51
|
Wang Q, Jana B, Diehl MR, Cheung MS, Kolomeisky AB, Onuchic JN. Molecular mechanisms of the interhead coordination by interhead tension in cytoplasmic dyneins. Proc Natl Acad Sci U S A 2018; 115:10052-10057. [PMID: 30224489 PMCID: PMC6176594 DOI: 10.1073/pnas.1806688115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the β registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the β registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.
Collapse
Affiliation(s)
- Qian Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, 700032 Kolkata, India
| | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Chemistry, Rice University, Houston, TX 77030
| | - Margaret S Cheung
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Physics, University of Houston, Houston, TX 77204
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Chemistry, Rice University, Houston, TX 77030
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77030
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
52
|
Goldtzvik Y, Mugnai ML, Thirumalai D. Dynamics of Allosteric Transitions in Dynein. Structure 2018; 26:1664-1677.e5. [PMID: 30270176 DOI: 10.1016/j.str.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Cytoplasmic dynein, whose motor domain belongs to the AAA+ family, walks on microtubules toward the minus end. Using the available structures in different nucleotide states, we performed simulations of a coarse-grained model to elucidate the dynamics of allosteric transitions. Binding of ATP closes the cleft between the AAA1 and AAA2 domains, triggering conformational changes in the rest of the motor domain, thus forming the pre-power stroke state. Interactions with the microtubule, modeled implicitly, enhance ADP release rate, and the formation of the post-power stroke state. The dynamics of the linker (LN), which reversibly changes from a straight to a bent state, is heterogeneous. Persistent interactions between the LN and the insert loops in the AAA2 domain prevent the formation of pre-power stroke state when ATP is bound to AAA3, thus locking dynein in a repressed non-functional state. Application of mechanical force to the LN restores motility in the repressed state.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
53
|
King SM. Turning dyneins off bends cilia. Cytoskeleton (Hoboken) 2018; 75:372-381. [PMID: 30176122 PMCID: PMC6249098 DOI: 10.1002/cm.21483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
Ciliary and flagellar motility is caused by the ensemble action of inner and outer dynein arm motors acting on axonemal doublet microtubules. The switch point or switching hypothesis, for which much experimental and computational evidence exists, requires that dyneins on only one side of the axoneme are actively working during bending, and that this active motor region propagate along the axonemal length. Generation of a reverse bend results from switching active sliding to the opposite side of the axoneme. However, the mechanochemical states of individual dynein arms within both straight and curved regions and how these change during beating has until now eluded experimental observation. Recently, Lin and Nicastro used high-resolution cryo-electron tomography to determine the power stroke state of dyneins along flagella of sea urchin sperm that were rapidly frozen while actively beating. The results reveal that axonemal dyneins are generally in a pre-power stroke conformation that is thought to yield a force-balanced state in straight regions; inhibition of this conformational state and microtubule release on specific doublets may then lead to a force imbalance across the axoneme allowing for microtubule sliding and consequently the initiation and formation of a ciliary bend. Propagation of this inhibitory signal from base-to-tip and switching the microtubule doublet subsets that are inhibited is proposed to result in oscillatory motion.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and BiophysicsUniversity of Connecticut Health CenterFarmingtonConnecticut
| |
Collapse
|
54
|
Vulinovic F, Krajka V, Hausrat TJ, Seibler P, Alvarez-Fischer D, Madoev H, Park JS, Kumar KR, Sue CM, Lohmann K, Kneussel M, Klein C, Rakovic A. Motor protein binding and mitochondrial transport are altered by pathogenic TUBB4A variants. Hum Mutat 2018; 39:1901-1915. [PMID: 30079973 DOI: 10.1002/humu.23602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022]
Abstract
Mutations in TUBB4A have been identified to cause a wide phenotypic spectrum of diseases ranging from hereditary generalized dystonia with whispering dysphonia (DYT-TUBB4A) and hereditary spastic paraplegia (HSP) to leukodystrophy hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). TUBB4A encodes the brain-specific β-tubulin isotype, β-tubulin 4A. To elucidate the pathogenic mechanisms conferred by TUBB4A mutations leading to the different phenotypes, we functionally characterized three pathogenic TUBB4A variants (c.4C>G,p.R2G; c.745G>A,p.D249N; c.811G>A, p.A271T) as representatives of the mutational and disease spectrum) in human neuroblastoma cells and human induced pluripotent stem cell (iPSC)-derived neurons. We showed that mRNA stability was not affected by any of the TUBB4A variants. Although two mutations (p.R2G and p.D249N) are located at the α/β-tubulin interdimer interface, we confirmed incorporation of all TUBB4A mutants into the microtubule network. However, we showed that the mutations p.D249N and p.A271T interfered with motor protein binding to microtubules and impaired neurite outgrowth and microtubule dynamics. Finally, TUBB4A mutations, as well as heterozygous knockout of TUBB4A, disrupted mitochondrial transport in iPSC-derived neurons. Taken together, our findings suggest that functional impairment of microtubule-associated transport is a shared pathogenic mechanism by which the TUBB4A mutations studied here cause a spectrum of diseases.
Collapse
Affiliation(s)
- Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Victor Krajka
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Torben J Hausrat
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Harutyun Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales, Australia
| | - Kishore R Kumar
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales, Australia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
55
|
Tajielyato N, Li L, Peng Y, Alper J, Alexov E. E-hooks provide guidance and a soft landing for the microtubule binding domain of dynein. Sci Rep 2018; 8:13266. [PMID: 30185874 PMCID: PMC6125590 DOI: 10.1038/s41598-018-31480-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023] Open
Abstract
Macromolecular binding is a complex process that involves sensing and approaching the binding partner, adopting the proper orientation, and performing the physical binding. We computationally investigated the role of E-hooks, which are intrinsically disordered regions (IDRs) at the C-terminus of tubulin, on dynein microtubule binding domain (MTBD) binding to the microtubule as a function of the distance between the MTBD and its binding site on the microtubule. Our results demonstrated that the contacts between E-hooks and the MTBD are dynamical; multiple negatively charted patches of amino acids on the E-hooks grab and release the same positively charged patches on the MTBD as it approaches the microtubule. Even when the distance between the MTBD and the microtubule was greater than the E-hook length, the E-hooks sensed and guided MTBD via long-range electrostatic interactions in our simulations. Moreover, we found that E-hooks exerted electrostatic forces on the MTBD that were distance dependent; the force pulls the MTBD toward the microtubule at long distances but opposes binding at short distances. This mechanism provides a "soft-landing" for the MTBD as it binds to the microtubule. Finally, our analysis of the conformational states of E-hooks in presence and absence of the MTBD indicates that the binding process is a mixture of the induced-fit and lock-and-key macromolecular binding hypotheses. Overall, this novel binding mechanism is termed "guided-soft-binding" and could have broad-reaching impacts on the understanding of how IDRs dock to structured proteins.
