51
|
Luo Y, Kim EH, Flask CA, Clark HA. Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging. ACS NANO 2018; 12:5761-5773. [PMID: 29851460 PMCID: PMC6281809 DOI: 10.1021/acsnano.8b01640] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A suite of imaging tools for detecting specific chemicals in the central nervous system could accelerate the understanding of neural signaling events critical to brain function and disease. Here, we introduce a class of nanoparticle sensors for the highly specific detection of acetylcholine in the living brain using magnetic resonance imaging. The nanosensor is composed of acetylcholine-catalyzing enzymes and pH-sensitive gadolinium contrast agents co-localized onto the surface of polymer nanoparticles, which leads to changes in T1 relaxation rate (1/ T1). The mechanism of the sensor involves the enzymatic hydrolysis of acetylcholine leading to a localized decrease in pH which is detected by the pH-sensitive gadolinium chelate. The concomitant change in 1/ T1 in vitro measured a 20% increase from 0 to 10 μM acetylcholine concentration. The applicability of the nanosensors in vivo was demonstrated in the rat medial prefrontal cortex showing distinct changes in 1/ T1 induced by pharmacological stimuli. The highly specific acetylcholine nanosensor we present here offers a promising strategy for detection of cholinergic neurotransmission and will facilitate our understanding of brain function through chemical imaging.
Collapse
Affiliation(s)
- Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eric H. Kim
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chris A. Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
52
|
Okada S, Bartelle BB, Li N, Breton-Provencher V, Lee JJ, Rodriguez E, Melican J, Sur M, Jasanoff A. Calcium-dependent molecular fMRI using a magnetic nanosensor. NATURE NANOTECHNOLOGY 2018; 13:473-477. [PMID: 29713073 PMCID: PMC6086382 DOI: 10.1038/s41565-018-0092-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/13/2018] [Indexed: 05/22/2023]
Abstract
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin B Bartelle
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent Breton-Provencher
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiyoung J Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elisenda Rodriguez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James Melican
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mriganka Sur
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
53
|
Bruinsma TJ, Sarma VV, Oh Y, Jang DP, Chang SY, Worrell GA, Lowe VJ, Jo HJ, Min HK. The Relationship Between Dopamine Neurotransmitter Dynamics and the Blood-Oxygen-Level-Dependent (BOLD) Signal: A Review of Pharmacological Functional Magnetic Resonance Imaging. Front Neurosci 2018; 12:238. [PMID: 29692706 PMCID: PMC5902685 DOI: 10.3389/fnins.2018.00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI) is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD) fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.
Collapse
Affiliation(s)
- Tyler J Bruinsma
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Vidur V Sarma
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Yoonbae Oh
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.,Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Su-Youne Chang
- Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Greg A Worrell
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Val J Lowe
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hang Joon Jo
- Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hoon-Ki Min
- Department of Radiology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Neurologic Surgery, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Departments of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
54
|
Ghosh S, Harvey P, Simon JC, Jasanoff A. Probing the brain with molecular fMRI. Curr Opin Neurobiol 2018; 50:201-210. [PMID: 29649765 DOI: 10.1016/j.conb.2018.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
Abstract
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people.
Collapse
Affiliation(s)
- Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Peter Harvey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Jacob C Simon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.
| |
Collapse
|
55
|
Angelovski G, Tóth É. Strategies for sensing neurotransmitters with responsive MRI contrast agents. Chem Soc Rev 2018; 46:324-336. [PMID: 28059423 DOI: 10.1039/c6cs00154h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A great deal of research involving multidisciplinary approaches is currently dedicated to the understanding of brain function. The complexity of physiological processes that underlie neural activity is the greatest hurdle to faster advances. Among imaging techniques, MRI has great potential to enable mapping of neural events with excellent specificity, spatiotemporal resolution and unlimited tissue penetration depth. To this end, molecular imaging approaches using neurotransmitter-sensitive MRI agents have appeared recently to study neuronal activity, along with the first successful in vivo MRI studies. Here, we review the pioneering steps in the development of molecular MRI methods that could allow functional imaging of the brain by sensing the neurotransmitter activity directly. We provide a brief overview of other imaging and analytical methods to detect neurotransmitter activity, and describe the approaches to sense neurotransmitters by means of molecular MRI agents. Based on these initial steps, further progress in probe chemistry and the emergence of innovative imaging methods to directly monitor neurotransmitters can be envisaged.
Collapse
Affiliation(s)
- Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Éva Tóth
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
56
|
Feng P, Chen Y, Zhang L, Qian CG, Xiao X, Han X, Shen QD. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4359-4368. [PMID: 29308644 DOI: 10.1021/acsami.7b12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.
Collapse
Affiliation(s)
- Peijian Feng
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Yulei Chen
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Lei Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Science, Nanjing University , Nanjing 210093, China
| | - Cheng-Gen Qian
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xuanzhong Xiao
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xu Han
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
57
|
Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine. Talanta 2018; 182:428-432. [PMID: 29501174 DOI: 10.1016/j.talanta.2018.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag+ into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors.
Collapse
Affiliation(s)
- Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xiaogen Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Dan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
58
|
Cao X, Ding C, Zhang C, Gu W, Yan Y, Shi X, Xian Y. Transition metal dichalcogenide quantum dots: synthesis, photoluminescence and biological applications. J Mater Chem B 2018; 6:8011-8036. [DOI: 10.1039/c8tb02519c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce the synthesis strategy, photoluminescence features and biological applications of TMD QDs.
