific manner. Binding specificities of Y-acidic motifs (present in JIP1 and in TorsinA) to KLC1TPR are distinct from those utilized for the recognition of W-acidic motifs found in adaptors that are KLC- isoform non-selective. However, a partial overlap on their receptor binding sites implies that adaptors relying on Y-acidic and W-acidic motifs must act independently. We propose a model to explain why these two classes of motifs that bind to the concave surface of KLCTPR with similar low micromolar affinity can exhibit different capacities to promote kinesin-1 activity.
Collapse
Affiliation(s)
- Stefano Pernigo
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Magda S Chegkazi
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Yan Y Yip
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Conor Treacy
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Giulia Glorani
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kjetil Hansen
- Department of Chemistry, King's College London, London, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, London, United Kingdom
| | - Soi Bui
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mark P Dodding
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Roberto A Steiner
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
62
|
Korten T, Tavkin E, Scharrel L, Kushwaha VS, Diez S. An automated in vitro motility assay for high-throughput studies of molecular motors. LAB ON A CHIP 2018; 18:3196-3206. [PMID: 30204813 PMCID: PMC6180315 DOI: 10.1039/c8lc00547h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices. These devices are based on in vitro motility assays that reconstitute molecular transport with purified motor proteins, requiring a deep understanding of the biophysical properties of motor proteins and thorough optimization to enable motility under varying environmental conditions. Until now, these assays have been prepared manually, severely limiting throughput. To overcome this limitation, we developed an in vitro motility assay where sample preparation, imaging and data evaluation are fully automated, enabling the processing of a 384-well plate within less than three hours. We demonstrate the automated assay for the analysis of peptide inhibitors for kinesin-1 at a wide range of concentrations, revealing that the IAK domain responsible for kinesin-1 auto-inhibition is both necessary and sufficient to decrease the affinity of the motor protein for microtubules, an aspect that was hidden in previous experiments due to scarcity of data.
Collapse
Affiliation(s)
- Till Korten
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Elena Tavkin
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Lara Scharrel
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Vandana Singh Kushwaha
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| |
Collapse
|
63
|
Kelliher MT, Yue Y, Ng A, Kamiyama D, Huang B, Verhey KJ, Wildonger J. Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. J Cell Biol 2018; 217:2531-2547. [PMID: 29728423 PMCID: PMC6028532 DOI: 10.1083/jcb.201708096] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarity relies on the axon- or dendrite-specific localization of cargo by molecular motors such as kinesin-1. This study shows how autoinhibition regulates both kinesin-1 activity and localization to keep dendritic Golgi outposts from entering axons. Neuronal polarity relies on the selective localization of cargo to axons or dendrites. The molecular motor kinesin-1 moves cargo into axons but is also active in dendrites. This raises the question of how kinesin-1 activity is regulated to maintain the compartment-specific localization of cargo. Our in vivo structure–function analysis of endogenous Drosophila melanogaster kinesin-1 reveals a novel role for autoinhibition in enabling the dendrite-specific localization of Golgi outposts. Mutations that disrupt kinesin-1 autoinhibition result in the axonal mislocalization of Golgi outposts. Autoinhibition also regulates kinesin-1 localization. Uninhibited kinesin-1 accumulates in axons and is depleted from dendrites, correlating with the change in outpost distribution and dendrite growth defects. Genetic interaction tests show that a balance of kinesin-1 inhibition and dynein activity is necessary to localize Golgi outposts to dendrites and keep them from entering axons. Our data indicate that kinesin-1 activity is precisely regulated by autoinhibition to achieve the selective localization of dendritic cargo.
Collapse
Affiliation(s)
- Michael T Kelliher
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI.,Biochemistry Department, University of Wisconsin-Madison, Madison, WI
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ashley Ng
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI.,Biochemistry Scholars Program, University of Wisconsin-Madison, Madison, WI
| | - Daichi Kamiyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
64
|
Abstract
Myosin motors power movements on actin filaments, whereas dynein and kinesin motors power movements on microtubules. The mechanisms of these motor proteins differ, but, in all cases, ATP hydrolysis and subsequent release of the hydrolysis products drives a cycle of interactions with the track (either an actin filament or a microtubule), resulting in force generation and directed movement.
Collapse
Affiliation(s)
- H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-0267
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
65
|
Singh SK, Pandey H, Al-Bassam J, Gheber L. Bidirectional motility of kinesin-5 motor proteins: structural determinants, cumulative functions and physiological roles. Cell Mol Life Sci 2018; 75:1757-1771. [PMID: 29397398 PMCID: PMC11105280 DOI: 10.1007/s00018-018-2754-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 01/27/2023]
Abstract
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.
Collapse
Affiliation(s)
- Sudhir Kumar Singh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel
| | - Jawdat Al-Bassam
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
66
|
Gilbert SP, Guzik-Lendrum S, Rayment I. Kinesin-2 motors: Kinetics and biophysics. J Biol Chem 2018; 293:4510-4518. [PMID: 29444824 DOI: 10.1074/jbc.r117.001324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kinesin-2s are major transporters of cellular cargoes. This subfamily contains both homodimeric kinesins whose catalytic domains result from the same gene product and heterodimeric kinesins with motor domains derived from two different gene products. In this Minireview, we focus on the progress to define the biochemical and biophysical properties of the kinesin-2 family members. Our understanding of their mechanochemical capabilities has been advanced by the ability to identify the kinesin-2 genes in multiple species, expression and purification of these motors for single-molecule and ensemble assays, and development of new technologies enabling quantitative measurements of kinesin activity with greater sensitivity.
Collapse
Affiliation(s)
- Susan P Gilbert
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Stephanie Guzik-Lendrum
- From the Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180 and
| | - Ivan Rayment
- the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
67
|
A small-molecule activator of kinesin-1 drives remodeling of the microtubule network. Proc Natl Acad Sci U S A 2017; 114:13738-13743. [PMID: 29229862 DOI: 10.1073/pnas.1715115115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The microtubule motor kinesin-1 interacts via its cargo-binding domain with both microtubules and organelles, and hence plays an important role in controlling organelle transport and microtubule dynamics. In the absence of cargo, kinesin-1 is found in an autoinhibited conformation. The molecular basis of how cargo engagement affects the balance between kinesin-1's active and inactive conformations and roles in microtubule dynamics and organelle transport is not well understood. Here we describe the discovery of kinesore, a small molecule that in vitro inhibits kinesin-1 interactions with short linear peptide motifs found in organelle-specific cargo adaptors, yet activates kinesin-1's function of controlling microtubule dynamics in cells, demonstrating that these functions are mechanistically coupled. We establish a proof-of-concept that a microtubule motor-cargo interface and associated autoregulatory mechanism can be manipulated using a small molecule, and define a target for the modulation of microtubule dynamics.
