51
|
Papilloud A, Weger M, Bacq A, Zalachoras I, Hollis F, Larrieu T, Battivelli D, Grosse J, Zanoletti O, Parnaudeau S, Tronche F, Sandi C. The glucocorticoid receptor in the nucleus accumbens plays a crucial role in social rank attainment in rodents. Psychoneuroendocrinology 2020; 112:104538. [PMID: 31841985 DOI: 10.1016/j.psyneuen.2019.104538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/01/2019] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
Abstract
Social hierarchy in social species is usually established through competitive encounters with conspecifics. It determines the access to limited resources and, thus, leads to reduced fights among individuals within a group. Despite the known importance of social rank for health and well-being, the knowledge about the processes underlying rank attainment remains limited. Previous studies have highlighted the nucleus accumbens (NAc) as a key brain region in the attainment of social hierarchies in rodents. In addition, glucocorticoids and the glucocorticoid receptor (GR) have been implicated in the establishment of social hierarchies and social aversion. However, whether GR in the NAc is involved in social dominance is not yet known. To address this question, we first established that expression levels of GR in the NAc of high anxious, submissive-prone rats are lower than that of their low anxious, dominant-prone counterparts. Furthermore, virally-induced downregulation of GR expression in the NAc in rats led to an improvement of social dominance rank. We found a similar result in a cell-specific mouse model lacking GR in dopaminoceptive neurons (i.e., neurons containing dopamine receptors). Indeed, when cohabitating in dyads of mixed genotypes, mice deficient for GR in dopaminoceptive neurons had a higher probability to become dominant than wild-type mice. Overall, our results highlight GR in the NAc and in dopaminoceptive neurons as an important regulator of social rank attainment.
Collapse
Affiliation(s)
- Aurélie Papilloud
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Meltem Weger
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Alexandre Bacq
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Fiona Hollis
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Thomas Larrieu
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Dorian Battivelli
- Neuroscience Paris-Seine, Gene Regulation and Adaptive Behaviors Team, CNRS UMR8246 - INSERM U1130 - Sorbonne Université, Institut De Biologie Paris-Seine, Paris, France
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Sébastien Parnaudeau
- Neuroscience Paris-Seine, Gene Regulation and Adaptive Behaviors Team, CNRS UMR8246 - INSERM U1130 - Sorbonne Université, Institut De Biologie Paris-Seine, Paris, France
| | - François Tronche
- Neuroscience Paris-Seine, Gene Regulation and Adaptive Behaviors Team, CNRS UMR8246 - INSERM U1130 - Sorbonne Université, Institut De Biologie Paris-Seine, Paris, France
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland.
| |
Collapse
|
52
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
53
|
He L, Shi X, Chen R, Wu Z, Yang Z, Li Z. Association of Mental Health-Related Proteins DAXX, DRD3, and DISC1 With the Progression and Prognosis of Chondrosarcoma. Front Mol Biosci 2019; 6:134. [PMID: 31850367 PMCID: PMC6888811 DOI: 10.3389/fmolb.2019.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chondrosarcoma is the second most common malignant bone tumor. Current therapies remain ineffective, resulting in poor prognoses. Biomarkers for chondrosarcoma and predictors of its prognosis have not been established. Mental health-related proteins have been associated with the pathogenesis, progression, and prognosis of many cancers, but their association with chondrosarcoma has not been reported. In this study, the expression and clinicopathological significance of the mental health-related proteins DAXX, DRD3, and DISC1 in chondrosarcoma tissue samples were examined, over an 84-months follow-up period. In immunohistochemical analysis, the rates of positive DAXX, DRD3, and DISC1 expression were significantly higher in chondrosarcoma than in osteochondroma tissue (P < 0.01). The percentages of positive DAXX, DRD3, and DISC1 expression were significantly lower in tissues with good differentiation (P < 0.01), AJCC stage I/ II (P < 0.01), Enneking stage I (P < 0.01), and non-metastasis (P < 0.05), respectively. In Kaplan-Meier survival analysis, significantly shorter mean survival times were associated with moderate and poor differentiation (P = 0.000), AJCC stage III/IV (P = 0.000), Enneking stage II/III (P = 0.000), metastasis (P = 0.019), invasion (P = 0.013), and positive DAXX (P = 0.012), and/or DRD3 (P = 0.018) expression. In Cox regression analysis, moderate and poor differentiation (P = 0.006), AJCC stage III/IV (P = 0.013), Enneking stage II/III (P = 0.016), metastasis (P = 0.033), invasion (P = 0.011), and positive DAXX (P = 0.033), and/or DRD3 (P = 0.025) staining correlated negatively with the postoperative survival rate and positively with mortality. In competing-risks regression analysis, differentiation (P = 0.005), metastasis (P = 0.014), invasion (P = 0.028), AJCC stage (P = 0.003), Enneking stage (P = 0.036), and DAXX (P = 0.039), and DRD3(P = 0.019) expression were independent predictors of death from chondrosarcoma. The areas under receiver operating characteristic curves for DAXX, DRD3, and DISC1 expression were 0.673 (95% CI, 0.557-0.788; P = 0.010), 0.670 (95% CI, 0.556-0.784; P = 0.011), and 0.688 (95% CI, 0.573-0.802; P = 0.005), respectively. These results suggest that DAXX, DRD3, and DISC1 could serve as biomarkers of chondrosarcoma progression and predictors of its prognosis.
Collapse
Affiliation(s)
- Lile He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| | - Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| | - Zhengchun Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, China
| |
Collapse
|
54
|
The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry 2019; 24:1798-1815. [PMID: 30967681 PMCID: PMC6785351 DOI: 10.1038/s41380-019-0415-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Depression is a complex disorder that takes an enormous toll on individual health. As affected individuals display a wide variation in their clinical symptoms, the precise neural mechanisms underlying the development of depression remain elusive. Although it is impossible to phenocopy every symptom of human depression in rodents, the preclinical field has had great success in modeling some of the core affective and neurovegetative depressive symptoms, including social withdrawal, anhedonia, and weight loss. Adaptations in select cell populations may underlie these individual depressive symptoms and new tools have expanded our ability to monitor and manipulate specific cell types. This review outlines some of the most recent preclinical discoveries on the molecular and neurophysiological mechanisms in reward circuitry that underlie the expression of behavioral constructs relevant to depressive symptoms.
Collapse
|
55
|
Li LF, Yuan W, He ZX, Ma H, Xun YF, Meng LR, Zhu SJ, Wang LM, Zhang J, Cai WQ, Zhang XN, Guo QQ, Lian ZM, Jia R, Tai FD. Reduced Consolation Behaviors in Physically Stressed Mandarin Voles: Involvement of Oxytocin, Dopamine D2, and Serotonin 1A Receptors Within the Anterior Cingulate Cortex. Int J Neuropsychopharmacol 2019; 23:511-523. [PMID: 31760433 PMCID: PMC7689207 DOI: 10.1093/ijnp/pyz060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Consolation is a type of empathy-like behavior that has recently been observed in some socially living rodents. Despite the growing body of literature suggesting that stress affects empathy, the relationship between stress and consolation remains understudied at the preclinical level. Here, we examined the effects of chronic emotional stress or physical stress exposure on consolation and emotional behaviors by using the socially monogamous mandarin vole (Microtus mandarinus) in both males and females. METHOD/RESULTS Physical stress voles were exposed to 14-day social defeat stress, whereas emotional stress voles vicariously experienced the defeat of their partners. We found that physical stress, but not emotional stress, voles showed reduced grooming toward their defeated partners and increased anxiety- and despair-like behaviors. Meanwhile, physical stress voles exhibited decreased neural activity in the anterior cingulate cortex, which is centrally involved in empathy. The densities of oxytocin receptors, dopamine D2 receptors, and serotonin 1A-receptors within the anterior cingulate cortex were significantly decreased in the physical stress group compared with controls. All the behavioral and physiological changes were similar between the sexes. Finally, we found that the reduced consolation behavior and some anxiety-like syndromes in physical stress voles could be alleviated by pretreatment with an oxytocin receptor, D2 receptors, or serotonin 1A-receptor agonist within the anterior cingulate cortex, whereas injections of corresponding receptor antagonists to the control voles decreased the consolation behavior and increased some anxiety-like behaviors. CONCLUSIONS Our results indicated that chronic physical stress exposure impaired consolation and induced anxiety-like behaviors in mandarin voles and oxytocin receptors, 5-HT1A receptors, and D2 receptors within the anterior cingulate cortex may play important roles in these processes.
Collapse
Affiliation(s)
- Lai-Fu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China,College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China,Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huan Ma
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yu-Feng Xun
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Ling-Rong Meng
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Si-Jing Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Li-Min Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wen-Qi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xue-Ni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qian-Qian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Zhen-Min Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, China,Correspondence: Fa-Dao Tai, PhD, College of Life Sciences, Shaanxi Normal University, Xi’an, 710062, China. E-mail:
| |
Collapse
|
56
|
Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of Mesolimbic Brain-Derived Neurotrophic Factor in Depression. Biol Psychiatry 2019; 86:738-748. [PMID: 31327473 PMCID: PMC6814503 DOI: 10.1016/j.biopsych.2019.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted as being critical for neural and synaptic plasticity throughout the nervous system. Recent work has shown that BDNF in the mesolimbic dopamine (DA) circuit, originating in ventral tegmental area DA neurons that project to the nucleus accumbens, is crucial in the development of depressive-like behaviors following exposure to chronic social defeat stress in mice. Whereas BDNF modulates DA signaling in encoding responses to acute defeat stress, BDNF signaling alone appears to be responsible for the behavioral effects after chronic social defeat stress. Very different patterns are seen with another widely used chronic stress paradigm in mice, chronic mild stress (also known as chronic variable or unpredictable stress), where DA signaling, but not BDNF signaling, is primarily responsible for the behavioral effects observed. This review discusses the molecular, cellular, and circuit basis of this dramatic discrepancy, which appears to involve the nature of the stress, its severity and duration, and its effects on distinct cell types within the ventral tegmental area-to-nucleus accumbens mesolimbic circuit.