Collapse
Affiliation(s)
- Nayere Tajielyato
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Lin Li
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Physics, University of Texas at El Paso, El Paso, TX, 79912, USA
| | - Yunhui Peng
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
56
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
57
|
Trott L, Hafezparast M, Madzvamuse A. A mathematical understanding of how cytoplasmic dynein walks on microtubules. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171568. [PMID: 30224978 PMCID: PMC6124060 DOI: 10.1098/rsos.171568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Cytoplasmic dynein 1 (hereafter referred to simply as dynein) is a dimeric motor protein that walks and transports intracellular cargos towards the minus end of microtubules. In this article, we formulate, based on physical principles, a mechanical model to describe the stepping behaviour of cytoplasmic dynein walking on microtubules from the cell membrane towards the nucleus. Unlike previous studies on physical models of this nature, we base our formulation on the whole structure of dynein to include the temporal dynamics of the individual subunits such as the cargo (for example, an endosome, vesicle or bead), two rings of six ATPase domains associated with diverse cellular activities (AAA+ rings) and the microtubule-binding domains which allow dynein to bind to microtubules. This mathematical framework allows us to examine experimental observations on dynein across a wide range of different species, as well as being able to make predictions on the temporal behaviour of the individual components of dynein not currently experimentally measured. Furthermore, we extend the model framework to include backward stepping, variable step size and dwelling. The power of our model is in its predictive nature; first it reflects recent experimental observations that dynein walks on microtubules using a weakly coordinated stepping pattern with predominantly not passing steps. Second, the model predicts that interhead coordination in the ATP cycle of cytoplasmic dynein is important in order to obtain the alternating stepping patterns and long run lengths seen in experiments.
Collapse
Affiliation(s)
- L. Trott
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, UK
- School of Life Sciences, University of Sussex, Brighton BN1 9QH, UK
| | - M. Hafezparast
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - A. Madzvamuse
- Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, UK
| |
Collapse
|
58
|
Abstract
We report three high-resolution structures of microtubules in different nucleotide states—GMPCPP, GDP, and GTPγS—in the absence of any binding proteins, allowing us to separate the effects of nucleotide- and microtubule (MT)-associated protein (MAPs) binding on MT structure. End-binding (EB) proteins can bind and induce partial lattice compaction of a preformed GMPCPP-bound MT, a lattice type that is far from EBs’ ideal binding platform. We propose a model in which the MT lattice serves as a platform that integrates internal tubulin signals, such as nucleotide state, with outside signals, such as binding of MAPs. These global lattice rearrangements in turn affect the affinity of other MT partners and result in the exquisite regulation of the MT dynamics. Microtubules (MTs) are polymers assembled from αβ-tubulin heterodimers that display the hallmark behavior of dynamic instability. MT dynamics are driven by GTP hydrolysis within the MT lattice, and are highly regulated by a number of MT-associated proteins (MAPs). How MAPs affect MTs is still not fully understood, partly due to a lack of high-resolution structural data on undecorated MTs, which need to serve as a baseline for further comparisons. Here we report three structures of MTs in different nucleotide states (GMPCPP, GDP, and GTPγS) at near-atomic resolution and in the absence of any binding proteins. These structures allowed us to differentiate the effects of nucleotide state versus MAP binding on MT structure. Kinesin binding has a small effect on the extended, GMPCPP-bound lattice, but hardly affects the compacted GDP-MT lattice, while binding of end-binding (EB) proteins can induce lattice compaction (together with lattice twist) in MTs that were initially in an extended and more stable state. We propose a MT lattice-centric model in which the MT lattice serves as a platform that integrates internal tubulin signals, such as nucleotide state, with outside signals, such as binding of MAPs or mechanical forces, resulting in global lattice rearrangements that in turn affect the affinity of other MT partners and result in the exquisite regulation of MT dynamics.
Collapse
|
59
|
Tan R, Foster PJ, Needleman DJ, McKenney RJ. Cooperative Accumulation of Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. Dev Cell 2018; 44:233-247.e4. [PMID: 29401420 DOI: 10.1016/j.devcel.2017.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023]
Abstract
Cytoplasmic dynein-1 is a minus-end-directed motor protein that transports cargo over long distances and organizes the intracellular microtubule (MT) network. How dynein motor activity is harnessed for these diverse functions remains unknown. Here, we have uncovered a mechanism for how processive dynein-dynactin complexes drive MT-MT sliding, reorganization, and focusing, activities required for mitotic spindle assembly. We find that motors cooperatively accumulate, in limited numbers, at MT minus-ends. Minus-end accumulations drive MT-MT sliding, independent of MT orientation, resulting in the clustering of MT minus-ends. At a mesoscale level, activated dynein-dynactin drives the formation and coalescence of MT asters. Macroscopically, dynein-dynactin activity leads to bulk contraction of millimeter-scale MT networks, suggesting that minus-end accumulations of motors produce network-scale contractile stresses. Our data provide a model for how localized dynein activity is harnessed by cells to produce contractile stresses within the cytoskeleton, for example, during mitotic spindle assembly.
