51
|
Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK. RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. PLANT MOLECULAR BIOLOGY 2006; 62:397-408. [PMID: 16897470 DOI: 10.1007/s11103-006-9031-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/03/2006] [Indexed: 05/11/2023]
Abstract
A tapetum-specific gene, RTS, has been isolated by differential screening of a cDNA library from rice panicles. RTS is a unique gene in the rice genome. RNA blot analysis and in situ hybridization indicates that this gene is predominantly expressed in the anther's tapetum during meiosis and disappears before anthesis. RTS has no introns and encodes a putative polypeptide of 94 amino acids with a hydrophobic N-terminal region. The nucleotide and deduced amino acid sequence of the gene do not show significant homology to any known sequences. However, a sequence in the promoter region, GAATTTGTTA, differs only by one or two nucleotides from one of the conserved motifs in the promoter region of two pollen-specific genes of tomato. Several other sequence motifs found in other anther-specific promoters were also identified in the promoter of the RTS gene. Transgenic and antisense RNA approaches revealed that RTS gene is required for male fertility in rice. The promoter region of RTS, when fused to the Bacillus amyloliquefaciens ribonuclease gene, barnase, or the antisense of the RTS gene, is able to drive tissue-specific expression of both genes in rice, creeping bentgrass (Agrostis stolonifera L.) and Arabidopsis, conferring male sterility to the transgenic plants. Light and near-infrared confocal microscopy of cross-sections through developing flowers of male-sterile transgenics shows that tissue-specific expression of barnase or the antisense RTS genes interrupts tapetal development, resulting in deformed non-viable pollen. These results demonstrate a critical role of the RTS gene in pollen development in rice and the versatile application of the RTS gene promoter in directing anther-specific gene expression in both monocotyledonous and dicotyledonous plants, pointing to a potential for exploiting this gene and its promoter for engineering male sterility for hybrid production of various plant species.
Collapse
Affiliation(s)
- Hong Luo
- Department of Genetics, Biochemistry and Life Science Studies, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ferreira Júnior JR, Ramos ASP, Chambergo FS, Stambuk BU, Muschellack LK, Schumacher R, El-Dorry H. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2005; 339:30-6. [PMID: 16297867 DOI: 10.1016/j.bbrc.2005.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/01/2005] [Indexed: 11/21/2022]
Abstract
Genes for the enzymes that metabolize galactose in Saccharomyces cerevisiae are strongly induced by galactose and tightly repressed by glucose. Because glucose also represses mitochondrial activity, we examined if derepression of the GAL1 galactokinase gene requires physiologically active mitochondria. The effect of mitochondria on the expression of GAL1 was analyzed by a novel approach in which the activity of the organelles was altered by functional expression of URF13, a mitochondrial protein unique to the Texas-type cytoplasmic male sterility phenotype in maize. Mitochondrial targeting and functional expression of the URF13 protein in yeast result in a decrease of the mitochondrial membrane potential similar to those observed in cells treated with mitochondrial inhibitors such as antimycin A or sodium azide. Activation of URF13 in galactose-induced cells results in the inhibition of GAL1 expression in the absence of repressing concentrations of glucose. Our data reveal the existence of a regulatory pathway that connects the derepression of the GAL1 gene with mitochondrial activity.
Collapse
Affiliation(s)
- José Ribamar Ferreira Júnior
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Prof. Lineu Prestes, 748-São Paulo, SP 05508-000, Brazil
| | | | | | | | | | | | | |
Collapse
|
53
|
Staudinger M, Bolle N, Kempken F. Mitochondrial electroporation and in organello RNA editing of chimeric atp6 transcripts. Mol Genet Genomics 2005; 273:130-6. [PMID: 15729585 DOI: 10.1007/s00438-005-1117-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/14/2005] [Indexed: 11/25/2022]
Abstract
The Sorghum bicolor atp6-1 gene and chimeric atp6 genes with additional maize sequences were introduced into isolated maize mitochondria via electroporation. Transcripts isolated after in vitro incubation of the transformed organelles were then analysed for RNA editing. Transcripts of the S. bicolor atp6-1 gene, and the RNAs obtained from most of chimeric sorghum-maize atp6 gene constructs tested, were not edited. However, the transcript of one engineered chimeric gene comprising the 5'untranslated sequence and a segment of the N-terminal ORF of the maize atp6 combined with the sorghum atp6 core ORF and 3'untranslated sequence was found to be partially edited. We were able to exclude low RNA stability or insufficient editing capacity as the reason for failure to edit in the other instances. Instead, the data indicate that the maize sequence in the edited fusion transcript provides a structural motif or binding site for a transcript-specific editing factor.