Collapse
Affiliation(s)
- Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Eric J. Nestler
- Departments of Pharmacological Sciences and of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence to: Ming-Hu Han, Ph.D. and Eric J. Nestler, MD., Ph.D., Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; and
| |
Collapse
|
57
|
Zhang B, Xu X, Niu F, Mao X, Dong J, Yang M, Gao F, Liu B. Corticosterone Replacement Alleviates Hippocampal Neuronal Apoptosis and Spatial Memory Impairment Induced by Dexamethasone via Promoting Brain Corticosteroid Receptor Rebalance after Traumatic Brain Injury. J Neurotrauma 2019; 37:262-272. [PMID: 31436134 DOI: 10.1089/neu.2019.6556] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The balance of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) is indispensable for maintaining the normal function and structure of the hippocampus. However, changes in GR/MR and their effect on the survival of hippocampal neurons after traumatic brain injury (TBI) are still unclear. Previous studies have indicated that high-dose glucocorticoids (GC) aggravate hippocampal neuronal damage after TBI. We hypothesize that the imbalance of GR/MR expression and activation caused by injury and irrational use of dexamethasone (DEX) aggravates post-traumatic hippocampal apoptosis and spatial memory dysfunction, but that restoration by refilling MR and inhibiting GR promotes the survival of neurons. Using rat controlled cortical impact model, we examined the plasma corticosterone (CORT), corticosteroid receptor expression, apoptosis, and cell loss in the hippocampus, and, accordingly, the spatial memory after TBI and GC treatment within 7 days. Plasma CORT, MR, and GR expression level were significantly reduced at 2 days after TBI. Accordingly, the number of apoptotic cells also peaked at 2 days. Compared with the TBI control group, DEX treatment (5 mg/kg) significantly reduced plasma CORT, upregulated GR expression, and increased the number of apoptotic cells and cell loss, whereas CORT replacement (0.3 mg/kg) upregulated MR expression, inhibited apoptosis, and improved spatial memory. The deleterious and protective effects of DEX and CORT were counteracted by spironolactone and mifepristone respectively. The results suggest that inhibition of GR by RU486 or the refilling of MR by CORT protects hippocampal neurons and alleviates spatial memory impairment via promoting GR/MR rebalancing after TBI.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinqian Dong
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Fei Gao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
58
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
59
|
Guerrero-Bautista R, Do Couto BR, Hidalgo JM, Cárceles-Moreno FJ, Molina G, Laorden ML, Núñez C, Milanés MV. Modulation of stress- and cocaine prime-induced reinstatement of conditioned place preference after memory extinction through dopamine D3 receptor. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:308-320. [PMID: 30707990 DOI: 10.1016/j.pnpbp.2019.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that dopamine (DA) D3 receptor (DAD3R) antagonists appear highly promising in attenuating cocaine reward and relapse in preclinical models of addiction. In the present study, we investigated the effects of the selective DAD3R antagonist SB-277011-A on the reinstatement of cocaine-induced conditioned place preference (CPP) produced by a priming dose of cocaine, by social defeat stress and by two kinds of physiological stressors (restraint and tail pinch) in male adult mice. We also explored reinstatement-related plasma corticosterone levels (as marker of stress response) and the effects of blocking DAD3R. Administration of SB-277011-A (24 or 48 mg/kg i.p.) did not modify conditioned reinstatement of cocaine seeking triggered by cocaine prime. By contrast, we found that the vulnerability to reinstatement of the CPP of defeated animals that have undergone CPP extinction was abolished by the DAD3R antagonist (24 mg/kg) given 30 min before the test session. Reactivation of the CPP response produced by physiological stress stimuli was also attenuated by SB-277011-A (48 mg/kg i.p.). On the other hand, the blockade of DAD3R significantly prevented the increased corticosterone release during reinstatement of cocaine-induced CPP that was seen in social defeated animals, in mice suffering physiological stress and after cocaine prime. Present results demonstrate a modulation by DAD3R of the reactivation of the incentive value of cocaine-associated cues induced by social and physiological stress stimuli, which was associated to a glucocorticoid-dependent mechanism. Our results also point to a possible potential therapeutic use of selective DAD3R antagonists for the prevention of stress-induced cocaine-seeking and relapse.
Collapse
Affiliation(s)
- Rocío Guerrero-Bautista
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Anatomy and Psychobiology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juana M Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain
| | - Francisco José Cárceles-Moreno
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | - M Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain.
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Murcia Research Institute of Health Sciences (IMIB-Arrixaca), Avda. Buenavista, 30120 Murcia, Spain.
| |
Collapse
|
60
|
Molendijk ML, de Kloet ER. Coping with the forced swim stressor: Current state-of-the-art. Behav Brain Res 2019; 364:1-10. [DOI: 10.1016/j.bbr.2019.02.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
61
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
62
|
Huang L, Su J, Bu L, Tong J, Wang J, Yang Y, Wang Z, Wang H, Li H, Ma Y, Yu M, Fei J, Huang F. The pretreatment of chronic restraint stress exerts little impact on the progression of heart failure in mice. Acta Biochim Biophys Sin (Shanghai) 2019; 51:204-215. [PMID: 30649153 DOI: 10.1093/abbs/gmy168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/13/2022] Open
Abstract
Stress is a potent risk factor for depression. Chronic stress can exacerbate and induce symptoms of depression. Clinical studies suggested that depressive patients are more likely to develop coronary artery diseases. However, the causal relationship between depression and heart failure progression remains unclear. In this study, we aimed to explore the relevance between stress and heart failure (HF) in a mouse model subjected to chronic restraint stress and left anterior descending coronary artery (LAD) ligation. Mice were restrained for 3 h daily for 21 days and the processes were repeated once 3 months later. After the repeated chronic restraint stress, mice showed dramatically increased immobility time in the forced swim test, indicating a state of despair. Restrained and control mice were further subjected to LAD ligation surgery. Echocardiography was conducted 1 week, 2 weeks, and 1 month afterward. LAD-operated mice showed a significant decrease in the values of left ventricular ejection fraction (LVEF), and there was no difference in the LVEF values between the restrained and control mice. Relevant gene expression, neurotransmitter system, glial activation, and morphology of the heart-brain axis were comprehensively evaluated. We found no overall differences between the restrained and control mice with HF. Our results revealed that the repeated chronic restraint stress may have little effects on the progression of heart failure.
Collapse
Affiliation(s)
- Li Huang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Su
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Liping Bu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiabin Tong
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yufang Yang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zishan Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Haoyue Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Heng Li
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
63
|
Ghosal S, Sandi C, van der Kooij MA. Neuropharmacology of the mesolimbic system and associated circuits on social hierarchies. Neuropharmacology 2019; 159:107498. [PMID: 30660627 DOI: 10.1016/j.neuropharm.2019.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Most socially living species are organized hierarchically, primarily based on individual differences in social dominance. Dominant individuals typically gain privileged access to important resources, such as food, mating partners and territories, whereas submissive conspecifics are often devoid of such benefits. The benefits associated with a high social status provide a strong incentive to become dominant. Importantly, motivational- and reward-related processes are regulated, to a large extent, by the mesolimbic system. Consequently, several studies point to a key role for the mesolimbic system in social hierarchy formation. This review summarizes the growing body of literature that implicates the mesolimbic system, and associated neural circuits, on social hierarchies. In particular, we discuss the neurochemical and pharmacological studies that have highlighted the contributions of the mesolimbic system and associated circuits including dopamine signaling through the D1 or D2 receptors, GABAergic neurotransmission, the androgen receptor system, and mitochondria and bioenergetics. Given that low social status has been linked to the emergence of anxiety- and depressive-like disorders, a greater understanding of the neurochemistry underlying social dominance could be of tremendous benefit for the development of pharmacological treatments to dysfunctions in social behaviors. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- S Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015, Lausanne, Switzerland.