Collapse
|
68
|
Khataee H, Naseri S, Zhong Y, Liew AWC. Unbinding of Kinesin from Microtubule in the Strongly Bound States Enhances under Assisting Forces. Mol Inform 2017; 37:e1700092. [PMID: 29112332 DOI: 10.1002/minf.201700092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
The ability to predict the cellular dynamics of intracellular transport has enormous potential to impact human health. A key transporter is kinesin-1, an ATP-driven molecular motor that shuttles cellular cargos along microtubules (MTs). The dynamics of kinesins depends critically on their unbinding rate from MT, which varies depending on the force direction applied on the motor, i.e. the force-unbinding rate relation is asymmetric. However, it remains unclear how changing the force direction from resisting (applied against the motion direction) to assisting (applied in the motion direction) alters the kinesin's unbinding and stepping. Here, we propose a theoretical model for the influence of the force direction on the stepping dynamics of a single kinesin. The model shows that the asymmetry of the force-unbinding rate relation is independent of ATP concentration. It also reveals that the synthesis of ATP from backward stepping under assisting forces is less likely than under resisting forces. It then finds that the unbinding of kinesin in the strongly MT-bound kinetic states enhances under assisting forces.
Collapse
Affiliation(s)
- Hamidreza Khataee
- School of Information and Communication Technology, Griffith University, 4222, QLD, Australia
| | - Solmaz Naseri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Yongmin Zhong
- School of Engineering, RMIT University, Bundoora Campus, 3083, VIC, Australia
| | - Alan Wee-Chung Liew
- School of Information and Communication Technology, Griffith University, 4222, QLD, Australia
| |
Collapse
|
69
|
Hwang W, Lang MJ, Karplus M. Kinesin motility is driven by subdomain dynamics. eLife 2017; 6:28948. [PMID: 29111975 PMCID: PMC5718755 DOI: 10.7554/elife.28948] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
The microtubule (MT)-associated motor protein kinesin utilizes its conserved ATPase head to achieve diverse motility characteristics. Despite considerable knowledge about how its ATPase activity and MT binding are coupled to the motility cycle, the atomic mechanism of the core events remain to be found. To obtain insights into the mechanism, we performed 38.5 microseconds of all-atom molecular dynamics simulations of kinesin-MT complexes in different nucleotide states. Local subdomain dynamics were found to be essential for nucleotide processing. Catalytic water molecules are dynamically organized by the switch domains of the nucleotide binding pocket while ATP is torsionally strained. Hydrolysis products are 'pulled' by switch-I, and a new ATP is 'captured' by a concerted motion of the α0/L5/switch-I trio. The dynamic and wet kinesin-MT interface is tuned for rapid interactions while maintaining specificity. The proposed mechanism provides the flexibility necessary for walking in the crowded cellular environment. Motor proteins called kinesins perform a number of different roles inside cells, including transporting cargo and organizing filaments called microtubules to generate the force needed for a cell to divide. Kinesins move along the microtubules, with different kinesins moving in different ways: some ‘walk’, some jump, and some destroy the microtubule as they travel along it. All kinesins power their movements using the same molecule as fuel – adenosine triphosphate, known as ATP for short. Energy stored in ATP is released by a chemical reaction known as hydrolysis, which uses water to break off specific parts of the ATP molecule. The site to which ATP binds in a kinesin has a similar structure to the ATP binding site of many other proteins that use ATP. However, little was known about the way in which kinesin uses ATP as a fuel, including how ATP binds to kinesin and is hydrolyzed, and how the products of hydrolysis are released. These events are used to power the motor protein. Hwang et al. have used powerful computer simulation methods to examine in detail how ATP interacts with kinesin whilst moving across a microtubule. The simulations suggest that regions (or 'domains') of kinesin near the ATP binding site move around to help in processing ATP. These kinesin domains trap a nearby ATP molecule from the environment and help to deliver water molecules to ATP for hydrolysis. Hwang et al. also found that the domain motion subsequently helps in the release of the hydrolysis products by kinesin. The domains around the ATP pocket vary among the kinesins and these differences may enable kinesins to fine-tune how they use ATP to move. Further investigations will help us understand why different kinesin families behave differently. They will also contribute to exploring how kinesin inhibitors might be used as anti-cancer drugs.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, United States.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
70
|
Kamata H, Tsukasaki Y, Sakai T, Ikebe R, Wang J, Jeffers A, Boren J, Owens S, Suzuki T, Higashihara M, Idell S, Tucker TA, Ikebe M. KIF5A transports collagen vesicles of myofibroblasts during pleural fibrosis. Sci Rep 2017; 7:4556. [PMID: 28676645 PMCID: PMC5496869 DOI: 10.1038/s41598-017-04437-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/16/2017] [Indexed: 01/28/2023] Open
Abstract
Fibrosis involves the production of extracellular matrix proteins in tissues and is often preceded by injury or trauma. In pleural fibrosis excess collagen deposition results in pleural thickening, increased stiffness and impaired lung function. Myofibroblasts are responsible for increased collagen deposition, however the molecular mechanism of transportation of procollagen containing vesicles for secretion is unknown. Here, we studied the role of kinesin on collagen-1 (Col-1) containing vesicle transportation in human pleural mesothelial cells (HPMCs). Among a number of cargo transporting kinesins, KIF5A was notably upregulated during TGF-β induced mesothelial-mesenchymal transition (MesoMT). Using superresolution structured illumination microscopy and the DUO-Link technique, we found that KIF5A colocalized with Col-1 containing vesicles. KIF5A knock-down significantly reduced Col-1 secretion and attenuated TGF-β induced increment in Col-1 localization at cell peripheries. Live cell imaging revealed that GFP-KIF5A and mCherry-Col-1 containing vesicles moved together. Kymography showed that these molecules continuously move with a mean velocity of 0.56 μm/sec, suggesting that the movement is directional but not diffusion limited process. Moreover, KIF5A was notably upregulated along with Col-1 and α-smooth muscle actin in pleural thickening in the carbon-black bleomycin mouse model. These results support our hypothesis that KIF5A is responsible for collagen transportation and secretion from HPMCs.
