51
|
Espada M, Filipiak A, Li H, Shinya R, Vicente CSL. Editorial: Global occurrence of pine wilt disease: Biological interactions and integrated management. FRONTIERS IN PLANT SCIENCE 2022; 13:993482. [PMID: 35958210 PMCID: PMC9361282 DOI: 10.3389/fpls.2022.993482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 05/09/2023]
Affiliation(s)
- Margarida Espada
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
- *Correspondence: Margarida Espada
| | - Anna Filipiak
- Institute of Plant Protection—National Research Institute, Poznań, Poland
| | - Hongmei Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Claudia S. L. Vicente
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
52
|
Eck JL, Barrès B, Soubeyrand S, Sirén J, Numminen E, Laine AL. Strain Diversity and Spatial Distribution Are Linked to Epidemic Dynamics in Host Populations. Am Nat 2022; 199:59-74. [DOI: 10.1086/717179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
53
|
Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput Biol 2021; 17:e1009759. [PMID: 34968387 PMCID: PMC8754348 DOI: 10.1371/journal.pcbi.1009759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics. Plant virus diseases–which cause devastating epidemics in plant populations worldwide–are most often transmitted by insect vectors. Recent experimental evidence indicates how vectors do not choose between plants at random, but instead can be affected by whether plants are infected (or not). Virus infection can cause plants to “smell” different, because they produce different combinations of volatile chemicals, or “taste” different, due to chemical changes in infected tissues. Vector reproduction rates can also be affected when colonising infected versus uninfected plants. Potential effects on epidemic spread through a population of plants are not yet entirely understood. There are also interactions with the mode of virus transmission. Some viruses can be transmitted after only a brief probe by a vector, whereas others are only picked up after an extended feed on an infected plant. Furthermore there are differences in how long vectors remain able to transmit the virus. This ranges from a matter of minutes, right up to the entire lifetime of the insect, depending on the plant-virus-vector combination under consideration. Here we use mathematical modelling to synthesise all this complexity into a coherent theoretical framework. We illustrate our model via an online interface https://plantdiseasevectorpreference.herokuapp.com/.
Collapse
Affiliation(s)
- Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael J. Jeger
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
54
|
Schott J, Fuchs B, Böttcher C, Hilker M. Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. PLANTA 2021; 255:16. [PMID: 34878607 PMCID: PMC8654711 DOI: 10.1007/s00425-021-03803-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 06/10/2023]
Abstract
Elms, which have received insect eggs as a 'warning' of larval herbivory, enhance their anti-herbivore defences by accumulating salicylic acid and amplifying phenylpropanoid-related transcriptional and metabolic responses to hatching larvae. Plant responses to insect eggs can result in intensified defences against hatching larvae. In annual plants, this egg-mediated effect is known to be associated with changes in leaf phenylpropanoid levels. However, little is known about how trees-long-living, perennial plants-improve their egg-mediated, anti-herbivore defences. The role of phytohormones and the phenylpropanoid pathway in egg-primed anti-herbivore defences of a tree species has until now been left unexplored. Using targeted and untargeted metabolome analyses we studied how the phenylpropanoid pathway of Ulmus minor responds to egg-laying by the elm leaf beetle and subsequent larval feeding. We found that when compared to untreated leaves, kaempferol and quercetin concentrations increased in feeding-damaged leaves with prior egg deposition, but not in feeding-damaged leaves without eggs. PCR analyses revealed that prior insect egg deposition intensified feeding-induced expression of phenylalanine ammonia lyase (PAL), encoding the gateway enzyme of the phenylpropanoid pathway. Salicylic acid (SA) concentrations were higher in egg-treated, feeding-damaged leaves than in egg-free, feeding-damaged leaves, but SA levels did not increase in response to egg deposition alone-in contrast to observations made of Arabidopsis thaliana. Our results indicate that prior egg deposition induces a SA-mediated response in elms to feeding damage. Furthermore, egg deposition boosts phenylpropanoid biosynthesis in subsequently feeding-damaged leaves by enhanced PAL expression, which results in the accumulation of phenylpropanoid derivatives. As such, the elm tree shows similar, yet distinct, responses to insect eggs and larval feeding as the annual model plant A. thaliana.
Collapse
Affiliation(s)
- Johanna Schott
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Benjamin Fuchs
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Christoph Böttcher
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Königin-Luise-Str. 19, 14195, Berlin, Germany
| | - Monika Hilker
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
55
|
Liu TY, Chen CH, Yang YL, Tsai IJ, Ho YN, Chung CL. The brown root rot fungus Phellinus noxius affects microbial communities in different root-associated niches of Ficus trees. Environ Microbiol 2021; 24:276-297. [PMID: 34863027 DOI: 10.1111/1462-2920.15862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Brown root rot (BRR) caused by Phellinus noxius is a destructive tree disease in tropical and subtropical areas. To understand how BRR affects the composition of the plant rhizoplane-enriched microbiota, the microbiomes within five root-associated compartments (i.e., bulk soil, old/young root rhizosphere soil, old/young root tissue) of Ficus trees naturally infected by P. noxius were investigated. The level of P. noxius infection was determined by quantitative PCR. Illumina sequencing of the internal transcribed spacer and 16S rRNA revealed that P. noxius infection caused a significant reduction in fungal diversity in the bulk soil, the old root rhizosphere soil, and the old root tissue. Interestingly, Cosmospora was the only fungal genus positively correlated with P. noxius. The abundance and composition of dominant bacterial taxa such as Actinomadura, Bacillus, Rhodoplanes, and Streptomyces differed between BRR-diseased and healthy samples. Furthermore, 838 isolates belonging to 26 fungal and 35 bacterial genera were isolated and tested for interactions with P. noxius. Antagonistic activities were observed for isolates of Bacillus, Pseudomonas, Aspergillus, Penicillium, and Trichoderma. Cellophane overlay and cellulose/lignin utilization assays suggested that Cosmospora could tolerate the secretions of P. noxius and that the degradation of lignin by P. noxius may create suitable conditions for Cosmorpora growth.
Collapse
Affiliation(s)
- Tse-Yen Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, 10617, Taiwan.,Division of Forest Protection, Taiwan Forestry Research Institute, Taipei City, 10066, Taiwan
| | - Chao-Han Chen
- Division of Forest Protection, Taiwan Forestry Research Institute, Taipei City, 10066, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, 11529, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei City, 11529, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, 10617, Taiwan
| |
Collapse
|
56
|
Faria JMS, Barbosa P, Vieira P, Vicente CSL, Figueiredo AC, Mota M. Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus xylophilus: A Review on Essential Oils and Their Volatiles. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122614. [PMID: 34961085 PMCID: PMC8706428 DOI: 10.3390/plants10122614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 05/03/2023]
Abstract
The impacts of a rapidly changing environment together with the growth in global trade activities has promoted new plant pest pandemic events in forest ecosystems. The pinewood nematode (PWN), Bursaphelenchus xylophilus, causes strong worldwide economic and ecological impacts. Direct control is performed through trunk injection of powerful nematicides, however many of these (hemi)synthetic compounds have raised ecological and human health concerns for affecting non-target species and accumulating in food products. As sustainable alternatives, essential oils (EOs) have shown very promising results. In this work, available literature on the direct activity of EOs against PWN is reviewed, as a contribution to advance the search for safer and greener biopesticides to be used in sustainable PWD pest management strategies. For the first time, important parameters concerning the bioassays performed, the PWNs bioassayed, and the EOs used are summarized and comparatively analyzed. Ultimately, an overview of the chemical composition of the most active EOs allowed to uncover preliminary guidelines for anti-PWN EO efficiency. The analysis of important information on the volatile phytochemicals composing nematicidal EOs provides a solid basis to engineer sustainable biopesticides capable of controlling the PWN under an integrated pest management framework and contributes to improved forest health.
Collapse
Affiliation(s)
- Jorge M. S. Faria
- INIAV, I.P., National Institute for Agrarian and Veterinarian Research, Quinta do Marquês, 2780-159 Oeiras, Portugal;
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
- Correspondence:
| | - Pedro Barbosa
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
| | - Paulo Vieira
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Cláudia S. L. Vicente
- INIAV, I.P., National Institute for Agrarian and Veterinarian Research, Quinta do Marquês, 2780-159 Oeiras, Portugal;
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Centro de Biotecnologia Vegetal (CBV), Faculdade de Ciências da Universidade de Lisboa, DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Manuel Mota
- NemaLab-MED, Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (P.B.); (M.M.)
- Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Évora, Portugal
| |
Collapse
|
57
|
Bălăcenoiu F, Japelj A, Bernardinelli I, Castagneyrol B, Csóka G, Glavendekić M, Hoch G, Hrašovec B, Krajter Ostoic S, Paulin M, Williams D, Witters J, de Groot M. Corythucha arcuata (Say, 1832) (Hemiptera, Tingidae) in its invasive range in Europe: perception, knowledge and willingness to act in foresters and citizens. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oak lace bug (OLB) Corythucha arcuata (Say, 1832) is an invasive alien species (IAS) that potentially could have many negative impacts on European oak health. Certain measures can be applied to counteract these effects. However, these measures may not be acceptable for forest managers or other stakeholder groups, such as private forest owners, environmental NGOs or the general public. Thereby, we set out to study the perception and knowledge of foresters and other stakeholders on the health status of European oak forests affected by oak lace bug and to investigate what forest health management measures would be acceptable to these target groups. An online survey questionnaire was designed and distributed via social networks, as well as professional networks via e-mails. The survey questionnaire was completed by 2084 respondents from nine European countries: Austria, Croatia, Belgium, France, Hungary, Italy, Romania, Serbia and Slovenia. Even though only a little over 60% of respondents reported they had noticed the discolouration of oak leaves caused by OLB, almost all (93%) considered it to be a problem. As respondents come from a country where C. arcuata is widespread and established, people’s general knowledge and awareness of OLB began to increase. The survey revealed that foresters thought that the insect affected photosynthesis, acorn crop and the aesthetics of the trees, but cannot cause death of trees. However, they assume that the value of the wood would decrease (this fact is also supported by the respondents who are connected to an environmental NGO), but that OLB does not affect property value. However, forest owners claim that the value of the property can be affected and that people would avoid entering the forest. In terms of potential control methods, respondents preferred biological or mechanical measures over chemical ones. We consider this study to be a good basis for further research on the topic of perception, knowledge and attitudes related to OLB since we can expect that the IAS, such as OLB, will certainly spread to European countries that were not included in this survey.
Collapse
|
58
|
Using citizen science for early detection of tree pests and diseases: perceptions of professional and public participants. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractEarly detection of new tree pests and diseases is a vital element of national strategies to prevent their establishment and spread into a country or region, based on the rationale that it increases the chances of successful eradication. Given the limited capacity and financial resources of most national plant protection authorities, the use of public participants has recently been explored in a range of citizen science projects for its ability to supplement official surveillance. However, little is known about the motivations, expectations and experiences of members of the public involved in such activities and even less about the views of professionals and officials. In this study, evidence was obtained from structured interviews with professionals and volunteers engaged in five projects related to tree health surveillance. Some differences were noted between the two groups with a greater focus on personal aspects by members of the public and on strategic and institutional aspects by professionals. A striking feature was the agreement of the two groups that the projects had met or exceeded their expectations, and provided the proof of concept that tree health surveillance capacity can be increased by engaging and training citizens. Many participants shared concerns about the importance of securing both project longevity and volunteer participation over the long term. The paper discusses ways in which the motivations of tree health surveillance participants can be sustained over long periods with particular attention to recognition and reward.
Collapse
|
59
|
Population Diversity and Genetic Structure Reveal Patterns of Host Association and Anthropogenic Impact for the Globally Important Fungal Tree Pathogen Ceratocystis manginecans. J Fungi (Basel) 2021; 7:jof7090759. [PMID: 34575797 PMCID: PMC8470894 DOI: 10.3390/jof7090759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
Species in the Ceratocystis manginecans complex are important fungal pathogens of plantation trees globally. The most important hosts include species of Eucalyptus, Acacia, Mangifera, and Punica. Despite their relevance and widespread occurrence, little is known regarding their population genetics and how this might relate to their host associations or geographic regions in which they occur. A global collection of 491 isolates representing the C. manginecans complex, from four different plant hosts and nine countries, were genotyped using microsatellite markers. Population genetic analyses using numerous tools were conducted to interrogate how their genetic diversity and structure might be affected by host or areas of occurrence. Results of genetic diversity studies showed that when grouping isolates into populations based on their host associations, the population on Eucalyptus was most diverse, and it also has a broad global distribution. When considering countries of origin as a basis for defining populations, the gene and genotypic diversity were highest in populations from China, Indonesia, and Brazil. In contrast, populations from Oman and Pakistan collected from Mangifera had the lowest genetic diversity and were clonal. Molecular variance, population differentiation, and network and structure analyses showed that the genetic structure of isolates in the C. manginecans complex is influenced by both host association as well as geographical isolation. Furthermore, the results reflected the movement of genotypes between plant hosts and geographic regions that have implications regarding the broad global distribution of this pathogen.
Collapse
|
60
|
Özcan GE, Tabak HŞ. Evaluation of electronic pheromone trap capture conditions for Ips sexdentatus with climatic and temporal factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:625. [PMID: 34480221 DOI: 10.1007/s10661-021-09402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Controlling forest pests to maintain the sustainability of forests and ecosystem balance is one of the interests of modern forestry. In the evaluation of damage risks associated with forest pests, pheromone traps attract attention by providing early warnings. With the development of these traps in line with modern technology, more reliable data are obtained; these data are important in the identification and planning of pest management. In this study, a pheromone trap with electronic control unit was tested under field conditions. The capture of adult Ips sexdentatus under natural conditions during 103 days of the flying period was evaluated; 97.2% of the beetles captured in the trap were the target species. The comparison of the number of beetles recorded by the trap and manual counts revealed that the trap worked with an error margin of approximately 4%. However, no statistically significant difference was noted between these two counting methods. During the study, 59% of the total beetles were captured between May 27 and June 25. The average temperature at the period of the capture was 20.09 °C, average humidity was 66%, and average wind speed was 2.9 m/s. Of the captures, 73.9% occurred in the temperature range of 15-24.9 °C, 61.1% occurred in humidity range of 61-90%, 89.6% occurred at a wind speed of 0.3-5.4 m/s, and 77.3% occurred within the period from sunrise to sunset. When these four parameters were evaluated together, the most strongly associated parameter was daylight, followed by temperature, wind speed, and humidity.
Collapse
Affiliation(s)
- Gonca Ece Özcan
- Faculty of Forestry, Department of Forestry Engineering, Kastamonu University, 37150, Kastamonu, Turkey.
| | - Hakan Şükrü Tabak
- Institute of Science, Kastamonu University, Forest Engineering Program, 37150, Kastamonu, Turkey
| |
Collapse
|
61
|
Martínez-Arias C, Sobrino-Plata J, Gil L, Rodríguez-Calcerrada J, Martín JA. Priming of Plant Defenses against Ophiostoma novo-ulmi by Elm ( Ulmus minor Mill.) Fungal Endophytes. J Fungi (Basel) 2021; 7:687. [PMID: 34575725 PMCID: PMC8469682 DOI: 10.3390/jof7090687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022] Open
Abstract
Some fungal endophytes of forest trees are recognized as beneficial symbionts against stresses. In previous works, two elm endophytes from the classes Cystobasidiomycetes and Eurotiomycetes promoted host resistance to abiotic stress, and another elm endophyte from Dothideomycetes enhanced host resistance to Dutch elm disease (DED). Here, we hypothesize that the combined effect of these endophytes activate the plant immune and/or antioxidant system, leading to a defense priming and/or increased oxidative protection when exposed to the DED pathogen Ophiostoma novo-ulmi. To test this hypothesis, the short-term defense gene activation and antioxidant response were evaluated in DED-susceptible (MDV1) and DED-resistant (VAD2 and MDV2.3) Ulmus minor genotypes inoculated with O. novo-ulmi, as well as two weeks earlier with a mixture of the above-mentioned endophytes. Endophyte inoculation induced a generalized transient defense activation mediated primarily by salicylic acid (SA). Subsequent pathogen inoculation resulted in a primed defense response of variable intensity among genotypes. Genotypes MDV1 and VAD2 displayed a defense priming driven by SA, jasmonic acid (JA), and ethylene (ET), causing a reduced pathogen spread in MDV1. Meanwhile, the genotype MDV2.3 showed lower defense priming but a stronger and earlier antioxidant response. The defense priming stimulated by elm fungal endophytes broadens our current knowledge of the ecological functions of endophytic fungi in forest trees and opens new prospects for their use in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.S.-P.); (L.G.); (J.R.-C.); (J.A.M.)
| | | | | | | | | |
Collapse
|
62
|
Dudney J, Willing CE, Das AJ, Latimer AM, Nesmith JCB, Battles JJ. Nonlinear shifts in infectious rust disease due to climate change. Nat Commun 2021; 12:5102. [PMID: 34429405 PMCID: PMC8385051 DOI: 10.1038/s41467-021-25182-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
Range shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative. Here, we combine a long-term study of the infectious tree disease, white pine blister rust, with a six-year field assessment of drought-disease interactions in the southern Sierra Nevada. We find that climate change between 1996 and 2016 moved the climate optimum of the disease into higher elevations. The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4-6.6) percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8 (5.8-7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable area for blister rust by 777.9 (1.0-1392.9) km2 into previously inhospitable regions, the combination of host-pathogen and drought-disease interactions contributed to a substantial decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining alternate host abundance suppressed infection probabilities at high elevations, even as climatic conditions became more suitable. Further, drought-disease interactions varied in strength and direction across an aridity gradient-likely decreasing infection risk at low elevations while simultaneously increasing infection risk at high elevations. These results highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation in aridity across topographic gradients can strongly mediate plant disease range shifts in response to climate change.