Collapse
Affiliation(s)
- Ruensern Tan
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA
| | - Peter J Foster
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
60
|
Kato Y, Miyakawa T, Tanokura M. Overview of the mechanism of cytoskeletal motors based on structure. Biophys Rev 2018; 10:571-581. [PMID: 29235081 PMCID: PMC5899727 DOI: 10.1007/s12551-017-0368-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
In the last two decades, a wealth of structural and functional knowledge has been obtained for the three major cytoskeletal motor proteins, myosin, kinesin and dynein, which we review here. The cytoskeletal motor proteins myosin and kinesin are structurally similar in the core architecture of their motor domains and have similar force-producing mechanisms that are coupled with the chemical cycles of ATP binding, hydrolysis, Pi release and subsequent ADP release. The force is generated through conformational changes in the motor domain during Pi release and ATP binding in myosin and kinesin, respectively, and then converted into the rotation of the lever arm or neck linker (referred to as a power stroke) through the common structural pathways. On the other hand, the dynein cytoskeletal motor is an AAA+ protein and has a different structure and power stroke mechanism from those of myosins and kinesins. The linker protruding from the AAA+ ring of dynein swings according to the ATPase states, which, presumably, generates force to carry cargos within a cell. The communication mechanism between the track-binding and ATPase domains of dynein is unique because the two helices that presumably slide with respect to each other work as coordinators for these domains. Details of the mechanism underlying the power stroke and interdomain communication were revealed through recent progress in the structural studies of myosin, kinesin and dynein.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Takuya Miyakawa
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
61
|
Structural atlas of dynein motors at atomic resolution. Biophys Rev 2018; 10:677-686. [PMID: 29478092 DOI: 10.1007/s12551-018-0402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins. We describe representative structural studies of every component of dynein and summarize them as a structural atlas that classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural studies.
Collapse
|
62
|
Amin MA, McKenney RJ, Varma D. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis. J Biol Chem 2018; 293:5755-5765. [PMID: 29475948 DOI: 10.1074/jbc.ra117.001699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/06/2018] [Indexed: 01/22/2023] Open
Abstract
Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80.
Collapse
Affiliation(s)
- Mohammed A Amin
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Dileep Varma
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
63
|
Grotjahn DA, Chowdhury S, Xu Y, McKenney RJ, Schroer TA, Lander GC. Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nat Struct Mol Biol 2018; 25:203-207. [PMID: 29416113 PMCID: PMC5969528 DOI: 10.1038/s41594-018-0027-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/29/2017] [Indexed: 11/09/2022]
Abstract
Cytoplasmic dynein is a protein complex that transports molecular cargo along microtubules (MTs), playing a key role in the intracellular trafficking network. Vertebrate dynein's movement becomes strikingly enhanced upon interacting with dynactin and a cargo adaptor such as BicaudalD2. However, the mechanisms responsible for increased transport activity are not well understood, largely owing to limited structural information. We used cryo-electron tomography (cryo-ET) to visualize the 3D structure of the MT-bound dynein-dynactin complex from Mus musculus and show that the dynactin-cargo adaptor complex binds two dimeric dyneins. This configuration imposes spatial and conformational constraints on both dynein dimers, positioning the four motor domains in proximity to one another and oriented toward the MT minus end. We propose that grouping multiple dyneins onto a single dynactin scaffold promotes collective force production, increased processivity, and unidirectional movement, suggesting mechanistic parallels to axonemal dynein. These findings provide structural insights into a previously unknown mechanism for dynein regulation.
Collapse
Affiliation(s)
- Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yiru Xu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, USA
| | - Trina A Schroer
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
64
|
Dwivedi D, Sharma M. Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:13-30. [PMID: 30637687 DOI: 10.1007/978-981-13-3065-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
65
|
Reilly C, Ingber DE. Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale. ACS NANO 2017; 11:12156-12166. [PMID: 29043776 DOI: 10.1021/acsnano.7b05266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many have recognized the potential value of facilitating activities that span the art-science interface for the benefit of society; however, there are few examples that demonstrate how pursuit of an artistic agenda can lead to scientific insights. Here, we describe how we set out to produce an entertaining short film depicting the fertilization of the egg by sperm as a parody of a preview for another Star Wars movie to excite the public about science, but ended up developing a simulation tool for multiscale modeling. To produce an aesthetic that communicates mechanical continuity across spatial scales, we developed custom strategies that integrate physics-based animation software from the entertainment industry with molecular dynamics simulation tools, using experimental data from research publications. Using this approach, we were able to depict biological physicality across multiple spatial scales, from how sperm tails move to collective molecular behavior within the axoneme to how the molecular motor, dynein, produces force at the nanometer scale. The dynein simulations, which were validated by replicating results of past simulations and cryo-electron microscopic studies, also predicted a potential mechanism for how ATP hydrolysis drives dynein motion along the microtubule as well as how dynein changes its conformation when it goes through the power stroke. Thus, pursuit of an artistic work led to insights into biology at the nanoscale as well as the development of a highly generalizable modeling and simulation technology that has utility for nanoscience and any other area of scientific investigation that involves analysis of complex multiscale systems.
Collapse
Affiliation(s)
- Charles Reilly
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
66
|
She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nat Commun 2017; 8:2151. [PMID: 29247176 PMCID: PMC5732302 DOI: 10.1038/s41467-017-02004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/31/2017] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast. Here, we characterize the molecular basis by which She1 affects dynein, providing the first such insight into which a MAP can modulate motor motility. We find that She1 affects the ATPase rate, microtubule-binding affinity, and stepping behavior of dynein, and that microtubule binding by She1 is required for its effects on dynein motility. Moreover, we find that She1 directly contacts the microtubule-binding domain of dynein, and that their interaction is sensitive to the nucleotide-bound state of the motor. Our data support a model in which simultaneous interactions between the microtubule and dynein enables She1 to directly affect dynein motility. Dynein is a microtubule motor the motility of which is affected by the microtubule-associated protein She1. Here, the authors show that She1 alters dynein stepping behavior and increases its microtubule affinity through simultaneous interactions with the microtubule and dynein microtubule binding domain.
Collapse
|
67
|
Satir P. Chirality of the cytoskeleton in the origins of cellular asymmetry. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0408. [PMID: 27821520 DOI: 10.1098/rstb.2015.0408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior-posterior cell and tissue axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Peter Satir
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
68
|
Šarlah A, Vilfan A. Minimum requirements for motility of a processive motor protein. PLoS One 2017; 12:e0185948. [PMID: 29016643 PMCID: PMC5634618 DOI: 10.1371/journal.pone.0185948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022] Open
Abstract
Motor proteins generally have a two-way coupling between the ATP hydrolysis site, the lever movement and the binding affinity for their track, which allows them to perform efficient stepping. Here we explore the minimal requirements for directed motility based on simpler schemes in which the binding/unbinding from the track is decoupled from the ATPase cycle. We show that a directed power stroke alone is not sufficient for motility, but combined with an asymmetry in force-induced unbinding rates it can generate stepping. The energetic efficiency of such stepping is limited to approximately 20%. We conclude that the allosteric coupling between the ATP hydrolysis and the track binding is not strictly necessary for motility, but it greatly improves its efficiency.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (AŠ); (AV)
| | - Andrej Vilfan
- J. Stefan Institute, Ljubljana, Slovenia
- * E-mail: (AŠ); (AV)
| |
Collapse
|
69
|
DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE. Lis1 Has Two Opposing Modes of Regulating Cytoplasmic Dynein. Cell 2017; 170:1197-1208.e12. [PMID: 28886386 DOI: 10.1016/j.cell.2017.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Abstract
Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.