Collapse
Affiliation(s)
- Hirotoshi Kamata
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA.,Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshikazu Tsukasaki
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Julia Wang
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Jake Boren
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Takahiro Suzuki
- Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masaaki Higashihara
- Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA.
| |
Collapse
|
71
|
Moschou PN, Gutierrez-Beltran E, Bozhkov PV, Smertenko A. Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7. Dev Cell 2017; 37:350-361. [PMID: 27219063 DOI: 10.1016/j.devcel.2016.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
Microtubules play an essential role in breaking cellular symmetry. We have previously shown that separase associates with microtubules and regulates microtubule-dependent establishment of cell polarity in Arabidopsis. However, separase lacks microtubule-binding activity, raising questions about mechanisms underlying this phenomenon. Here we report that the N-terminal non-catalytic domain of separase binds to the C-terminal tail domain of three homologs of the centromeric protein CENP-E Kinesin 7 (Kin7). Conformational changes of Kin7 induced upon binding to separase facilitate recruitment of Kin7/separase complex (KISC) onto microtubules. KISC operates independently of proteolytic activity of separase in promoting microtubule rescue and pauses, as well as in suppressing catastrophes. Genetic complementation experiments in conditional separase mutant rsw4 background demonstrate the importance of KISC for the establishment of cell polarity and for plant development. Our study establishes a mechanism governing microtubule dynamics via the separase-dependent activation of CENP-E-related kinesins.
Collapse
Affiliation(s)
- Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 75007 Uppsala, Sweden.
| | - Emilio Gutierrez-Beltran
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 75007 Uppsala, Sweden; Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 75007 Uppsala, Sweden; Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK.
| |
Collapse
|
72
|
Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N, Bird AW, Carter AP. Cryo-EM Reveals How Human Cytoplasmic Dynein Is Auto-inhibited and Activated. Cell 2017; 169:1303-1314.e18. [PMID: 28602352 PMCID: PMC5473941 DOI: 10.1016/j.cell.2017.05.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Cytoplasmic dynein-1 binds dynactin and cargo adaptor proteins to form a transport machine capable of long-distance processive movement along microtubules. However, it is unclear why dynein-1 moves poorly on its own or how it is activated by dynactin. Here, we present a cryoelectron microscopy structure of the complete 1.4-megadalton human dynein-1 complex in an inhibited state known as the phi-particle. We reveal the 3D structure of the cargo binding dynein tail and show how self-dimerization of the motor domains locks them in a conformation with low microtubule affinity. Disrupting motor dimerization with structure-based mutagenesis drives dynein-1 into an open form with higher affinity for both microtubules and dynactin. We find the open form is also inhibited for movement and that dynactin relieves this by reorienting the motor domains to interact correctly with microtubules. Our model explains how dynactin binding to the dynein-1 tail directly stimulates its motor activity.
Collapse
Affiliation(s)
- Kai Zhang
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Foster
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Arnaud Rondelet
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Samuel E Lacey
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Nadia Bahi-Buisson
- Department of Pediatric Neurology, Université Paris Descartes, Imaging Institute, INSERM U781, Paris, France
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | |
Collapse
|
73
|
Sanger A, Yip YY, Randall TS, Pernigo S, Steiner RA, Dodding MP. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain. J Cell Sci 2017; 130:1637-1651. [PMID: 28302907 PMCID: PMC5450233 DOI: 10.1242/jcs.198267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (KLCs), can recognize tryptophan-acidic-binding determinants on the cargo when presented in the context of an extended KHC-interacting domain. Mutational separation of KHC and KLC binding shows that both interactions are important for SKIP–kinesin-1 interaction in vitro and that KHC binding is important for lysosome transport in vivo. However, in the absence of KLCs, SKIP can only bind to KHC when autoinhibition is relieved, suggesting that the KLCs gate access to the KHCs. We propose a model whereby tryptophan-acidic cargo is first recognized by KLCs, resulting in destabilization of KHC autoinhibition. This primary event then makes accessible a second SKIP-binding site on the KHC C-terminal tail that is adjacent to the autoinhibitory IAK region. Thus, cargo recognition and concurrent activation of kinesin-1 proceed in hierarchical stepwise fashion driven by a dynamic network of inter- and intra-molecular interactions. Summary: The lysosomal kinesin-1 cargo adaptor SKIP is shown to interact with kinesin-1 via both its heavy and light chains. A new stepwise hierarchical model for kinesin-1 activation is proposed.
Collapse
Affiliation(s)
- Anneri Sanger
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Yan Y Yip
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Thomas S Randall
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Stefano Pernigo
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Roberto A Steiner
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Mark P Dodding
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| |
Collapse
|
74
|
Cross RA. Review: Mechanochemistry of the kinesin-1 ATPase. Biopolymers 2017; 105:476-82. [PMID: 27120111 PMCID: PMC4924600 DOI: 10.1002/bip.22862] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 01/01/2023]
Abstract
Kinesins are P‐loop NTPases that can do mechanical work. Like small G‐proteins, to which they are related, kinesins execute a program of active site conformational changes that cleaves the terminal phosphate from an NTP substrate. But unlike small G‐proteins, kinesins can amplify and harness these conformational changes in order to exert force. In this short review I summarize current ideas about how the kinesin active site works and outline how the active site chemistry is coupled to the larger‐scale structural cycle of the kinesin motor domain. Focusing largely on kinesin‐1, the best‐studied kinesin, I discuss how the active site switch machinery of kinesin cycles between three distinct states, how docking of the neck linker stabilizes two of these states, and how tension‐sensitive and position‐sensitive neck linker docking may modulate both the hydrolysis step of ATP turnover and the trapping of product ADP in the active site. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 476–482, 2016.