Collapse
Affiliation(s)
- Joan Dudney
- Department of Plant Sciences, UC Davis, Davis, CA, USA. .,Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
| | - Claire E Willing
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Three Rivers, CA, USA
| | | | | | - John J Battles
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
63
|
Welsh MJ, Turner JA, Epanchin‐Niell RS, Monge JJ, Soliman T, Robinson AP, Kean JM, Phillips C, Stringer LD, Vereijssen J, Liebhold AM, Kompas T, Ormsby M, Brockerhoff EG. Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02319. [PMID: 33665918 PMCID: PMC8365635 DOI: 10.1002/eap.2319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/14/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Nonnative plant pests cause billions of dollars in damages. It is critical to prevent or reduce these losses by intervening at various stages of the invasion process, including pathway risk management (to prevent pest arrival), surveillance and eradication (to counter establishment), and management of established pests (to limit damages). Quantifying benefits and costs of these interventions is important to justify and prioritize investments and to inform biosecurity policy. However, approaches for these estimations differ in (1) the assumed relationship between supply, demand, and prices, and (2) the ability to assess different types of direct and indirect costs at invasion stages, for a given arrival or establishment probability. Here we review economic approaches available to estimate benefits and costs of biosecurity interventions to inform the appropriate selection of approaches. In doing so, we complement previous studies and reviews on estimates of damages from invasive species by considering the influence of economic and methodological assumptions. Cost accounting is suitable for rapid decisions, specific impacts, and simple methodological assumptions but fails to account for feedbacks, such as market adjustments, and may overestimate long-term economic impacts. Partial equilibrium models consider changes in consumer and producer surplus due to pest impacts or interventions and can account for feedbacks in affected sectors but require specialized economic models, comprehensive data sets, and estimates of commodity supply and demand curves. More intensive computable general equilibrium models can account for feedbacks across entire economies, including capital and labor, and linkages among these. The two major considerations in choosing an approach are (1) the goals of the analysis (e.g., consideration of a single pest or intervention with a limited range of impacts vs. multiple interventions, pests or sectors), and (2) the resources available for analysis such as knowledge, budget and time.
Collapse
Affiliation(s)
- Melissa J. Welsh
- Scion (NZ Forest Research Institute)P.O. Box 29237Christchurch8540New Zealand
- Better Border BiosecurityPrivate Bag 4704Christchurch8140New Zealand
| | | | | | - Juan J. Monge
- Market Economics Ltd. Digital Basecamp1132 Hinemoa StreetRotorua3010New Zealand
| | - Tarek Soliman
- Manaaki Whenua – Landcare ResearchPrivate Bag 92170Auckland1142New Zealand
| | - Andrew P. Robinson
- Centre of Excellence for Biosecurity Risk AnalysisSchool of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - John M. Kean
- Better Border BiosecurityPrivate Bag 4704Christchurch8140New Zealand
- AgResearch, Ruakura10 Bisley RoadHamiltonNew Zealand
| | - Craig Phillips
- Better Border BiosecurityPrivate Bag 4704Christchurch8140New Zealand
- AgResearchPrivate Bag 4749Christchurch8140New Zealand
| | - Lloyd D. Stringer
- Better Border BiosecurityPrivate Bag 4704Christchurch8140New Zealand
- NZ Institute for Plant and Food ResearchPrivate Bag 4704Christchurch8140New Zealand
| | - Jessica Vereijssen
- Better Border BiosecurityPrivate Bag 4704Christchurch8140New Zealand
- NZ Institute for Plant and Food ResearchPrivate Bag 4704Christchurch8140New Zealand
| | - Andrew M. Liebhold
- USDA Forest Service Northern Research StationMorgantownWest Virginia26505USA
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesPraha 6 – SuchdolCZ 165 21Czech Republic
| | - Tom Kompas
- Centre of Excellence for Biosecurity Risk AnalysisSchool of BioSciencesUniversity of MelbourneMelbourneVictoria3010Australia
- School of Ecosystem and Forest SciencesUniversity of MelbourneMelbourneVictoria3010Australia
| | - Michael Ormsby
- Ministry for Primary Industries147 Lambton QuayWellington6011New Zealand
| | - Eckehard G. Brockerhoff
- Scion (NZ Forest Research Institute)P.O. Box 29237Christchurch8540New Zealand
- Better Border BiosecurityPrivate Bag 4704Christchurch8140New Zealand
- Swiss Federal Research Institute WSLZürcherstrasse 111Birmensdorf8903Switzerland
| |
Collapse
|
64
|
Long-Term Projections of the Natural Expansion of the Pine Wood Nematode in the Iberian Peninsula. FORESTS 2021. [DOI: 10.3390/f12070849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The invasive pine wood nematode (PWN), Bursaphelenchus xylophilus, causal agent of pine wilt disease, was first reported in Europe, near Lisbon, in 1999, and has since then spread to most of Portugal. We here modelled the spatiotemporal patterns of future PNW natural spread in the Iberian Peninsula, as dispersed by the vector beetle Monochamus galloprovincialis, using a process-based and previously validated network model. We improved the accuracy, informative content, forecasted period and spatial drivers considered in previous modelling efforts for the PWN in Southern Europe. We considered the distribution and different susceptibility to the PWN of individual pine tree species and the effect of climate change projections on environmental suitability for PWN spread, as we modelled the PWN expansion dynamics over the long term (>100 years). We found that, in the absence of effective containment measures, the PWN will spread naturally to the entire Iberian Peninsula, including the Pyrenees, where it would find a gateway for spread into France. The PWN spread will be relatively gradual, with an average rate of 0.83% of the total current Iberian pine forest area infected yearly. Climate was not found to be an important limiting factor for long-term PWN spread, because (i) there is ample availability of alternative pathways for PWN dispersal through areas that are already suitable for the PWN in the current climatic conditions; and (ii) future temperatures will make most of the Iberian Peninsula suitable for the PWN before the end of this century. Unlike climate, the susceptibility of different pine tree species to the PWN was a strong determinant of PWN expansion through Spain. This finding highlights the importance of accounting for individual tree species data and of additional research on species-specific susceptibility for more accurate modelling of PWN spread and guidance of related containment efforts.
Collapse
|
65
|
A new indicator of the effectiveness of urban green infrastructure based on ecosystem services assessment. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Bonnet M, Guédon G, Pondaven M, Bertolino S, Padiolleau D, Pénisson V, Gastinel F, Angot F, Renaud PC, Frémy A, Pays O. Aquatic invasive alien rodents in Western France: Where do we stand today after decades of control? PLoS One 2021; 16:e0249904. [PMID: 33831091 PMCID: PMC8031452 DOI: 10.1371/journal.pone.0249904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
Two aquatic invasive alien rodents, the coypu (Myocastor coypus) and muskrat (Ondatra zibethicus), have taken over a significant amount of wetlands in France. Pays de la Loire is an administrative region of about 32 000 km2 in the Western France with 6.3% of its area in wetlands (excluding the Loire River). Populations of coypus and muskrats are established and a permanent control programme has been set to reduce their impacts. The control plan is based on few professional trappers and many volunteers which makes this programme unique compared to other programme relying on professionals only. The aim of this study is to analyse the temporal and spatial dynamics of coypu and muskrat captures during the last 10 years to evaluate their effectiveness. The number of rodents removed per year increased by 50% in 10 years and reached about 288 000 individuals in 2016 with about 80% of them being coypus. During the same time length, the number of trappers involved in the programme also increased by 50% to reach 3 000 people in 2016. Although the raise of coypus and muskrats trapped can possibly be explained by an increase of the number of trappers, the number of coypus removed per trapper per year increased by 22%. Despite the outstanding number of individuals removed per year, our results suggest that the programme does not limit the population dynamics of coypus. Finally, since 2017, the number of data gathered from municipalities decreased, as did the total number of individuals trapped. Indeed, although rewards are crucial to recruit new volunteers, subsidies from local and regional authorities are declining. Decision makers and financers should be encouraged to fund this programme from the perspectives of the direct or indirect costs related to the presence of aquatic invasive alien rodents in wetlands.
Collapse
Affiliation(s)
- Manon Bonnet
- LETG-Angers, UMR 6554 CNRS, Université d’Angers, Angers, France
- REHABS International Research Laboratory, CNRS-Université Lyon 1-Nelson Mandela University, George, South Africa
| | | | | | - Sandro Bertolino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | | | | | | | - Fabien Angot
- Polleniz 72, ZA de la Belle Croix, Requeil, France
| | | | | | - Olivier Pays
- LETG-Angers, UMR 6554 CNRS, Université d’Angers, Angers, France
- REHABS International Research Laboratory, CNRS-Université Lyon 1-Nelson Mandela University, George, South Africa
| |
Collapse
|
67
|
Pellegrini AFA, Hein AM, Cavender-Bares J, Montgomery RA, Staver AC, Silla F, Hobbie SE, Reich PB. Disease and fire interact to influence transitions between savanna-forest ecosystems over a multi-decadal experiment. Ecol Lett 2021; 24:1007-1017. [PMID: 33694319 DOI: 10.1111/ele.13719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r2 = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease-fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change.