Collapse
Affiliation(s)
- Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biophysics Graduate Program, Harvard University, Boston, MA 92105, USA
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Section of Cellular and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
70
|
Kubo S, Li W, Takada S. Allosteric conformational change cascade in cytoplasmic dynein revealed by structure-based molecular simulations. PLoS Comput Biol 2017; 13:e1005748. [PMID: 28892477 PMCID: PMC5608440 DOI: 10.1371/journal.pcbi.1005748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/21/2017] [Accepted: 08/29/2017] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic dynein is a giant ATP-driven molecular motor that proceeds to the minus end of the microtubule (MT). Dynein hydrolyzes ATP in a ring-like structure, containing 6 AAA+ (ATPases associated with diverse cellular activities) modules, which is ~15 nm away from the MT binding domain (MTBD). This architecture implies that long-distance allosteric couplings exist between the AAA+ ring and the MTBD in order for dynein to move on the MT, although little is known about the mechanisms involved. Here, we have performed comprehensive molecular simulations of the dynein motor domain based on pre- and post- power-stroke structural information and in doing so we address the allosteric conformational changes that occur during the power-stroke and recovery-stroke processes. In the power-stroke process, the N-terminal linker movement was the prerequisite to the nucleotide-dependent AAA1 transition, from which a transition cascade propagated, on average, in a circular manner on the AAA+ ring until it reached the AAA6/C-terminal module. The recovery-stroke process was initiated by the transition of the AAA6/C-terminal, from which the transition cascade split into the two directions of the AAA+ ring, occurring both clockwise and anti-clockwise. In both processes, the MTBD conformational change was regulated by the AAA4 module and the AAA5/Strut module. The linear molecular motor dynein is an intriguing allosteric model protein. ATP hydrolysis, catalyzed by modules in the AAA+ ring, regulates the binding to the rail molecule, microtubule, which is ~15 nm away from the AAA+ ring. The molecular mechanisms underpinning this long-distance communication are unclear. Based on recently solved pre- and post- power-stroke crystal structure information, we performed, for the first time to our knowledge, molecular simulations of complete conformational changes between the two structures. The simulation revealed that module-by-module allosteric conformational changes occur. Interestingly, the transition cascade from the pre- to the post-power-stroke states propagated in a circular manner around the AAA+ ring, while that of the recovery transitions propagated in a bi-directional manner around the ring.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Wenfei Li
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, China
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
71
|
Li L, Chakravorty A, Alexov E. DelPhiForce, a tool for electrostatic force calculations: Applications to macromolecular binding. J Comput Chem 2017; 38:584-593. [PMID: 28130775 PMCID: PMC5315605 DOI: 10.1002/jcc.24715] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Long-range electrostatic forces play an important role in molecular biology, particularly in macromolecular interactions. However, calculating the electrostatic forces for irregularly shaped molecules immersed in water is a difficult task. Here, we report a new tool, DelPhiForce, which is a tool in the DelPhi package that calculates and visualizes the electrostatic forces in biomolecular systems. In parallel, the DelPhi algorithm for modeling electrostatic potential at user-defined positions has been enhanced to include triquadratic and tricubic interpolation methods. The tricubic interpolation method has been tested against analytical solutions and it has been demonstrated that the corresponding errors are negligibly small at resolution 4 grids/Å. The DelPhiForce is further applied in the study of forces acting between partners of three protein-protein complexes. It has been demonstrated that electrostatic forces play a dual role by steering binding partners (so that the partners recognize their native interfaces) and exerting an electrostatic torque (if the mutual orientations of the partners are not native-like). The output of DelPhiForce is in a format that VMD can read and visualize, and provides additional options for analysis of protein-protein binding. DelPhiForce is available for download from the DelPhi webpage at http://compbio.clemson.edu/downloadDir/delphiforce.tar.gz © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lin Li
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| | | | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
72
|
Liu T, Dai A, Cao Y, Zhang R, Dong MQ, Wang HW. Structural Insights of WHAMM's Interaction with Microtubules by Cryo-EM. J Mol Biol 2017; 429:1352-1363. [PMID: 28351611 DOI: 10.1016/j.jmb.2017.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/29/2022]
Abstract
WASP homolog associated with actin, membranes, and microtubules (WHAMM) is a vertebrate protein functioning in membrane tubulation for intracellular membrane trafficking and specific organelle formation. Composed of multiple domains, WHAMM can bind to membrane and microtubule (MT) and promote actin polymerization nucleation. Previous work revealed that WHAMM's activity to promote actin nucleation is repressed upon binding to MTs. Here, we discovered that WHAMM interacts with αβ-tubulin through a small peptide motif within its MT-binding domain. We reconstructed a high-resolution structure of WHAMM's MT-binding motif (MBM) assembling around MTs using cryo-electron microscopy and verified it with chemical cross-linking and mass spectrometry analysis. We also detected a conformational switch of this motif between the non-MT-bound state and the MT-bound state. These discoveries provide new insights into the mechanism by which WHAMM coordinates actin and MT networks, the two major cytoskeletal systems involved in membrane trafficking and membrane remodeling.