| | - M A van der Kooij
- Translational Psychiatry, Department of Psychiatry, Psychotherapy and Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; German Resilience Center, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
64
|
Jeanneteau F, Borie A, Chao MV, Garabedian MJ. Bridging the Gap between Brain-Derived Neurotrophic Factor and Glucocorticoid Effects on Brain Networks. Neuroendocrinology 2019; 109:277-284. [PMID: 30572337 DOI: 10.1159/000496392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
Behavioral choices made by the brain during stress depend on glucocorticoid and brain-derived neurotrophic factor (BDNF) signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation areas may compromise the integration of signals. Glucocorticoid receptor phosphorylation upon BDNF signaling in neurons represents one mechanism underlying the integration of BDNF and glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural plasticity in the mesocorticolimbic system. This provides a novel molecular framework for understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge receptive neuronal fields in temporal domains defined by behavioral experience, and in mood disorders.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France,
| | - Amélie Borie
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
65
|
Bakhtou H, Olfatbakhsh A, Deezagi A, Ahangari G. The Expression of Dopamine Receptors Gene and their Potential Role in Targeting Breast Cancer Cells with Selective Agonist and Antagonist Drugs. Could it be the Novel Insight to Therapy? Curr Drug Discov Technol 2019; 16:184-197. [PMID: 29380701 DOI: 10.2174/1570163815666180130101421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Breast cancer is one of the common causes of mortality for women in Iran and other parts of the world. The substantial increasing rate of breast cancer in both developed and developing countries warns the scientists to provide more preventive steps and therapeutic measures. This study is conducted to investigate the impact of neurotransmitters (e.g., Dopamine) through their receptors and the importance of cancers via damaging immune system. It also evaluates dopamine receptors gene expression in the women with breast cancer at stages II or III and dopamine receptor D2 (DRD2) related agonist and antagonist drug effects on human breast cancer cells, including MCF-7 and SKBR-3. METHODS The patients were categorized into two groups: 30 native patients who were diagnosed with breast cancer at stages II and III, with the mean age of 44.6 years and they were reported to have the experience of a chronic stress or unpleasant life event. The second group included 30 individuals with the mean age of 39 years as the control group. In order to determine the RNA concentration in all samples, the RNA samples were extracted and cDNA was synthesized. The MCF-7 cells and SKBR-3 cells were treated with dopamine receptors agonists and antagonists. The MTT test was conducted to identify oxidative and reductive enzymes and to specify appropriate dosage at four concentrations of dopamine and Cabergoline on MCF-7 and SKBR-3 cells. Immunofluorescence staining was done by the use of a mixed dye containing acridine orange and ethidiume bromide on account of differentiating between apoptotic and necrotic cells. Flow cytometry assay was an applied method to differentiate necrotic from apoptotic cells. RESULTS Sixty seven and thirty three percent of the patients were related to stages II and III, respectively. About sixty three percent of the patients expressed ER, while fifty seven percent expressed PR. Thirty seven percent of the patients were identified as HER-2 positive. All types of D2-receptors were expressed in PBMC of patients with breast cancer and healthy individuals. The expression of the whole dopamine receptor subtypes (DRD2-DRD4) was carried out on MCF-7 cell line. The results of RT-PCR confirmed the expression of DRD2 on SKBR-3 cells, whereas the other types of D2- receptors did not have an expression. The remarkable differences in gene expression rates between patients and healthy individuals were revealed in the result of the Real-time PCR analysis. The over expression in DRD2 and DRD4 genes of PBMCs was observed in the patients with breast cancer at stages II and III. The great amount of apoptosis and necrosis occurred after the treatment of MCF-7 cells by Cabergoline from 25 to 100 µmolL-1 concentrations. CONCLUSION This study revealed the features of dopamine receptors associated with apoptosis induction in breast cancer cells. Moreover, the use of D2-agonist based on dopamine receptors expression in various breast tumoral cells could be promising as a new insight of complementary therapy in breast cancer.
Collapse
Affiliation(s)
- Hossein Bakhtou
- Neuroimmunopsychooncogenetic Group, Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Asiie Olfatbakhsh
- Breast Cancer Research Center, ACECR, Division of Breast Oncosurgery, Tehran, Iran
| | - Abdolkhaegh Deezagi
- Molecular Medicine Group, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ghasem Ahangari
- Neuroimmunopsychooncogenetic Group, Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
66
|
Mukhara D, Banks ML, Neigh GN. Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Front Behav Neurosci 2018; 12:309. [PMID: 30622460 PMCID: PMC6308626 DOI: 10.3389/fnbeh.2018.00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
The extant literature supports the role of stress in enhancing the susceptibility of drug abuse progressing to a substance use disorder diagnosis. However, the molecular mediators by which stress enhances the progression from cocaine abuse to cocaine use disorder via the mesolimbic pathway remain elusive. In this mini-review article, we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we review preclinical literature highlighting how stress modulates the mesolimbic pathway, including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter cocaine abuse-related effects. Taken together, stress enhances cocaine's abuse-related effects at multiple points along the VTA mesolimbic projection, and uniquely in the NAcs through a positive feedback type mechanism. Furthermore, we highlight future directions to elucidate the interaction between the prefrontal cortex (PFC) and key intermediaries including ΔFosB, cAMP response element binding protein (CREB) and cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-induced acceleration of the progression to a cocaine use disorder diagnosis.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew L. Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N. Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
67
|
Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, Golda S, Kudla L, Wiktorowska L, Szklarczyk K, Korostynski M, Przewlocki R, Slezak M. Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry 2018; 8:255. [PMID: 30487639 PMCID: PMC6261947 DOI: 10.1038/s41398-018-0300-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.
Collapse
Affiliation(s)
- Magdalena Tertil
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Urszula Skupio
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Justyna Barut
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Valentyna Dubovyk
- Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120 Germany
| | - Agnieszka Wawrzczak-Bargiela
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Zbigniew Soltys
- 0000 0001 2162 9631grid.5522.0Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, 30-387 Poland
| | - Slawomir Golda
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Kudla
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Lucja Wiktorowska
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Klaudia Szklarczyk
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Korostynski
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Ryszard Przewlocki
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343 Poland
| | - Michal Slezak
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, 31-343, Poland. .,Team Brain Microcircuits in Psychiatric Diseases, BioMed X Innovation Center, Heidelberg, 69120, Germany.
| |
Collapse
|
68
|
Fernandez SP, Broussot L, Marti F, Contesse T, Mouska X, Soiza-Reilly M, Marie H, Faure P, Barik J. Mesopontine cholinergic inputs to midbrain dopamine neurons drive stress-induced depressive-like behaviors. Nat Commun 2018; 9:4449. [PMID: 30361503 PMCID: PMC6202358 DOI: 10.1038/s41467-018-06809-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/19/2018] [Indexed: 11/18/2022] Open
Abstract
Stressful life events are primary environmental factors that markedly contribute to depression by triggering brain cellular maladaptations. Dysregulation of ventral tegmental area (VTA) dopamine neurons has been causally linked to the appearance of social withdrawal and anhedonia, two classical manifestations of depression. However, the relevant inputs that shape these dopamine signals remain largely unknown. We demonstrate that chronic social defeat (CSD) stress, a preclinical paradigm of depression, causes marked hyperactivity of laterodorsal tegmentum (LDTg) excitatory neurons that project to the VTA. Selective chemogenetic-mediated inhibition of cholinergic LDTg neurons prevent CSD-induced VTA DA neurons dysregulation and depressive-like behaviors. Pro-depressant outcomes are replicated by pairing activation of LDTg cholinergic terminals in the VTA with a moderate stress. Prevention of CSD outcomes are recapitulated by blocking corticotropin-releasing factor receptor 1 within the LDTg. These data uncover a neuro-circuitry of depressive-like disorders and demonstrate that stress, via a neuroendocrine signal, profoundly dysregulates the LDTg.
Collapse
Affiliation(s)
- Sebastian P Fernandez
- Université Côte d'Azur, Nice, 06560, France.
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France.
| | - Loïc Broussot
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Fabio Marti
- Université Pierre et Marie Curie, Paris, 75005, France
- Neurosciences Paris Seine, INSERM U1130, CNRS, UMR 8246, Paris, France
| | - Thomas Contesse
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Xavier Mouska
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Mariano Soiza-Reilly
- Université Pierre et Marie Curie, Paris, 75005, France
- Institut du Fer à Moulin, INSERM, UMRS-839, Paris, France
| | - Hélène Marie
- Université Côte d'Azur, Nice, 06560, France
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France
| | - Philippe Faure
- Université Pierre et Marie Curie, Paris, 75005, France
- Neurosciences Paris Seine, INSERM U1130, CNRS, UMR 8246, Paris, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, 06560, France.
- Institut de Pharmacologie Moléculaire & Cellulaire, CNRS, UMR7275, Valbonne, France.
| |
Collapse
|
69
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
70
|
Torquet N, Marti F, Campart C, Tolu S, Nguyen C, Oberto V, Benallaoua M, Naudé J, Didienne S, Debray N, Jezequel S, Le Gouestre L, Hannesse B, Mariani J, Mourot A, Faure P. Social interactions impact on the dopaminergic system and drive individuality. Nat Commun 2018; 9:3081. [PMID: 30082725 PMCID: PMC6079008 DOI: 10.1038/s41467-018-05526-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/09/2018] [Indexed: 11/09/2022] Open
Abstract
Individuality is a striking feature of animal behavior. Individual animals differ in traits and preferences which shape their interactions and their prospects for survival. However, the mechanisms underlying behavioral individuation are poorly understood and are generally considered to be genetic-based. Here, we devised a large environment, Souris City, in which mice live continuously in large groups. We observed the emergence of individual differences in social behavior, activity levels, and cognitive traits, even though the animals had low genetic diversity (inbred C57BL/6J strain). We further show that the phenotypic divergence in individual behaviors was mirrored by developing differences in midbrain dopamine neuron firing properties. Strikingly, modifying the social environment resulted in a fast re-adaptation of both the animal's traits and its dopamine firing pattern. Individuality can rapidly change upon social challenges, and does not just depend on the genetic status or the accumulation of small differences throughout development.