Collapse
Affiliation(s)
- Xuanyu Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Caiping Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Cuiling Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Wei Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yinghan Yan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xinhao Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yuezhong Xian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|
59
|
Vargas MI, Martelli P, Xin L, Ipek O, Grouiller F, Pittau F, Trampel R, Gruetter R, Vulliemoz S, Lazeyras F. Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects. J Neuroimaging 2017; 28:5-13. [PMID: 29205628 DOI: 10.1111/jon.12481] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 01/19/2023] Open
Abstract
The aim of this article is to illustrate the principal challenges, from the medical and technical point of view, associated with the use of ultrahigh field (UHF) scanners in the clinical setting and to present available solutions to circumvent these limitations. We would like to show the differences between UHF scanners and those used routinely in clinical practice, the principal advantages, and disadvantages, the different UHFs that are ready be applied to routine clinical practice such as susceptibility-weighted imaging, fluid-attenuated inversion recovery, 3-dimensional time of flight, magnetization-prepared rapid acquisition gradient echo, magnetization-prepared 2 rapid acquisition gradient echo, and diffusion-weighted imaging, the technical principles of these sequences, and the particularities of advanced techniques such as diffusion tensor imaging, spectroscopy, and functional imaging at 7TMR. Finally, the main clinical applications in the field of the neuroradiology are discussed and the side effects are reported.
Collapse
Affiliation(s)
- Maria Isabel Vargas
- Division of Neuroradiology of Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Pascal Martelli
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ozlem Ipek
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frederic Grouiller
- CIBM, Department of Radiology and Medical Informatics, Geneva Hospitals and University of Geneva, Geneva, Switzerland
| | - Francesca Pittau
- Division of Neurology, Epileptology Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rolf Gruetter
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serge Vulliemoz
- Division of Neurology, Epileptology Unit, Geneva University Hospitals, Geneva, Switzerland
| | - Francois Lazeyras
- CIBM, Department of Radiology and Medical Informatics, Geneva Hospitals and University of Geneva, Geneva, Switzerland.,Division of Radiology of Geneva University Hospitals and CIBM, Geneva, Switzerland
| |
Collapse
|
60
|
Mukherjee A, Davis HC, Ramesh P, Lu GJ, Shapiro MG. Biomolecular MRI reporters: Evolution of new mechanisms. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:32-42. [PMID: 29157492 PMCID: PMC5726449 DOI: 10.1016/j.pnmrs.2017.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pradeep Ramesh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
61
|
Affiliation(s)
- F M Mottaghy
- University Hospital RWTH Aachen University, Dept. of Nuclear Medicine, Pauwelsstr. 30, 52057 Aachen, Germany; Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
62
|
Piraner DI, Farhadi A, Davis HC, Wu D, Maresca D, Szablowski JO, Shapiro MG. Going Deeper: Biomolecular Tools for Acoustic and Magnetic Imaging and Control of Cellular Function. Biochemistry 2017; 56:5202-5209. [PMID: 28782927 PMCID: PMC6058970 DOI: 10.1021/acs.biochem.7b00443] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most cellular phenomena of interest to mammalian biology occur within the context of living tissues and organisms. However, today's most advanced tools for observing and manipulating cellular function, based on fluorescent or light-controlled proteins, work best in cultured cells, transparent model species, or small, surgically accessed anatomical regions. Their reach into deep tissues and larger animals is limited by photon scattering. To overcome this limitation, we must design biochemical tools that interface with more penetrant forms of energy. For example, sound waves and magnetic fields easily permeate most biological tissues, allowing the formation of images and delivery of energy for actuation. These capabilities are widely used in clinical techniques such as diagnostic ultrasound, magnetic resonance imaging, focused ultrasound ablation, and magnetic particle hyperthermia. Each of these modalities offers spatial and temporal precision that could be used to study a multitude of cellular processes in vivo. However, connecting these techniques to cellular functions such as gene expression, proliferation, migration, and signaling requires the development of new biochemical tools that can interact with sound waves and magnetic fields as optogenetic tools interact with photons. Here, we discuss the exciting challenges this poses for biomolecular engineering and provide examples of recent advances pointing the way to greater depth in in vivo cell biology.
Collapse
Affiliation(s)
- Dan I. Piraner
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C. Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Di Wu
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jerzy O. Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
63
|
Wang J, Yang B, Zhong J, Yan B, Zhang K, Zhai C, Shiraishi Y, Du Y, Yang P. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interface Sci 2017; 497:172-180. [DOI: 10.1016/j.jcis.2017.03.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
|
64
|
Ipek Ö. Radio-frequency coils for ultra-high field magnetic resonance. Anal Biochem 2017; 529:10-16. [DOI: 10.1016/j.ab.2017.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
65
|
Lacerda S, Tóth É. Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics. ChemMedChem 2017; 12:883-894. [DOI: 10.1002/cmdc.201700210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| |
Collapse
|
66
|
Bar-Shir A, Alon L, Korrer MJ, Lim HS, Yadav NN, Kato Y, Pathak AP, Bulte JWM, Gilad AA. Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magn Reson Med 2017; 79:1010-1019. [PMID: 28480589 DOI: 10.1002/mrm.26708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetically encoded reporters can assist in visualizing biological processes in live organisms and have been proposed for longitudinal and noninvasive tracking of therapeutic cells in deep tissue. Cells can be labeled in situ or ex vivo and followed in live subjects over time. Nevertheless, a major challenge for reporter systems is to identify the cell population that actually expresses an active reporter. METHODS We have used a nucleoside analog, pyrrolo-2'-deoxycytidine, as an imaging probe for the putative reporter gene, Drosophila melanogaster 2'-deoxynucleoside kinase. Bioengineered cells were imaged in vivo in animal models of brain tumor and immunotherapy using chemical exchange saturation transfer MRI. The number of transduced cells was quantified by flow cytometry based on the optical properties of the probe. RESULTS We performed a comparative analysis of six different cell lines and demonstrate utility in a mouse model of immunotherapy. The proposed technology can be used to quantify the number of labeled cells in a given region, and moreover is sensitive enough to detect less than 10,000 cells. CONCLUSION This unique technology that enables efficient selection of labeled cells followed by in vivo monitoring with both optical and MRI. Magn Reson Med 79:1010-1019, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Amnon Bar-Shir
