51
|
Lee CM, Park SH, Nam MJ. Anticarcinogenic effect of indole-3-carbinol (I3C) on human hepatocellular carcinoma SNU449 cells. Hum Exp Toxicol 2018; 38:136-147. [DOI: 10.1177/0960327118785235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cruciferous vegetables, including cabbage, contain indole-3-carbinol (I3C), which is a known anticarcinogen. However, the anticarcinogenic effects of I3C on liver cancer have not been investigated. Therefore, this study was conducted to evaluate the anticarcinogenic effects of I3C in human hepatocellular carcinoma (HCC) SNU449 cells. The results of MTT and WST-1 assays indicated that treatment of SNU449 cells with I3C decreased viability in dose- and time-dependent manners, while colony formation assays indicated that I3C also inhibited proliferation of SNU449 cells. Moreover, fluorescence-activated cell sorter analysis showed that I3C induced apoptosis in SNU449 cells in dose- and time-dependent manners. Furthermore, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling revealed that I3C induced DNA fragmentation in SNU449 cells in a time-dependent manner, while Western blotting showed that apoptotic proteins such as p53, cleaved PARP, caspase-3, and caspase-7 were activated in SNU449 cells following treatment with I3C. Finally, reactive oxygen species-related protein peroxiredoxin-1 and thioredoxin-1 expression decreased in I3C-treated SNU449 cells. The aim of our study is to investigate the unknown mechanisms responsible for the apoptotic effects of I3C on human HCC SNU449 cells, and the results suggest that I3C may be useful for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- CM Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - S-H Park
- Department of Biological and Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - MJ Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
52
|
Ray S, Tillo D, Assad N, Ufot A, Deppmann C, Durell SR, Porollo A, Vinson C. Replacing C189 in the bZIP domain of Zta with S, T, V, or A changes DNA binding specificity to four types of double-stranded DNA. Biochem Biophys Res Commun 2018; 501:905-912. [PMID: 29772230 DOI: 10.1016/j.bbrc.2018.05.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 11/15/2022]
Abstract
Zta is a bZIP transcription factor (TF) in the Epstein-Barr virus that binds unmethylated and methylated DNA sequences. Substitution of cysteine 189 of Zta to serine (Zta(C189S)) results in a virus that is unable to execute the lytic cycle, which was attributed to a change in binding to methylated DNA sequences. To learn more about the role of this position in defining sequence-specific DNA binding, we mutated cysteine 189 to four other amino acids, producing Zta(C189S), Zta(C189T), Zta(C189A), and Zta(C189V) mutants. Zta and mutants were used in protein binding microarray (PBM) experiments to evaluate sequence-specific DNA binding to four types of double-stranded DNA (dsDNA): 1) with cytosine in both strands (DNA(C|C)), 2) with 5-methylcytosine (5mC) in one strand and cytosine in the second strand (DNA(5mC|C)), 3) with 5-hydroxymethylcytosine (5hmC) in one strand and cytosine in the second strand (DNA(5hmC|C)), and 4) with both cytosines in all CG dinucleotides containing 5mC (DNA(5mCG)). Zta(C189S) and Zta(C189T) bound the TRE (AP-1) motif (TGAG/CTCA) more strongly than wild-type Zta, while binding to other sequences, including the C/EBP half site GCAA was reduced. Binding of Zta(C189S) and Zta(C189T) to DNA containing modified cytosines (DNA(5mC|C), DNA(5hmC|C), and DNA(5mCG)) was reduced compared to Zta. Zta(C189A) and Zta(C189V) had higher non-specific binding to all four types of DNA. Our data suggests that position C189 in Zta impacts sequence-specific binding to DNA containing modified and unmodified cytosine.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Desiree Tillo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nima Assad
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aniekanabasi Ufot
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
53
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
54
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
55
|
Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 2018; 69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Glutathione (γ-glutamyl-cysteinyl-glycine) is an intracellular thiol molecule and a potent antioxidant that participates in the toxic metabolism phase II biotransformation of xenobiotics. It can bind to a variety of proteins in a process known as glutathionylation. Protein glutathionylation is now recognised as one of important posttranslational regulatory mechanisms in cell and tissue physiology. Direct and indirect regulatory roles in physiological processes include glutathionylation of major transcriptional factors, eicosanoids, cytokines, and nitric oxide (NO). This review looks into these regulatory mechanisms through examples of glutathione regulation in apoptosis, vascularisation, metabolic processes, mitochondrial integrity, immune system, and neural physiology. The focus is on the physiological roles of glutathione beyond biotransformational metabolism.
Collapse
|
56
|
The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel) 2018; 10:cancers10040093. [PMID: 29597249 PMCID: PMC5923348 DOI: 10.3390/cancers10040093] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.
Collapse
|
57
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
58
|
Kladova OA, Bazlekowa-Karaban M, Baconnais S, Piétrement O, Ishchenko AA, Matkarimov BT, Iakovlev DA, Vasenko A, Fedorova OS, Le Cam E, Tudek B, Kuznetsov NA, Saparbaev M. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair (Amst) 2018; 64:10-25. [PMID: 29475157 DOI: 10.1016/j.dnarep.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3'-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1-DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme-substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate. SIGNIFICANCE STATEMENT The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.
Collapse
Affiliation(s)
- Olga A Kladova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Milena Bazlekowa-Karaban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Sonia Baconnais
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Olivier Piétrement
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Danila A Iakovlev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Andrey Vasenko
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Olga S Fedorova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Eric Le Cam
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Nikita A Kuznetsov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
59
|
Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 2018; 281:121-136. [PMID: 29258867 DOI: 10.1016/j.cbi.2017.12.024] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
60
|
Yin Z, Machius M, Nestler EJ, Rudenko G. Activator Protein-1: redox switch controlling structure and DNA-binding. Nucleic Acids Res 2017; 45:11425-11436. [PMID: 28981703 PMCID: PMC5737521 DOI: 10.1093/nar/gkx795] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/31/2017] [Indexed: 01/07/2023] Open
Abstract
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.