Collapse
Affiliation(s)
- N Torquet
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - F Marti
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - C Campart
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - S Tolu
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - C Nguyen
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - V Oberto
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - M Benallaoua
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - J Naudé
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - S Didienne
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - N Debray
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Biological Adaptation and Ageing - Institut de Biologie Paris Seine (B2A - IBPS), 75005, Paris, France.,APHP Hôpital Charles Foix, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France
| | - S Jezequel
- APHP Hôpital Charles Foix, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France.,Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS UMS, 28 Phénotypage du Petit Animal, 75005, Paris, France
| | - L Le Gouestre
- APHP Hôpital Charles Foix, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France.,Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS UMS, 28 Phénotypage du Petit Animal, 75005, Paris, France
| | - B Hannesse
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - J Mariani
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Biological Adaptation and Ageing - Institut de Biologie Paris Seine (B2A - IBPS), 75005, Paris, France.,APHP Hôpital Charles Foix, DHU FAST, Institut de la Longévité, Ivry-Sur-Seine, France
| | - A Mourot
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - P Faure
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France.
| |
Collapse
|
71
|
Kootar S, Frandemiche ML, Dhib G, Mouska X, Lorivel T, Poupon-Silvestre G, Hunt H, Tronche F, Bethus I, Barik J, Marie H. Identification of an acute functional cross-talk between amyloid-β and glucocorticoid receptors at hippocampal excitatory synapses. Neurobiol Dis 2018; 118:117-128. [PMID: 30003950 DOI: 10.1016/j.nbd.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023] Open
Abstract
Amyloid-β is a peptide released by synapses in physiological conditions and its pathological accumulation in brain structures necessary for memory processing represents a key toxic hallmark underlying Alzheimer's disease. The oligomeric form of Amyloid-β (Aβο) is now believed to represent the main Amyloid-β species affecting synapse function. Yet, the exact molecular mechanism by which Aβο modifies synapse function remains to be fully elucidated. There is accumulating evidence that glucocorticoid receptors (GRs) might participate in Aβο generation and activity in the brain. Here, we provide evidence for an acute functional cross-talk between Aβ and GRs at hippocampal excitatory synapses. Using live imaging and biochemical analysis of post-synaptic densities (PSD) in cultured hippocampal neurons, we show that synthetic Aβo (100 nM) increases GR levels in spines and PSD. Also, in these cultured neurons, blocking GRs with two different GR antagonists prevents Aβo-mediated PSD95 increase within the PSD. By analyzing long-term potentiation (LTP) and long-term depression (LTD) in ex vivo hippocampal slices after pharmacologically blocking GR, we also show that GR signaling is necessary for Aβo-mediated LTP impairment, but not Aβo-mediated LTD induction. The necessity of neuronal GRs for Aβo-mediated LTP was confirmed by genetically removing GRs in vivo from CA1 neurons using conditional GR mutant mice. These results indicate a tight functional interplay between GR and Aβ activities at excitatory synapses.
Collapse
Affiliation(s)
- Scherazad Kootar
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Marie-Lise Frandemiche
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Gihen Dhib
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Xavier Mouska
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Thomas Lorivel
- Behavioral Facility, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Gwenola Poupon-Silvestre
- Team Sumoylation in neuronal function and dysfunction, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | | | - François Tronche
- Team Gene Regulation and Adaptive Behaviors, Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Université Pierre et Marie Curie, Paris, France
| | - Ingrid Bethus
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Jacques Barik
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Hélène Marie
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.
| |
Collapse
|
72
|
Morel C, Fernandez SP, Pantouli F, Meye FJ, Marti F, Tolu S, Parnaudeau S, Marie H, Tronche F, Maskos U, Moretti M, Gotti C, Han MH, Bailey A, Mameli M, Barik J, Faure P. Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells' activity. Mol Psychiatry 2018; 23:1597-1605. [PMID: 29155800 DOI: 10.1038/mp.2017.145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 05/26/2017] [Indexed: 11/09/2022]
Abstract
Epidemiological studies report strong association between mood disorders and tobacco addiction. This high comorbidity requires adequate treatment but the underlying mechanisms are unknown. We demonstrate that nicotine exposure, independent of drug withdrawal effects, increases stress sensitivity, a major risk factor in mood disorders. Nicotine and stress concur to induce long-lasting cellular adaptations within the dopamine (DA) system. This interplay is underpinned by marked remodeling of nicotinic systems, causing increased ventral tegmental area (VTA) DA neurons' activity and stress-related behaviors, such as social aversion. Blocking β2 or α7 nicotinic acetylcholine receptors (nAChRs) prevents, respectively, the development and the expression of social stress-induced neuroadaptations; conversely, facilitating α7 nAChRs activation specifically in the VTA promotes stress-induced cellular and behavioral maladaptations. Our work unravels a complex nicotine-stress bidirectional interplay and identifies α7 nAChRs as a promising therapeutic target for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- C Morel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,CNRS UMR 8246, INSERM U1130, Paris, France.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S P Fernandez
- Université Côte d'Azur, Valbonne, France.,CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France
| | - F Pantouli
- Institute of Medical and Biomedical Education, St. George's University of London, London, UK
| | - F J Meye
- CNRS UMR 8246, INSERM U1130, Paris, France.,Team Synapses and Pathophysiology of Reward, INSERM UMR-S 839, Institut du Fer à Moulin, Paris, France
| | - F Marti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,CNRS UMR 8246, INSERM U1130, Paris, France
| | - S Tolu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,CNRS UMR 8246, INSERM U1130, Paris, France
| | - S Parnaudeau
- CNRS UMR 8246, INSERM U1130, Paris, France.,Team Gene Regulation and Adaptive Behaviors, Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Paris, France
| | - H Marie
- Université Côte d'Azur, Valbonne, France.,CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France
| | - F Tronche
- CNRS UMR 8246, INSERM U1130, Paris, France.,Team Gene Regulation and Adaptive Behaviors, Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Paris, France
| | - U Maskos
- Team Integrative Neurobiology of Cholinergic Systems, CNRS UMR 3571, Institut Pasteur, Paris, France
| | - M Moretti
- CNR, Institute of Neuroscience and Biometra Department Università degli Studi di Milano, Milan, Italy
| | - C Gotti
- CNR, Institute of Neuroscience and Biometra Department Università degli Studi di Milano, Milan, Italy
| | - M-H Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Bailey
- Institute of Medical and Biomedical Education, St. George's University of London, London, UK
| | - M Mameli
- CNRS UMR 8246, INSERM U1130, Paris, France.,Team Synapses and Pathophysiology of Reward, INSERM UMR-S 839, Institut du Fer à Moulin, Paris, France
| | - J Barik
- Université Côte d'Azur, Valbonne, France. .,CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Nice, France.
| | - P Faure
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France. .,CNRS UMR 8246, INSERM U1130, Paris, France.
| |
Collapse
|
73
|
Autoantibodies reactive to adrenocorticotropic hormone can alter cortisol secretion in both aggressive and nonaggressive humans. Proc Natl Acad Sci U S A 2018; 115:E6576-E6584. [PMID: 29941562 PMCID: PMC6048475 DOI: 10.1073/pnas.1720008115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Violent aggression in humans may involve a modified response to stress, but the underlying mechanisms are not well understood. Here we show that naturally present autoantibodies reactive to adrenocorticotropic hormone (ACTH) exhibit distinct epitope-binding profiles to ACTH peptide in subjects with a history of violent aggression compared with controls. Namely, while nonaggressive male controls displayed a preferential IgG binding to the ACTH central part (amino acids 11-24), subjects who had committed violent acts of aggression had IgG with increased affinity to ACTH, preferentially binding to its N terminus (amino acids 1-13). Purified IgGs from approximately half of the examined sera were able to block ACTH-induced cortisol secretion of human adrenal cells in vitro, irrespective of the source of sample (from a control subject or a violent aggressor). Nevertheless, in the resident-intruder test in mice, i.p. injection of residents with ACTH and IgG from aggressive subjects, but not from control subjects, shortened latency for the first attack against intruders. Immunohistochemical screening of violent aggressors' sera on rat brain and pituitary sections did not show IgG binding to ACTH-producing cells, but 4 of 16 sera revealed selective binding to a nonidentified antigen in vasopressinergic neurons of the hypothalamic paraventricular and supraoptic nuclei. Thus, the data show that ACTH-reactive plasmatic IgGs exhibit differential epitope preference in control and violently aggressive subjects. These IgGs can modulate ACTH-induced cortisol secretion and, hence, are involved in the regulation of the stress response. However, the possible role of ACTH-reactive autoantibodies in aggressive behavior needs further investigation.
Collapse
|
74
|
Larrieu T, Sandi C. Stress-Induced Depression: Is Social Rank a Predictive Risk Factor? Bioessays 2018; 40:e1800012. [PMID: 29869396 DOI: 10.1002/bies.201800012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/27/2018] [Indexed: 12/17/2022]
Abstract
An intriguing question in the field of stress is what makes an individual more likely to be susceptible or resilient to stress-induced depression. Predisposition to stress susceptibility is believed to be influenced by genetic factors and early adversity. However, beyond genetics and life experiences, recent evidence has highlighted social rank as a key determinant of susceptibility to stress, underscoring dominant individuals as the vulnerable ones. This evidence is in conflict with epidemiological, clinical, and animal work pointing at a link between social subordination and depression. Here, we review and analyze rodent protocols addressing the relevance of social rank to predict vulnerability to chronic social stress. We also discuss whether a specific social status (i.e., dominance or subordination) is the appropriate predictor of vulnerability to develop stress-induced depression or rather, the loss of social rank and resources.