Collapse
Affiliation(s)
- R A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, CV4 7AL, UK
| |
Collapse
|
75
|
Hackney DD, McGoff MS. Nucleotide-free kinesin motor domains reversibly convert to an inactive conformation with characteristics of a molten globule. Arch Biochem Biophys 2016; 608:42-51. [PMID: 27576140 PMCID: PMC5159748 DOI: 10.1016/j.abb.2016.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022]
Abstract
Nucleotide-free kinesin motor domains from several kinesin families convert reversibly to a refractory conformation that cannot rapidly rebind ADP. In the absence of glycerol, the refractory conformation of Drosophila kinesin motor domains is favored by 50-fold with conversion of the active to the refractory species at ∼0.052 s(-1) and reactivating in the presence of ADP at ∼0.001 s(-1). This reactivation by ADP is due to conformational selection rather than induced fit because ADP is not bound to the refractory species at concentrations of ADP that are sufficient to saturate the rate of reactivation. Glycerol stabilizes the active conformation by reducing the rate of inactivation, while having little effect on the reactivation rate. Circular dichroism indicates a large conformational change occurs on formation of the refractory species. The refractory conformation binds ANS (8-anilino-1-napthalenesulfonic acid) with a large increase in fluorescence, indicating that it has molten globule character. High ANS binding is also observed with the refractory forms of Eg5 (a kinesin-5) and Ncd (a kinesin-14), indicating that a refractory conformation with molten globule characteristics may be a common feature of nucleotide-free kinesin motor domains.
Collapse
Affiliation(s)
- David D Hackney
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, USA.
| | - Marshall S McGoff
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, USA
| |
Collapse
|
76
|
Belyy V, Schlager MA, Foster H, Reimer AE, Carter AP, Yildiz A. The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat Cell Biol 2016; 18:1018-24. [PMID: 27454819 PMCID: PMC5007201 DOI: 10.1038/ncb3393] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Kinesin and dynein motors transport intracellular cargos bidirectionally by pulling them in opposite directions along microtubules, through a process frequently described as a 'tug of war'. While kinesin produces 6 pN of force, mammalian dynein was found to be a surprisingly weak motor (0.5-1.5 pN) in vitro, suggesting that many dyneins are required to counteract the pull of a single kinesin. Mammalian dynein's association with dynactin and Bicaudal-D2 (BICD2) activates its processive motility, but it was unknown how this affects dynein's force output. Here, we show that formation of the dynein-dynactin-BICD2 (DDB) complex increases human dynein's force production to 4.3 pN. An in vitro tug-of-war assay revealed that a single DDB successfully resists a single kinesin. Contrary to previous reports, the clustering of many dyneins is not required to win the tug of war. Our work reveals the key role of dynactin and a cargo adaptor protein in shifting the balance of forces between dynein and kinesin motors during intracellular transport.
Collapse
Affiliation(s)
- Vladislav Belyy
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Max A Schlager
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Helen Foster
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Armando E Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
- Department of Cellular and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
77
|
Abstract
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
78
|
Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations. Sci Rep 2016; 6:30668. [PMID: 27485312 PMCID: PMC4971492 DOI: 10.1038/srep30668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
Tight regulation of kinesin activity is crucial and malfunction is linked to neurological diseases. Point mutations in the KIF21A gene cause congenital fibrosis of the extraocular muscles type 1 (CFEOM1) by disrupting the autoinhibitory interaction between the motor domain and a regulatory region in the stalk. However, the molecular mechanism underlying the misregulation of KIF21A activity in CFEOM1 is not understood. Here, we show that the KIF21A regulatory domain containing all disease-associated substitutions in the stalk forms an intramolecular antiparallel coiled coil that inhibits the kinesin. CFEOM1 mutations lead to KIF21A hyperactivation by affecting either the structural integrity of the antiparallel coiled coil or the autoinhibitory binding interface, thereby reducing its affinity for the motor domain. Interaction of the KIF21A regulatory domain with the KIF21B motor domain and sequence similarities to KIF7 and KIF27 strongly suggest a conservation of this regulatory mechanism in other kinesin-4 family members.
Collapse
|
79
|
Chen GY, Mickolajczyk KJ, Hancock WO. The Kinesin-5 Chemomechanical Cycle Is Dominated by a Two-heads-bound State. J Biol Chem 2016; 291:20283-20294. [PMID: 27402829 DOI: 10.1074/jbc.m116.730697] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/29/2022] Open
Abstract
Single-molecule microscopy and stopped-flow kinetics assays were carried out to understand the microtubule polymerase activity of kinesin-5 (Eg5). Four lines of evidence argue that the motor primarily resides in a two-heads-bound (2HB) state. First, upon microtubule binding, dimeric Eg5 releases both bound ADPs. Second, microtubule dissociation in saturating ADP is 20-fold slower for the dimer than for the monomer. Third, ATP-triggered mant-ADP release is 5-fold faster than the stepping rate. Fourth, ATP binding is relatively fast when the motor is locked in a 2HB state. Shortening the neck-linker does not facilitate rear-head detachment, suggesting a minimal role for rear-head-gating. This 2HB state may enable Eg5 to stabilize incoming tubulin at the growing microtubule plus-end. The finding that slowly hydrolyzable ATP analogs trigger slower nucleotide release than ATP suggests that ATP hydrolysis in the bound head precedes stepping by the tethered head, leading to a mechanochemical cycle in which processivity is determined by the race between unbinding of the bound head and attachment of the tethered head.
Collapse
Affiliation(s)
- Geng-Yuan Chen
- From the Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Keith J Mickolajczyk
- From the Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - William O Hancock
- From the Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
80
|
Talapatra SK, Rath O, Clayton E, Tomasi S, Kozielski F. Depsidones from Lichens as Natural Product Inhibitors of M-Phase Phosphoprotein 1, a Human Kinesin Required for Cytokinesis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1576-1585. [PMID: 27300079 DOI: 10.1021/acs.jnatprod.5b00962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
M-Phase Phosphoprotein 1 (MPP1), a microtubule plus end directed kinesin, is required for the completion of cytokinesis. Previous studies have shown that MPP1 is upregulated in various types of bladder cancer. This article describes inhibitor screening leading to the identification of a new class of natural product inhibitors of MPP1. Two compounds with structural similarity, norlobaridone (1) and physodic acid (2), were found to inhibit MPP1. Physodic acid is not competitive with ATP, indicating the presence of an allosteric inhibitor-binding pocket. Initial drug-like property screening indicates that physodic acid is more soluble than norlobaridone and has more favorable lipophilicity. However, both suffer from high clearance in human microsomal stability assays mediated by the lability of the lactone ring as well as hydroxylation of the alkyl chains as shown by metabolite identification studies. In cell-based assays physodic acid is a weak inhibitor with EC50 values of about 30 μM in a range of tumor cell lines. The two depsidones identified and characterized here could be used for future improvement of their activity against MPP1 and will be useful chemical probes for studying this unique molecular motor in more depth.