Collapse
Affiliation(s)
- Matthias Staudinger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098, Kiel, Germany
| | | | | |
Collapse
|
54
|
|
55
|
Scotti N, Monti L, Cardi T. Organelle DNA variation in parental Solanum spp. genotypes and nuclear-cytoplasmic interactions in Solanum tuberosum (+) S. commersonii somatic hybrid-backcross progeny. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 108:87-94. [PMID: 12955209 DOI: 10.1007/s00122-003-1406-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2003] [Accepted: 05/12/2003] [Indexed: 05/24/2023]
Abstract
Nuclear-cytoplasmic interactions can influence fertility and agronomic performance of interspecific hybrids in potato as well as other species. With the aim of assessing the potential value of a novel recombinant cytoplasm derived by interspecific somatic hybridization, backcross progeny were produced by crossing a somatic hybrid between Solanum tuberosum (tbr) and the wild incongruous species S. commersonii (cmm) with various potato clones. BC1 clones were evaluated for male fertility and other agronomic traits. Male fertility clearly depended on the cross direction and the cytoplasm source. Genotypes with cytoplasms sensitive to nuclear genes derived from Solanum commersonii and inducing male sterility showed identical mtDNA composition, as based on mtDNA analyses with various PCR-based and RFLP markers. On the other hand, genotypes with cytoplasms not inducing male sterility in the presence of the cmm nuclear genes showed a different mtDNA organisation. Analysis of cpDNA confirmed similarity of cytoplasmic composition in CMS-inducing genotypes and clear differences with the others. Genotypes with recombinant cytoplasm induced by somatic hybridization generally showed similar agronomic performances in reciprocal hybrids with tbr cytoplasm, suggesting that the novel cytoplasm can be used in potato breeding.
Collapse
Affiliation(s)
- N Scotti
- CNR-IGV, Institute of Plant Genetics, Research Division Portici, via Università 133, 80055, Portici, Italy
| | | | | |
Collapse
|
56
|
Staudinger M, Kempken F. Electroporation of isolated higher-plant mitochondria: transcripts of an introduced cox2 gene, but not an atp6 gene, are edited in organello. Mol Genet Genomics 2003; 269:553-61. [PMID: 12811542 DOI: 10.1007/s00438-003-0863-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 05/07/2003] [Indexed: 10/26/2022]
Abstract
To facilitate the analysis of RNA processing in plant mitochondria, a method was established for introducing foreign DNA into mitochondria isolated from maize and sorghum. This method permits the uptake of DNA of up to 11 kb into the mitochondrial matrix. In vitro incubation of maize mitochondria in a specific buffer system was found to permit splicing and editing of newly synthesized RNAs for a period of at least 7 h. This was shown both for transcripts of endogenous mitochondrial genes (atp6, cox2) and for transcripts derived from an introduced Arabidopsis thaliana cox2 gene. In contrast, when a Sorghum bicolor atp6 gene was introduced into isolated maize mitochondria, the gene was transcribed, but the RNA was not edited, although all the editing sites in maize and sorghum atp6 RNA are identical. This may indicate the presence of transcript-specific cis -acting regions in the up- or downstream untranslated sequences of the mRNA. The system described here should allow further dissection of the mechanism of RNA editing in plant mitochondria.