Collapse
Affiliation(s)
- Thomas Larrieu
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
75
|
Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain. Toxicol Sci 2018; 163:478-489. [PMID: 29481626 PMCID: PMC5974781 DOI: 10.1093/toxsci/kfy046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Developmental exposure to lead (Pb) and prenatal stress (PS) both impair cognition, which could derive from their joint targeting of the hypothalamic-pituitary-adrenal axis and the brain mesocorticolimbic (MESO) system, including frontal cortex (FC) and hippocampus (HIPP). Glucocorticoids modulate both FC and HIPP function and associated mediation of cognitive and other behavioral functions. This study sought to determine whether developmental Pb ± PS exposures altered glucocorticoid-related epigenetic profiles in brain MESO regions in offspring of female mice exposed to 0 or 100 ppm Pb acetate drinking water from 2 mos prior to breeding until weaning, with half further exposed to prenatal restraint stress from gestational day 11-18. Overall, changes in females occured in response to Pb exposure. In males, however, Pb-induced neurotoxicity was modulated by PS. Changes in serum corticosterone levels were seen in males, while glucocorticoid receptor changes were seen in both sexes. In contrast, both Pb and PS broadly impacted brain DNA methyltransferases and binding proteins, particularly DNMT1, DNMT3a and methyl-CpG-binding protein 2, with patterns that differed by sex and brain regions. Specifically, in males, effects on FC epigenetic modifiers were primarily influenced by Pb, whereas extensive changes in HIPP were produced by PS. In females, Pb exposure and not PS primarily altered epigenetic modifiers in both FC and HIPP. Collectively, these findings indicate that epigenetic mechanisms may underlie associated neurotoxicity of Pb and of PS, particularly associated cognitive deficits. However, mechanisms by which this may occur will be different in males versus females.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York,To whom correspondence should be addressed at Department of Environmental Medicine, University of Rochester School of Medicine, University of Rochester Medical Center, Box EHSC, Rochester, NY 14642. Fax: 585-256-2591; E-mail:
| | - Garima Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Beth Adams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
76
|
Kästner N, Richter SH, Bodden C, Palme R, Kaiser S, Sachser N. Varying Social Experiences in Adulthood Do Not Differentially Affect Anxiety-Like Behavior But Stress Hormone Levels. Front Behav Neurosci 2018; 12:72. [PMID: 29740291 PMCID: PMC5928152 DOI: 10.3389/fnbeh.2018.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
Abstract
Social experiences can have profound effects on an individual’s level of anxiety. While various studies have addressed consequences of experiences of a specific type, e.g., social defeat, a recent study in mice investigated the impact of combinations of adverse and beneficial social experiences. Quite surprisingly, mice exposed to benefits during early life phases followed by escapable adversity in adulthood displayed lowest levels of anxiety, even compared to individuals having experienced throughout beneficial conditions. The present study aimed to elucidate whether this phenomenon is restricted to these specific life phases or whether it also exists when all these experiences are made in full adulthood. For this purpose, we compared anxiety-like behavior and stress response of adult male mice exposed to escapable social defeat following beneficial social experiences to that of mice exposed to either throughout adverse or throughout beneficial conditions. More precisely, we performed three established behavioral paradigms measuring anxiety-like behavior and assessed corticosterone metabolites non-invasively via feces sampling. Interestingly, we found no effects of social experience on anxiety-like behavior. In contrast to that, the animals’ stress hormone levels were profoundly affected by current social conditions: escapable social defeat (adverse condition) led to an increase in corticosterone metabolite concentrations, whereas living with a female (beneficial condition) led to a decrease. Thus, on the one hand this study suggests the importance of the timing of social experience for affecting an individual’s level of anxiety. On the other hand, it demonstrates that anxiety and stress hormone levels can be affected separately by social experience during adulthood.
Collapse
Affiliation(s)
- Niklas Kästner
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Carina Bodden
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Münster, Germany
| |
Collapse
|
77
|
Seebacher F, Krause J. Physiological mechanisms underlying animal social behaviour. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0231. [PMID: 28673909 DOI: 10.1098/rstb.2016.0231] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.,Faculty of Life Sciences Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
78
|
Hadamitzky M, Herring A, Kirchhof J, Bendix I, Haight MJ, Keyvani K, Lückemann L, Unteroberdörster M, Schedlowski M. Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. Int J Neuropsychopharmacol 2018; 21:592-602. [PMID: 29462337 PMCID: PMC6007742 DOI: 10.1093/ijnp/pyy017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical data indicate that therapy with small-molecule immunosuppressive drugs is frequently accompanied by an incidence rate of neuropsychiatric symptoms. In the current approach, we investigated in rats whether repeated administration of rapamycin, reflecting clinical conditions of patients undergoing therapy with this mammalian target of rapamycin inhibitor, precipitates changes in neurobehavioral functioning. METHODS Male adult Dark Agouti rats were daily treated with i.p. injections of rapamycin (1, 3 mg/kg) or vehicle for 8 days. On days 6 and 7, respectively, behavioral performance in the Elevated Plus-Maze and the Open-Field Test was evaluated. One day later, amygdala tissue and blood samples were taken to analyze protein expression ex vivo. RESULTS The results show that animals treated with rapamycin displayed alterations in Elevated Plus-Maze performance with more pronounced effects in the higher dose group. Besides, an increase in glucocorticoid receptor density in the amygdala was seen in both treatment groups even though p-p70 ribosomal S6 kinase alpha, a marker for mammalian target of rapamycin functioning, was not affected. Protein level of the neuronal activity marker c-Fos was again only elevated in the higher dose group. Importantly, effects occurred in the absence of acute peripheral neuroendocrine changes. CONCLUSIONS Our findings indicate that anxiety-related behavior following rapamycin treatment was not directly attributed to mTOR-dependent mechanisms or stress but rather due to hyperexcitability of the amygdala together with glucocorticoid receptor-regulated mechanism(s) in this brain region. Together, the present results support the contention that subchronic treatment with rapamycin may induce neurobehavioral alterations in healthy, naive subjects. We here provide novel insights in central effects of systemic rapamycin in otherwise healthy subjects but also raise the question whether therapy with this drug may have detrimental effects on patients' neuropsychological functioning during immune therapy.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Correspondence: Martin Hadamitzky, PhD, Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ()
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia Kirchhof
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Haight
- Department of Anesthesia, School of Medicine, University of San Francisco, San Francisco CA
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
79
|
Hernaus D, Quaedflieg CWEM, Offermann JS, Casales Santa MM, van Amelsvoort T. Neuroendocrine stress responses predict catecholamine-dependent working memory-related dorsolateral prefrontal cortex activity. Soc Cogn Affect Neurosci 2018; 13:114-123. [PMID: 29087511 PMCID: PMC5793733 DOI: 10.1093/scan/nsx122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023] Open
Abstract
It is generally thought that the effect of acute stress on higher-order functions such as working memory is, for an important part, mediated by central catecholamine activity. However, little is known about the association between neuroendocrine stress responses and catecholamine-dependent working memory-related brain function in the absence of stress. Here, we investigate for the first time in healthy humans (n = 18) how neuroendocrine responses to stress (cortisol and alpha-amylase) relate to fronto-parietal working memory activity changes in response to atomoxetine, a noradrenaline transporter inhibitor that selectively increases extracellular cortical dopamine and noradrenaline. We observed positive correlations between stress-induced cortisol (Pearson's r = 0.75, P < 0.001) and alpha amylase (r = 0.69, P = 0.02) increases and catecholamine-dependent working memory-related activity in dorsolateral prefrontal cortex. Stress-induced cortisol increases furthermore correlated with supramarginal gyrus working memory-related activity (r = 0.79, P < 0.001). Comparing high vs low stress responders revealed that these correlations were driven by decreased working memory activity on placebo and greater working memory activity increases following atomoxetine in high stress responders. These results further corroborate the notion that neuroendocrine responses to stress are an informative proxy of catecholamine function relevant to higher order functions and provide novel hints on the complex relationship between acute stress, catecholamine function and working memory.
Collapse
Affiliation(s)
- Dennis Hernaus
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Conny W E M Quaedflieg
- Department of Cognitive Psychology, Institute for Psychology, University of Hamburg, Hamburg, Germany
| | - Jan Stefan Offermann
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Marta M Casales Santa
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
80
|
Whirledge S, DeFranco DB. Glucocorticoid Signaling in Health and Disease: Insights From Tissue-Specific GR Knockout Mice. Endocrinology 2018; 159:46-64. [PMID: 29029225 PMCID: PMC5761604 DOI: 10.1210/en.2017-00728] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are adrenally produced hormones critically involved in development, general physiology, and control of inflammation. Since their discovery, glucocorticoids have been widely used to treat a variety of inflammatory conditions. However, high doses or prolonged use leads to a number of side effects throughout the body, which preclude their clinical utility. The primary actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a transcription factor that regulates many complex signaling pathways. Although GR is nearly ubiquitous throughout the body, glucocorticoids exhibit cell- and tissue-specific effects. For example, glucocorticoids stimulate glucose production in the liver, reduce glucose uptake in the skeletal muscle, and decrease insulin secretion from the pancreatic β-cells. Mouse models represent an important approach to understanding the dynamic functions of GR signaling in normal physiology, disease, and resistance. In the absence of a viable GR null model, gene-targeting techniques utilizing promoter-driven recombination have provided an opportunity to characterize the tissue-specific actions of GR. The aim of the present review is to describe the organ systems in which GR has been conditionally deleted and summarize the functions ascribed to glucocorticoid action in those tissues.
Collapse
Affiliation(s)
- Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06520
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
81
|
Zhao Z, Zhang L, Guo XD, Cao LL, Xue TF, Zhao XJ, Yang DD, Yang J, Ji J, Huang JY, Sun XL. Rosiglitazone Exerts an Anti-depressive Effect in Unpredictable Chronic Mild-Stress-Induced Depressive Mice by Maintaining Essential Neuron Autophagy and Inhibiting Excessive Astrocytic Apoptosis. Front Mol Neurosci 2017; 10:293. [PMID: 28959186 PMCID: PMC5603714 DOI: 10.3389/fnmol.2017.00293] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
There is increasing interest in the association between depression and the development of metabolic diseases. Rosiglitazone, a therapeutic drug used to treat type 2 diabetes mellitus, has shown neuroprotective effects in patients with stroke and Alzheimer's disease. The present study was performed to evaluate the possible roles of rosiglitazone in in vivo (unpredictable chronic mild stress-induced depressive mouse model) and in vitro (corticosterone-induced cellular model) depressive models. The results showed that rosiglitazone reversed depressive behaviors in mice, as indicated by the forced swimming test and open field test. Rosiglitazone was also found to inhibit the inflammatory response, decrease corticosterone levels, and promote astrocyte proliferation and neuronal axon plasticity in the prefrontal cortex of mice. This series of in vivo and in vitro experiments showed that autophagy among neurons was inhibited in depressive models and that rosiglitazone promoted autophagy by upregulating LKB1, which exerted neuroprotective effects. Rosiglitazone was also found to activate the Akt/CREB pathway by increasing IGF-1R expression and IGF-1 protein levels, thereby playing an anti-apoptotic role in astrocytes. Rosiglitazone's autophagy promotion and neuroprotective effects were found to be reversed by the PPARγ antagonist T0070907 in primary neurons and by PPARγ knockdown in an N2a cell line. In conclusion, we found that rosiglitazone protects both neurons and astrocytes in in vivo and in vitro depressive models, thereby playing an anti-depressive role. These findings suggest that PPARγ could be a new target in the development of anti-depressive drugs.