Collapse
Affiliation(s)
- Zhou Yin
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric J. Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA,To whom correspondence should be addressed. Tel: +1 409 772 6292; Fax: +1 409 772 9642;
| |
Collapse
|
61
|
Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Nucleic Acids Res 2017; 45:2503-2515. [PMID: 28158710 PMCID: PMC5389525 DOI: 10.1093/nar/gkx057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcription factor that recognizes two versions of a 7-base pair response element, either 5΄-TGAGTCA-3΄ or 5΄-MGAGTCA-3΄ (where M = 5-methylcytosine). These two elements share the feature that 5-methylcytosine and thymine both have a methyl group in the same position, 5-carbon of the pyrimidine, so each of them has two methyl groups at nucleotide positions 1 and 5 from the 5΄ end, resulting in four methyl groups symmetrically positioned in duplex DNA. Epstein-Barr Virus Zta is a key transcriptional regulator of the viral lytic cycle that is homologous to AP-1. Zta recognizes several methylated Zta-response elements, including meZRE1 (5΄-TGAGMCA-3΄) and meZRE2 (5΄-TGAGMGA-3΄), where a methylated cytosine occupies one of the inner thymine residues corresponding to the AP-1 element, resulting in the four spatially equivalent methyl groups. Here, we study how AP-1 and Zta recognize these methyl groups within their cognate response elements. These methyl groups are in van der Waals contact with a conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun), or with the corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom). Furthermore, the two ZRE elements differ at base pair 6 (C:G versus G:C), forming a pseudo-symmetric sequence (meZRE1) or an asymmetric sequence (meZRE2). In vitro DNA binding assays suggest that Zta has high affinity for all four sequences examined, whereas AP-1 has considerably reduced affinity for the asymmetric sequence (meZRE2). We ascribe this difference to Zta Ser186 (a unique residue for Zta) whose side chain hydroxyl oxygen atom interacts with the two half sites differently, whereas the corresponding Ala266 of AP-1 Jun protein lacks such flexibility. Our analyses demonstrate a novel mechanism of 5mC/T recognition in a methylation-dependent, spatial and sequence-specific approach by basic leucine-zipper transcriptional factors.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Molecular and Systems Pharmacology graduate program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel H Speck
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
62
|
Kanaan GN, Harper ME. Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj 2017; 1861:2822-2829. [PMID: 28778485 DOI: 10.1016/j.bbagen.2017.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022]
Abstract
To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings.
Collapse
Affiliation(s)
- Georges N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
63
|
Bekeschus S, Rödder K, Fregin B, Otto O, Lippert M, Weltmann KD, Wende K, Schmidt A, Gandhirajan RK. Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4396467. [PMID: 28761621 PMCID: PMC5518506 DOI: 10.1155/2017/4396467] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Katrin Rödder
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Bob Fregin
- ZIK HIKE, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| | - Oliver Otto
- ZIK HIKE, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| | - Maxi Lippert
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Rajesh Kumar Gandhirajan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
64
|
Audet GN, Dineen SM, Stewart DA, Plamper ML, Pathmasiri WW, McRitchie SL, Sumner SJ, Leon LR. Pretreatment with indomethacin results in increased heat stroke severity during recovery in a rodent model of heat stroke. J Appl Physiol (1985) 2017; 123:544-557. [PMID: 28596269 DOI: 10.1152/japplphysiol.00242.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
It has been suggested that medications can increase heat stroke (HS) susceptibility/severity. We investigated whether the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (INDO) increases HS severity in a rodent model. Core temperature (Tc) of male, C57BL/6J mice (n = 45) was monitored continuously, and mice were given a dose of INDO [low dose (LO) 1 mg/kg or high dose (HI) 5 mg/kg in flavored treat] or vehicle (flavored treat) before heating. HS animals were heated to 42.4°C and euthanized at three time points for histological, molecular, and metabolic analysis: onset of HS [maximal core temperature (Tc,Max)], 3 h of recovery [minimal core temperature or hypothermia depth (HYPO)], and 24 h of recovery (24 h). Nonheated (control) animals underwent identical treatment in the absence of heat. INDO (LO or HI) had no effect on physiological indicators of performance (e.g., time to Tc,Max, thermal area, or cooling time) during heating or recovery. HI INDO resulted in 45% mortality rate by 24 h (HI INDO + HS group). The gut showed dramatic increases in gross morphological hemorrhage in HI INDO + HS in both survivors and nonsurvivors. HI INDO + HS survivors had significantly lower red blood cell counts and hematocrit suggesting significant hemorrhage. In the liver, HS induced cell death at HYPO and increased inflammation at Tc,Max, HYPO, and 24 h; however, there was additional effect with INDO + HS group. Furthermore, the metabolic profile of the liver was disturbed by heat, but there was no additive effect of INDO + HS. This suggests that there is an increase in morbidity risk with INDO + HS, likely resulting from significant gut injury.NEW & NOTEWORTHY This paper suggests that in a translational mouse model, NSAIDs may be counterindicated in situations that put an individual at risk of heat injury. We show here that a small, single dose of the NSAID indomethacin before heat stroke has a dramatic and highly damaging effect on the gut, which ultimately leads to increased systemic morbidity.
Collapse
Affiliation(s)
- Gerald N Audet
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| | - Shauna M Dineen
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Delisha A Stewart
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Mark L Plamper
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Wimal W Pathmasiri
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Susan L McRitchie
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Susan J Sumner
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
65
|
Mishra M, Kowluru RA. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1761-1769. [PMID: 28478229 DOI: 10.1016/j.bbadis.2017.04.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 04/30/2017] [Indexed: 12/20/2022]
Abstract
In diabetes, matrix metalloproteinase-9 (MMP-9) is activated, which damages mitochondria, resulting in accelerated capillary cell apoptosis. Regulation of MMP-9 is controlled by multiple transcription factors including nuclear factor-kB (NF-kB) and activator protein-1 (AP-1). Binding of these transcription factors, however, can be regulated by poly(ADP-ribose) polymerase-1 (PARP-1), which forms a strong initiation complex at the promoter region and facilitates multiple rounds of gene transcription. This complex formation with the transcription factors is regulated by posttranslational acetylation of PARP-1, and in diabetes, the deacetylating enzyme, Sirt1, is inhibited. Our aim was to understand the role of PARP-1 in transcriptional regulation of MMP-9 in the development of diabetic retinopathy. Using human retinal endothelial cells, the effect of PARP-1 inhibition (pharmacologically by PJ34, 1μM; or genetically by its siRNA) on MMP-9 expression was investigated. The effect of PARP-1 acetylation on its binding at the MMP-9 promoter, and with NF-kB/AP-1, was investigated in the cells transfected with Sirt1. In vitro results were validated in the retinal microvessels from diabetic mice either administered PJ34, or overexpressing Sirt1. Inhibition of PARP-1 ameliorated hyperglycemia-induced increase in the binding of NF-kB/AP-1 at the MMP-9 promoter, decreased MMP-9 expression and ameliorated mitochondrial damage. Overexpression of Sirt1 attenuated diabetes-induced increase in PARP-1 binding at MMP-9 promoter or with NF-kB/AP-1. Thus, PARP-1, via manipulating the binding of NF-kB/AP-1 at the MMP-9 promoter, regulates MMP-9 expression, which helps maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, United States.