Collapse
Affiliation(s)
- Sandeep K Talapatra
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, U.K
| | - Oliver Rath
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, U.K
| | - Eddie Clayton
- Cyprotex Discovery Ltd , 15 Beech Lane, Macclesfield, Cheshire SK10 2DR, U.K
| | - Sophie Tomasi
- Equipe PNSCM "Produits Naturels - Synthèses - Chimie Médicinale", Unités Mixtes de Recherche, Centre National de la Recherche Scientifique, 6226 Sciences Chimiques de Rennes, UFR Sciences Pharmaceutiques et Biologiques, Univ. Rennes 1, Université Bretagne Loire , 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
81
|
Carter AP, Diamant AG, Urnavicius L. How dynein and dynactin transport cargos: a structural perspective. Curr Opin Struct Biol 2016; 37:62-70. [DOI: 10.1016/j.sbi.2015.12.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
|
82
|
Padzik A, Deshpande P, Hollos P, Franker M, Rannikko EH, Cai D, Prus P, Mågård M, Westerlund N, Verhey KJ, James P, Hoogenraad CC, Coffey ET. KIF5C S176 Phosphorylation Regulates Microtubule Binding and Transport Efficiency in Mammalian Neurons. Front Cell Neurosci 2016; 10:57. [PMID: 27013971 PMCID: PMC4791394 DOI: 10.3389/fncel.2016.00057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Increased phosphorylation of the KIF5 anterograde motor is associated with impaired axonal transport and neurodegeneration, but paradoxically also with normal transport, though the details are not fully defined. JNK phosphorylates KIF5C on S176 in the motor domain; a site that we show is phosphorylated in brain. Microtubule pelleting assays demonstrate that phosphomimetic KIF5C(1-560)(S176D) associates weakly with microtubules compared to KIF5C(1-560)(WT). Consistent with this, 50% of KIF5C(1-560)(S176D) shows diffuse movement in neurons. However, the remaining 50% remains microtubule bound and displays decreased pausing and increased bidirectional movement. The same directionality switching is observed with KIF5C(1-560)(WT) in the presence of an active JNK chimera, MKK7-JNK. Yet, in cargo trafficking assays where peroxisome cargo is bound, KIF5C(1-560)(S176D)-GFP-FRB transports normally to microtubule plus ends. We also find that JNK increases the ATP hydrolysis of KIF5C in vitro. These data suggest that phosphorylation of KIF5C-S176 primes the motor to either disengage entirely from microtubule tracks as previously observed in response to stress, or to display improved efficiency. The final outcome may depend on cargo load and motor ensembles.
Collapse
Affiliation(s)
- Artur Padzik
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Prasannakumar Deshpande
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Mariella Franker
- Cell Biology, Faculty of Science, Utrecht University Utrecht, Netherlands
| | - Emmy H Rannikko
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Piotr Prus
- Department of Biochemistry, University of Oulu Oulu, Finland
| | - Mats Mågård
- Department of Immunotechnology, Lund University Medicon, Lund, Sweden
| | - Nina Westerlund
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Peter James
- Department of Immunotechnology, Lund University Medicon, Lund, Sweden
| | | | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku Turku, Finland
| |
Collapse
|
83
|
Kevenaar JT, Bianchi S, van Spronsen M, Olieric N, Lipka J, Frias CP, Mikhaylova M, Harterink M, Keijzer N, Wulf PS, Hilbert M, Kapitein LC, de Graaff E, Ahkmanova A, Steinmetz MO, Hoogenraad CC. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Curr Biol 2016; 26:849-61. [PMID: 26948876 DOI: 10.1016/j.cub.2016.01.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 11/24/2022]
Abstract
Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.
Collapse
Affiliation(s)
- Josta T Kevenaar
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Sarah Bianchi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Myrrhe van Spronsen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Joanna Lipka
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; International Institute of Molecular and Cell Biology, 02-1009 Warsaw, Poland
| | - Cátia P Frias
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Marina Mikhaylova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; RG Neuroplasticity, Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Nanda Keijzer
- Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Phebe S Wulf
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Manuel Hilbert
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Esther de Graaff
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Anna Ahkmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 Rotterdam, the Netherlands.
| |
Collapse
|
84
|
Abstract
The light chains (KLCs) of the microtubule motor kinesin-1 bind cargoes and regulate its activity. Through their tetratricopeptide repeat domain (KLC(TPR)), they can recognize short linear peptide motifs found in many cargo proteins characterized by a central tryptophan flanked by aspartic/glutamic acid residues (W-acidic). Using a fluorescence resonance energy transfer biosensor in combination with X-ray crystallographic, biochemical, and biophysical approaches, we describe how an intramolecular interaction between the KLC2(TPR) domain and a conserved peptide motif within an unstructured region of the molecule, partly occludes the W-acidic binding site on the TPR domain. Cargo binding displaces this interaction, effecting a global conformational change in KLCs resulting in a more extended conformation. Thus, like the motor-bearing kinesin heavy chains, KLCs exist in a dynamic conformational state that is regulated by self-interaction and cargo binding. We propose a model by which, via this molecular switch, W-acidic cargo binding regulates the activity of the holoenzyme.
Collapse
|
85
|
Amrutha AS, Kumar KRS, Matsuo K, Tamaoki N. Structure–property relationships of photoresponsive inhibitors of the kinesin motor. Org Biomol Chem 2016; 14:7202-10. [DOI: 10.1039/c6ob00951d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new, more efficient photoresponsive inhibitor (key) of kinesin (lock), for the complete ON/OFF switching of kinesin motor activity was developed.