Collapse
Affiliation(s)
- Zhan Zhao
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Ling Zhang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xu-Dong Guo
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Lu-Lu Cao
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Teng-Fei Xue
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xiao-Jie Zhao
- Neuroprotective Drug Discovery Key Laboratory, Department of Forensic Medicine, Nanjing Medical UniversityNanjing, China
| | - Dan-Dan Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Ji-Ye Huang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
82
|
Karlsson C, Schank JR, Rehman F, Stojakovic A, Björk K, Barbier E, Solomon M, Tapocik J, Engblom D, Thorsell A, Heilig M. Proinflammatory signaling regulates voluntary alcohol intake and stress-induced consumption after exposure to social defeat stress in mice. Addict Biol 2017; 22:1279-1288. [PMID: 27273552 DOI: 10.1111/adb.12416] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 01/23/2023]
Abstract
Proinflammatory activity has been postulated to play a role in addictive processes and stress responses, but the underlying mechanisms remain largely unknown. Here, we examined the role of interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) in regulation of voluntary alcohol consumption, alcohol reward and stress-induced drinking. Mice with a deletion of the IL-1 receptor I gene (IL-1RI KO) exhibited modestly decreased alcohol consumption. However, IL-1RI deletion affected neither the rewarding properties of alcohol, measured by conditioned place preference (CPP), nor stress-induced drinking induced by social defeat stress. TNF-α signaling can compensate for phenotypic consequences of IL1-RI deletion. We therefore hypothesized that double deletion of both IL-1RI and TNF-1 receptors (TNF-1R) may reveal the role of these pathways in regulation of alcohol intake. Double KOs consumed significantly less alcohol than control mice over a range of alcohol concentrations. The combined deletion of TNF-1R and IL-1RI did not influence alcohol reward, but did prevent increased alcohol consumption resulting from exposure to repeated bouts of social defeat stress. Taken together, these data indicate that IL-1RI and TNF-1R contribute to regulation of stress-induced, negatively reinforced drinking perhaps through overlapping signaling events downstream of these receptors, while leaving rewarding properties of alcohol largely unaffected.
Collapse
Affiliation(s)
- Camilla Karlsson
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Jesse R. Schank
- Department of Physiology and Pharmacology; University of Georgia; Athens GA
| | - Faazal Rehman
- Laboratory of Clinical and Translational Studies; National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH); Bethesda MD USA
| | - Andrea Stojakovic
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Karl Björk
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Matthew Solomon
- Laboratory of Clinical and Translational Studies; National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH); Bethesda MD USA
| | - Jenica Tapocik
- Laboratory of Clinical and Translational Studies; National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH); Bethesda MD USA
| | - David Engblom
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Markus Heilig
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| |
Collapse
|
83
|
Kelly AM, Vitousek MN. Dynamic modulation of sociality and aggression: an examination of plasticity within endocrine and neuroendocrine systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160243. [PMID: 28673919 PMCID: PMC5498303 DOI: 10.1098/rstb.2016.0243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Endocrine and neuroendocrine systems are key mediators of behavioural plasticity and allow for the ability to shift social behaviour across dynamic contexts. These systems operate across timescales, modulating both rapid responses to environmental changes and developmental plasticity in behavioural phenotypes. Thus, not only do endocrine systems mediate behavioural plasticity, but also the systems themselves exhibit plasticity in functional capabilities. This flexibility at both the mechanistic and behavioural levels can be crucial for reproduction and survival. Here, we discuss how plasticity in nonapeptide and steroid actions may influence the expression of, and allow rapid shifts between, sociality and aggression-behavioural shifts that can be particularly important for social interactions. Recent findings of overlap in the mechanisms that modulate social and aggressive behaviour suggest the potential for a mechanistic continuum between these behaviours. We briefly discuss the potential for a sociality-aggression continuum and novel techniques that will enable probing of the functional connectivity of social behaviours. From an evolutionary perspective, we suggest that plasticity in endocrine and neuroendocrine mechanisms of behaviour may be important targets of selection, and discuss the conditions under which we would predict selection to have resulted in differences in endocrine plasticity across species that differ in social organization.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Cornell University, 229 Uris Hall, Ithaca, NY 14853, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, E237 Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
84
|
Abstract
Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using
in vitro and cell culture–based approaches, how GR responds to changes in external signals
in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism
in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.
Collapse
Affiliation(s)
- Michael J Garabedian
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 324, New York, NY, 10016, USA
| | - Charles A Harris
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Freddy Jeanneteau
- Departments of Physiology and Neuroscience, Institute of Functional Genomics, INSERM U1191, CNRS UMR5203, University of Montpellier, 34094 Montpellier, France
| |
Collapse
|
85
|
Hao Y, Shabanpoor A, Metz GA. Stress and corticosterone alter synaptic plasticity in a rat model of Parkinson's disease. Neurosci Lett 2017; 651:79-87. [PMID: 28473257 PMCID: PMC5534221 DOI: 10.1016/j.neulet.2017.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
As a major influence on neuronal function and plasticity, chronic stress can affect the progression and symptoms of neurodegenerative conditions, such as Parkinson's disease (PD). Here we investigated the influence of unilateral dopamine depletion and stress on dopamine-related hallmarks of stress response and neuronal plasticity in a rat model of PD. Animals received either restraint stress or a combination of adrenalectomy and corticosterone (CORT) supplementation to clamp circulating glucocorticoid levels for three weeks prior to unilateral nigrostriatal dopamine depletion. Rats were tested in skilled and non-skilled motor function up to three weeks post-lesion. Midbrain mRNA expression assessments included markers of dopamine function and neuroplasticity, such as tyrosine hydroxylase (TH), synaptophysin (SYN), calcyon, and glucocorticoid receptor (GR). Along with impaired motor performance, stress and clamped CORT partially preserved TH expression in both substantia nigra (SN) and ventral tegmental area (VTA), but differentially modulated the expression of SYN, calcyon, and GR mRNA in midbrain and cortical areas. Stress reduced synaptophysin mRNA expression in SN/VTA, and elevated calcyon mRNA optical density in both non-lesion and lesion hemispheres. Stress and CORT increased GR mRNA in the non-lesion SN/VTA, while in the lesion hemisphere GR mRNA was only elevated by CORT. In the motor cortex and striatum, however, GR was higher in both hemispheres under both experimental conditions. These findings suggest that stress and stress hormones differentially affect dopaminergic function and neuroplasticity in a rat model of PD. The findings suggest a role for stress in motor and non-motor symptoms of PD and stress response.
Collapse
Affiliation(s)
- YongXin Hao
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Aref Shabanpoor
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Gerlinde A Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
86
|
Pellissier LP, Gandía J, Laboute T, Becker JAJ, Le Merrer J. μ opioid receptor, social behaviour and autism spectrum disorder: reward matters. Br J Pharmacol 2017; 175:2750-2769. [PMID: 28369738 DOI: 10.1111/bph.13808] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the μ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, μ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the μ opioid receptor balance model, to account for the contribution of μ receptors to the subtle regulation of social behaviour. Interestingly, μ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered μ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Lucie P Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Jorge Gandía
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Thibaut Laboute
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| |
Collapse
|
87
|
Francis TC, Lobo MK. Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression. Biol Psychiatry 2017; 81:645-653. [PMID: 27871668 PMCID: PMC5352537 DOI: 10.1016/j.biopsych.2016.09.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
The ventral striatum (nucleus accumbens) and its role in mood, reward, and motivation has been the focus of significant research. Despite this interest, little work has addressed cell type-specific distinctions in medium spiny neurons (MSNs), the main projection neurons in the nucleus accumbens and dorsal striatum, and their function in relation to stress and depression. Previous work has shown opposing roles for D1 and D2 receptor MSN subtypes in depression-like outcomes to stress, particularly in regard to repeated neuronal stimulation and excitatory transmission. Yet the mechanisms of action are still unknown. We discuss potential mechanisms by which MSN subtype function promotes dichotomous behavioral outcomes caused by differences in cellular plasticity, subcellular signaling pathways, and genetic expression. This review aims to address our current understanding about the role of nucleus accumbens MSN subtypes in stress-related depression behavior and speculates on how currently understood mechanisms contribute to factors that control the activity of MSNs.
Collapse
Affiliation(s)
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
88
|
Dong JH, Wang YJ, Cui M, Wang XJ, Zheng WS, Ma ML, Yang F, He DF, Hu QX, Zhang DL, Ning SL, Liu CH, Wang C, Wang Y, Li XY, Yi F, Lin A, Kahsai AW, Cahill TJ, Chen ZY, Yu X, Sun JP. Adaptive Activation of a Stress Response Pathway Improves Learning and Memory Through Gs and β-Arrestin-1-Regulated Lactate Metabolism. Biol Psychiatry 2017; 81:654-670. [PMID: 27916196 PMCID: PMC6088385 DOI: 10.1016/j.biopsych.2016.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Stress is a conserved physiological response in mammals. Whereas moderate stress strengthens memory to improve reactions to previously experienced difficult situations, too much stress is harmful. METHODS We used specific β-adrenergic agonists, as well as β2-adrenergic receptor (β2AR) and arrestin knockout models, to study the effects of adaptive β2AR activation on cognitive function using Morris water maze and object recognition experiments. We used molecular and cell biological approaches to elucidate the signaling subnetworks. RESULTS We observed that the duration of the adaptive β2AR activation determines its consequences on learning and memory. Short-term formoterol treatment, for 3 to 5 days, improved cognitive function; however, prolonged β2AR activation, for more than 6 days, produced harmful effects. We identified the activation of several signaling networks downstream of β2AR, as well as an essential role for arrestin and lactate metabolism in promoting cognitive ability. Whereas Gs-protein kinase A-cyclic adenosine monophosphate response element binding protein signaling modulated monocarboxylate transporter 1 expression, β-arrestin-1 controlled expression levels of monocarboxylate transporter 4 and lactate dehydrogenase A through the formation of a β-arrestin-1/phospho-mitogen-activated protein kinase/hypoxia-inducible factor-1α ternary complex to upregulate lactate metabolism in astrocyte-derived U251 cells. Conversely, long-term treatment with formoterol led to the desensitization of β2ARs, which was responsible for its decreased beneficial effects. CONCLUSIONS Our results not only revealed that β-arrestin-1 regulated lactate metabolism to contribute to β2AR functions in improved memory formation, but also indicated that the appropriate management of one specific stress pathway, such as through the clinical drug formoterol, may exert beneficial effects on cognitive abilities.