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
66
|
Abstract
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University, Düsseldorf, University, D-40225, Düsseldorf, Germany; .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich Heine University, D-40225, Düsseldorf, Germany;
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
67
|
Jung LA, Gebhardt A, Koelmel W, Ade CP, Walz S, Kuper J, von Eyss B, Letschert S, Redel C, d'Artista L, Biankin A, Zender L, Sauer M, Wolf E, Evan G, Kisker C, Eilers M. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. Oncogene 2017; 36:1911-1924. [PMID: 27748763 DOI: 10.1038/onc.2016.354] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
MYC genes have both essential roles during normal development and exert oncogenic functions during tumorigenesis. Expression of a dominant-negative allele of MYC, termed OmoMYC, can induce rapid tumor regression in mouse models with little toxicity for normal tissues. How OmoMYC discriminates between physiological and oncogenic functions of MYC is unclear. We have solved the crystal structure of OmoMYC and show that it forms a stable homodimer and as such recognizes DNA in the same manner as the MYC/MAX heterodimer. OmoMYC attenuates both MYC-dependent activation and repression by competing with MYC/MAX for binding to chromatin, effectively lowering MYC/MAX occupancy at its cognate binding sites. OmoMYC causes the largest decreases in promoter occupancy and changes in expression on genes that are invaded by oncogenic MYC levels. A signature of OmoMYC-regulated genes defines subgroups with high MYC levels in multiple tumor entities and identifies novel targets for the eradication of MYC-driven tumors.
Collapse
Affiliation(s)
- L A Jung
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - A Gebhardt
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - W Koelmel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - C P Ade
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - S Walz
- Comprehensive Cancer Center, Core Unit Bioinformatics, Biocenter, Würzburg, Germany
| | - J Kuper
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - B von Eyss
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - S Letschert
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - C Redel
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - L d'Artista
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - A Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Liverpool, New South Wales, Australia
| | - L Zender
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - M Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - E Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - G Evan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - C Kisker
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - M Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
68
|
Lee TM, Chang NC, Lin SZ. Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3β-dependent pathway. J Transl Med 2017; 97:243-255. [PMID: 27991911 DOI: 10.1038/labinvest.2016.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
Although endothelin (ET)-1 has been shown to upregulate nerve growth factor (NGF) expression, the molecular mechanisms are largely unknown. Phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase (GSK)-3β signal has been implicated in the regulation of NGF. We investigated whether selective ET receptor blockers attenuated cardiac sympathetic reinnervation through restoring PI3K/Akt/GSK-3β activity. After ligation of the left anterior descending artery, male Wistar rats were randomized to either vehicle, atrasentan (an ETA receptor antagonist) or A-192621 (an ETB receptor antagonist) for 4 weeks. Sympathetic hyperinnervation after infarction was confirmed by myocardial norepinephrine measurement and immunofluorescent analysis. Post infarction was associated with increased reactive oxygen species (ROS), as measured by myocardial superoxide levels and dihydroethidine fluorescence staining. This was paralleled by a significant upregulation of NGF expression on mRNA and protein levels in the vehicle-treated rats, which reduced after administering atrasentan, not A-192621. Arrhythmic scores in the vehicle-treated rats were significantly higher than those treated with atrasentan. In an in vivo study atrasentan-induced decreased NGF was associated with activation of PI3K/Akt signaling pathway, which was further confirmed by the ex vivo study showing the restoration of NGF levels after coadministration of PI3K inhibitors (wortmannin and LY294002). Lithium chloride, an inhibitor of GSK-3β, did not provide additional attenuated NGF levels compared with atrasentan alone. Finally, atrasentan-attenuated NGF levels were reversed in the presence of peroxynitrite generator. ETA receptor antagonism is a mediator to attenuate sympathetic hyperinnervation probably through restoration of PI3K/Akt/GSK-3β/ROS signaling pathway, a potential pharmacological target for arrhythmias after infarction.
Collapse
Affiliation(s)
- T-M Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Bioinnovation Center, Tzu Chi foundation, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
69
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
70
|
Roh T, Kim SW, Moon SH, Nam MJ. Genistein induces apoptosis by down-regulating thioredoxin-1 in human hepatocellular carcinoma SNU-449 cells. Food Chem Toxicol 2016; 97:127-134. [PMID: 27597132 DOI: 10.1016/j.fct.2016.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022]
Abstract
Genistein (GEN), a natural isoflavonoid phytoestrogen, has anti-cancer activity against various types of cancers. However, GEN has not been thoroughly investigated in human hepatocellular carcinoma cells. In this study, we evaluated the anti-cancer effects of GEN on SNU-449 cells. GEN inhibited the proliferation of SNU-449 cells in a concentration-dependent manner. We observed the typical characteristics of apoptosis, such as DNA fragmentation and caspase-3 activation. To identify proteins related to GEN-induced apoptosis, we performed two-dimensional electrophoresis and identified differentially expressed proteins. Proteomic analysis showed that the antioxidant protein thioredoxin-1 was associated with GEN-induced apoptosis. GEN treatment decreased thioredoxin-1 levels and increased intracellular accumulation of reactive oxygen species. In addition, GEN activated apoptosis signal-regulating kinase 1, c-Jun N-terminal kinases (JNK) and p38. We also observed that pretreatment with the JNK and p38 inhibitors (SP600125 and SB203580) decreased GEN-induced cell death. These results indicate that GEN has potential antitumor effects against SNU-449 cells through the down-regulation of thioredoxin-1.