Collapse
Affiliation(s)
- Adam F A Pellegrini
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew M Hein
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95060, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MI, 55108, USA
| | - Rebecca A Montgomery
- Department of Forest Resources, University of Minnesota, St. Paul, MI, 55108, USA
| | - A Carla Staver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Fernando Silla
- Area of Ecology, Faculty of Biology, Universidad de Salamanca, Salamanca, 37071, Spain
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MI, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MI, 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| |
Collapse
|
68
|
Continent-Wide Tree Species Distribution Models May Mislead Regional Management Decisions: A Case Study in the Transboundary Biosphere Reserve Mura-Drava-Danube. FORESTS 2021. [DOI: 10.3390/f12030330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The understanding of spatial distribution patterns of native riparian tree species in Europe lacks accurate species distribution models (SDMs), since riparian forest habitats have a limited spatial extent and are strongly related to the associated watercourses, which needs to be represented in the environmental predictors. However, SDMs are urgently needed for adapting forest management to climate change, as well as for conservation and restoration of riparian forest ecosystems. For such an operative use, standard large-scale bioclimatic models alone are too coarse and frequently exclude relevant predictors. In this study, we compare a bioclimatic continent-wide model and a regional model based on climate, soil, and river data for central to south-eastern Europe, targeting seven riparian foundation species—Alnus glutinosa, Fraxinus angustifolia, F. excelsior, Populus nigra, Quercus robur, Ulmus laevis, and U. minor. The results emphasize the high importance of precise occurrence data and environmental predictors. Soil predictors were more important than bioclimatic variables, and river variables were partly of the same importance. In both models, five of the seven species were found to decrease in terms of future occurrence probability within the study area, whereas the results for two species were ambiguous. Nevertheless, both models predicted a dangerous loss of occurrence probability for economically and ecologically important tree species, likely leading to significant effects on forest composition and structure, as well as on provided ecosystem services.
Collapse
|
69
|
Saadani M, Hönig L, Bien S, Koehler M, Rutten G, Wubet T, Braun U, Bruelheide H. Local Tree Diversity Suppresses Foliar Fungal Infestation and Decreases Morphological But Not Molecular Richness in a Young Subtropical Forest. J Fungi (Basel) 2021; 7:173. [PMID: 33673628 PMCID: PMC7997179 DOI: 10.3390/jof7030173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Leaf fungal pathogens alter their host species' performance and, thus, changes in fungal species composition can translate into effects at the tree community scale. Conversely, the functional diversity of tree species in a host tree's local neighbourhood can affect the host's foliar fungal infestation. Therefore, understanding the factors that affect fungal infestations is important to advance our understanding of biodiversity-ecosystem functioning (BEF) relationships. Here we make use of the largest BEF tree experiment worldwide, the BEF-China experiment, where we selected tree host species with different neighbour species. Identifying fungal taxa by microscopy and by high-throughput DNA sequencing techniques based on the internal transcribed spacer (ITS) rDNA region, we analysed the fungal richness and infestation rates of our target trees as a function of local species richness. Based on the visual microscopic assessment, we found that a higher tree diversity reduced fungal richness and host-specific fungal infestation in the host's local neighbourhood, while molecular fungal richness was unaffected. This diversity effect was mainly explained by the decrease in host proportion. Thus, the dilution of host species in the local neighbourhood was the primary mechanism in reducing the fungal disease severity. Overall, our study suggests that diverse forests will suffer less from foliar fungal diseases compared to those with lower diversity.
Collapse
Affiliation(s)
- Mariem Saadani
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Steffen Bien
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Michael Koehler
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Gemma Rutten
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle, Germany
| | - Uwe Braun
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle, Germany; (L.H.); (S.B.); (M.K.); (G.R.); (U.B.); (H.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany;
| |
Collapse
|
70
|
van Haaften M, Liu Y, Wang Y, Zhang Y, Gardebroek C, Heijman W, Meuwissen M. Understanding tree failure-A systematic review and meta-analysis. PLoS One 2021; 16:e0246805. [PMID: 33592010 PMCID: PMC7886209 DOI: 10.1371/journal.pone.0246805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/26/2021] [Indexed: 01/14/2023] Open
Abstract
Recent research has indicated an increase in the likelihood and impact of tree failure. The potential for trees to fail relates to various biomechanical and physical factors. Strikingly, there seems to be an absence of tree risk assessment methods supported by observations, despite an increasing availability of variables and parameters measured by scientists, arborists and practitioners. Current urban tree risk assessments vary due to differences in experience, training, and personal opinions of assessors. This stresses the need for a more objective method to assess the hazardousness of urban trees. The aim of this study is to provide an overview of factors that influence tree failure including stem failure, root failure and branch failure. A systematic literature review according to the PRISMA guidelines has been performed in databases, supported by backward referencing: 161 articles were reviewed revealing 142 different factors which influenced tree failure. A meta-analysis of effect sizes and p-values was executed on those factors which were associated directly with any type of tree failure. Bayes Factor was calculated to assess the likelihood that the selected factors appear in case of tree failure. Publication bias was analysed visually by funnel plots and results by regression tests. The results provide evidence that the factors Height and Stem weight positively relate to stem failure, followed by Age, DBH, DBH squared times H, and Cubed DBH (DBH3) and Tree weight. Stem weight and Tree weight were found to relate positively to root failure. For branch failure no relating factors were found. We recommend that arborists collect further data on these factors. From this review it can further be concluded that there is no commonly shared understanding, model or function available that considers all factors which can explain the different types of tree failure. This complicates risk estimations that include the failure potential of urban trees.
Collapse
Affiliation(s)
- Marinus van Haaften
- Agricultural Economics and Rural Policy Group, Wageningen University and Research, Wageningen, The Netherlands.,Inholland University of Applied Sciences, Domain Agri, Food and Life Sciences, Delft, The Netherlands
| | - Yili Liu
- Inholland University of Applied Sciences, Domain Agri, Food and Life Sciences, Delft, The Netherlands
| | - Yuxin Wang
- Inholland University of Applied Sciences, Domain Agri, Food and Life Sciences, Delft, The Netherlands
| | - Yueyue Zhang
- Inholland University of Applied Sciences, Domain Agri, Food and Life Sciences, Delft, The Netherlands
| | - Cornelis Gardebroek
- Agricultural Economics and Rural Policy Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Wim Heijman
- Agricultural Economics and Rural Policy Group, Wageningen University and Research, Wageningen, The Netherlands.,Department of Economics, Czech University of Life Sciences, Prague, Czech Republic
| | - Miranda Meuwissen
- Business Economics Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
71
|
Solano A, Rodriguez SL, Greenwood L, Dodds KJ, Coyle DR. Firewood Transport as a Vector of Forest Pest Dispersal in North America: A Scoping Review. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:14-23. [PMID: 33558904 DOI: 10.1093/jee/toaa278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 06/12/2023]
Abstract
Native and nonnative insects and diseases can result in detrimental impacts to trees and forests, including the loss of economic resources and ecosystem services. Increases in globalization and changing human behaviors have created new anthropogenic pathways for long distance pest dispersal. In North America, literature suggests that once a forest or tree pest is established, the movement of firewood by the general public for recreational or home heating purposes is one of the primary pathways for its dispersal. Understanding human perceptions and behaviors is essential to inform the most effective strategies for modifying firewood and pest dispersal by humans. This scoping review seeks to assess trends and gaps in the existing literature, as well as patterns in behavior related to forest pest dispersal through firewood movement in North America. We identified 76 documents that addressed this topic to which we applied inclusion and exclusion criteria to select articles for further analysis. Twenty-five articles met the inclusion criteria and were categorized based on five identified themes: 1) insect incidence in firewood, 2) insect dispersal via firewood, 3) recreational firewood movement, 4) firewood treatments, and 5) behavior and rule compliance. The selected articles show trends that suggest that firewood movement presents a risk for forest insect dispersal, but that behavior can be modified, and compliance, monitoring, and treatments should be strengthened. This scoping review found limited research about western United States, Mexico, and Canada, various insect species and other organisms, regulation and management, awareness, and behavioral dimensions of firewood movement.
Collapse
Affiliation(s)
- Angelica Solano
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC
| | - Shari L Rodriguez
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC
| | | | - Kevin J Dodds
- U.S. Forest Service, Region 9, State and Private Forestry, Durham, NH
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC
| |
Collapse
|
72
|
Blossey B, Nuzzo V, Dávalos A, Mayer M, Dunbar R, Landis DA, Evans JA, Minter B. Residence time determines invasiveness and performance of garlic mustard (Alliaria petiolata) in North America. Ecol Lett 2021; 24:327-336. [PMID: 33295700 PMCID: PMC7839695 DOI: 10.1111/ele.13649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
While biological invasions have the potential for large negative impacts on local communities and ecological interactions, increasing evidence suggests that species once considered major problems can decline over time. Declines often appear driven by natural enemies, diseases or evolutionary adaptations that selectively reduce populations of naturalised species and their impacts. Using permanent long-term monitoring locations, we document declines of Alliaria petiolata (garlic mustard) in eastern North America with distinct local and regional dynamics as a function of patch residence time. Projected site-specific population growth rates initially indicated expanding populations, but projected population growth rates significantly decreased over time and at the majority of sites fell below 1, indicating declining populations. Negative soil feedback provides a potential mechanism for the reported disappearance of ecological dominance of A. petiolata in eastern North America.