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lina Alon
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Korrer
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Hong Seo Lim
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yoshinori Kato
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arvind P Pathak
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
67
|
Kim MJ, Jeon SJ, Kang TW, Ju JM, Yim D, Kim HI, Park JH, Kim JH. 2H-WS 2 Quantum Dots Produced by Modulating the Dimension and Phase of 1T-Nanosheets for Antibody-Free Optical Sensing of Neurotransmitters. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12316-12323. [PMID: 28319663 DOI: 10.1021/acsami.7b01644] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Modulating the dimensions and phases of transition metal dichalcogenides is of great interest to enhance their intrinsic properties or to create new physicochemical properties. Herein, we report an effective approach to synthesize 2H-WS2 quantum dots (QDs) via the dimension and phase engineering of 1T-WS2 nanosheets. The solvothermal reaction of chemically exfoliated 1T-WS2 nanosheets in N-methyl-2-pyrrolidone (NMP) under an N2 atmosphere induced their chopping and phase transition at lower temperature to produce 2H-WS2 QDs with a high quantum yield (5.5 ± 0.3%). Interestingly, this chopping and phase transition process showed strong dependency on solvent; WS2 QDs were not produced in other solvents such as 1,4-dioxane and dimethyl sulfoxide. Mechanistic investigations suggested that NMP radicals played a crucial role in the effective production of 2H-WS2 QDs from 1T-WS2 nanosheets. WS2 QDs were successfully applied for the selective, sensitive, and rapid detection of dopamine in human serum (4 min, as low as 23.8 nM). The intense fluorescence of WS2 QDs was selectively quenched upon the addition of dopamine and Au3+ ions due to fluorescence resonance energy transfer between WS2 QDs and the quickly formed Au nanoparticles. This new sensing principle enabled us to discriminate dopamine from dopamine-derivative neurotransmitters including epinephrine and norepinephrine, as well as other interference compounds.
Collapse
Affiliation(s)
- Man-Jin Kim
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - Su-Ji Jeon
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - Tae Woog Kang
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - Jong-Min Ju
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - DaBin Yim
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - Hye-In Kim
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - Jung Hyun Park
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| | - Jong-Ho Kim
- Department of Chemical Engineering, Hanyang University , Ansan 426-791, Republic of Korea
| |
Collapse
|
68
|
Abstract
In vivo biosensors are emerging as powerful tools in biomedical research and diagnostic medicine. Distinct from "labels" or "imaging", in vivo biosensors are designed for continuous and long-term monitoring of target analytes in real biological systems and should be selective, sensitive, reversible and biocompatible. Due to the challenges associated with meeting all of the analytical requirements, we found relatively few reports of research groups demonstrating devices that meet the strict definition in vivo. However, we identified several case studies and a range of emerging materials likely to lead to significant developments in the field.
Collapse
Affiliation(s)
- Guoxin Rong
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Clayton, VIC, 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Heather A. Clark
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| |
Collapse
|
69
|
Cardozo Pinto DF, Lammel S. Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacol Biochem Behav 2017; 174:23-32. [PMID: 28257849 DOI: 10.1016/j.pbb.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Midbrain dopamine (DA) neurons have received significant attention in brain research because of their central role in reward processing and their dysfunction in neuropsychiatric disorders such as Parkinson's disease, drug addiction, depression and schizophrenia. Until recently, it has been thought that DA neurons form a homogeneous population whose primary function is the computation of reward prediction errors. However, through the implementation of viral vector strategies, an unexpected complexity and diversity has been revealed at the anatomical, molecular and functional level. In this review, we discuss recent viral vector approaches that have been leveraged to dissect how different circuits involving distinct DA neuron subpopulations may contribute to the role of DA in reward- and aversion-related behaviors. We focus on studies that have used cell type- and projection-specific optogenetic manipulations, discuss the strengths and limitations of each approach, and critically examine emergent organizational principles that have led to a reclassification of midbrain DA neurons.
Collapse
Affiliation(s)
- Daniel F Cardozo Pinto
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA.
| |
Collapse
|
70
|
Trevathan JK, Yousefi A, Park HO, Bartoletta JJ, Ludwig KA, Lee KH, Lujan JL. Computational Modeling of Neurotransmitter Release Evoked by Electrical Stimulation: Nonlinear Approaches to Predicting Stimulation-Evoked Dopamine Release. ACS Chem Neurosci 2017; 8:394-410. [PMID: 28076681 DOI: 10.1021/acschemneuro.6b00319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurochemical changes evoked by electrical stimulation of the nervous system have been linked to both therapeutic and undesired effects of neuromodulation therapies used to treat obsessive-compulsive disorder, depression, epilepsy, Parkinson's disease, stroke, hypertension, tinnitus, and many other indications. In fact, interest in better understanding the role of neurochemical signaling in neuromodulation therapies has been a focus of recent government- and industry-sponsored programs whose ultimate goal is to usher in an era of personalized medicine by creating neuromodulation therapies that respond to real-time changes in patient status. A key element to achieving these precision therapeutic interventions is the development of mathematical modeling approaches capable of describing the nonlinear transfer function between neuromodulation parameters and evoked neurochemical changes. Here, we propose two computational modeling frameworks, based on artificial neural networks (ANNs) and Volterra kernels, that can characterize the input/output transfer functions of stimulation-evoked neurochemical release. We evaluate the ability of these modeling frameworks to characterize subject-specific neurochemical kinetics by accurately describing stimulation-evoked dopamine release across rodent (R2 = 0.83 Volterra kernel, R2 = 0.86 ANN), swine (R2 = 0.90 Volterra kernel, R2 = 0.93 ANN), and non-human primate (R2 = 0.98 Volterra kernel, R2 = 0.96 ANN) models of brain stimulation. Ultimately, these models will not only improve understanding of neurochemical signaling in healthy and diseased brains but also facilitate the development of neuromodulation strategies capable of controlling neurochemical release via closed-loop strategies.