Collapse
Affiliation(s)
- Jun-Hong Dong
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Yi-Jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Min Cui
- Physiology, Shandong University School of Medicine, China
| | - Xiao-Jing Wang
- Cell Biology, Shandong University School of Medicine, China
| | | | - Ming-Liang Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Physiology, Shandong University School of Medicine, China
| | - Qiao-Xia Hu
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Dao-Lai Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Physiology, Shandong University School of Medicine, China
| | - Shang-Lei Ning
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chun-Hua Liu
- Physiology, Shandong University School of Medicine, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Wang
- Neurobiology, Shandong University School of Medicine, China
| | - Xiang-Yao Li
- Zhejiang University, Institute of Neuroscience, China
| | - Fan Yi
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China
| | - Amy Lin
- Duke University, School of Medicine, Durham, North Carolina
| | - Alem W. Kahsai
- Duke University, School of Medicine, Durham, North Carolina
| | | | - Zhe-Yu Chen
- Neurobiology, Shandong University School of Medicine, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, China; Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, China; Duke University, School of Medicine, Durham, North Carolina.
| |
Collapse
|
89
|
Martin V, Allaïli N, Euvrard M, Marday T, Riffaud A, Franc B, Mocaër E, Gabriel C, Fossati P, Lehericy S, Lanfumey L. Effect of agomelatine on memory deficits and hippocampal gene expression induced by chronic social defeat stress in mice. Sci Rep 2017; 8:45907. [PMID: 28374847 PMCID: PMC5379201 DOI: 10.1038/srep45907] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic stress is known to induce not only anxiety and depressive-like phenotypes in mice but also cognitive impairments, for which the action of classical antidepressant compounds remains unsatisfactory. In this context, we investigated the effects of chronic social defeat stress (CSDS) on anxiety-, social- and cognitive-related behaviors, as well as hippocampal Bdnf, synaptic plasticity markers (PSD-95, Synaptophysin, Spinophilin, Synapsin I and MAP-2), and epigenetic modifying enzymes (MYST2, HDAC2, HDAC6, MLL3, KDM5B, DNMT3B, GADD45B) gene expression in C57BL/6J mice. CSDS for 10 days provoked long-lasting anxious-like phenotype in the open field and episodic memory deficits in the novel object recognition test. While total Bdnf mRNA level was unchanged, Bdnf exon IV, MAP-2, HDAC2, HDAC6 and MLL3 gene expression was significantly decreased in the CSDS mouse hippocampus. In CSDS mice treated 3 weeks with 50 mg/kg/d agomelatine, an antidepressant with melatonergic receptor agonist and 5-HT2C receptor antagonist properties, the anxious-like phenotype was not reversed, but the treatment successfully prevented the cognitive impairments and hippocampal gene expression modifications. Altogether, these data evidenced that, in mice, agomelatine was effective in alleviating stress-induced altered cognitive functions, possibly through a mechanism involving BDNF signaling, synaptic plasticity and epigenetic remodeling.
Collapse
Affiliation(s)
- Vincent Martin
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Najib Allaïli
- Centre de NeuroImagerie de Recherche - CENIR- Inserm UMR1127- CNRS 7225, Institut Cerveau Moelle - ICM, Sorbonne Universités, UPMC UMR S 1127, Paris, France
| | - Marine Euvrard
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Tevrasamy Marday
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Armance Riffaud
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Bernard Franc
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Elisabeth Mocaër
- Institut de Recherches Internationales Servier, IRIS, Suresnes, France
| | - Cecilia Gabriel
- Institut de Recherches Internationales Servier, IRIS, Suresnes, France
| | - Philippe Fossati
- Social and Affective Neuroscience - SAN Laboratory - Inserm U 1127- CNRS UMR 7225- Institut du Cerveau et de la Moelle- ICM - Sorbonne Universités, UPMC UMR S 1127, Paris, France
| | - Stéphane Lehericy
- Centre de NeuroImagerie de Recherche - CENIR- Inserm UMR1127- CNRS 7225, Institut Cerveau Moelle - ICM, Sorbonne Universités, UPMC UMR S 1127, Paris, France
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| |
Collapse
|
90
|
Hartmann J, Dedic N, Pöhlmann ML, Häusl A, Karst H, Engelhardt C, Westerholz S, Wagner KV, Labermaier C, Hoeijmakers L, Kertokarijo M, Chen A, Joëls M, Deussing JM, Schmidt MV. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor. Mol Psychiatry 2017; 22:466-475. [PMID: 27240530 DOI: 10.1038/mp.2016.87] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in anxiety disorders, the stress system has been directly implicated in the pathophysiology of these complex mental illnesses. The glucocorticoid receptor (GR) is the major receptor for the stress hormone cortisol (corticosterone in rodents) and is widely expressed in excitatory and inhibitory neurons, as well as in glial cells. However, currently it is unknown which of these cell populations mediate GR actions that eventually regulate fear- and anxiety-related behaviors. In order to address this question, we generated mice lacking the receptor specifically in forebrain glutamatergic or GABAergic neurons by breeding GRflox/flox mice to Nex-Cre or Dlx5/6-Cre mice, respectively. GR deletion specifically in glutamatergic, but not in GABAergic, neurons induced hypothalamic-pituitary-adrenal axis hyperactivity and reduced fear- and anxiety-related behavior. This was paralleled by reduced GR-dependent electrophysiological responses in the basolateral amygdala (BLA). Importantly, viral-mediated GR deletion additionally showed that fear expression, but not anxiety, is regulated by GRs in glutamatergic neurons of the BLA. This suggests that pathological anxiety likely results from altered GR signaling in glutamatergic circuits of several forebrain regions, while modulation of fear-related behavior can largely be ascribed to GR signaling in glutamatergic neurons of the BLA. Collectively, our results reveal a major contribution of GRs in the brain's key excitatory, but not inhibitory, neurotransmitter system in the regulation of fear and anxiety behaviors, which is crucial to our understanding of the molecular mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- J Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - N Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M L Pöhlmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Häusl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - H Karst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - C Engelhardt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Westerholz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - K V Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - C Labermaier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - L Hoeijmakers
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Kertokarijo
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - J M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - M V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
91
|
Ca v1.2 channels mediate persistent chronic stress-induced behavioral deficits that are associated with prefrontal cortex activation of the p25/Cdk5-glucocorticoid receptor pathway. Neurobiol Stress 2017; 7:27-37. [PMID: 28289693 PMCID: PMC5338724 DOI: 10.1016/j.ynstr.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic stress is known to precipitate and exacerbate neuropsychiatric symptoms, and exposure to stress is particularly pathological in individuals with certain genetic predispositions. Recent genome wide association studies have identified single nucleotide polymorphisms (SNPs) in the gene CACNA1C, which codes for the Cav1.2 subunit of the L-type calcium channel (LTCC), as a common risk variant for multiple neuropsychiatric conditions. Cav1.2 channels mediate experience-dependent changes in gene expression and long-term synaptic plasticity through activation of downstream calcium signaling pathways. Previous studies have found an association between stress and altered Cav1.2 expression in the brain, however the contribution of Cav1.2 channels to chronic stress-induced behaviors, and the precise Cav1.2 signaling mechanisms activated are currently unknown. Here we report that chronic stress leads to a delayed increase in Cav1.2 expression selectively within the prefrontal cortex (PFC), but not in other stress-sensitive brain regions such as the hippocampus or amygdala. Further, we demonstrate that while Cav1.2 heterozygous (Cav1.2+/−) mice show chronic stress-induced depressive-like behavior, anxiety-like behavior, and deficits in working memory 1–2 days following stress, they are resilient to the effects of chronic stress when tested 5–7 days later. Lastly, molecular studies find a delayed upregulation of the p25/Cdk5-glucocorticoid receptor (GR) pathway in the PFC when examined 8 days post-stress that is absent in Cav1.2+/− mice. Our findings reveal a novel Cav1.2-mediated molecular mechanism associated with the persistent behavioral effects of chronic stress and provide new insight into potential Cav1.2 channel mechanisms that may contribute to CACNA1C-linked neuropsychiatric phenotypes.