Collapse
Affiliation(s)
| | - K. R. Sunil Kumar
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo
- Japan
| | - Kazuya Matsuo
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo
- Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo
- Japan
| |
Collapse
|
86
|
Yang R, Bentley M, Huang CF, Banker G. Analyzing kinesin motor domain translocation in cultured hippocampal neurons. Methods Cell Biol 2015; 131:217-232. [PMID: 26794516 DOI: 10.1016/bs.mcb.2015.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal microtubules are subject to extensive posttranslational modifications and are bound by MAPs, tip-binding proteins, and other accessory proteins. All of these features, which are difficult to replicate in vitro, are likely to influence the translocation of kinesin motors. Here we describe assays for evaluating the translocation of a population of fluorescently labeled kinesin motor domains, based on their accumulation in regions of the cell enriched in microtubule plus ends. Neurons lend themselves to these experiments because of their microtubule organization. In axons, microtubules are oriented with their plus ends out; dendrites contain a mixed population of microtubules, but those near the tips are also plus end out. The assays involve the expression of constitutively active kinesins that can walk processively, but that lack the autoinhibitory domain in the tail that normally prevents their binding to microtubules until they attach to vesicles. The degree to which such motor domains accumulate at neurite tips serves as a measure of the efficiency of their translocation. Although these assays cannot provide the kind of quantitative kinetic information obtained from in vitro assays, they offer a simple way to examine kinesin translocation in living neurons. They can be used to compare the translocation efficiency of different kinesin motors and to evaluate how mutations or posttranslational modifications within the motor domain influence kinesin translocation. Changes to motor domain accumulation in these assays can also serve as readout for changes in the microtubule cytoskeleton that affect kinesin translocation.
Collapse
Affiliation(s)
- Rui Yang
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Marvin Bentley
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Chung-Fang Huang
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
87
|
Kevenaar JT, Hoogenraad CC. The axonal cytoskeleton: from organization to function. Front Mol Neurosci 2015; 8:44. [PMID: 26321907 PMCID: PMC4536388 DOI: 10.3389/fnmol.2015.00044] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/31/2015] [Indexed: 01/20/2023] Open
Abstract
The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the structural basis for several specialized axonal structures, such as the axon initial segment (AIS) and presynaptic boutons. Emerging evidence suggest that the unique cytoskeleton organization in the axon is essential for its structure and integrity. In addition, the increasing number of neurodevelopmental and neurodegenerative diseases linked to defect in actin- and microtubule-dependent processes emphasizes the importance of a properly regulated cytoskeleton for normal axonal functioning. Here, we provide an overview of the current understanding of actin and microtubule organization within the axon and discuss models for the functional role of the cytoskeleton at specialized axonal structures.
Collapse
Affiliation(s)
- Josta T. Kevenaar
- Cell Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | | |
Collapse
|
88
|
Biased Brownian motion as a mechanism to facilitate nanometer-scale exploration of the microtubule plus end by a kinesin-8. Proc Natl Acad Sci U S A 2015; 112:E3826-35. [PMID: 26150501 DOI: 10.1073/pnas.1500272112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinesin-8s are plus-end-directed motors that negatively regulate microtubule (MT) length. Well-characterized members of this subfamily (Kip3, Kif18A) exhibit two important properties: (i) They are "ultraprocessive," a feature enabled by a second MT-binding site that tethers the motors to a MT track, and (ii) they dissociate infrequently from the plus end. Together, these characteristics combined with their plus-end motility cause Kip3 and Kif18A to enrich preferentially at the plus ends of long MTs, promoting MT catastrophes or pausing. Kif18B, an understudied human kinesin-8, also limits MT growth during mitosis. In contrast to Kif18A and Kip3, localization of Kif18B to plus ends relies on binding to the plus-end tracking protein EB1, making the relationship between its potential plus-end-directed motility and plus-end accumulation unclear. Using single-molecule assays, we show that Kif18B is only modestly processive and that the motor switches frequently between directed and diffusive modes of motility. Diffusion is promoted by the tail domain, which also contains a second MT-binding site that decreases the off rate of the motor from the MT lattice. In cells, Kif18B concentrates at the extreme tip of a subset of MTs, superseding EB1. Our data demonstrate that kinesin-8 motors use diverse design principles to target MT plus ends, which likely target them to the plus ends of distinct MT subpopulations in the mitotic spindle.
Collapse
|
89
|
Düselder A, Fridman V, Thiede C, Wiesbaum A, Goldstein A, Klopfenstein DR, Zaitseva O, Janson ME, Gheber L, Schmidt CF. Deletion of the Tail Domain of the Kinesin-5 Cin8 Affects Its Directionality. J Biol Chem 2015; 290:16841-50. [PMID: 25991727 DOI: 10.1074/jbc.m114.620799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/04/2023] Open
Abstract
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.
Collapse
Affiliation(s)
- André Düselder
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | | | - Christina Thiede
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | - Alice Wiesbaum
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | | | - Dieter R Klopfenstein
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | - Olga Zaitseva
- the Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Marcel E Janson
- the Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Larisa Gheber
- the Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel, and
| | - Christoph F Schmidt
- From the Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany,
| |
Collapse
|
90
|
Watt D, Dixit R, Cavalli V. JIP3 Activates Kinesin-1 Motility to Promote Axon Elongation. J Biol Chem 2015; 290:15512-15525. [PMID: 25944905 DOI: 10.1074/jbc.m115.651885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.
Collapse
Affiliation(s)
- Dana Watt
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Ram Dixit
- Department of Biology, Washington University, St. Louis, Missouri 63110
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110.
| |
Collapse
|
91
|
Talapatra SK, Harker B, Welburn JPI. The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch. eLife 2015; 4. [PMID: 25915621 PMCID: PMC4443670 DOI: 10.7554/elife.06421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
The precise regulation of microtubule dynamics is essential during cell division. The
kinesin-13 motor protein MCAK is a potent microtubule depolymerase. The divergent
non-motor regions flanking the ATPase domain are critical in regulating its targeting
and activity. However, the molecular basis for the function of the non-motor regions
within the context of full-length MCAK is unknown. Here, we determine the structure
of MCAK motor domain bound to its regulatory C-terminus. Our analysis reveals that
the MCAK C-terminus binds to two motor domains in solution and is displaced
allosterically upon microtubule binding, which allows its robust accumulation at
microtubule ends. These results demonstrate that MCAK undergoes long-range
conformational changes involving its C-terminus during the soluble to
microtubule-bound transition and that the C-terminus-motor interaction represents a
structural intermediate in the MCAK catalytic cycle. Together, our work reveals
intrinsic molecular mechanisms underlying the regulation of kinesin-13 activity. DOI:http://dx.doi.org/10.7554/eLife.06421.001 Within a cell, there is a scaffold-like structure called the cytoskeleton that
provides shape and structural support, and acts as a transport network for the
movement of molecules around the cell. This scaffold contains highly dynamic polymers
called microtubules that are made from a protein called tubulin. The constant growth
and shrinking of the ends of the microtubules is essential to rebuild and adapt the
cytoskeleton according to the needs of the cell. A protein called MCAK belongs to a family of motor proteins that can move along
microtubules. It generally binds to the ends of the microtubules to shorten them.