Collapse
Affiliation(s)
| | - Ali Yousefi
- Department
of Neurologic Surgery, Massachusetts General Hospital and Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
71
|
Chen R, Canales A, Anikeeva P. Neural Recording and Modulation Technologies. NATURE REVIEWS. MATERIALS 2017; 2:16093. [PMID: 31448131 PMCID: PMC6707077 DOI: 10.1038/natrevmats.2016.93] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Within the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the tools capable of probing the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not address the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices capable of simultaneous recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes, and look at emergent directions inspired by the principles of neural transduction.
Collapse
Affiliation(s)
- Ritchie Chen
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
72
|
Vellaichamy B, Periakaruppan P, Paulmony T. Evaluation of a New Biosensor Based on in Situ Synthesized PPy-Ag-PVP Nanohybrid for Selective Detection of Dopamine. J Phys Chem B 2017; 121:1118-1127. [DOI: 10.1021/acs.jpcb.6b11225] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Tharmaraj Paulmony
- Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
| |
Collapse
|
73
|
Li WH. Probes for monitoring regulated exocytosis. Cell Calcium 2017; 64:65-71. [PMID: 28089267 DOI: 10.1016/j.ceca.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated secretion is a fundamental cellular process that serves diverse functions in neurobiology, endocrinology, immunology, and numerous other aspects of animal physiology. In response to environmental or biological cues, cells release contents of secretory granules into an extracellular medium to communicate with or impact neighboring or distant cells through paracrine or endocrine signaling. To investigate mechanisms governing stimulus-secretion coupling, to better understand how cells maintain or regulate their secretory activity, and to characterize secretion defects in human diseases, probes for tracking various exocytotic events at the cellular or sub-cellular level have been developed over the years. This review summarizes different strategies and recent progress in developing optical probes for monitoring regulated secretion in mammalian cells.
Collapse
Affiliation(s)
- Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9039, United States.
| |
Collapse
|
74
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
75
|
Gale EM, Jones CM, Ramsay I, Farrar CT, Caravan P. A Janus Chelator Enables Biochemically Responsive MRI Contrast with Exceptional Dynamic Range. J Am Chem Soc 2016; 138:15861-15864. [PMID: 27960350 PMCID: PMC5328420 DOI: 10.1021/jacs.6b10898] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We introduce a new biochemically responsive Mn-based MRI contrast agent that provides a 9-fold change in relaxivity via switching between the Mn3+ and Mn2+ oxidation states. Interchange between oxidation states is promoted by a "Janus" ligand that isomerizes between binding modes that favor Mn3+ or Mn2+. It is the only ligand that supports stable complexes of Mn3+ and Mn2+ in biological milieu. Rapid interconversion between oxidation states is mediated by peroxidase activity (oxidation) and l-cysteine (reduction). This Janus system provides a new paradigm for the design of biochemically responsive MRI contrast agents.
Collapse
Affiliation(s)
- Eric M. Gale
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Chloe M. Jones
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Ian Ramsay
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Christian T. Farrar
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129
| |
Collapse
|
76
|
Desai M, Slusarczyk AL, Chapin A, Barch M, Jasanoff A. Molecular imaging with engineered physiology. Nat Commun 2016; 7:13607. [PMID: 27910951 PMCID: PMC5146284 DOI: 10.1038/ncomms13607] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
In vivo imaging techniques are powerful tools for evaluating biological systems. Relating image signals to precise molecular phenomena can be challenging, however, due to limitations of the existing optical, magnetic and radioactive imaging probe mechanisms. Here we demonstrate a concept for molecular imaging which bypasses the need for conventional imaging agents by perturbing the endogenous multimodal contrast provided by the vasculature. Variants of the calcitonin gene-related peptide artificially activate vasodilation pathways in rat brain and induce contrast changes that are readily measured by optical and magnetic resonance imaging. CGRP-based agents induce effects at nanomolar concentrations in deep tissue and can be engineered into switchable analyte-dependent forms and genetically encoded reporters suitable for molecular imaging or cell tracking. Such artificially engineered physiological changes, therefore, provide a highly versatile means for sensitive analysis of molecular events in living organisms.
Collapse
Affiliation(s)
- Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Adrian L. Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Ashley Chapin
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Mariya Barch
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
77
|
Reward magnitude tracking by neural populations in ventral striatum. Neuroimage 2016; 146:1003-1015. [PMID: 27789262 DOI: 10.1016/j.neuroimage.2016.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Evaluation of the magnitudes of intrinsically rewarding stimuli is essential for assigning value and guiding behavior. By combining parametric manipulation of a primary reward, medial forebrain bundle (MFB) microstimulation, with functional magnetic imaging (fMRI) in rodents, we delineated a broad network of structures activated by behaviorally characterized levels of rewarding stimulation. Correlation of psychometric behavioral measurements with fMRI response magnitudes revealed regions whose activity corresponded closely to the subjective magnitude of rewards. The largest and most reliable focus of reward magnitude tracking was observed in the shell region of the nucleus accumbens (NAc). Although the nonlinear nature of neurovascular coupling complicates interpretation of fMRI findings in precise neurophysiological terms, reward magnitude tracking was not observed in vascular compartments and could not be explained by saturation of region-specific hemodynamic responses. In addition, local pharmacological inactivation of NAc changed the profile of animals' responses to rewards of different magnitudes without altering mean reward response rates, further supporting a hypothesis that neural population activity in this region contributes to assessment of reward magnitudes.