Collapse
Affiliation(s)
- Tianyang Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anbang Dai
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Zhang
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
73
|
Furuta A, Amino M, Yoshio M, Oiwa K, Kojima H, Furuta K. Creating biomolecular motors based on dynein and actin-binding proteins. NATURE NANOTECHNOLOGY 2017; 12:233-237. [PMID: 27842063 DOI: 10.1038/nnano.2016.238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/03/2016] [Indexed: 05/26/2023]
Abstract
Biomolecular motors such as myosin, kinesin and dynein are protein machines that can drive directional movement along cytoskeletal tracks and have the potential to be used as molecule-sized actuators. Although control of the velocity and directionality of biomolecular motors has been achieved, the design and construction of novel biomolecular motors remains a challenge. Here we show that naturally occurring protein building blocks from different cytoskeletal systems can be combined to create a new series of biomolecular motors. We show that the hybrid motors-combinations of a motor core derived from the microtubule-based dynein motor and non-motor actin-binding proteins-robustly drive the sliding movement of an actin filament. Furthermore, the direction of actin movement can be reversed by simply changing the geometric arrangement of these building blocks. Our synthetic strategy provides an approach to fabricating biomolecular machines that work along artificial tracks at nanoscale dimensions.
Collapse
Affiliation(s)
- Akane Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Misako Amino
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Maki Yoshio
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan
| | - Hiroaki Kojima
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| |
Collapse
|
74
|
DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes. Proc Natl Acad Sci U S A 2017; 114:E1597-E1606. [PMID: 28196890 DOI: 10.1073/pnas.1620141114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.
Collapse
|
75
|
Nogales E. Dear microtubule, I see you. Mol Biol Cell 2016; 27:3202-3204. [PMID: 27799495 PMCID: PMC5170852 DOI: 10.1091/mbc.e16-06-0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This essay summarizes my personal journey toward the atomic visualization of microtubules and a mechanistic understanding of how these amazing polymers work. During this journey, I have been witness and partaker in the blooming of a technique I love—cryo-electron microscopy.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
76
|
Li L, Alper J, Alexov E. Cytoplasmic dynein binding, run length, and velocity are guided by long-range electrostatic interactions. Sci Rep 2016; 6:31523. [PMID: 27531742 PMCID: PMC4987762 DOI: 10.1038/srep31523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein's microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD's binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process.
Collapse
Affiliation(s)
- Lin Li
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| | - Joshua Alper
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
77
|
Abstract
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
78
|
Abstract
Proteins that associate with microtubules (MTs) are crucial to generate MT arrays and establish different cellular architectures. One example is PRC1 (protein regulator of cytokinesis 1), which cross-links antiparallel MTs and is essential for the completion of mitosis and cytokinesis. Here we describe a 4-Å-resolution cryo-EM structure of monomeric PRC1 bound to MTs. Residues in the spectrin domain of PRC1 contacting the MT are highly conserved and interact with the same pocket recognized by kinesin. We additionally found that PRC1 promotes MT assembly even in the presence of the MT stabilizer taxol. Interestingly, the angle of the spectrin domain on the MT surface corresponds to the previously observed cross-bridge angle between MTs cross-linked by full-length, dimeric PRC1. This finding, together with molecular dynamic simulations describing the intrinsic flexibility of PRC1, suggests that the MT-spectrin domain interface determines the geometry of the MT arrays cross-linked by PRC1.
Collapse
|
79
|
Schmidt H, Carter AP. Review: Structure and mechanism of the dynein motor ATPase. Biopolymers 2016; 105:557-67. [PMID: 27062277 PMCID: PMC4879348 DOI: 10.1002/bip.22856] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Dyneins are multiprotein complexes that move cargo along microtubules in the minus end direction. The largest individual component of the dynein complex is the heavy chain. Its C-terminal 3500 amino-acid residues form the motor domain, which hydrolyses ATP in its ring of AAA+ (ATPases associated with diverse cellular activities) domains to generate the force for movement. The production of force is synchronized with cycles of microtubule binding and release, another important prerequisite for efficient motility along the microtubule. Although the large scale conformational changes that lead to force production and microtubule affinity regulation are well established, it has been largely enigmatic how ATP-hydrolysis in the AAA+ ring causes these rearrangements. The past five years have seen a surge of high resolution information on the dynein motor domain that finally allowed unprecedented insights into this important open question. This review, part of the "ATP and GTP hydrolysis in Biology" special issue, will summarize our current understanding of the dynein motor mechanism with a special emphasis on the recently obtained crystal and EM structures. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 557-567, 2016.
Collapse
Affiliation(s)
- Helgo Schmidt
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Andrew P Carter
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
80
|
Alper JD, Decker F, Agana B, Howard J. The motility of axonemal dynein is regulated by the tubulin code. Biophys J 2016; 107:2872-2880. [PMID: 25658008 PMCID: PMC4808650 DOI: 10.1016/j.bpj.2014.10.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Microtubule diversity, arising from the utilization of different tubulin genes and from posttranslational modifications, regulates many cellular processes including cell division, neuronal differentiation and growth, and centriole assembly. In the case of cilia and flagella, multiple cell biological studies show that microtubule diversity is important for axonemal assembly and motility. However, it is not known whether microtubule diversity directly influences the activity of the axonemal dyneins, the motors that drive the beating of the axoneme, nor whether the effects on motility are indirect, perhaps through regulatory pathways upstream of the motors, such as the central pair, radial spokes, or dynein regulatory complex. To test whether microtubule diversity can directly regulate the activity of axonemal dyneins, we asked whether in vitro acetylation or deacetylation of lysine 40 (K40), a major posttranslational modification of α-tubulin, or whether proteolytic cleavage of the C-terminal tail (CTT) of α- and β-tubulin, the location of detyrosination, polyglutamylation, and polyglycylation modifications as well as most of the genetic diversity, can influence the activity of outer arm axonemal dynein in motility assays using purified proteins. By quantifying the motility with displacement-weighted velocity analysis and mathematically modeling the results, we found that K40 acetylation increases and CTTs decrease axonemal dynein motility. These results show that axonemal dynein directly deciphers the tubulin code, which has important implications for eukaryotic ciliary beat regulation.