Collapse
Affiliation(s)
- M Staudinger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | |
Collapse
|
57
|
Luo H, Kausch AP. Application of FLP/FRT site-specific DNA recombination system in plants. GENETIC ENGINEERING 2003; 24:1-16. [PMID: 12416298 DOI: 10.1007/978-1-4615-0721-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Hong Luo
- HybriGene L.L.C., 530 Liberty Lane, West Kingston, RI 02892, USA
| | | |
Collapse
|
58
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Luo H, Lyznik LA, Gidoni D, Hodges TK. FLP-mediated recombination for use in hybrid plant production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:423-430. [PMID: 10929135 DOI: 10.1046/j.1365-313x.2000.00782.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have studied the feasibility in Arabidopsis of using a site-specific recombination system FLP/FRT, from the 2 microm plasmid of yeast, for making plant hybrids. Initially, Arabidopsis plants expressing the FLP site-specific recombinase were crossed with plants transformed with a vector containing kanamycin-resistance gene (npt) flanked by FRT sites, which also served to separate the CaMV35S promoter from a promoterless gusA. Hybrid progeny were tested for excision of the npt gene and the positioning of 35S promoter proximal to gusA. GUS activity was observed in the progeny of all crosses, but not in the progeny derived from the self-pollinated homozygous parents. We then induced male sterility in Arabidopsis plants using the antisense expression of a pollen- and tapetum-specific gene, bcp1, flanked by FRT sites. Upon cross-pollination of flowers on the same male-sterile plants with pollen from FLP-containing plants, viable seeds were produced and the progeny hybrid plants developed normally. Molecular analyses revealed that the antisense expression cassette of bcp1 had been excised in these plants. These results show for the first time that a site-specific recombinase can be used to restore fertility in male-sterile plants, providing an alternative method for the production of hybrid seeds and plants.
Collapse
Affiliation(s)
- H Luo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
60
|
Hird DL, Paul W, Hollyoak JS, Scott RJ. The restoration of fertility in male sterile tobacco demonstrates that transgene silencing can be mediated by T-DNA that has no DNA homology to the silenced transgene. Transgenic Res 2000; 9:91-102. [PMID: 10951693 DOI: 10.1023/a:1008992619413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Male sterile tobacco plants expressing a pathogenesis-related (PR) beta-1,3-glucanase gene driven by the Arabidopsis thaliana A3 or A9 tapetum-specific promoter, were partially restored to fertility by retransformation with a range of pA9-driven sense and antisense PR glucanase fragments. The restored plants exhibited improved seed set. PR glucanase protein was undetectable in the anthers of these plants and there was an associated increase in microsporocyte callose, the structural target of the A3 and A9-driven PR glucanase. This phenotype was not solely dependent on interactions between sense and antisense PR glucanase transcripts since a pA9-driven restorer was also capable of down regulating a pA3-GUS construct in the absence of extensive promoter, coding region, or terminator sequence homology. Since the A3 and A9 promoters have similar temporal and spatial expression patterns, it is possible that trans-acting factors common to both promoters become limiting in the PR glucanase double transformants resulting in improved levels of fertility. An alternative hypothesis is that additional sequences present in both the silencing and target T-DNAs can mediate the silencing of adjacent non-homologous transgenes.
Collapse
Affiliation(s)
- D L Hird
- Department of Biology, University of Leicester, UK
| | | | | | | |
Collapse
|
61
|
Carson ML. Aggressiveness and Perennation of Isolates of Cochliobolus heterostrophus from North Carolina. PLANT DISEASE 1998; 82:1043-1047. [PMID: 30856833 DOI: 10.1094/pdis.1998.82.9.1043] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selection occurring during the saprophytic or overwintering phase of the life cycle of Cochliobolus heterostrophus, the causal agent of southern leaf blight of maize, may be a factor in the persistence of apparently less aggressive isolates in the pathogen population. The relative aggressiveness and ability to perennate of 22 isolates of C. heterostrophus from North Carolina was measured in series of experiments. Significant differences in aggressiveness and percent perennation (overwintering survival) were observed. There was a weak but often significant negative correlation between the ability of isolates to persist on the soil surface and their aggressiveness. The ability of race O isolates to sporulate on senescent corn leaf discs was positively correlated with their aggressiveness. Selection against increased aggressiveness during overwintering does not appear sufficient by itself to counter selection for increased aggressiveness occurring during the pathogen's pathogenic phase.