Collapse
|
78
|
Hai A, Cai LX, Lee T, Lelyveld VS, Jasanoff A. Molecular fMRI of Serotonin Transport. Neuron 2016; 92:754-765. [PMID: 27773583 DOI: 10.1016/j.neuron.2016.09.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/29/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Reuptake of neurotransmitters from the brain interstitium shapes chemical signaling processes and is disrupted in several pathologies. Serotonin reuptake in particular is important for mood regulation and is inhibited by first-line drugs for treatment of depression. Here we introduce a molecular-level fMRI technique for micron-scale mapping of serotonin transport in live animals. Intracranial injection of an MRI-detectable serotonin sensor complexed with serotonin, together with serial imaging and compartmental analysis, permits neurotransmitter transport to be quantified as serotonin dissociates from the probe. Application of this strategy to much of the striatum and surrounding areas reveals widespread nonsaturating serotonin removal with maximal rates in the lateral septum. The serotonin reuptake inhibitor fluoxetine selectively suppresses serotonin removal in septal subregions, whereas both fluoxetine and a dopamine transporter blocker depress reuptake in striatum. These results highlight promiscuous pharmacological influences on the serotonergic system and demonstrate the utility of molecular fMRI for characterization of neurochemical dynamics.
Collapse
Affiliation(s)
- Aviad Hai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lili X Cai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Taekwan Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Victor S Lelyveld
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
79
|
Abstract
UNLABELLED Comprehensive analysis of brain function depends on understanding the dynamics of diverse neural signaling processes over large tissue volumes in intact animals and humans. Most existing approaches to measuring brain signaling suffer from limited tissue penetration, poor resolution, or lack of specificity for well-defined neural events. Here we discuss a new brain activity mapping method that overcomes some of these problems by combining MRI with contrast agents sensitive to neural signaling. The goal of this "molecular fMRI" approach is to permit noninvasive whole-brain neuroimaging with specificity and resolution approaching current optical neuroimaging methods. In this article, we describe the context and need for molecular fMRI as well as the state of the technology today. We explain how major types of MRI probes work and how they can be sensitized to neurobiological processes, such as neurotransmitter release, calcium signaling, and gene expression changes. We comment both on past work in the field and on challenges and promising avenues for future development. SIGNIFICANCE STATEMENT Brain researchers currently have a choice between measuring neural activity using cellular-level recording techniques, such as electrophysiology and optical imaging, or whole-brain imaging methods, such as fMRI. Cellular level methods are precise but only address a small portion of mammalian brains; on the other hand, whole-brain neuroimaging techniques provide very little specificity for neural pathways or signaling components of interest. The molecular fMRI techniques we discuss have particular potential to combine the specificity of cellular-level measurements with the noninvasive whole-brain coverage of fMRI. On the other hand, molecular fMRI is only just getting off the ground. This article aims to offer a snapshot of the status and future prospects for development of molecular fMRI techniques.
Collapse
|
80
|
Pu F, Salarian M, Xue S, Qiao J, Feng J, Tan S, Patel A, Li X, Mamouni K, Hekmatyar K, Zou J, Wu D, Yang JJ. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. NANOSCALE 2016; 8:12668-82. [PMID: 26961235 PMCID: PMC5528195 DOI: 10.1039/c5nr09071g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd(3+) contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd(3+) binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10(-22) M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM(-1) s(-1) and r2 of 37.9 mM(-1) s(-1) per Gd (55.2 and 75.8 mM(-1) s(-1) per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM(-1) s(-1) per Gd (188.0 mM(-1) s(-1) per molecule) and r1 of 18.6 mM(-1) s(-1) per Gd (37.2 mM(-1) s(-1) per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.
Collapse
Affiliation(s)
- Fan Pu
- Departments of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres.
Collapse
|
82
|
Gündüz S, Savić T, Pohmann R, Logothetis NK, Scheffler K, Angelovski G. Ratiometric Method for Rapid Monitoring of Biological Processes Using Bioresponsive MRI Contrast Agents. ACS Sens 2016; 1:483-487. [PMID: 29261290 DOI: 10.1021/acssensors.6b00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioresponsive magnetic resonance imaging (MRI) contrast agents hold great potential for noninvasive tracking of essential biological processes. Consequently, a number of MR sensors for several imaging protocols have been developed, attempting to produce the maximal signal difference for a given event. Here we introduce an approach which could substantially improve the detection of physiological events with fast kinetics. We developed a nanosized, calcium-sensitive dendrimeric probe that changes longitudinal and transverse relaxation times with different magnitudes. The change in their ratio is rapidly recorded by means of a balanced steady-state free precession (bSSFP) imaging protocol. The employed methodology results in an almost four times greater signal gain per unit of time as compared to conventional T1-weighted imaging with small sized contrast agents. Furthermore, it is suitable for high resolution functional MRI at high magnetic fields. This methodology could evolve into a valuable tool for rapid monitoring of various biological events.
Collapse
Affiliation(s)
| | | | | | - Nikos K. Logothetis
- Department
of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Klaus Scheffler
- Department
for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
83
|
Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2439-2442. [PMID: 27151829 DOI: 10.1002/smll.201503874] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/11/2016] [Indexed: 06/05/2023]
Abstract
A controlled assembly of natural beta-cyclodextrin modified Au NPs mediated by dopamine is demonstrated. Furthermore, a simple and sensitive colorimetric detection for dopamine is established by the concentration-dependent assembly.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Wei Liu
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | | | - Danny Haubold
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | - Matthias Holzschuh
- Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | - Frank Simon
- Physical Chemistry and Physics of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | | |
Collapse
|
84
|
Angelovski G. What We Can Really Do with Bioresponsive MRI Contrast Agents. Angew Chem Int Ed Engl 2016; 55:7038-46. [DOI: 10.1002/anie.201510956] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Goran Angelovski
- MR Neuroimaging Agents; Max Planck Institute for Biological Cybernetics; Spemannstrasse 41 72076 Tübingen Germany
| |
Collapse
|
85
|
Angelovski G. Biosensitive Kontrastmittel für die Magnetresonanztomographie - was wir mit ihnen wirklich tun können. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Goran Angelovski
- MRT-Kontrastmittel für Neuroimaging; Max-Planck-Institut für biologische Kybernetik; Spemannstraße 41 72076 Tübingen Deutschland
| |
Collapse
|
86
|
Yamada H, Kameda T, Kimura Y, Imai H, Matsuda T, Sando S, Toshimitsu A, Aoyama Y, Kondo T. (13)C/(15)N-Enriched l-Dopa as a Triple-Resonance NMR Probe to Monitor Neurotransmitter Dopamine in the Brain and Liver Extracts of Mice. ChemistryOpen 2016; 5:125-8. [PMID: 27308224 PMCID: PMC4906467 DOI: 10.1002/open.201500196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 12/28/2022] Open
Abstract
In an attempt to monitor μm-level trace constituents, we applied here (1)H-{(13)C-(15)N} triple-resonance nuclear magnetic resonance (NMR) to (13)C/(15)N-enriched l-Dopa as the inevitable precursor of the neurotransmitter dopamine in the brain. The perfect selectivity (to render endogenous components silent) and μm-level sensitivity (700 MHz spectrometer equipped with a cryogenic probe) of triple-resonance allowed the unambiguous and quantitative metabolic and pharmacokinetic analyses of administered l-Dopa/dopamine in the brain and liver of mice. The level of dopamine generated in the brain (within the range 7-76 μm, which covers the typical stimulated level of ∼30 μm) could be clearly monitored ex vivo, but was slightly short of the detection limit of a 7 T MR machine for small animals. This work suggests that μm-level trace constituents are potential targets of ex vivo monitoring as long as they contain N atom(s) and their appropriate (13)C/(15)N-enrichment is synthetically accessible.