Collapse
Affiliation(s)
- Bernd Blossey
- Department of Natural ResourcesFernow HallCornell UniversityIthacaNY14853USA
| | - Victoria Nuzzo
- Natural Area Consultants1 West Hill School RoadRichfordNY13835USA
| | - Andrea Dávalos
- Biological Sciences DepartmentSUNY CortlandCortlandNY13045USA
| | - Mark Mayer
- New Jersey Department of AgricultureDivision of Plant IndustryPO Box 330TrentonNJ08625USA
| | - Richard Dunbar
- Division of Nature PreservesIndiana Department of Natural Resources1040 E 700 N Columbia CityIN46725‐8948USA
| | - Douglas A. Landis
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
| | - Jeffrey A. Evans
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Farmscape Analytics16 Merrimack StConcordNH03301USA
| | - Bill Minter
- Institute for Ecological RegenerationGoshen College1700 South Main StreetGoshenIN46526USA
| |
Collapse
|
73
|
|
74
|
Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture Development, Pesticide Application and Its Impact on the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1112. [PMID: 33513796 PMCID: PMC7908628 DOI: 10.3390/ijerph18031112] [Citation(s) in RCA: 725] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Pesticides are indispensable in agricultural production. They have been used by farmers to control weeds and insects, and their remarkable increases in agricultural products have been reported. The increase in the world's population in the 20th century could not have been possible without a parallel increase in food production. About one-third of agricultural products are produced depending on the application of pesticides. Without the use of pesticides, there would be a 78% loss of fruit production, a 54% loss of vegetable production, and a 32% loss of cereal production. Therefore, pesticides play a critical role in reducing diseases and increasing crop yields worldwide. Thus, it is essential to discuss the agricultural development process; the historical perspective, types and specific uses of pesticides; and pesticide behavior, its contamination, and adverse effects on the natural environment. The review study indicates that agricultural development has a long history in many places around the world. The history of pesticide use can be divided into three periods of time. Pesticides are classified by different classification terms such as chemical classes, functional groups, modes of action, and toxicity. Pesticides are used to kill pests and control weeds using chemical ingredients; hence, they can also be toxic to other organisms, including birds, fish, beneficial insects, and non-target plants, as well as air, water, soil, and crops. Moreover, pesticide contamination moves away from the target plants, resulting in environmental pollution. Such chemical residues impact human health through environmental and food contamination. In addition, climate change-related factors also impact on pesticide application and result in increased pesticide usage and pesticide pollution. Therefore, this review will provide the scientific information necessary for pesticide application and management in the future.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Huada Daniel Ruan
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
- Environmental Science Program, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519080, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (J.L.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Ross Sadler
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessel Road, Nathan, QLD 4111, Australia;
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| | - Dung Tri Phung
- Centre for Environment and Population Health, School of Medicine, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; (H.D.R.); (R.S.); (C.C.); (D.T.P.)
| |
Collapse
|
75
|
Nahrung HF, Carnegie AJ. Border interceptions of forest insects established in Australia: intercepted invaders travel early and often. NEOBIOTA 2021. [DOI: 10.3897/neobiota.64.60424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive forest insects continue to accumulate in Australia (and worldwide) and cause significant impacts through costs of prevention, eradication and management, and through productivity losses and environmental and biodiversity decline. We used our recent non-native Australian forest insect species inventory to analyse border interception rates (2003–2016) of established species, and link interception frequencies with biological traits, historical establishment patterns, commodities and countries of origin. The strongest predictor of interception frequency was year of establishment. Polyphagous species were more likely to be intercepted, as were more concealed species, although this latter likely reflects the higher interceptions of bostrichid borers and other wood-boring Coleoptera relative to other taxa. Interceptions occurred more often for species native to Asia; in contrast, interceptions from other regions were more likely to be of species invasive there. While interception frequencies did not provide a good overall indicator of contemporaneous species establishments, wood and bark borers were more closely linked for establishments and interceptions. The first fifty forest insect species to establish comprised 85% of all border interceptions of established species between 2003 and 2016, while the most-recent fifty species represented just 6% of interceptions. We suggest that early-establishing species are among the “super-invaders” that continue to move globally, while more recent invasive species may be exploiting new trade pathways, new commodity associations, or changes in dynamics in their countries of origin.
Collapse
|
76
|
Coughlin AM, Shefferson RP, Clark SL, Wurzburger N. Plant–soil feedbacks and the introduction of
Castanea
(chestnut) hybrids to eastern North American forests. Restor Ecol 2021. [DOI: 10.1111/rec.13326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aerin M. Coughlin
- Odum School of Ecology University of Georgia 140 E. Green Street Athens GA 30602 U.S.A
| | - Richard P. Shefferson
- Organization for Programs in Environmental Science The University of Tokyo 3‐8‐1 Komaba, Meguro Tokyo 153‐8902 Japan
| | - Stacy L. Clark
- Southern Research Station U.S. Forest Service 2431 Joe Johnson Drive Knoxville TN 37996 U.S.A
| | - Nina Wurzburger
- Odum School of Ecology University of Georgia 140 E. Green Street Athens GA 30602 U.S.A
| |
Collapse
|
77
|
Abstract
AbstractThe provision of plant health has public good attributes when nobody can be excluded from enjoying its benefits and individual benefits do not reduce the ability of others to also benefit. These attributes increase risk of free-riding on plant health services provided by others, giving rise to a collective action problem when trying to ensure plant health in a region threatened by an emerging plant disease. This problem has traditionally been addressed by government intervention, but top-down approaches to plant health are often insufficient and are increasingly combined with bottom-up approaches that promote self-organization by affected individuals. The challenge is how to design plant health institutions that effectively deal with the spatial and temporal dynamics of plant diseases, while staying aligned with the preferences, values and needs of affected societies. Here, we illustrate how Ostrom’s design principles for collective action can be used to guide the incorporation of bottom-up approaches to plant health governance in order to improve institutional fit. Using the ongoing epidemic of huanglongbing (HLB) as a case study, we examine existing institutions designed to ensure citrus health under HLB in Brazil, Mexico, the United States and Argentina, and discuss potential implications of Ostrom’s design principles for the collective provision of plant health under HLB and other plant diseases that are threatening food security worldwide. The discussion leads to an outline for the interdisciplinary research agenda that would be needed to establish the link between institutional approaches and plant health outcomes in the context of global food security.
Collapse
|
78
|
Malik A, Zubair M, Manzoor SA. Valuing the invaluable: park visitors' perceived importance and willingness to pay for urban park trees in Pakistan. Ecosphere 2021. [DOI: 10.1002/ecs2.3348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Aisha Malik
- Department of Forestry Karakoram International University Gilgit Baltistan Pakistan
- Department of Forestry & Range Management Bahauddin Zakariya University Multan Multan Pakistan
| | - Muhammad Zubair
- Department of Forestry & Range Management Bahauddin Zakariya University Multan Multan Pakistan
| | - Syed Amir Manzoor
- Department of Forestry & Range Management Bahauddin Zakariya University Multan Multan Pakistan
- School of Agriculture, Policy & Development University of Reading Reading UK
| |
Collapse
|
79
|
de Andrade RB, Abell K, Duan JJ, Shrewsbury P, Gruner DS. Protective neighboring effect from ash trees treated with systemic insecticide against emerald ash borer. PEST MANAGEMENT SCIENCE 2021; 77:474-481. [PMID: 32776642 PMCID: PMC7756579 DOI: 10.1002/ps.6041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is now the most destructive invasive species in North America. While biocontrol using parasitoids shows promising results in natural forests, strategies are needed to protect high-value trees against invasive EAB populations. Emamectin benzoate is a commonly used systemic insecticide for the protection of valuable trees. Methods that optimize its use allow for reduced quantities of insecticide to be released in the environment and save time and money in efforts to protect ash trees from EAB. We hypothesize that a treated tree can also offer a protective neighboring effect to nearby untreated ash trees, allowing for an optimized spatial planning of insecticide applications. RESULTS We sampled 896 untreated ash trees, in the vicinity of treated trees, in Maryland and Washington DC. We recorded signs of EAB infestation (canopy condition, exit holes, wood pecks, epicormic growth, and bark splits). Two subsequent yearly samplings were made of 198 and 216 trees, respectively. We also present a novel proximity index for this particular application. Results show consistent decrease in EAB infestation signs in untreated trees as proximity to treated trees increases. CONCLUSION Results support that a neighboring effect occurs. However, proximity to treated trees must be high for a tree to be safely left untreated. This proximity seems rare in forests, but can happen in urban/planted landscapes. Future studies should test and validate these findings, and could lead to a more precise recommended safe index tailored across multiple ash species and geographic regions.