Collapse
Affiliation(s)
- Taylor Roh
- Department of Biological Science, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Sung Won Kim
- Department of Biological Science, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Soung Hoon Moon
- Department of Biological Science, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| |
Collapse
|
71
|
Abstract
SIGNIFICANCE For a healthy cell to turn into a cancer cell and grow out to become a tumor, it needs to undergo a series of complex changes and acquire certain traits, summarized as "The Hallmarks of Cancer." These hallmarks can all be regarded as the result of altered signal transduction cascades and an understanding of these cascades is essential for cancer treatment. RECENT ADVANCES Redox signaling is a long overlooked form of signal transduction that proceeds through the reversible oxidation of cysteines in proteins and that uses hydrogen peroxide as a second messenger. CRITICAL ISSUES In this article, we provide examples that show that redox signaling is involved in the regulation of proteins and signaling cascades that play roles in every hallmark of cancer. FUTURE DIRECTIONS An understanding of how redox signaling and "classical" signal transduction are intertwined could hold promising strategies for cancer therapy in the future. Antioxid. Redox Signal. 25, 300-325.
Collapse
Affiliation(s)
- Marten Hornsveld
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Tobias B Dansen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
72
|
Abstract
Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes.
Collapse
Affiliation(s)
- Rabii Ameziane-El-Hassani
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- Unité de Biologie et de Recherche Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires, BP 1382, Rabat M-10001, Morocco
| | - Martin Schlumberger
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- University Paris-Saclay, Orsay F-91400, France
| | - Corinne Dupuy
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- University Paris-Saclay, Orsay F-91400, France
| |
Collapse
|
73
|
Kullik I, Storz G. Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes. Redox Rep 2016; 1:23-9. [DOI: 10.1080/13510002.1994.11746951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
74
|
Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339202000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
75
|
Abstract
Recent studies have shown that excitotoxicity can result in either neuronal necrosis (passive cell lysis associated with energy failure) or apoptosis (active cell death requiring energy production). The type of cell death encountered by neuronal cell cultures exposed to excessive levels of excitatory amino acids—such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO) and superoxide anion (O2 -), which react to form peroxynitrite (ONOO-)—depends on the intensity of the exposure and may involve two temporally distinct phases. After relatively fulminant insults, an initial phase of necrosis—associated with extreme energy depletion—may simply reflect the failure of neurons to carry out the "default" apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons that survive this initial insult recover mitochondrial membrane potential and energy charge and subsequently undergo apoptosis, which seems to be associated with a factor(s) released from mitochondria. These factors have proteolytic activity or trigger the activation of proteases (caspases), ex ecutors of the cell death program. Thus, the maintenance of balanced energy production may be a decisive factor in determining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Increasing evidence suggests that similar events occur in vivo after ischemia or other insults, including Alzheimer's disease, Huntington's disease, and AIDS dementia. NEUROSCIENTIST 4:345-352, 1998
Collapse
Affiliation(s)
- Stuart A. Lipton
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| | - Pierluigi Nicotera
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| |
Collapse
|
76
|
|
77
|
Abstract
Apoptosis is a form of cellular suicide in which the cell activates an intrinsic program to bring about its own demise. Recognized for years as the mechanism by which developing cells are lost naturally, it has become apparent recently that this same process may play an important role in many acute and chronic diseases in which neural cell death occurs, such as stroke and Alzheimer's disease. This growing recognition suggests that a knowledge of the gene products controlling this process may lead to improved treatments for some disease states, as well as to improved understanding of neuronal development, physiology, and pathophysiology. Some controls with important roles in neural apoptosis have been identified, and these controls, as well as their putative mechanisms of action, are described in this article. NEUROSCIENTIST 2:181-190, 1996
Collapse
Affiliation(s)
- Dale E. Bredesen
- Program on Aging La Jolla Cancer Research Foundation
La Jolla, California
| |
Collapse
|
78
|
Marsboom G, Zhang GF, Pohl-Avila N, Zhang Y, Yuan Y, Kang H, Hao B, Brunengraber H, Malik AB, Rehman J. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4. Cell Rep 2016; 16:323-332. [PMID: 27346346 DOI: 10.1016/j.celrep.2016.05.089] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/22/2016] [Accepted: 05/21/2016] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH), which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4(lo) cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation.
Collapse
Affiliation(s)
- Glenn Marsboom
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Nicole Pohl-Avila
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yanmin Zhang
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yang Yuan
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Hojin Kang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bo Hao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
79
|
Kim JH, Kim KM, Jung MH, Jung JH, Kang KM, Jeong BK, Kim JP, Park JJ, Woo SH. Protective effects of alpha lipoic acid on radiation-induced salivary gland injury in rats. Oncotarget 2016; 7:29143-29153. [PMID: 27072584 PMCID: PMC5045384 DOI: 10.18632/oncotarget.8661] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/16/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Radiation therapy is a treatment for patients with head and neck (HN) cancer. However, radiation exposure to the HN often induces salivary gland (SG) dysfunction. We investigated the effect of α-lipoic acid (ALA) on radiation-induced SG injury in rats. RESULTS ALA preserved acinoductal integrity and acinar cell secretary function following irradiation. These results are related to the mechanisms by which ALA inhibits oxidative stress by inhibiting gp91 mRNA and 8-OHdG expression and apoptosis of acinar cells and ductal cells by inactivating MAPKs in the early period and expression of inflammation-related factors including NF-κB, IκB-α, and TGF-β1 and fibrosis in late irradiated SG. ALA effects began in the acute phase and persisted for at least 56 days after irradiation. MATERIALS AND METHODS Rats were assigned to followings: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation. The neck area including the SG was evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were killed at 4, 7, 28, and 56 days after radiation. CONCLUSIONS Our results show that ALA could be used to ameliorate radiation-induced SG injury in patients with HN cancer.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
| | - Kyung Mi Kim
- Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Jung Hwa Jung
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
- Department of Internal Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Ki Mun Kang
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Bae Kwon Jeong
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Jin Pyeong Kim
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
- Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| | - Jung Je Park
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
- Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| | - Seung Hoon Woo
- Institute of Health Science, Jinju, Gyeongnam, Republic of Korea
- Department of Otolaryngology, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
80
|
Effects of urate-lowering agents on arrhythmia vulnerability in post-infarcted rat hearts. J Pharmacol Sci 2016; 131:28-36. [PMID: 27129614 DOI: 10.1016/j.jphs.2016.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Hyperuricemia has been shown to be associated with ventricular arrhythmias. However, the mechanisms remained unknown. We assessed whether different urate-lowering agents can attenuate arrhythmias through lowering urate itself or inhibiting xanthenes oxidize (XO) activity in infarcted rats. Male Wistar rats after ligating coronary artery were randomized to either allopurinol, or febuxostat, chemically unrelated inhibitors of XO, benzbromarone or vehicle for 4 weeks. Post-infarction was associated with increased oxidant stress, as measured by myocardial superoxide, isoprostane, XO activity and dihydroethidine fluorescence staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham-operated rats. Sympathetic hyperinnervation was blunted after administering both XO inhibitors, assessed by immunofluorescent analysis, Western blotting and real-time quantitative RT-PCR. Besides, the XO inhibitors-attenuated nerve growth factor levels were reversed in the presence of peroxynitrite generator. Arrhythmic scores in the XO inhibitors-treated infarcted rats were significantly lower than that in vehicle. For similar levels of urate lowering, the uricosuric agent benzbromarone had no beneficial effects on oxidative stress, sympathetic hyperinnervation or arrhythmia vulnerability. Chronic use of XO inhibitors, but not uricosuric agent, down-regulated sympathetic innervation probably through a superoxide-dependent pathway and plays a role in the beneficial effect on arrhythmogenic response.