Collapse
Affiliation(s)
- Joshua D Alper
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Franziska Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bernice Agana
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
81
|
Carter AP, Diamant AG, Urnavicius L. How dynein and dynactin transport cargos: a structural perspective. Curr Opin Struct Biol 2016; 37:62-70. [DOI: 10.1016/j.sbi.2015.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
|
82
|
McKenney RJ, Huynh W, Vale RD, Sirajuddin M. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J 2016; 35:1175-85. [PMID: 26968983 DOI: 10.15252/embj.201593071] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
Post-translational modifications (PTMs) of α/β-tubulin are believed to regulate interactions with microtubule-binding proteins. A well-characterized PTM involves in the removal and re-ligation of the C-terminal tyrosine on α-tubulin, but the purpose of this tyrosination-detyrosination cycle remains elusive. Here, we examined the processive motility of mammalian dynein complexed with dynactin and BicD2 (DDB) on tyrosinated versus detyrosinated microtubules. Motility was decreased ~fourfold on detyrosinated microtubules, constituting the largest effect of a tubulin PTM on motor function observed to date. This preference is mediated by dynactin's microtubule-binding p150 subunit rather than dynein itself. Interestingly, on a bipartite microtubule consisting of tyrosinated and detyrosinated segments, DDB molecules that initiated movement on tyrosinated tubulin continued moving into the segment composed of detyrosinated tubulin. This result indicates that the α-tubulin tyrosine facilitates initial motor-tubulin encounters, but is not needed for subsequent motility. Our results reveal a strong effect of the C-terminal α-tubulin tyrosine on dynein-dynactin motility and suggest that the tubulin tyrosination cycle could modulate the initiation of dynein-driven motility in cells.
Collapse
Affiliation(s)
- Richard J McKenney
- Department of Cellular and Molecular Pharmacology, the Howard Hughes Medical Institute University of California, San Francisco, CA, USA
| | - Walter Huynh
- Department of Cellular and Molecular Pharmacology, the Howard Hughes Medical Institute University of California, San Francisco, CA, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, the Howard Hughes Medical Institute University of California, San Francisco, CA, USA
| | - Minhajuddin Sirajuddin
- Department of Cellular and Molecular Pharmacology, the Howard Hughes Medical Institute University of California, San Francisco, CA, USA
| |
Collapse
|
83
|
Nogales E, Zhang R. Visualizing microtubule structural transitions and interactions with associated proteins. Curr Opin Struct Biol 2016; 37:90-6. [PMID: 26803284 DOI: 10.1016/j.sbi.2015.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 11/25/2022]
Abstract
Microtubules (MTs) have been the subject of cryo-electron microscopy (cryo-EM) studies since the birth of this technique. Although MTs pose some unique challenges, having to do with the presence of a MT seam, lattice variability and disorder, MT cryo-EM reconstructions are steadily improving in resolution and providing exciting new insights into MT structure and function. Recent work has lead to the atomic-detail visualization of lateral contacts between tubulin subunits and the conformational changes that give rise to strain in the MT lattice accompanying GTP hydrolysis. Cryo-EM has also been invaluable in describing the interactions between MTs and MT associated proteins (MAPs), which function to regulate MT dynamic instability, move cargoes, or contribute to other MT cellular processes.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, CA 94720, United States; Howard Hughes Medical Institute, UC Berkeley, CA 94720, United States; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| | - Rui Zhang
- Howard Hughes Medical Institute, UC Berkeley, CA 94720, United States; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
84
|
Abstract
We have developed a continuum mechanical description of proteins using a finite element algorithm which has been generalized to include thermal fluctuations and which is therefore known as fluctuating finite element analysis (FFEA). Whereas conventional molecular dynamics (MD) simulations provide a trajectory in which each individual atomic position fluctuates, a FFEA trajectory shows how the overall shape of the protein changes due to thermal agitation. We describe the theoretical background to FFEA, its relationship to more established biomolecular modelling methods and provide examples of its application to the mesoscale biomolecular dynamics of the molecular motor dynein.
Collapse
|
85
|
Bhabha G, Johnson GT, Schroeder CM, Vale RD. How Dynein Moves Along Microtubules. Trends Biochem Sci 2015; 41:94-105. [PMID: 26678005 DOI: 10.1016/j.tibs.2015.11.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 01/20/2023]
Abstract
Cytoplasmic dynein, a member of the AAA (ATPases Associated with diverse cellular Activities) family of proteins, drives the processive movement of numerous intracellular cargos towards the minus end of microtubules. Here, we summarize the structural and motile properties of dynein and highlight features that distinguish this motor from kinesin-1 and myosin V, two well-studied transport motors. Integrating information from recent crystal and cryoelectron microscopy structures, as well as high-resolution single-molecule studies, we also discuss models for how dynein biases its movement in one direction along a microtubule track, and present a movie that illustrates these principles.
Collapse
Affiliation(s)
- Gira Bhabha
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Graham T Johnson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, CA, USA
| | - Courtney M Schroeder
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
86
|
Structural Change in the Dynein Stalk Region Associated with Two Different Affinities for the Microtubule. J Mol Biol 2015; 428:1886-96. [PMID: 26585405 DOI: 10.1016/j.jmb.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Dynein is a large microtubule-based motor complex that requires tight coupling of intra-molecular ATP hydrolysis with the generation of mechanical force and track-binding activity. However, the microtubule-binding domain is structurally separated by about 15nm from the nucleotide-binding sites by a coiled-coil stalk. Thus, long-range two-way communication is necessary for coordination between the catalytic cycle of ATP hydrolysis and dynein's track-binding affinities. To investigate the structural changes that occur in the dynein stalk region to produce two different microtubule affinities, here we improve the resolution limit of the previously reported structure of the entire stalk region and we investigate structural changes in the dynein stalk and strut/buttress regions by comparing currently available X-ray structures. In the light of recent crystal structures, the basis of the transition from the low-affinity to the high-affinity coiled-coil registry is discussed. A concerted movement model previously reported by Carter and Vale is modified more specifically, and we proposed it as the open zipper model.