Collapse
Affiliation(s)
| | | | - Jian J Duan
- Beneficial Insects Introduction Research UnitUSDA – Agricultural Research ServiceNewarkDEUSA
| | | | - Daniel S Gruner
- Department of EntomologyUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
80
|
Paap T, Wingfield MJ, de Beer ZW, Roets F. Lessons from a major pest invasion: The polyphagous shot hole borer in South Africa. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/8757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Trudy Paap
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
81
|
Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline. FORESTS 2020. [DOI: 10.3390/f11111153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Forest decline diseases are complex processes driven by biotic and abiotic factors. Although information about host–microbiome–environment interactions in agricultural systems is emerging rapidly, similar studies on tree health are still in their infancy. We used acute oak decline (AOD) as a model system to understand whether the rhizosphere physicochemical properties and microbiome are linked to tree health by studying these two factors in healthy and diseased trees located in three sites in different AOD stages—low, mid and severe. We found significant changes in the rhizosphere properties and microbiome composition across the different AOD sites and between the tree health conditions. Rhizosphere pH correlated with microbiome composition, with the microbial assemblages changing in more acidic soils. At the severe AOD site, the oak trees exhibited the lowest rhizosphere pH and distinct microbiome, regardless of their health condition, whereas, at the low and mid-stage AOD sites, only diseased trees showed lower pH and the microbial composition differed significantly from healthy trees. On these two sites, less extreme soil conditions and a high presence of host-beneficial microbiota were observed in the healthy oak trees. For the first time, this study gathers evidence of associations among tree health conditions, rhizosphere properties and microbiome as well as links aboveground tree decline symptoms to the belowground environment. This provides a baseline of rhizosphere community profiling of UK oak trees and paves the way for these associations to be investigated in other tree species suffering decline disease events.
Collapse
|
82
|
Brown N, Pérez-Sierra A, Crow P, Parnell S. The role of passive surveillance and citizen science in plant health. CABI AGRICULTURE AND BIOSCIENCE 2020; 1:17. [PMID: 33748770 PMCID: PMC7596624 DOI: 10.1186/s43170-020-00016-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
The early detection of plant pests and diseases is vital to the success of any eradication or control programme, but the resources for surveillance are often limited. Plant health authorities can however make use of observations from individuals and stakeholder groups who are monitoring for signs of ill health. Volunteered data is most often discussed in relation to citizen science groups, however these groups are only part of a wider network of professional agents, land-users and owners who can all contribute to significantly increase surveillance efforts through "passive surveillance". These ad-hoc reports represent chance observations by individuals who may not necessarily be looking for signs of pests and diseases when they are discovered. Passive surveillance contributes vital observations in support of national and international surveillance programs, detecting potentially unknown issues in the wider landscape, beyond points of entry and the plant trade. This review sets out to describe various forms of passive surveillance, identify analytical methods that can be applied to these "messy" unstructured data, and indicate how new programs can be established and maintained. Case studies discuss two tree health projects from Great Britain (TreeAlert and Observatree) to illustrate the challenges and successes of existing passive surveillance programmes. When analysing passive surveillance reports it is important to understand the observers' probability to detect and report each plant health issue, which will vary depending on how distinctive the symptoms are and the experience of the observer. It is also vital to assess how representative the reports are and whether they occur more frequently in certain locations. Methods are increasingly available to predict species distributions from large datasets, but more work is needed to understand how these apply to rare events such as new introductions. One solution for general surveillance is to develop and maintain a network of tree health volunteers, but this requires a large investment in training, feedback and engagement to maintain motivation. There are already many working examples of passive surveillance programmes and the suite of options to interpret the resulting datasets is growing rapidly.
Collapse
Affiliation(s)
- Nathan Brown
- Woodland Heritage, P.O. Box 1331, Cheltenham, GL50 9AP UK
| | - Ana Pérez-Sierra
- Tree Health Diagnostics and Advisory Service, Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH UK
| | - Peter Crow
- Observatree, Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH UK
| | - Stephen Parnell
- School of Science Engineering and Environment, University of Salford, Salford, M5 4WT UK
| |
Collapse
|
83
|
Mastin AJ, Gottwald TR, van den Bosch F, Cunniffe NJ, Parnell S. Optimising risk-based surveillance for early detection of invasive plant pathogens. PLoS Biol 2020; 18:e3000863. [PMID: 33044954 PMCID: PMC7581011 DOI: 10.1371/journal.pbio.3000863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/22/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022] Open
Abstract
Emerging infectious diseases (EIDs) of plants continue to devastate ecosystems and livelihoods worldwide. Effective management requires surveillance to detect epidemics at an early stage. However, despite the increasing use of risk-based surveillance programs in plant health, it remains unclear how best to target surveillance resources to achieve this. We combine a spatially explicit model of pathogen entry and spread with a statistical model of detection and use a stochastic optimisation routine to identify which arrangement of surveillance sites maximises the probability of detecting an invading epidemic. Our approach reveals that it is not always optimal to target the highest-risk sites and that the optimal strategy differs depending on not only patterns of pathogen entry and spread but also the choice of detection method. That is, we find that spatial correlation in risk can make it suboptimal to focus solely on the highest-risk sites, meaning that it is best to avoid ‘putting all your eggs in one basket’. However, this depends on an interplay with other factors, such as the sensitivity of available detection methods. Using the economically important arboreal disease huanglongbing (HLB), we demonstrate how our approach leads to a significant performance gain and cost saving in comparison with conventional methods to targeted surveillance. Emerging infectious diseases of plants continue to devastate ecosystems and livelihoods worldwide. By linking a mathematical model of pest spread with a computational optimisation routine, this study identifies where to look for invasive pests if we wish to detect them at an early stage; this method improves upon conventional methods of risk-based surveillance and is robust to model misspecification.
Collapse
Affiliation(s)
- Alexander J. Mastin
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Greater Manchester, United Kingdom
- * E-mail:
| | - Timothy R. Gottwald
- USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Frank van den Bosch
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Greater Manchester, United Kingdom
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Australia
| | - Nik J. Cunniffe
- Department of Plant Sciences, Downing Street, Cambridge, United Kingdom
| | - Stephen Parnell
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
84
|
Dickson CR, Baker DJ, Bergstrom DM, Brookes RH, Whinam J, McGeoch MA. Widespread dieback in a foundation species on a sub‐Antarctic World Heritage Island: Fine‐scale patterns and likely drivers. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David J. Baker
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| | - Dana M. Bergstrom
- Australian Antarctic DivisionDepartment of Agriculture, Water and the Environment Kingston TasmaniaAustralia
| | - Rowan H. Brookes
- Melbourne School for Professional and Continuing Education The University of Melbourne Melbourne VictoriaAustralia
| | - Jennie Whinam
- School of Geography and Spatial Sciences University of Tasmania Hobart Tasmania Australia
| | - Melodie A. McGeoch
- School of Biological Sciences Monash University Clayton Victoria3800Australia
| |
Collapse
|
85
|
Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China. REMOTE SENSING 2020. [DOI: 10.3390/rs12193247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aggregated mining development has direct and indirect impacts on vegetation changes. This impact shows spatial differences due to the complex influence of multiple mines, which is a common issue in resource regions. To estimate the spatial heterogeneity of vegetation response to mining activities, we coupled vegetation changes and mining development through a geographically weighted regression (GWR) model for three cumulative periods between 1999 and 2018 in integrated resource regions of northwestern China. Vegetation changes were monitored by Sen’s slope and the Mann–Kendall test according to a total of 72 Landsat images. Spatial distribution of mining development was quantified, due to four land-use maps in 2000, 2005, 2010, and 2017. The results showed that 80% of vegetation in the study area experienced different degrees of degradation, more serious in the overlapping areas of multiple mines and mining areas. The scope of influence for single mines on vegetation shrunk by about 48%, and the mean coefficients increased by 20%, closer to mining areas. The scope of influence for multiple mines on vegetation gradually expanded to 86% from the outer edge to the inner overlapping areas of mining areas, where the mean coefficients increased by 92%. The correlation between elevation and vegetation changes varied according to the average elevation of the total mining areas. Ultimately, the available ecological remediation should be systematically considered for local conditions and mining consequences.
Collapse
|
86
|
Gao JG, Liu H, Wang N, Yang J, Zhang XL. Plant extinction excels plant speciation in the Anthropocene. BMC PLANT BIOLOGY 2020; 20:430. [PMID: 32938403 PMCID: PMC7493330 DOI: 10.1186/s12870-020-02646-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the past several millenniums, we have domesticated several crop species that are crucial for human civilization, which is a symbol of significant human influence on plant evolution. A pressing question to address is if plant diversity will increase or decrease in this warming world since contradictory pieces of evidence exit of accelerating plant speciation and plant extinction in the Anthropocene. RESULTS Comparison may be made of the Anthropocene with the past geological times characterised by a warming climate, e.g., the Palaeocene-Eocene Thermal Maximum (PETM) 55.8 million years ago (Mya)-a period of "crocodiles in the Arctic", during which plants saw accelerated speciation through autopolyploid speciation. Three accelerators of plant speciation were reasonably identified in the Anthropocene, including cities, polar regions and botanical gardens where new plant species might be accelerating formed through autopolyploid speciation and hybridization. CONCLUSIONS However, this kind of positive effect of climate warming on new plant species formation would be thoroughly offset by direct and indirect intensive human exploitation and human disturbances that cause habitat loss, deforestation, land use change, climate change, and pollution, thus leading to higher extinction risk than speciation in the Anthropocene. At last, four research directions are proposed to deepen our understanding of how plant traits affect speciation and extinction, why we need to make good use of polar regions to study the mechanisms of dispersion and invasion, how to maximize the conservation of plant genetics, species, and diverse landscapes and ecosystems and a holistic perspective on plant speciation and extinction is needed to integrate spatiotemporally.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, China.