Collapse
|
81
|
Hayash T. Preventive effect of ascorbic acid against biological function of human immunodeficiency virus trans-activator of transcription. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:205-9. [PMID: 27104044 PMCID: PMC4835998 DOI: 10.5455/jice.20160316010322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Takuma Hayash
- Department of Immunology and Infectious Disease, Shinshu University School of Medicine, Japan
| |
Collapse
|
82
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|
83
|
Thurlow SE, Kilgour DP, Campopiano DJ, Mackay CL, Langridge-Smith PRR, Clarke DJ, Campbell CJ. Determination of Protein Thiol Reduction Potential by Isotope Labeling and Intact Mass Measurement. Anal Chem 2016; 88:2727-33. [PMID: 26881737 DOI: 10.1021/acs.analchem.5b04195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation/reduction of thiol residues in proteins is an important type of post-translational modification that is implicated in regulating a range of biological processes. The nature of the modification makes it possible to define a quantifiable electrochemical potential (E(⊕)) for oxidation/reduction that allows cysteine-containing proteins to be ranked based on their propensity to be oxidized. Measuring oxidation of cysteine residues in proteins is difficult using standard electrochemical methods, but top-down mass spectrometry recently has been shown to enable the quantification of E(⊕) for thiol oxidations. In this paper, we demonstrate that mass spectrometry of intact proteins can be used in combination with an isotopic labeling strategy and an automated data analysis algorithm to measure E(⊕) for the thiols in both E. coli Thioredoxin 1 and human Thioredoxin 1. Our methodology relies on accurate mass measurement of proteins using liquid chromatography-mass spectroscopy (LC-MS) analyses and does not necessarily require top-down fragmentation. In addition to analyzing homogeneous protein samples, we also demonstrate that our methodology can be used to determine thiol E(⊕) measurements in samples that contain mixtures of proteins. Thus, the combination of experimential methodology and data analysis regime has the potential to make such measurements in a high-throughput manner and in a manner that is more accessible to a broad community of protein scientists.
Collapse
Affiliation(s)
- Sophie E Thurlow
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - David P Kilgour
- Chemistry and Forensics, Rosalind Franklin Building, Nottingham Trent University , Clifton Campus, Clifton Lane, Nottingham, NG11 8NS, United Kingdom
| | - Dominic J Campopiano
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Pat R R Langridge-Smith
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Colin J Campbell
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
84
|
Netto LES, de Oliveira MA, Tairum CA, da Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res 2016; 50:206-45. [DOI: 10.3109/10715762.2015.1120864] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal. Mol Cells 2016; 39:6-19. [PMID: 26810072 PMCID: PMC4749875 DOI: 10.14348/molcells.2016.2323] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Collapse
Affiliation(s)
- Marrit Putker
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| | - John Stuart O’Neill
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| |
Collapse
|
86
|
Fang S, Chen L, Zhao M. Unimolecular Chemically Modified DNA Fluorescent Probe for One-Step Quantitative Measurement of the Activity of Human Apurinic/Apyrimidinic Endonuclease 1 in Biological Samples. Anal Chem 2015; 87:11952-6. [PMID: 26605979 DOI: 10.1021/acs.analchem.5b03939] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel DNA structure containing a 3' internal-loop modified abasic site has been constructed which enables effective differentiation between apurinic/apyrimidinic endonuclease (APE1) and nonspecific endonuclease (DNase I). When this unique substrate structure is employed, a double-loop frayed-end chimeric fluorescent probe is successfully developed for quantitative measurement of the activity of APE1 in biological samples without the need of additional cleanup or preconcentration steps. The method is simple and rapid and has a single-step with a linear working range between 0.1 and 5.0 U/mL and a lower limit of detection of 0.1 U/mL. It holds great potential in real-time monitoring of the variation of intracellular and extracellular APE1, which will be very useful for further understanding of the DNA repair pathways in different organisms.
Collapse
Affiliation(s)
- Simin Fang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Lu Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
87
|
The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion. Biosci Rep 2015; 35:BSR20150236. [PMID: 26464515 PMCID: PMC4660583 DOI: 10.1042/bsr20150236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
Thioredoxin reductase (TrxR1) is involved in redox homoeostasis and cellular differentiation. In the present study, we demonstrate that overexpression of TrxR1 affects genes associated with differentiation and that differentiation increased TrxR1 expression. The TrxR1 splice variant TXNRD1_v2 was also studied in this context. The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1.