Previous studies have found that a single MCAK protein binds to another MCAK protein
to form a larger molecule known as a dimer. Part of the MCAK protein forms a
so-called motor domain, which enables this protein to bind to the microtubules. One
end of the protein, known as the C-terminus, controls the activity of this motor
domain. However, it is not clear how this works. Talapatra et al. have now revealed the three-dimensional structure of MCAK's
motor domain with the C-terminus using a technique called X-ray crystallography. The
experiments show that the C-terminus binds to the motor domain, which promotes the
formation of the dimers. A short stretch of amino acids—the building blocks of
proteins—in the C-terminus interacts with two motor molecules. This
‘motif’ is also found in other similar proteins from a variety of
animals. However, once MCAK binds to a microtubule, the microtubule triggers the
release of the C-terminus from the motor domain. This allows MCAK to bind more
strongly to the microtubule. The experiments also show that the binding of the C-terminus to the motor domain
alters the ability of MCAK to associate with microtubules, which encourages the
protein to reach the ends of the polymers. Future work is required to see whether
other motor proteins work in a similar way. DOI:http://dx.doi.org/10.7554/eLife.06421.002
Collapse
Affiliation(s)
- Sandeep K Talapatra
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bethany Harker
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
92
|
Andreasson JOL, Shastry S, Hancock WO, Block SM. The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load. Curr Biol 2015; 25:1166-75. [PMID: 25866395 DOI: 10.1016/j.cub.2015.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 12/11/2022]
Abstract
The response of motor proteins to external loads underlies their ability to work in teams and determines the net speed and directionality of cargo transport. The mammalian kinesin-2, KIF3A/B, is a heterotrimeric motor involved in intraflagellar transport and vesicle motility in neurons. Bidirectional cargo transport is known to result from the opposing activities of KIF3A/B and dynein bound to the same cargo, but the load-dependent properties of kinesin-2 are poorly understood. We used a feedback-controlled optical trap to probe the velocity, run length, and unbinding kinetics of mouse KIF3A/B under various loads and nucleotide conditions. The kinesin-2 motor velocity is less sensitive than kinesin-1 to external forces, but its processivity diminishes steeply with load, and the motor was observed occasionally to slip and reattach. Each motor domain was characterized by studying homodimeric constructs, and a global fit to the data resulted in a comprehensive pathway that quantifies the principal force-dependent kinetic transitions. The properties of the KIF3A/B heterodimer are intermediate between the two homodimers, and the distinct load-dependent behavior is attributable to the properties of the motor domains and not to the neck linkers or the coiled-coil stalk. We conclude that the force-dependent movement of KIF3A/B differs significantly from conventional kinesin-1. Against opposing dynein forces, KIF3A/B motors are predicted to rapidly unbind and rebind, resulting in qualitatively different transport behavior from kinesin-1.
Collapse
Affiliation(s)
| | - Shankar Shastry
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - William O Hancock
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
93
|
Sasabe M, Ishibashi N, Haruta T, Minami A, Kurihara D, Higashiyama T, Nishihama R, Ito M, Machida Y. The carboxyl-terminal tail of the stalk of Arabidopsis NACK1/HINKEL kinesin is required for its localization to the cell plate formation site. JOURNAL OF PLANT RESEARCH 2015; 128:327-36. [PMID: 25502072 PMCID: PMC5114321 DOI: 10.1007/s10265-014-0687-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/12/2014] [Indexed: 05/19/2023]
Abstract
Plant cytokinesis is achieved by formation of cell plates in the phragmoplast, a plant-specific cytokinetic apparatus, which consists of microtubules (MTs) and microfilaments. During cytokinesis, the cell plate is expanded centrifugally outward from the inside of cells in a process that is supported by dynamic turnover of MTs. M-phase-specific kinesin NACK1, which comprises the motor domain at the amino-terminal half to move on MT bundles and the stalk region in the carboxyl-terminal half, is a key player in the process of MT turnover. That is, the specific region in the stalk binds the MAP kinase kinase kinase to activate the whole MAP kinase cascade, which stimulates depolymerization of MTs for the MT turnover. The stalk is also responsible for recruiting the activated kinase cascade to the mid-zone of the phragmoplast, which corresponds to the cell-plate formation site. It should be crucial to uncover roles of the NACK1 kinesin stalk as well as the motor domain in the formation of cell plates in order to understand the mechanisms of cell plate formation. Using dissected Arabidopsis NACK1 (AtNACK1/HINKEL) molecules and AtNACK1-fused GFP, we showed that the C-terminal tail of the stalk in addition to the motor domain is critical for its proper localization to the site of cell plate formation in the phragmoplast, probably by affecting its motility activity.
Collapse
Affiliation(s)
- Michiko Sasabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561 Japan
| | - Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Tsuyoshi Haruta
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Aki Minami
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| |
Collapse
|
94
|
Wilson MH, Holzbaur ELF. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 2015; 142:218-28. [PMID: 25516977 DOI: 10.1242/dev.114769] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During skeletal muscle development, nuclei move dynamically through myotubes in a microtubule-dependent manner, driven by the microtubule motor protein kinesin-1. Loss of kinesin-1 leads to improperly positioned nuclei in culture and in vivo. Two models have been proposed to explain how kinesin-1 functions to move nuclei in myotubes. In the cargo model, kinesin-1 acts directly from the surface of the nucleus, whereas in an alternative model, kinesin-1 moves nuclei indirectly by sliding anti-parallel microtubules. Here, we test the hypothesis that an ensemble of Kif5B motors acts from the nuclear envelope to distribute nuclei throughout the length of syncytial myotubes. First, using an inducible dimerization system, we show that controlled recruitment of truncated, constitutively active kinesin-1 motors to the nuclear envelope is sufficient to prevent the nuclear aggregation resulting from depletion of endogenous kinesin-1. Second, we identify a conserved kinesin light chain (KLC)-binding motif in the nuclear envelope proteins nesprin-1 and nesprin-2, and show that recruitment of the motor complex to the nucleus via this LEWD motif is essential for nuclear distribution. Together, our findings demonstrate that the nucleus is a kinesin-1 cargo in myotubes and that nesprins function as nuclear cargo adaptors. The importance of achieving and maintaining proper nuclear position is not restricted to muscle fibers, suggesting that the nesprin-dependent recruitment of kinesin-1 to the nuclear envelope through the interaction of a conserved LEWD motif with kinesin light chain might be a general mechanism for cell-type-specific nuclear positioning during development.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology and the Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
95
|
Cochran JC. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Biophys Rev 2015; 7:269-299. [PMID: 28510227 DOI: 10.1007/s12551-014-0150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 11/25/2022] Open
Abstract
Molecular motors are enzymes that convert chemical potential energy into controlled kinetic energy for mechanical work inside cells. Understanding the biophysics of these motors is essential for appreciating life as well as apprehending diseases that arise from motor malfunction. This review focuses on kinesin motor enzymology with special emphasis on the literature that reports the chemistry, structure and physics of several different kinesin superfamily members.