Collapse
|
87
|
Nogales E. An electron microscopy journey in the study of microtubule structure and dynamics. Protein Sci 2015; 24:1912-9. [PMID: 26401895 DOI: 10.1002/pro.2808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 12/30/2022]
Abstract
Structural characterization of microtubules has been the realm of three-dimensional electron microscopy and thus has evolved hand in hand with the progress of this technique, from the initial 3D reconstructions of stained tubulin assemblies, and the first atomic model of tubulin by electron crystallography of 2D sheets of protofilaments, to the ever more detailed cryoelectron microscopy structures of frozen-hydrated microtubules. Most recently, hybrid helical and single particle image processing techniques, and the latest detector technology, have lead to atomic models built directly into the density maps of microtubules in different functional states, shading new light into the critical process of microtubule dynamic instability.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, California, 94720.,Howard Hughes Medical Institute, UC Berkeley, California, 94720.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
| |
Collapse
|
88
|
Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL. Mechanism and regulation of cytoplasmic dynein. Annu Rev Cell Dev Biol 2015; 31:83-108. [PMID: 26436706 DOI: 10.1146/annurev-cellbio-100814-125438] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093;
| |
Collapse
|
89
|
Ichikawa M, Saito K, Yanagisawa HA, Yagi T, Kamiya R, Yamaguchi S, Yajima J, Kushida Y, Nakano K, Numata O, Toyoshima YY. Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain. Mol Biol Cell 2015; 26:4236-47. [PMID: 26399296 PMCID: PMC4642857 DOI: 10.1091/mbc.e15-05-0289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/16/2015] [Indexed: 11/23/2022] Open
Abstract
Dynein light chain 1 (LC1) of the outer arm dynein (OAD) complex associates with the microtubule-binding domain (MTBD) of γ heavy chain inside the complex. LC1 is considered to regulate the OAD activity and ciliary/flagellar motion by modulating γ MTBD's affinity to the B-tubule of the doublet microtubule in the axoneme. The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD's affinity for the doublet microtubule.
Collapse
Affiliation(s)
- Muneyoshi Ichikawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Kei Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Haru-Aki Yanagisawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiki Yagi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shin Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Yasuharu Kushida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Osamu Numata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Yoko Y Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
90
|
Toba S, Koyasako K, Yasunaga T, Hirotsune S. Lis1 restricts the conformational changes in cytoplasmic dynein on microtubules. Microscopy (Oxf) 2015; 64:419-27. [PMID: 26371280 DOI: 10.1093/jmicro/dfv055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/19/2015] [Indexed: 11/12/2022] Open
Abstract
Cytoplasmic dynein is a microtubule-based motor protein that transports intracellular cargo and performs various functions during cell division. We previously reported that Lis1 suppressed dynein motility on microtubules in an idling state. Recently, a model showed that Lis1 prevents the ATPase domain of dynein from transmitting a detachment signal to its microtubule-binding domain. However, conformational information on dynein is limited. We used electron microscopy to investigate the conformation of dynein and nucleotide-induced conformational changes on microtubules. The conformation of dynein differed depending on the presence or absence of a nucleotide. In the presence of the nucleotide ADP-vanadate, dynein displayed an extended form on microtubules (extended form), whereas in the absence of a nucleotide, dynein lay along microtubules (compact form). This conformational change reflects chemomechanical coupling in dynein walking on microtubules. We also found that Lis1 fixed the conformation of dynein in the compact form regardless of the nucleotide condition. Removal of the Lis1 dimerization motif abolished Lis1-dependent fixation of dynein in the compact form. This suggests that the idling state of dynein on microtubules induced by Lis1 occurs through the Lis1-dependent arrest of dynein chemomechanical coupling.
Collapse
Affiliation(s)
- Shiori Toba
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka 545-8585, Japan
| | - Kotaro Koyasako
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan JST-SENTAN, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuo Yasunaga
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan JST-SENTAN, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan JST-CREST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka 545-8585, Japan
| |
Collapse
|
91
|
Imai H, Shima T, Sutoh K, Walker ML, Knight PJ, Kon T, Burgess SA. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules. Nat Commun 2015; 6:8179. [PMID: 26365535 PMCID: PMC4579568 DOI: 10.1038/ncomms9179] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/25/2015] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein is a dimeric AAA(+) motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA(+) rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.
Collapse
Affiliation(s)
- Hiroshi Imai
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tomohiro Shima
- Quantitative Biology Center, Riken, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Kazuo Sutoh
- Faculty of Science and Engineering, Waseda University, Takada 1-17-22, Toshima-ku, Tokyo 171-0033, Japan
| | | | - Peter J. Knight
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Osaka, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, 332-0012 Saitama, Japan
| | - Stan A. Burgess
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
92
|
Maheshwari A, Obbineni J, Bui K, Shibata K, Toyoshima Y, Ishikawa T. α- and β-Tubulin Lattice of the Axonemal Microtubule Doublet and Binding Proteins Revealed by Single Particle Cryo-Electron Microscopy and Tomography. Structure 2015. [DOI: 10.1016/j.str.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
93
|
Šarlah A, Vilfan A. The winch model can explain both coordinated and uncoordinated stepping of cytoplasmic dynein. Biophys J 2015; 107:662-671. [PMID: 25099805 DOI: 10.1016/j.bpj.2014.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 12/23/2022] Open
Abstract
Cytoplasmic dynein moves processively along microtubules, but the mechanism of how its heads use the energy from ATP hydrolysis, coupled to a linker swing, to achieve directed motion, is still unclear. In this article, we present a theoretical model based on the winch mechanism in which the principal direction of the linker stroke is toward the microtubule-binding domain. When mechanically coupling two identical heads (each with postulated elastic properties and a minimal ATPase cycle), the model reproduces stepping with 8-nm steps (even though the motor itself is much larger), interhead coordination, and processivity, as reported for mammalian dyneins. Furthermore, when we loosen the elastic connection between the heads, the model still shows processive directional stepping, but it becomes uncoordinated and the stepping pattern shows a greater variability, which reproduces the properties of yeast dyneins. Their slower chemical kinetics allows processive motility and a high stall force without the need for coordination.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Vilfan
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; J. Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
94
|
Okamoto T, Nagaya K, Kawata Y, Asai H, Tsuchida E, Nohara F, Okajima K, Azuma H. Novel compound heterozygous mutations in DYNC2H1 in a patient with severe short-rib polydactyly syndrome type III phenotype. Congenit Anom (Kyoto) 2015; 55:155-7. [PMID: 25410398 DOI: 10.1111/cga.12098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/08/2014] [Indexed: 11/26/2022]
Abstract
Short-rib polydactyly syndrome type III is an autosomal recessive lethal skeletal ciliopathy, which is phenotypically similar to nonlethal asphyxiating thoracic dystrophy. Mutations in DYNC2H1 have been identified in both of these disorders, indicating that they are variants of a single disorder. However, short-rib polydactyly syndrome type III is the more severe variant. Here, we report novel compound heterozygous mutations in DYNC2H1 (p.E1894fsX10 and p.R3004C) in a patient with typical short-rib polydactyly syndrome type III phenotype. R3004 is located within the microtubule-binding domain of DYNC2H1, and its substitution is predicted to disrupt the interaction with microtubules. Considering the severe phenotype of our patient, our findings suggest that R3004 may be a key residue for the microtubule-binding affinity of dynein.