Collapse
|
92
|
Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016; 41:2424-46. [PMID: 26934955 PMCID: PMC4987841 DOI: 10.1038/npp.2016.32] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Addictive substances are known to increase dopaminergic signaling in the mesocorticolimbic system. The origin of this dopamine (DA) signaling originates in the ventral tegmental area (VTA), which sends afferents to various targets, including the nucleus accumbens, the medial prefrontal cortex, and the basolateral amygdala. VTA DA neurons mediate stimuli saliency and goal-directed behaviors. These neurons undergo robust drug-induced intrinsic and extrinsic synaptic mechanisms following acute and chronic drug exposure, which are part of brain-wide adaptations that ultimately lead to the transition into a drug-dependent state. Interestingly, recent investigations of the differential subpopulations of VTA DA neurons have revealed projection-specific functional roles in mediating reward, aversion, and stress. It is now critical to view drug-induced neuroadaptations from a circuit-level perspective to gain insight into how differential dopaminergic adaptations and signaling to targets of the mesocorticolimbic system mediates drug reward. This review hopes to describe the projection-specific intrinsic characteristics of these subpopulations, the differential afferent inputs onto these VTA DA neuron subpopulations, and consolidate findings of drug-induced plasticity of VTA DA neurons and highlight the importance of future projection-based studies of this system.
Collapse
|
93
|
Stelly CE, Pomrenze MB, Cook JB, Morikawa H. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning. eLife 2016; 5. [PMID: 27374604 PMCID: PMC4931908 DOI: 10.7554/elife.15448] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. DOI:http://dx.doi.org/10.7554/eLife.15448.001 Daily stress increases the likelihood that people who take drugs will become addicted. A very early step in the development of addiction is learning that certain people, places, or paraphernalia are associated with obtaining drugs. These ‘cues’ – drug dealers, bars, cigarette advertisements, etc. – become powerful motivators to seek out drugs and can trigger relapse in recovering addicts. It is thought that learning happens when synapses (the connections between neurons in the brain) that relay information about particular cues become stronger. However, it is not clear how stress promotes the learning of cue-drug associations. Stelly et al. investigated whether repeated episodes of stress make it easier to strengthen synapses on dopamine neurons, which are involved in processing rewards and addiction. For the experiments, rats were repeatedly exposed to a stressful situation – an encounter with an unfamiliar aggressive rat – every day for five days. Stelly et al. found that these stressed rats formed stronger associations between the drug cocaine and the place where they were given the drug (the cue). Furthermore, a mechanism that strengthens synapses was more sensitive in the stressed rats than in unstressed rats. These changes persisted for 10-30 days after the stressful situation, suggesting that stress might begin a period of time during which the individual is more vulnerable to addiction. The experiments also show that a hormone called corticosterone – which is released during stressful experiences – is necessary for stress to trigger the changes in the synapses and behavior of the rats. However, corticosterone must work with other factors because giving this hormone to unstressed rats was not sufficient to trigger the changes seen in the stressed rats. Future experiments will investigate what these other stress factors are and how they work together with corticosterone. DOI:http://dx.doi.org/10.7554/eLife.15448.002
Collapse
Affiliation(s)
- Claire E Stelly
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| | - Matthew B Pomrenze
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States.,Division of Pharmacology and Toxicology, University of Texas, Austin, United States
| | - Jason B Cook
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| | - Hitoshi Morikawa
- Department of Neuroscience, University of Texas, Austin, United States.,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, United States
| |
Collapse
|
94
|
Zhang H, Yan G, Xu H, Fang Z, Zhang J, Zhang J, Wu R, Kong J, Huang Q. The recovery trajectory of adolescent social defeat stress-induced behavioral, (1)H-MRS metabolites and myelin changes in Balb/c mice. Sci Rep 2016; 6:27906. [PMID: 27283029 PMCID: PMC4901266 DOI: 10.1038/srep27906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Adolescent exposure to social stress precipitates emotion-related disorders and affects the development and function of medial prefrontal cortex (mPFC). However, this adversity-induced behavioral and neurological changes remain not fully explored. Adolescent Balb/c mice were subjected to intermittent social defeat stress during postnatal days 28 to 42. Proton magnetic resonance spectroscopy (1H-MRS) measurements, behavioral tests and immunohistochemistry were performed one day or 3 weeks after the last stress episode. Defeated mice exhibited hypoactivity and social avoidance with the latter lasting into the early adulthood, while the anxiety level was unchanged. Social defeat experience lead to temporary decreases in the levels of total creatines (Cr + pCr) and Glx (Glu + Gln), but a delayed increase of N- acetylaspartate (NAA) levels. These alternations were accompanied with a persistent reduction of myelin basic protein expression although the number of mature oligodendrocyte did not change. These findings provide evidence that adolescent adverse social experience permanently impairs the emotion-related behavioral performance and induces biochemical and molecular changes in the brain which at least lasts into early adulthood, thus enhancing our understanding of the neurobiology of social defeat stress. Our finding also implicates that NAA signals on MRS may reflect myelin status.
Collapse
Affiliation(s)
- Handi Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Gen Yan
- Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Haiyun Xu
- Mental Health Center Shantou University, Shantou, China
| | - Zeman Fang
- Mental Health Center Shantou University, Shantou, China
| | - Jinling Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Jie Zhang
- Mental Health Center Shantou University, Shantou, China
| | - Renhua Wu
- The 2nd affiliated Hospital, Shantou University, Shantou, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Qingjun Huang
- Mental Health Center Shantou University, Shantou, China
| |
Collapse
|
95
|
Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration. Neural Plast 2016; 2016:6391686. [PMID: 27034847 PMCID: PMC4806285 DOI: 10.1155/2016/6391686] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/31/2016] [Indexed: 01/18/2023] Open
Abstract
Stress and stress hormones, glucocorticoids (GCs), exert widespread actions in central nervous system, ranging from the regulation of gene transcription, cellular signaling, modulation of synaptic structure, and transmission and glial function to behavior. Their actions are mediated by glucocorticoid and mineralocorticoid receptors which are nuclear receptors/transcription factors. While GCs primarily act to maintain homeostasis by inducing physiological and behavioral adaptation, prolonged exposure to stress and elevated GC levels may result in neuro- and psychopathology. There is now ample evidence for cause-effect relationships between prolonged stress, elevated GC levels, and cognitive and mood disorders while the evidence for a link between chronic stress/GC and neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's (PD) diseases is growing. This brief review considers some of the cellular mechanisms through which stress and GC may contribute to the pathogenesis of AD and PD.
Collapse
|
96
|
Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat Neurosci 2016; 19:560-3. [DOI: 10.1038/nn.4245] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/09/2016] [Indexed: 12/12/2022]
|
97
|
de Kloet ER, Molendijk ML. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast 2016; 2016:6503162. [PMID: 27034848 PMCID: PMC4806646 DOI: 10.1155/2016/6503162] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
In the forced swim test (FST) rodents progressively show increased episodes of immobility if immersed in a beaker with water from where escape is not possible. In this test, a compound qualifies as a potential antidepressant if it prevents or delays the transition to this passive (energy conserving) behavioural style. In the past decade however the switch from active to passive "coping" was used increasingly to describe the phenotype of an animal that has been exposed to a stressful history and/or genetic modification. A PubMed analysis revealed that in a rapidly increasing number of papers (currently more than 2,000) stress-related immobility in the FST is labeled as a depression-like phenotype. In this contribution we will examine the different phases of information processing during coping with the forced swim stressor. For this purpose we focus on the action of corticosterone that is mediated by the closely related mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in the limbic brain. The evidence available suggests a model in which we propose that the limbic MR-mediated response selection operates in complementary fashion with dopaminergic accumbens/prefrontal executive functions to regulate the transition between active and passive coping styles. Upon rescue from the beaker the preferred, mostly passive, coping style is stored in the memory via a GR-dependent action in the hippocampal dentate gyrus. It is concluded that the rodent's behavioural response to a forced swim stressor does not reflect depression. Rather the forced swim experience provides a unique paradigm to investigate the mechanistic underpinning of stress coping and adaptation.
Collapse
Affiliation(s)
- E. R. de Kloet
- Division of Medical Pharmacology and Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
- Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - M. L. Molendijk
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
98
|
Arnett MG, Muglia LM, Laryea G, Muglia LJ. Genetic Approaches to Hypothalamic-Pituitary-Adrenal Axis Regulation. Neuropsychopharmacology 2016; 41:245-60. [PMID: 26189452 PMCID: PMC4677126 DOI: 10.1038/npp.2015.215] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023]
Abstract
The normal function of the hypothalamic-pituitary-adrenal (HPA) axis, and resultant glucocorticoid (GC) secretion, is essential for human health. Disruption of GC regulation is associated with pathologic, psychological, and physiological disease states such as depression, post-traumatic stress disorder, hypertension, diabetes, and osteopenia, among others. As such, understanding the mechanisms by which HPA output is tightly regulated in its responses to environmental stressors and circadian cues has been an active area of investigation for decades. Over the last 20 years, however, advances in gene targeting and genome modification in rodent models have allowed the detailed dissection of roles for key molecular mediators and brain regions responsible for this control in vivo to emerge. Here, we summarize work done to elucidate the function of critical neuropeptide systems, GC-signaling targets, and inflammation-associated pathways in HPA axis regulation and behavior, and highlight areas for future investigation.
Collapse
Affiliation(s)
- Melinda G Arnett
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, 3333 Burnet Avenue, MLC 7009, Attention Melinda Arnett, Cincinnati, OH 45229, USA, Tel: +1 513 803 8040, Fax: +1 513 803 5009, E-mail:
| | - Lisa M Muglia
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA
| | - Gloria Laryea
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Neuroscience Graduate Program Vanderbilt University, Nashville, TN, USA
| | - Louis J Muglia
- Cincinnati Children's Hospital Medical Center, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
99
|
Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits. Neural Plast 2015; 2016:8574830. [PMID: 27057368 PMCID: PMC4710953 DOI: 10.1155/2016/8574830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.
Collapse
|
100
|
Kalafatakis K, Russell GM, Zarros A, Lightman SL. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics. Neurosci Biobehav Rev 2015; 61:12-25. [PMID: 26656793 DOI: 10.1016/j.neubiorev.2015.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | - Apostolos Zarros
- Research Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, United Kingdom.
| |
Collapse
|