Collapse
Affiliation(s)
- Hisatsugu Yamada
- Advanced Biomedical Engineering Research UnitCenter for the Promotion of Interdisciplinary Education and ResearchKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
- Department of Life SystemsInstitute of Technology and Science Graduate SchoolTokushima UniversityTokushima770-8506Japan
| | - Tetsuro Kameda
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Yu Kimura
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
- Research and Educational Unit of Leaders for Integrated Medical SystemCenter for the Promotion of Interdisciplinary Education and ResearchKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Hirohiko Imai
- Department of Systems ScienceGraduate School of InformaticsKyoto University, Yoshida-honmachi, Sakyo-kuKyoto606-8501Japan
| | - Tetsuya Matsuda
- Department of Systems ScienceGraduate School of InformaticsKyoto University, Yoshida-honmachi, Sakyo-kuKyoto606-8501Japan
| | - Shinsuke Sando
- Department of Chemistry and BiotechnologyThe University of Tokyo, 7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Akio Toshimitsu
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
- Division of Multidisciplinary ChemistryInstitute for Chemical ResearchKyoto University, Gokanosho, UjiKyoto611-0011Japan
| | | | - Teruyuki Kondo
- Advanced Biomedical Engineering Research UnitCenter for the Promotion of Interdisciplinary Education and ResearchKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| |
Collapse
|
87
|
Garello F, Vibhute S, Gündüz S, Logothetis NK, Terreno E, Angelovski G. Innovative Design of Ca-Sensitive Paramagnetic Liposomes Results in an Unprecedented Increase in Longitudinal Relaxivity. Biomacromolecules 2016; 17:1303-11. [PMID: 26956911 DOI: 10.1021/acs.biomac.5b01668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bioresponsive MRI contrast agents sensitive to Ca(II) fluctuations may play a critical role in the development of functional molecular imaging methods to study brain physiology or abnormalities in muscle contraction. A great challenge in their chemistry is the preparation of probes capable of inducing a strong signal variation that could be detected in a robust way. To this end, the incorporation of small molecular weight bioresponsive agents into nanocarriers can improve the overall properties in a few ways: (i) the agent can be delivered into the tissue of interest, increasing the local concentration; (ii) its biokinetic properties and retention time will improve; (iii) the high molecular weight and size of the nanocarrier may cause additional changes in the MRI signal and raise the chances for their detection in functional experiments. In this work, we report the preparation of the new class of liposome-based, Ca-sensitive MRI agents. We synthesized a novel amphiphilic ligand which was incorporated into the liposome bilayer. A remarkable increase of ∼420% in longitudinal relaxivity r1, from 7.3 mM(-1) s(-1) to 38.1 mM(-1) s(-1) at 25 °C and 21.5 MHz in the absence and presence of Ca(II), respectively, was achieved by the most active liposomal formulation. To the best of our knowledge, this is the highest change in r1 observed for Ca-sensitive agents at physiological pH and can be explained by simultaneous Ca-triggered increase in hydration and reduction of local motion of Gd(III) complex, which can be followed at low magnetic fields.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino , Via Nizza 52, 10126 Torino, Italy
| | - Sandip Vibhute
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , 72076 Tübingen, Germany
| | - Serhat Gündüz
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstrasse 41, 72076 Tübingen, Germany
| | - Nikos K Logothetis
- Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics , 72076 Tübingen, Germany.,Department of Imaging Science and Biomedical Engineering, University of Manchester , Manchester M13 9PT, United Kingdom
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino , Via Nizza 52, 10126 Torino, Italy
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics , Spemannstrasse 41, 72076 Tübingen, Germany
| |
Collapse
|
88
|
Keiflin R, Janak PH. Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry. Neuron 2016; 88:247-63. [PMID: 26494275 DOI: 10.1016/j.neuron.2015.08.037] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error signaling and addiction can be formulated and tested.