Collapse
Affiliation(s)
- Toshio Okamoto
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Ken Nagaya
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Yumi Kawata
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Hiroko Asai
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Etsushi Tsuchida
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Fumikatsu Nohara
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Kazuki Okajima
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
95
|
Rakers C, Bermudez M, Keller BG, Mortier J, Wolber G. Computational close up on protein-protein interactions: how to unravel the invisible using molecular dynamics simulations? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Christin Rakers
- Institute of Pharmacy; Freie Universität Berlin; Berlin Germany
| | - Marcel Bermudez
- Institute of Pharmacy; Freie Universität Berlin; Berlin Germany
| | - Bettina G. Keller
- Institute for Chemistry and Biochemistry; Freie Universität Berlin; Berlin Germany
| | - Jérémie Mortier
- Institute of Pharmacy; Freie Universität Berlin; Berlin Germany
| | - Gerhard Wolber
- Institute of Pharmacy; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
96
|
Garnham CP, Vemu A, Wilson-Kubalek EM, Yu I, Szyk A, Lander GC, Milligan RA, Roll-Mecak A. Multivalent Microtubule Recognition by Tubulin Tyrosine Ligase-like Family Glutamylases. Cell 2015; 161:1112-1123. [PMID: 25959773 DOI: 10.1016/j.cell.2015.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022]
Abstract
Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the β-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and β-tubulin, and a flexible cationic domain to bind the microtubule and position itself for β-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.
Collapse
Affiliation(s)
- Christopher P Garnham
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Annapurna Vemu
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | - Ian Yu
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
97
|
Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proc Natl Acad Sci U S A 2015; 112:6371-6. [PMID: 25941405 DOI: 10.1073/pnas.1417422112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT binding are coordinated within and between dynein's motor domains. Using optical tweezers, we characterize the MT-binding strength of recombinant dynein monomers as a function of mechanical tension and nucleotide state. Dynein responds anisotropically to tension, binding tighter to MTs when pulled toward the MT plus end. We provide evidence that this behavior results from an asymmetrical bond that acts as a slip bond under forward tension and a slip-ideal bond under backward tension. ATP weakens MT binding and reduces bond strength anisotropy, and unexpectedly, so does ADP. Using nucleotide binding and hydrolysis mutants, we show that, although ATP exerts its effects via binding AAA1, ADP effects are mediated by AAA3. Finally, we demonstrate "gating" of AAA1 function by AAA3. When tension is absent or applied via dynein's C terminus, ATP binding to AAA1 induces MT release only if AAA3 is in the posthydrolysis state. However, when tension is applied to the linker, ATP binding to AAA3 is sufficient to "open" the gate. These results elucidate the mechanisms of dynein-MT interactions, identify regulatory roles for AAA3, and help define the interplay between mechanical tension and nucleotide state in regulating dynein motility.
Collapse
|
98
|
Schmidt H. Dynein motors: How AAA+ ring opening and closing coordinates microtubule binding and linker movement. Bioessays 2015; 37:532-43. [DOI: 10.1002/bies.201400215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Helgo Schmidt
- Medical Research Council Laboratory of Molecular Biology; Division of Structural Studies; Cambridge UK
| |
Collapse
|
99
|
Lafrance-Vanasse J, Williams GJ, Tainer JA. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:182-193. [PMID: 25576492 PMCID: PMC4417436 DOI: 10.1016/j.pbiomolbio.2014.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 12/23/2022]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is a dynamic macromolecular machine that acts in the first steps of DNA double strand break repair, and each of its components has intrinsic dynamics and flexibility properties that are directly linked with their functions. As a result, deciphering the functional structural biology of the MRN complex is driving novel and integrated technologies to define the dynamic structural biology of protein machinery interacting with DNA. Rad50 promotes dramatic long-range allostery through its coiled-coil and zinc-hook domains. Its ATPase activity drives dynamic transitions between monomeric and dimeric forms that can be modulated with mutants modifying the ATPase rate to control end joining versus resection activities. The biological functions of Mre11's dual endo- and exonuclease activities in repair pathway choice were enigmatic until recently, when they were unveiled by the development of specific nuclease inhibitors. Mre11 dimer flexibility, which may be regulated in cells to control MRN function, suggests new inhibitor design strategies for cancer intervention. Nbs1 has FHA and BRCT domains to bind multiple interaction partners that further regulate MRN. One of them, CtIP, modulates the Mre11 excision activity for homologous recombination repair. Overall, these combined properties suggest novel therapeutic strategies. Furthermore, they collectively help to explain how MRN regulates DNA repair pathway choice with implications for improving the design and analysis of cancer clinical trials that employ DNA damaging agents or target the DNA damage response.
Collapse
Affiliation(s)
| | | | - John A Tainer
- Life Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
100
|
Schmidt H, Zalyte R, Urnavicius L, Carter AP. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 2015; 518:435-438. [PMID: 25470043 PMCID: PMC4336856 DOI: 10.1038/nature14023] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022]
Abstract
Members of the dynein family, consisting of cytoplasmic and axonemal isoforms, are motors that move towards the minus ends of microtubules. Cytoplasmic dynein-1 (dynein-1) plays roles in mitosis and cellular cargo transport, and is implicated in viral infections and neurodegenerative diseases. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Here we present the crystal structure of the human cytoplasmic dynein-2 motor bound to the ATP-hydrolysis transition state analogue ADP.vanadate. The structure reveals a closure of the motor's ring of six AAA+ domains (ATPases associated with various cellular activites: AAA1-AAA6). This induces a steric clash with the linker, the key element for the generation of movement, driving it into a conformation that is primed to produce force. Ring closure also changes the interface between the stalk and buttress coiled-coil extensions of the motor domain. This drives helix sliding in the stalk which causes the microtubule binding domain at its tip to release from the microtubule. Our structure answers the key questions of how ATP hydrolysis leads to linker remodelling and microtubule affinity regulation.
Collapse
Affiliation(s)
- Helgo Schmidt
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Ruta Zalyte
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Linas Urnavicius
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Andrew P Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|