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ling Zhang
- Department of Public Policy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
87
|
Indirect effect of the invasive exotic fungus Ophiostoma novo-ulmi (Dutch elm disease) on ants. COMMUNITY ECOL 2020. [DOI: 10.1007/s42974-020-00023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Kelly LJ, Plumb WJ, Carey DW, Mason ME, Cooper ED, Crowther W, Whittemore AT, Rossiter SJ, Koch JL, Buggs RJA. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat Ecol Evol 2020; 4:1116-1128. [PMID: 32451426 PMCID: PMC7610378 DOI: 10.1038/s41559-020-1209-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/16/2020] [Indexed: 11/08/2022]
Abstract
Recent studies show that molecular convergence plays an unexpectedly common role in the evolution of convergent phenotypes. We exploited this phenomenon to find candidate loci underlying resistance to the emerald ash borer (EAB, Agrilus planipennis), the United States' most costly invasive forest insect to date, within the pan-genome of ash trees (the genus Fraxinus). We show that EAB-resistant taxa occur within three independent phylogenetic lineages. In genomes from these resistant lineages, we detect 53 genes with evidence of convergent amino acid evolution. Gene-tree reconstruction indicates that, for 48 of these candidates, the convergent amino acids are more likely to have arisen via independent evolution than by another process such as hybridization or incomplete lineage sorting. Seven of the candidate genes have putative roles connected to the phenylpropanoid biosynthesis pathway and 17 relate to herbivore recognition, defence signalling or programmed cell death. Evidence for loss-of-function mutations among these candidates is more frequent in susceptible species than in resistant ones. Our results on evolutionary relationships, variability in resistance, and candidate genes for defence response within the ash genus could inform breeding for EAB resistance, facilitating ecological restoration in areas invaded by this beetle.
Collapse
Affiliation(s)
- Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Royal Botanic Gardens, Kew, Richmond, UK.
| | - William J Plumb
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Royal Botanic Gardens, Kew, Richmond, UK
- Forestry Development Department, Teagasc, Dublin, Republic of Ireland
| | - David W Carey
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, OH, USA
| | - Mary E Mason
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, OH, USA
| | - Endymion D Cooper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - William Crowther
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Alan T Whittemore
- United States Department of Agriculture, Agricultural Research Service, US National Arboretum, Washington, DC, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jennifer L Koch
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, OH, USA
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Royal Botanic Gardens, Kew, Richmond, UK.
| |
Collapse
|
89
|
Disease-mediated ecosystem services: Pathogens, plants, and people. Trends Ecol Evol 2020; 35:731-743. [DOI: 10.1016/j.tree.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023]
|
90
|
Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem. FORESTS 2020. [DOI: 10.3390/f11060651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the possible relationship between diseased trees and wildfires, we assessed the flammability of canker-resistant and susceptible common cypress clones that were artificially infected with Seiridium cardinale compared to healthy trees. This study explored the effect of terpenoids produced by the host plant in response to infection and the presence of dead plant portions on flammability. Terpenoids were extracted and quantified in foliage and bark samples by gas chromatography–mass spectrometry (GC–MS). A Mass Loss Calorimeter was used to determine the main flammability descriptors. The concentration of terpenoids in bark and leaf samples and the flammability parameters were compared using a generalized linear mixed models (GLMM) model. A partial least square (PLS) model was generated to predict flammability based on the content of terpenoid, clone response to bark canker and the disease status of the plants. The total terpenoid content drastically increased in the bark of both cypress clones after infection, with a greater (7-fold) increase observed in the resistant clone. On the contrary, levels of terpenoids in leaves did not alter after infection. The GLMM model showed that after infection, plants of the susceptible clone appeared to be much more flammable in comparison to those of resistant clones, showing higher ignitability, combustibility, sustainability and consumability. This was mainly due to the presence of dried crown parts in the susceptible clone. The resistant clone showed a slightly higher ignitability after infection, while the other flammability parameters did not change. The PLS model (R2Y = 56%) supported these findings, indicating that dead crown parts and fuel moisture content accounted for most of the variation in flammability parameters and greatly prevailed on terpenoid accumulation after infection. The results of this study suggest that a disease can increase the flammability of trees. The deployment of canker-resistant cypress clones can reduce the flammability of cypress plantations in Mediterranean areas affected by bark canker. Epidemiological data of diseased tree distribution can be an important factor in the prediction of fire risk.
Collapse
|
91
|
Lessons from the Frontline: Exploring How Stakeholders May Respond to Emerald Ash Borer Management in Europe. FORESTS 2020. [DOI: 10.3390/f11060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The emerald ash borer (EAB) has caused extensive damage and high mortality to native ash trees (Fraxinus; sp.) in North America. As European countries battle with the deadly pathogen Hymenoscyphus fraxineus (ash dieback) affecting European ash (Fraxinus excelsior), there is concern that the arrival of EAB will signal the demise of this much-loved tree. While Europe prepares for EAB it is vital that we understand the social dimensions that will likely influence the social acceptability of potential management measures, and experiences from the USA can potentially guide this. We draw on differing sources including a literature review, documentary analysis, and consultation with key informants from Chicago and the Twin Cities of Minneapolis and St. Paul. In this paper, we focus on EAB management responses that involve chemical applications, tree felling and replanting, and biological control, and assess their likely social acceptability to stakeholders based on the perceived risks and benefits. Benefits involve protecting specific ash trees and slowing the spread of EAB across the landscape. Risks include collateral harm from insecticide use on human and environmental health, financial costs and liabilities, and the effectiveness of each approach. Biological control and replacing ash with other species are likely to be largely acceptable across contexts and stakeholder groups but pre-emptive felling and insecticide application could be more problematic if seeking widespread social acceptance. Based on our observations from the evidence collected we offer suggestions for approaching EAB management in Europe with a focus on improving prospects of social acceptability. Strong engagement will be necessary to establish the relevance and reason for using different management approaches and to build awareness and trust.
Collapse
|
92
|
Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery. ENVIRONMENTS 2020. [DOI: 10.3390/environments7050039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Portugal, some species are now considered invasive by law and have proliferated in recent years. Among these, Acacia dealbata stands out. This work investigated the behavior of this species, in order to characterize and evaluate its potential as raw material for biomass pellets production, while controlling its proliferation. It was found that A. dealbata has a large capacity for raw material supply, as cutting 2 ha resulted in about 140 tons of biomass. Thus, the attribution of a market value for this material could result in a reduction in the area occupied by the invasive species, once the demand for it increases, causing a pressure over the resource. This pressure on the species must be duly followed by other control measures, such as reducing the population and mitigating its proliferation. Laboratory tests have shown that both the raw material and the finished product are similar to those obtained with other species normally used for biomass pellet production, such as Pinus pinaster and Eucalyptus globulus. Thus, it can be concluded that there is a high potential for this species in the production of biomass pellets for energy, and that this may be an important contribution to controlling the proliferation of this invasive species.
Collapse
|
93
|
Hill L, Jones G, Atkinson N, Hector A, Hemery G, Brown N. The £15 billion cost of ash dieback in Britain. Curr Biol 2020; 29:R315-R316. [PMID: 31063720 DOI: 10.1016/j.cub.2019.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Invasive tree pests and diseases present some of the greatest global threats to forests, and the recent global acceleration in invasions has caused massive ecological damage [1,2]. Calls to improve biosecurity have, however, often lost out to economic arguments in favour of trade [3]. Human activities, such as trade, move organisms between continents, and interventions to reduce risk of introductions inevitably incur financial costs. No previous studies have attempted to estimate the full economic cost of a tree disease, and the economic imperative to improve biosecurity may have been underappreciated. We set out to estimate the cost of the dieback of ash, Fraxinus excelsior, caused by Hymenoscyphus fraxineus, in Great Britain, and investigate whether this may be the case [4].
Collapse
Affiliation(s)
- Louise Hill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Glyn Jones
- Fera Science Ltd., National Agri-food Innovation Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Nick Atkinson
- The Woodland Trust, Kempton Way, Grantham, Lincolnshire, NG31 6LL, UK.
| | - Andy Hector
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Gabriel Hemery
- Sylva Foundation, Sylva Wood Centre, Little Wittenham Road, Long Wittenham, OX14 4QT, UK
| | - Nick Brown
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
94
|
Long-Term Impacts of Invasive Insects and Pathogens on Composition, Biomass, and Diversity of Forests in Virginia’s Blue Ridge Mountains. Ecosystems 2020. [DOI: 10.1007/s10021-020-00503-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
95
|
Bussell EH, Dangerfield CE, Gilligan CA, Cunniffe NJ. Applying optimal control theory to complex epidemiological models to inform real-world disease management. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180284. [PMID: 31104600 DOI: 10.1098/rstb.2018.0284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mathematical models provide a rational basis to inform how, where and when to control disease. Assuming an accurate spatially explicit simulation model can be fitted to spread data, it is straightforward to use it to test the performance of a range of management strategies. However, the typical complexity of simulation models and the vast set of possible controls mean that only a small subset of all possible strategies can ever be tested. An alternative approach-optimal control theory-allows the best control to be identified unambiguously. However, the complexity of the underpinning mathematics means that disease models used to identify this optimum must be very simple. We highlight two frameworks for bridging the gap between detailed epidemic simulations and optimal control theory: open-loop and model predictive control. Both these frameworks approximate a simulation model with a simpler model more amenable to mathematical analysis. Using an illustrative example model, we show the benefits of using feedback control, in which the approximation and control are updated as the epidemic progresses. Our work illustrates a new methodology to allow the insights of optimal control theory to inform practical disease management strategies, with the potential for application to diseases of humans, animals and plants. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.