Collapse
|
88
|
Lee TM, Chen WT, Chang NC. Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circ J 2015; 79:2461-70. [PMID: 26399925 DOI: 10.1253/circj.cj-15-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of dipeptidyl peptidase-4 (DPP-4) inhibitors on arrhythmias remains unknown. The aim of this study was to investigate whether sitagliptin attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression, focusing on cyclic adenosine monophosphate (cAMP) downstream signaling such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). METHODS AND RESULTS Male Wistar rats were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after ligating the coronary artery. Post-infarction was associated with increased oxidative stress. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham. Compared with the vehicle, infarcted rats treated with sitagliptin had significantly increased cAMP levels, decreased DPP-4 activity, oxidative stress, NGF levels and immunofluorescence-stained sympathetic hyperinnervation. Arrhythmic scores were significantly lower in the sitagliptin-treated infarcted rats than in vehicle. Ex vivo studies showed that sitagliptin increased the phosphorylated cAMP response element-binding protein (CREB), which can be reversed by H-89 (a PKA inhibitor), not brefeldin A (an Epac inhibitor).Heme oxygenase-1(HO-1) expression was increased by a PKA agonist but not by an Epac agonist.HO-1expression was attenuated in KG-501 (a CREB inhibitor)-treated infarcted rats in the presence of a PKA agonist. CONCLUSIONS Sitagliptin protects ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via upregulation ofHO-1expression in a cAMP/PKA/CREB-dependent antioxidant pathway in non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital
| | | | | |
Collapse
|
89
|
Abstract
SIGNIFICANCE The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. RECENT ADVANCES Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. CRITICAL ISSUES Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. FUTURE DIRECTIONS Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
90
|
Koizumi C, Yamada M, Ishizaki K, Ueda T, Sakurai K. Anti-infective control in human bronchiolar epithelial cells by mucin phenotypic changes following uptake of N-acetyl-L-cysteine. Free Radic Res 2015; 49:1449-58. [PMID: 26313520 DOI: 10.3109/10715762.2015.1087642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Aspiration pneumonia is infection of the respiratory tract resulting from accumulation of sputum in the larynx. N-acetyl-L-cysteine (NAC) might regulate mucin (MUC) expression and activate inherent anti-infective system in bronchiolar epithelial cells after cellular uptake, and therefore, serve as the preventative agent for chronic lung disease including aspiration pneumonia. The purpose of this in vitro study was to evaluate the effect of uptake of NAC by human bronchiolar epithelial cells on bacterial infection and regulations of mucin expression in association with cellular redox status under co-culture with a representative pathogen for hospital- and community-acquired pneumonia, Streptococcus pneumoniae. MATERIALS AND METHODS Human bronchiolar epithelial cells preincubated with or without 20 mM NAC for 3 h were co-cultured with or without bacteria for 8 h and evaluated with respect to cellular redox balance, expressions of various types of MUC, proinflammatory cytokines and mediators, and bacterial infection state by biochemical, genetic, and immunofluorescent assays. RESULTS Markedly increased intracellular reactive oxygen species and oxidized glutathione levels plus increased release and expression of proinflammatory cytokines and mediators were observed in cells co-cultured with bacteria. These bacteria-induced cellular redox disturbance and proinflammatory events were prevented and alleviated by pretreatment with NAC. Cells co-cultured with bacteria did not increase expression of anti-infective membranous MUC4 but exhibited increases in gel-forming MUC5AC expression and bacterial infection. However, NAC-pretreated cells avoided bacterial infection along with enhancement of MUC4, but not MUC5AC, expression. CONCLUSION Uptake of NAC by human bronchiolar epithelial cells prevented bacterial infection and upregulated membranous, but not gel-forming, MUC expression along with the increase in intracellular antioxidant level under co-culture conditions with S. pneumoniae.
Collapse
Affiliation(s)
| | - Masahiro Yamada
- a Department of Removable Prosthodontics and Gerodontology , Tokyo Dental College , Tokyo , Japan
| | - Ken Ishizaki
- a Department of Removable Prosthodontics and Gerodontology , Tokyo Dental College , Tokyo , Japan
| | - Takayuki Ueda
- a Department of Removable Prosthodontics and Gerodontology , Tokyo Dental College , Tokyo , Japan
| | - Kaoru Sakurai
- a Department of Removable Prosthodontics and Gerodontology , Tokyo Dental College , Tokyo , Japan
| |
Collapse
|
91
|
Wang B, Tian S, Wang J, Han F, Zhao L, Wang R, Ning W, Chen W, Qu Y. Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke. Brain Res 2015; 1615:89-97. [DOI: 10.1016/j.brainres.2015.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/26/2022]
|
92
|
DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA. PLoS One 2015; 10:e0126088. [PMID: 25950714 PMCID: PMC4423948 DOI: 10.1371/journal.pone.0126088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/29/2015] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.
Collapse
|
93
|
Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti AC, Sarker S, Dey D, Saluja D, Das B. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience 2015; 9:525. [PMID: 25932049 PMCID: PMC4407748 DOI: 10.3332/ecancer.2015.525] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 12/29/2022] Open
Abstract
In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.
Collapse
Affiliation(s)
- Alok Mishra
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India ; National Cancer Institute, NIH, Bethesda, MD, USA 20892
| | - Rakesh Kumar
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India ; Mayo Clinic, Rochester, MN, USA 55905 ; Rakesh Kumar deceased
| | - Abhishek Tyagi
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India
| | - Indu Kohaar
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; National Cancer Institute, NIH, Bethesda, MD, USA 20892
| | - Suresh Hedau
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Alok C Bharti
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Subhodeep Sarker
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Dipankar Dey
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | - Daman Saluja
- Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India
| | - Bhudev Das
- Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India ; Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110 007, India ; Amity University, Noida 201303, India
| |
Collapse
|
94
|
Shihab PK, Al-Roub A, Al-Ghanim M, Al-Mass A, Behbehani K, Ahmad R. TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:32. [PMID: 25931987 PMCID: PMC4415258 DOI: 10.1186/s12950-015-0077-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/09/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND MMP-9 is crucial for a normal immune response, but excessive release of this enzyme leads to severe tissue damage. Listeria monocytogenes (LM) is an opportunistic food-borne pathogen causing listerosis, meningitis and sepsis. Heat killed Listeria monocytogenes (HKLM) activates immune system and leads production of cytokines and chemokines. However, nothing is known about the involvement of HKLM in MMP-9 regulation. Therefore we investigated the role of HKLM in the regulation of MMP-9 gene expression in THP-1 cells. METHODS Commercially available heat killed Listeria monocytogenes was used in this study. HKLM-induced MMP-9 expression was assessed with quantitative real-time qPCR and ELISA. Action of HKLM in different signaling pathways were studied by using THP-1-XBlue™ cells (THP-1-cells with NF-κB/AP-1 reporter construct), THP-1-XBlue™-defMyD cells (MyD88(-/-) THP-1 cells), anti-TLR2 mAb and pharmacological inhibitors. Phospho and total proteins were determined by Western blotting. RESULTS Increased MMP-9 production (mRNA: 395-Fold; Protein: 8141 pg/ml; P < 0.05) was observed in HKLM stimulated THP-1 cells as compared to the un-stimulated THP-1 cells. This production of MMP-9 was completely abrogated by anti-TLR2 blocking mAb (P = 0.0024). Furthermore, THP-1-XBlue™-defMyD cells were unable to produce MMP-9 in response to HKLM. HKLM- induced activation of NF-kappaB/AP-1 was also observed in THP-1-XBlue™ Cells. In addition, inhibitors of JNK (SP600125), MEK/ERK (U0126; PD98056), p38 MAPK (SB203580) and NF-kappaB (BAY 11-7085, Triptolide and Resveratrol) significantly suppressed (P < 0.05) HKLM-stimulated MMP-9 expression. CONCLUSION Our results indicate that HKLM activates TLR2 and NF-κB/AP-1 signaling pathways, leading to up-regulation of MMP-9 production in THP-1 cells. Thus, MMP-9 could be an appropriate therapeutic target to stop severe tissue damage caused by infection or chronic inflammation.