Collapse
Affiliation(s)
- Ronald Keiflin
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
89
|
Nanosensors for neurotransmitters. Anal Bioanal Chem 2015; 408:2727-41. [DOI: 10.1007/s00216-015-9160-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 01/14/2023]
|
90
|
Cossette MP, Conover K, Shizgal P. The neural substrates for the rewarding and dopamine-releasing effects of medial forebrain bundle stimulation have partially discrepant frequency responses. Behav Brain Res 2015; 297:345-58. [PMID: 26477378 DOI: 10.1016/j.bbr.2015.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
Abstract
Midbrain dopamine neurons have long been implicated in the rewarding effect produced by electrical brain stimulation of the medial forebrain bundle (MFB). These neurons are excited trans-synaptically, but their precise role in intracranial self-stimulation (ICSS) has yet to be determined. This study assessed the hypothesis that midbrain dopamine neurons are in series with the directly stimulated substrate for self-stimulation of the MFB and either perform spatio-temporal integration of synaptic input from directly activated MFB fibers or relay the results of such integration to efferent stages of the reward circuitry. Psychometric current-frequency trade-off functions were derived from ICSS performance, and chemometric trade-off functions were derived from stimulation-induced dopamine transients in the nucleus accumbens (NAc) shell, measured by means of fast-scan cyclic voltammetry. Whereas the psychometric functions decline monotonically over a broad range of pulse frequencies and level off only at high frequencies, the chemometric functions obtained with the same rats and electrodes are either U-shaped or level off at lower pulse frequencies. This discrepancy was observed when the dopamine transients were recorded in either anesthetized or awake subjects. The lack of correspondence between the psychometric and chemometric functions is inconsistent with the hypothesis that dopamine neurons projecting to the NAc shell constitute an entire series stage of the neural circuit subserving self-stimulation of the MFB.
Collapse
Affiliation(s)
- M-P Cossette
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, 7141 Sherbrooke Street West, SP-244, Montréal, Québec H4B 1R6, Canada.
| | - K Conover
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, 7141 Sherbrooke Street West, SP-244, Montréal, Québec H4B 1R6, Canada.
| | - P Shizgal
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, 7141 Sherbrooke Street West, SP-244, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
91
|
Moussaron A, Vibhute S, Bianchi A, Gündüz S, Kotb S, Sancey L, Motto-Ros V, Rizzitelli S, Crémillieux Y, Lux F, Logothetis NK, Tillement O, Angelovski G. Ultrasmall Nanoplatforms as Calcium-Responsive Contrast Agents for Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4900-4909. [PMID: 26179212 DOI: 10.1002/smll.201500312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/17/2015] [Indexed: 06/04/2023]
Abstract
The preparation of ultrasmall and rigid platforms (USRPs) that are covalently coupled to macrocycle-based, calcium-responsive/smart contrast agents (SCAs), and the initial in vitro and in vivo validation of the resulting nanosized probes (SCA-USRPs) by means of magnetic resonance imaging (MRI) is reported. The synthetic procedure is robust, allowing preparation of the SCA-USRPs on a multigram scale. The resulting platforms display the desired MRI activity—i.e., longitudinal relaxivity increases almost twice at 7 T magnetic field strength upon saturation with Ca(2+). Cell viability is probed with the MTT assay using HEK-293 cells, which show good tolerance for lower contrast agent concentrations over longer periods of time. On intravenous administration of SCA-USRPs in living mice, MRI studies indicate their rapid accumulation in the renal pelvis and parenchyma. Importantly, the MRI signal increases in both kidney compartments when CaCl2 is also administrated. Laser-induced breakdown spectroscopy experiments confirm accumulation of SCA-USRPs in the renal cortex. To the best of our knowledge, these are the first studies which demonstrate calcium-sensitive MRI signal changes in vivo. Continuing contrast agent and MRI protocol optimizations should lead to wider application of these responsive probes and development of superior functional methods for monitoring calcium-dependent physiological and pathological processes in a dynamic manner.
Collapse
Affiliation(s)
- Albert Moussaron
- Laboratoire MATEIS, INSA de Lyon, 69621, Villeurbanne Cedex, France
| | - Sandip Vibhute
- Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Andrea Bianchi
- CRMSB, UMR 5536, Université Bordeaux, 33076, Bordeaux, France
| | - Serhat Gündüz
- MR Neuroimaging Agents Group, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Shady Kotb
- Institut Lumière Matière, UMR CNRS 5306 - Université Lyon 1, 69622, Villeurbanne Cedex, France
| | - Lucie Sancey
- Institut Lumière Matière, UMR CNRS 5306 - Université Lyon 1, 69622, Villeurbanne Cedex, France
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR CNRS 5306 - Université Lyon 1, 69622, Villeurbanne Cedex, France
| | | | | | - Francois Lux
- Institut Lumière Matière, UMR CNRS 5306 - Université Lyon 1, 69622, Villeurbanne Cedex, France
| | - Nikos K Logothetis
- Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
- Department of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| | - Olivier Tillement
- Institut Lumière Matière, UMR CNRS 5306 - Université Lyon 1, 69622, Villeurbanne Cedex, France
| | - Goran Angelovski
- MR Neuroimaging Agents Group, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| |
Collapse
|
92
|
Gündüz S, Nitta N, Vibhute S, Shibata S, Mayer ME, Logothetis NK, Aoki I, Angelovski G. Dendrimeric calcium-responsive MRI contrast agents with slow in vivo diffusion. Chem Commun (Camb) 2015; 51:2782-5. [PMID: 25383973 DOI: 10.1039/c4cc07540d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report a methodology which enables the preparation of dendrimeric contrast agents sensitive to Ca(2+) when starting from the monomeric analogue. The Ca-triggered longitudinal relaxivity response of these agents is not compromised by undertaking synthetic transformations, despite structural changes. The in vivo MRI studies in the rat cerebral cortex indicate that diffusion properties of dendrimeric contrast agents have great advantages as compared to their monomeric equivalents.
Collapse
Affiliation(s)
- Serhat Gündüz
- MR Neuroimaging Agents Group, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Liu S, Cai W, Liu S, Zhang F, Fulham M, Feng D, Pujol S, Kikinis R. Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform 2015; 2:167-180. [PMID: 27747507 PMCID: PMC4737664 DOI: 10.1007/s40708-015-0019-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022] Open
Abstract
Multimodal neuroimaging is increasingly used in neuroscience research, as it overcomes the limitations of individual modalities. One of the most important applications of multimodal neuroimaging is the provision of vital diagnostic data for neuropsychiatric disorders. Multimodal neuroimaging computing enables the visualization and quantitative analysis of the alterations in brain structure and function, and has reshaped how neuroscience research is carried out. Research in this area is growing exponentially, and so it is an appropriate time to review the current and future development of this emerging area. Hence, in this paper, we review the recent advances in multimodal neuroimaging (MRI, PET) and electrophysiological (EEG, MEG) technologies, and their applications to the neuropsychiatric disorders. We also outline some future directions for multimodal neuroimaging where researchers will design more advanced methods and models for neuropsychiatric research.