Collapse
Affiliation(s)
- J C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Simon Hall Room 405C, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
| |
Collapse
|
96
|
Kim JI, Chang HJ, Na S. Identification of tail binding effect of kinesin-1 using an elastic network model. Biomech Model Mechanobiol 2015; 14:1107-17. [PMID: 25676575 DOI: 10.1007/s10237-015-0657-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
Kinesin is a motor protein that delivers cargo inside a cell. Kinesin has many different families, but they perform basically same function and have same motions. The walking motion of kinesin enables the cargo delivery inside the cell. Autoinhibition of kinesin is important because it explains how function of kinesin inside a cell is stopped. Former researches showed that tail binding is related to autoinhibition of kinesin. In this work, we performed normal mode analysis with elastic network model using different conformation of kinesin to determine the effect of tail binding by considering four models such as functional form, autoinhibited form, autoinhibited form without tail, and autoinhibited form with carbon structure. Our calculation of the thermal fluctuation and cross-correlation shows the change of tail-binding region in structural motion. Also strain energy of kinesin showed that elimination of tail binding effect leads the structure to have energetically similar behavior with the functional form.
Collapse
Affiliation(s)
- Jae In Kim
- Department of Mechanical Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | | | | |
Collapse
|
97
|
Chakraborty S, Zheng W. Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation. Biochemistry 2015; 54:859-69. [PMID: 25537000 DOI: 10.1021/bi501056h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Physics Department, University at Buffalo , Buffalo, New York 14260, United States
| | | |
Collapse
|
98
|
Khataee H, Liew AWC. Computational modeling of kinesin stepping. J Chem Inf Model 2014; 54:3439-45. [PMID: 25400227 DOI: 10.1021/ci500673z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kinesin is a walking motor protein that shuttles cellular cargoes along microtubules (MTs). This protein is considered as an information processor capable of sensing cellular inputs and transforming them into mechanical steps. Here, we propose a computational model to describe the mechanochemical kinetics underlying forward and backward stepping behavior of kinesin motor as a digital circuit designed based on an adenosine triphosphate (ATP)-driven finite state machine. Kinetic analysis suggests that the backward stepping of kinesin is mainly driven by ATP hydrolysis, whereas ATP synthesis rises the duration of this stepping. It is shown that kinesin pausing due to waiting for ATP binding at limiting ATP concentration ([ATP]) and low backward loads could be longer than that caused by low rate of ATP synthesis under high backward loads. These findings indicate that the pausing duration of kinesin in MT-bound (M·K) kinetic state is affected by [ATP], which in turn affects its velocity at fixed loads. We show that the proposed computational model accurately simulates the forward and backward stepping behavior of kinesin motor under different [ATP] and loads.
Collapse
Affiliation(s)
- Hamidreza Khataee
- School of Information and Communication Technology, Gold Coast Campus, Griffith University , Gold Coast, Queensland 4222, Australia
| | | |
Collapse
|
99
|
Cao L, Wang W, Jiang Q, Wang C, Knossow M, Gigant B. The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. Nat Commun 2014; 5:5364. [PMID: 25395082 DOI: 10.1038/ncomms6364] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022] Open
Abstract
Kinesin-1 is a dimeric ATP-dependent motor protein that moves towards microtubules (+) ends. This movement is driven by two conformations (docked and undocked) of the two motor domains carboxy-terminal peptides (named neck linkers), in correlation with the nucleotide bound to each motor domain. Despite extensive data on kinesin-1, the structural connection between its nucleotide cycle and movement has remained elusive, mostly because the structure of the critical tubulin-bound apo-kinesin state was unknown. Here we report the 2.2 Å structure of this complex. From its comparison with detached kinesin-ADP and tubulin-bound kinesin-ATP, we identify three kinesin motor subdomains that move rigidly along the nucleotide cycle. Our data reveal how these subdomains reorient on binding to tubulin and when ATP binds, leading respectively to ADP release and to neck linker docking. These results establish a framework for understanding the transformation of chemical energy into mechanical work by (+) end-directed kinesins.
Collapse
Affiliation(s)
- Luyan Cao
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la Terrasse, 91190 Gif sur Yvette, France
| | - Weiyi Wang
- 1] Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la Terrasse, 91190 Gif sur Yvette, France [2] Institute of Protein Research, Tongji University, 1239 SiPing Road, 200092 Shanghai, China
| | - Qiyang Jiang
- Institute of Protein Research, Tongji University, 1239 SiPing Road, 200092 Shanghai, China
| | - Chunguang Wang
- Institute of Protein Research, Tongji University, 1239 SiPing Road, 200092 Shanghai, China
| | - Marcel Knossow
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la Terrasse, 91190 Gif sur Yvette, France
| | - Benoît Gigant
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, Centre National de la Recherche Scientifique, 1 avenue de la Terrasse, 91190 Gif sur Yvette, France
| |
Collapse
|
100
|
Gan KJ, Morihara T, Silverman MA. Atlas stumbled: Kinesin light chain-1 variant E triggers a vicious cycle of axonal transport disruption and amyloid-β generation in Alzheimer's disease. Bioessays 2014; 37:131-41. [DOI: 10.1002/bies.201400131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kathlyn J. Gan
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
| | - Takashi Morihara
- Department of Psychiatry; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Michael A. Silverman
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
- Department of Biological Sciences; Simon Fraser University; Burnaby BC Canada
- Brain Research Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|