Collapse
Affiliation(s)
- Puthiyaveetil Kochumon Shihab
- Immunology & Innovative Cell therapy Unit, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Areej Al-Roub
- Immunology & Innovative Cell therapy Unit, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Moneera Al-Ghanim
- Immunology & Innovative Cell therapy Unit, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Anfal Al-Mass
- Immunology & Innovative Cell therapy Unit, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Kazem Behbehani
- Immunology & Innovative Cell therapy Unit, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| | - Rasheed Ahmad
- Immunology & Innovative Cell therapy Unit, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, Dasman, 15462 Kuwait
| |
Collapse
|
95
|
Kreiseder B, Holper-Schichl YM, Muellauer B, Jacobi N, Pretsch A, Schmid JA, de Martin R, Hundsberger H, Eger A, Wiesner C. Alpha-catulin contributes to drug-resistance of melanoma by activating NF-κB and AP-1. PLoS One 2015; 10:e0119402. [PMID: 25793618 PMCID: PMC4368766 DOI: 10.1371/journal.pone.0119402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
Melanoma is the most dangerous type of skin cancer accounting for 48,000 deaths worldwide each year and an average survival rate of about 6-10 months with conventional treatment. Tumor metastasis and chemoresistance of melanoma cells are reported as the main reasons for the insufficiency of currently available treatments for late stage melanoma. The cytoskeletal linker protein α-catulin (CTNNAL1) has been shown to be important in inflammation, apoptosis and cytoskeletal reorganization. Recently, we found an elevated expression of α-catulin in melanoma cells. Ectopic expression of α-catulin promoted melanoma progression and occurred concomitantly with the downregulation of E-cadherin and the upregulation of mesenchymal genes such as N-cadherin, Snail/Slug and the matrix metalloproteinases 2 and 9. In the current study we showed that α-catulin knockdown reduced NF-κB and AP-1 activity in malignant melanoma cells. Further, downregulation of α-catulin diminished ERK phosphorylation in malignant melanoma cells and sensitized them to treatment with chemotherapeutic drugs. In particular, cisplatin treatment led to decreased ERK-, JNK- and c-Jun phosphorylation in α-catulin knockdown melanoma cells, which was accompanied by enhanced apoptosis compared to control cells. Altogether, these results suggest that targeted inhibition of α-catulin may be used as a viable therapeutic strategy to chemosensitize melanoma cells to cisplatin by down-regulation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
| | - Yvonne M Holper-Schichl
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Nico Jacobi
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
| | | | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Hundsberger
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
| | - Andreas Eger
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
| | - Christoph Wiesner
- SeaLife Pharma GmbH, Tulln, Austria
- Medical and Pharmaceutical Biotechnology, University of Applied Sciences, Krems, Austria
- * E-mail:
| |
Collapse
|
96
|
The paradoxical role of thioredoxin on oxidative stress and aging. Arch Biochem Biophys 2015; 576:32-8. [PMID: 25726727 DOI: 10.1016/j.abb.2015.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/22/2022]
Abstract
In spite of intensive study, there is still controversy about the free radical or oxidative stress theory of aging, particularly in mammals. Our laboratory has conducted the first detailed studies on the role of thioredoxin (Trx) in the cytosol (Trx1) and in mitochondria (Trx2) on oxidative stress and aging using unique mouse models either overexpressing or down-regulating Trx1 or Trx2. The results generated from our lab and others indicate that: (1) oxidative stress and subsequent changes in signaling pathways could have different pathophysiological impacts at different stages of life; (2) changes in redox-sensitive signaling controlled by levels of oxidative stress and redox state could play more important roles in pathophysiology than accumulation of oxidative damage; (3) changes in oxidative stress and redox state in different cellular compartments (cytosol, mitochondria, or nucleus) could play different roles in pathophysiology during aging, and their combined effects show more impact on aging than changes in either oxidative stress or redox state alone; and (4) the roles of oxidative stress and redox state could have different pathophysiological consequences in different organs/tissues/cells or pathophysiological conditions. To critically test the role of oxidative stress on aging and investigate changes in redox-sensitive signaling pathways, further study is required.