Collapse
Affiliation(s)
- E H Bussell
- Department of Plant Sciences, University of Cambridge , Cambridge CB2 3EA , UK
| | - C E Dangerfield
- Department of Plant Sciences, University of Cambridge , Cambridge CB2 3EA , UK
| | - C A Gilligan
- Department of Plant Sciences, University of Cambridge , Cambridge CB2 3EA , UK
| | - N J Cunniffe
- Department of Plant Sciences, University of Cambridge , Cambridge CB2 3EA , UK
| |
Collapse
|
96
|
Thompson RN, Brooks-Pollock E. Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants. Philos Trans R Soc Lond B Biol Sci 2020; 374:20190038. [PMID: 31056051 DOI: 10.1098/rstb.2019.0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 1918 influenza pandemic is one of the most devastating infectious disease epidemics on record, having caused approximately 50 million deaths worldwide. Control measures, including prohibiting non-essential gatherings as well as closing cinemas and music halls, were applied with varying success and limited knowledge of transmission dynamics. One hundred years later, following developments in the field of mathematical epidemiology, models are increasingly used to guide decision-making and devise appropriate interventions that mitigate the impacts of epidemics. Epidemiological models have been used as decision-making tools during outbreaks in human, animal and plant populations. However, as the subject has developed, human, animal and plant disease modelling have diverged. Approaches have been developed independently for pathogens of each host type, often despite similarities between the models used in these complementary fields. With the increased importance of a One Health approach that unifies human, animal and plant health, we argue that more inter-disciplinary collaboration would enhance each of the related disciplines. This pair of theme issues presents research articles written by human, animal and plant disease modellers. In this introductory article, we compare the questions pertinent to, and approaches used by, epidemiological modellers of human, animal and plant pathogens, and summarize the articles in these theme issues. We encourage future collaboration that transcends disciplinary boundaries and links the closely related areas of human, animal and plant disease epidemic modelling. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Robin N Thompson
- 1 Mathematical Institute, University of Oxford , Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG , UK.,2 Department of Zoology, University of Oxford , Peter Medawar Building, South Parks Road, Oxford OX1 3SY , UK.,3 Christ Church, University of Oxford , St Aldates, Oxford OX1 1DP , UK
| | - Ellen Brooks-Pollock
- 4 Bristol Veterinary School, University of Bristol , Langford BS40 5DU , UK.,5 National Institute for Health Research, Health Protection Research Unit in Evaluation of Interventions, Bristol Medical School , Bristol BS8 2BN , UK
| |
Collapse
|
97
|
Bettenfeld P, Fontaine F, Trouvelot S, Fernandez O, Courty PE. Woody Plant Declines. What's Wrong with the Microbiome? TRENDS IN PLANT SCIENCE 2020; 25:381-394. [PMID: 31983620 DOI: 10.1016/j.tplants.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Woody plant (WP) declines have multifactorial determinants as well as a biological and economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen, and water from sources to sinks has a seasonal activity, which places it at a central position for mediating plant-environment interactions from nutrient cycling to community assembly and for regulating a variety of processes. To limit effects and to fight against declines, we propose: (i) to consider the WP and its associated microbiota as an holobiont and as a set of functions; (ii) to consider simultaneously, without looking at what comes first, the physiological or pathogenic disorders; and (iii) to define pragmatic strategies, including preventive and curative agronomical practices based on microbiota engineering.
Collapse
Affiliation(s)
- Pauline Bettenfeld
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France; SFR Condorcet CNRS 3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims, France
| | - Florence Fontaine
- SFR Condorcet CNRS 3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims, France
| | - Sophie Trouvelot
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Olivier Fernandez
- SFR Condorcet CNRS 3417, Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes EA4707, Reims, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
98
|
Dendrochronological Analyses and Whole-Tree Dissections Reveal Caliciopsis Canker (Caliciopsis pinea) Damage Associated with the Declining Growth and Climatic Stressors of Eastern White Pine (Pinus strobus). FORESTS 2020. [DOI: 10.3390/f11030347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eastern white pine (Pinus strobus) is considered a signature species in eastern North America, particularly in New England. In recent years, however, white pine has experienced increased damage due to native pathogens that reduce the species’ growth, productivity, and economic value. One disease of concern is Caliciopsis canker, caused by the fungal pathogen Caliciopsis pinea, which is associated with excessive resin production, cankers, rough bark, bark fissures/cracks, and reduced growth in white pine. Recent studies have documented the extent of Caliciopsis canker in New England and its association with soil and stocking conditions, yet few studies have focused on the biological impacts of the disease. This study used dendrochronology and whole-tree dissections to reconstruct Caliciopsis canker history in three New England white pine sites, quantify its impact on tree growth and vigor, identify pre-disposing factors, and assess potential silvicultural management options. Dendrochronology and whole-tree dissections provided a unique insight into canker damage throughout trees’ development. Canker damage was first reported in New Hampshire in the mid-1990s, yet cankers were present as far back as 1967 and have steadily increased since the mid-1980s. Increased canker damage was significantly associated with decreased live crown ratios and declining tree growth. Trees maintaining a 30% live crown ratio or greater generally experienced the least canker damage. Furthermore, peaks in canker occurrence were consistent across sites, indicating a regional synchronization of infection and damage. Canker damage was closely associated with climatic events such as droughts and a New England hurricane. The results suggest that Caliciopsis canker has been affecting white pine health over the last 40 years, and that the disease has become more prevalent in the past 20–30 years. Yet, our results suggest that if silvicultural prescriptions target low density thinnings that favor trees with higher live crown ratios (>30%) and low Caliciopsis symptom severity ratings, the risk of canker damage can be reduced in white pine stands.
Collapse
|
99
|
Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree (Cinnamomum camphora). SUSTAINABILITY 2020. [DOI: 10.3390/su12041582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since China experienced a rapid and unprecedented process of urbanization and climate change from 1978 onwards, pest outbreaks were frequently reported on urban forests, which reflects a significant imbalance between natural regulation and human control. Based on information extracted from all journal articles and reports about insect pests on camphor tree (Cinnamomum camphora) in urban China, we characterized historical patterns and trends in pest outbreaks over large areas. Our results suggested that (1) most distribution areas of C. camphora in urban China had pest records (14 provinces) over the last 50 years, especially at the south-eastern coastal areas; (2) pests on camphor tree in urban China showed an accelerated growth since the 1990s; and (3) pests on camphor tree in urban China were characterized by native and leaf-feeding species. Urbanization seems to positively correlate with urban pest outbreaks. Changes of urban pest outbreaks could largely be described by synchronic changes of socio-economic indicators, of which CO2 emissions as metric tons per capita is the most significant predictor, followed by GDP and human population. Thus, managers and city planners should allocate resources to socio-economic-related pest outbreaks for a sustainable ecosystem.
Collapse
|
100
|
Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. Int J Mol Sci 2020; 21:ijms21030963. [PMID: 32024003 PMCID: PMC7037962 DOI: 10.3390/ijms21030963] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogen-associated molecular patterns (PAMPs), microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns (HAMPs), and damage-associated molecular patterns (DAMPs) are molecules produced by microorganisms and insects in the event of infection, microbial priming, and insect predation. These molecules are then recognized by receptor molecules on or within the plant, which activates the defense signaling pathways, resulting in plant’s ability to overcome pathogenic invasion, induce systemic resistance, and protect against insect predation and damage. These small molecular motifs are conserved in all organisms. Fungi, bacteria, and insects have their own specific molecular patterns that induce defenses in plants. Most of the molecular patterns are either present as part of the pathogen’s structure or exudates (in bacteria and fungi), or insect saliva and honeydew. Since biotic stresses such as pathogens and insects can impair crop yield and production, understanding the interaction between these organisms and the host via the elicitor–receptor interaction is essential to equip us with the knowledge necessary to design durable resistance in plants. In addition, it is also important to look into the role played by beneficial microbes and synthetic elicitors in activating plants’ defense and protection against disease and predation. This review addresses receptors, elicitors, and the receptor–elicitor interactions where these components in fungi, bacteria, and insects will be elaborated, giving special emphasis to the molecules, responses, and mechanisms at play, variations between organisms where applicable, and applications and prospects.
Collapse
|