Collapse
Affiliation(s)
- Sidong Liu
- School of IT, The University of Sydney, Sydney, Australia.
| | - Weidong Cai
- School of IT, The University of Sydney, Sydney, Australia
| | - Siqi Liu
- School of IT, The University of Sydney, Sydney, Australia
| | - Fan Zhang
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Michael Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, and the Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dagan Feng
- School of IT, The University of Sydney, Sydney, Australia
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Sonia Pujol
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| | - Ron Kikinis
- Surgical Planning Laboratory, Harvard Medical School, Boston, USA
| |
Collapse
|
94
|
Oukhatar F, Meudal H, Landon C, Logothetis NK, Platas-Iglesias C, Angelovski G, Tóth É. Macrocyclic Gd3+Complexes with Pendant Crown Ethers Designed for Binding Zwitterionic Neurotransmitters. Chemistry 2015; 21:11226-37. [DOI: 10.1002/chem.201500542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/23/2022]
|
95
|
Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JWM. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 2015; 8:323-36. [PMID: 26035841 PMCID: PMC4381332 DOI: 10.1242/dmm.018499] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deepak K Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amnon Bar-Shir
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Assaf A Gilad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA. Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
96
|
Future advances. HANDBOOK OF CLINICAL NEUROLOGY 2015. [PMID: 25726297 DOI: 10.1016/b978-0-444-62630-1.00038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Future advances in the auditory systems are difficult to predict, and only educated guesses are possible. It is expected that innovative technologies in the field of neuroscience will be applied to the auditory system. Optogenetics, Brainbow, and CLARITY will improve our knowledge of the working of neural auditory networks and the relationship between sound and language, providing a dynamic picture of the brain in action. CLARITY makes brain tissue transparent and offers a three-dimensional view of neural networks, which, combined with genetically labeling neurons with multiple, distinct colors (Optogenetics), will provide detailed information of the complex brain system. Molecular functional magnetic resonance imaging (MRI) will allow the study of neurotransmitters detectable by MRI and their function in the auditory pathways. The Human Connectome project will study the patterns of distributed brain activity that underlie virtually all aspects of cognition and behavior and determine if abnormalities in the distributed patterns of activity may result in hearing and behavior disorders. Similarly, the programs of Big Brain and ENIGMA will improve our understanding of auditory disorders. New stem-cell therapy and gene therapies therapy may bring about a partial restoration of hearing for impaired patients by inducing regeneration of cochlear hair cells.
Collapse
|
97
|
Oukhatar F, Même S, Même W, Szeremeta F, Logothetis NK, Angelovski G, Tóth É. MRI sensing of neurotransmitters with a crown ether appended Gd(3+) complex. ACS Chem Neurosci 2015; 6:219-25. [PMID: 25496344 DOI: 10.1021/cn500289y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Molecular magnetic resonance imaging (MRI) approaches that detect biomarkers associated with neural activity would allow more direct observation of brain function than current functional MRI based on blood-oxygen-level-dependent contrast. Our objective was to create a synthetic molecular platform with appropriate recognition moieties for zwitterionic neurotransmitters that generate an MR signal change upon neurotransmitter binding. The gadolinium complex (GdL) we report offers ditopic binding for zwitterionic amino acid neurotransmitters, via interactions (i) between the positively charged and coordinatively unsaturated metal center and the carboxylate function and (ii) between a triazacrown ether and the amine group of the neurotransmitters. GdL discriminates zwitterionic neurotransmitters from monoamines. Neurotransmitter binding leads to a remarkable relaxivity change, related to a decrease in hydration number. GdL was successfully used to monitor neural activity in ex vivo mouse brain slices by MRI.
Collapse
Affiliation(s)
- Fatima Oukhatar
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
- Department
for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Sandra Même
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - William Même
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Frédéric Szeremeta
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Nikos K. Logothetis
- Department
for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Department
of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Goran Angelovski
- MR
Neuroimaging Agents Group, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076 Tübingen, Germany
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| |
Collapse
|
98
|
Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1453-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
99
|
Liang R, Broussard GJ, Tian L. Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem Neurosci 2015; 6:84-93. [PMID: 25565280 DOI: 10.1021/cn500280k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A major challenge in neuroscience is to decipher the logic of neural circuitry and to link it to learning, memory, and behavior. Synaptic transmission is a critical event underlying information processing within neural circuitry. In the extracellular space, the concentrations and distributions of excitatory, inhibitory, and modulatory neurotransmitters impact signal integration, which in turn shapes and refines the function of neural networks. Thus, the determination of the spatiotemporal relationships between these chemical signals with synaptic resolution in the intact brain is essential to decipher the codes for transferring information across circuitry and systems. Here, we review approaches and probes that have been employed to determine the spatial and temporal extent of neurotransmitter dynamics in the brain. We specifically focus on the design, screening, characterization, and application of genetically encoded indicators directly probing glutamate, the most abundant excitatory neurotransmitter. These indicators provide synaptic resolution of glutamate dynamics with cell-type specificity. We also discuss strategies for developing a suite of genetically encoded probes for a variety of neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Ruqiang Liang
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Gerard Joseph Broussard
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Lin Tian
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| |
Collapse
|
100
|
Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW. Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One 2014; 9:e108232. [PMID: 25268786 PMCID: PMC4182469 DOI: 10.1371/journal.pone.0108232] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.
Collapse
Affiliation(s)
- Peter J. Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Hideaki H. Yano
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Ganjam V. Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan A. Javitch
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|