Collapse
|
97
|
Wang F, Lin F, Zhang P, Ni W, Bi L, Wu J, Jiang L. Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines. Oncol Rep 2015; 33:967-973. [PMID: 25483731 DOI: 10.3892/or.2014.3652] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/11/2014] [Indexed: 11/05/2022] Open
Abstract
1-Methylpropyl 2-imidazolyl disulfide (PX-12) has been proposed as an inhibitor of thioredoxin-1 (Trx-1) with antitumor activity. However, the antitumor activity of the Trx-1 redox signaling inhibitor PX-12 on colorectal cancer is still obscure. In the present study, we showed that PX-12 inhibited the growth of colorectal cancer DLD-1 and SW620 cells in a dose- and time-dependent manner. Further analysis demonstrated that PX-12 reduced cell colony formation and induced a G2/M phase arrest of the cell cycle. In addition, PX-12 treatment induced apoptosis, as observed by the increased number of Annexin V-positive cells and increased activation of caspase-3. Notably, a low dose of PX-12 inhibited colorectal cancer cell migration and invasion. Treatment of cancer cells with PX-12 reduced NOX1, CDH17 and S100A4 mRNA expression, and increased KLF17 mRNA expression. Moreover, PX-12 decreased S100A4 protein expression in the colorectal cancer cells. Collectively, the present study demonstrates the antitumor effects and therapeutic potential of PX-12 in colorectal cancer.
Collapse
Affiliation(s)
- Fule Wang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Feiyan Lin
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peili Zhang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Laixi Bi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianbo Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
98
|
Lee TM, Lin SZ, Chang NC. Antiarrhythmic effect of lithium in rats after myocardial infarction by activation of Nrf2/HO-1 signaling. Free Radic Biol Med 2014; 77:71-81. [PMID: 25224036 DOI: 10.1016/j.freeradbiomed.2014.08.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/20/2014] [Indexed: 11/19/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) signaling has been shown to play a role in the regulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of antioxidant genes, including heme oxygenase-1 (HO-1). We assessed whether lithium, a GSK-3 inhibitor, attenuates cardiac sympathetic reinnervation after myocardial infarction, a status of high reactive oxygen species (ROS), by attenuating nerve growth factor (NGF) expression and whether Nrf2/HO-1 signaling is involved in the protection. Twenty-four hours after ligation of the left anterior descending artery, male Wistar rats were treated for 4 weeks. The postinfarction period was associated with increased oxidative-nitrosative stress, as measured by myocardial superoxide, nitrotyrosine, and dihydroethidium fluorescent staining. In concert, myocardial norepinephrine levels and immunohistochemical analysis of sympathetic nerve revealed a significant increase in innervation in vehicle-treated rats compared with sham-operated rats. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those in sham. This was paralleled by a significant upregulation of NGF protein and mRNA in the vehicle-treated rats, which was reduced after administration of LiCl. LiCl stimulated the nuclear translocation of Nrf2 and the transactivation of the Nrf2 target gene HO-1. Inhibition of phosphoinositide 3-kinase by wortmannin reduced the increase in Nrf2 nucleus translocation and HO-1 expression compared with lithium alone. In addition, the lithium-attenuated NGF levels were reversed in the presence of the Nrf2 inhibitor trigonelline, HO-1 inhibitor SnPP, and peroxynitrite generator SIN-1, indicating the role of Nrf2/HO-1/ROS. In conclusion, lithium protects against ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via antioxidant activation of the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Medicine, China Medical University-An Nan Hospital, Tainan 709, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Neuropsychiatry Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University-An Nan Hospital, Tainan 709, Taiwan; Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
99
|
Lee TM, Chen WT, Yang CC, Lin SZ, Chang NC. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts. J Cell Mol Med 2014; 19:418-29. [PMID: 25388908 PMCID: PMC4407589 DOI: 10.1111/jcmm.12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022] Open
Abstract
We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
100
|
Bellacchio E, Palma A, Corrente S, Di Girolamo F, Helen Kemp E, Di Matteo G, Comelli L, Carsetti R, Cascioli S, Cancrini C, Fierabracci A. The possible implication of the S250C variant of the autoimmune regulator protein in a patient with autoimmunity and immunodeficiency: in silico analysis suggests a molecular pathogenic mechanism for the variant. Gene 2014; 549:286-294. [PMID: 25068407 DOI: 10.1016/j.gene.2014.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022]
Abstract
Autoimmunity can develop from an often undetermined interplay of genetic and environmental factors. Rare forms of autoimmune conditions may also result from single gene mutations as for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, an autosomal recessive disease associated with mutated forms of the autoimmune regulator gene. It was proposed that genetic variability in the autoimmune regulator locus, in particular heterozygous loss-of-function mutations, might favor the development of organ-specific autoimmunity by affecting the presentation of self-antigens in the thymus. Indeed, heterozygous mutations of the autoimmune regulator gene were reported in patients with organ-specific autoimmunity. Also, in primary immunodeficiencies, a breakdown in central/peripheral tolerance frequently produces association with autoimmunity. The causative link may involve a common genetic background and several gene defects have been identified as putative culprits. We report a unique patient, a 14 year old male from Lazio region, affected by common variable immunodeficiency associated with autoimmune manifestations (alopecia, onychodystrophy) and heterozygote for the S250C variant located in the SAND domain of the autoimmune regulator gene protein. To our knowledge this is the first report of the S250C variant in a patient bearing this unusual combination of autoimmunity and immunodeficiency. To obtain insights into the possible molecular effects of the S250C variant, we have carried out an in silico analysis of the SAND domain structure of the autoimmune regulator protein. In particular, homology modeling has allowed us to observe that the cysteine introduced by the S250C variant is surrounded by cationic residues, and by means of molecular dynamics simulations together with pKa calculations, we have shown that these residues remain stably proximal to cysteine-250 lowering its pKa and thus conferring high chemical reactivity to the mutated residue. We propose that the enhanced reactivity of cysteine-250, which is likely to impair the protein function but probably insufficient to produce alone a phenotype as a heterozygous S250C variant due to compensation mechanisms, might become manifest when combined with other genetic/environmental factors. These results can provide the rationale for the patient's unusual phenotype, shedding new light into the pathogenesis of the clinical association of autoimmunity and immunodeficiency.
Collapse
Affiliation(s)
- Emanuele Bellacchio
- Research Laboratories, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Alessia Palma
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefania Corrente
- University Department of Paediatrics, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Francesco Di Girolamo
- Department of Laboratory Medicine, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - E Helen Kemp
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Gigliola Di Matteo
- Department of Systems Medicine, Tor Vergata University of Rome, Viale Oxford 81, 00133 Rome, Italy
| | - Laura Comelli
- Proteomics Laboratory Istituto di Fisiologia Clinica, CNR Via Moruzzi, 1, 56124 Pisa, Italy
| | - Rita Carsetti
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Simona Cascioli
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Caterina Cancrini
- University Department of Paediatrics, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Area, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|