Collapse
Affiliation(s)
- M L Carson
- Research Plant Pathologist and Associate Professor, USDA-ARS, Department of Plant Pathology, North Carolina State University, Raleigh 27695-7616
| |
Collapse
|
62
|
Garraway MO, Park DS, Beltran JD. Role of Light and Malate in the Decreased Sensitivity of cms-T Cytoplasm Maize Leaves to Bipolaris maydis Race T Toxin. PHYTOPATHOLOGY 1998; 88:556-562. [PMID: 18944909 DOI: 10.1094/phyto.1998.88.6.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Leaf segments from Texas male sterile (cms-T) cytoplasm maize isolines exposed to light (50 muM s(-1) m(-2)) for 8 h or more before or after being infiltrated with the Bipolaris maydis race T toxin (T-toxin) leaked significantly less electrolytes when immersed in distilled water (DW) for 24 to 48 h than did dark-treated leaf segments. No comparable effect of light on toxin-induced electrolyte leakage was observed with normal (N) cytoplasm isolines. Toxin-treated cms-T leaf segments incubated in DW for three consecutive 12-h periods of alternating light and dark showed significantly greater electrolyte leakage than leaf segments incubated in continuous light for 36 h and significantly less leakage than segments incubated in continuous dark for 36 h.Exposure of cms-T, but not N, cytoplasm leaves to 25 or 50 muM malic acid decreased their sensitivity to T-toxin in the dark to a level similar to that observed when leaves were incubated in the light without malic acid. The potency of T-toxin appeared to be unaffected by its exposure to light. The loss of electrolytes from T-toxin-treated cms-T cytoplasm leaf segments was at approximately the level seen with light or malate when 25 muM H(2)O(2) was added to the DW bathing solution. Evaluation of the data points to the possibility that H(2)O(2) might be involved with the altered sensitivity of cms-T cytoplasm leaves to T-toxin caused by either light or malate.
Collapse
|
63
|
Rasmusson AG, Heiser V, Zabaleta E, Brennicke A, Grohmann L. Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:101-11. [PMID: 9593845 DOI: 10.1016/s0005-2728(98)00021-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory complex I of plant mitochondria has to date been investigated with respect to physiological function, biochemical properties and molecular structure. In the respiratory chain complex I is the major entry gate for low potential electrons from matrix NADH, reducing ubiquinone and utilizing the released energy to pump protons across the inner membrane. Plant complex I is active against a background of several other NAD(P)H dehydrogenases, which do not contribute in proton pumping, but permit and establish several different routes of shuttling electrons from NAD(P)H to ubiquinone. Identification of the corresponding molecular structures, that is the proteins and genes of the different NADH dehydrogenases, will allow more detailed studies of this interactive regulatory network in plant mitochondria. Present knowledge of the structure of complex I and the respective mitochondrial and nuclear genes encoding various subunits of this complex in plants is summarized here. Copyright 1998 Elsevier Science B.V.
Collapse
Affiliation(s)
- AG Rasmusson
- Allgemeine Botanik, Universitat Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
64
|
Howad W, Kempken F. Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci U S A 1997; 94:11090-5. [PMID: 9380764 PMCID: PMC23623 DOI: 10.1073/pnas.94.20.11090] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA editing and cytoplasmic male sterility are two important phenomena in higher plant mitochondria. To determine whether correlations might exist between the two, RNA editing in different tissues of Sorghum bicolor was compared employing reverse transcription-PCR and subsequent sequence analysis. In etiolated shoots, RNA editing of transcripts of plant mitochondrial atp6, atp9, nad3, nad4, and rps12 genes was identical among fertile or cytoplasmic male sterile plants. We then established a protocol for mitochondrial RNA isolation from plant anthers and pollen to include in these studies. Whereas RNA editing of atp9, nad3, nad4, and rps12 transcripts in anthers was similar to etiolated shoots, mitochondrial atp6 RNA editing was strongly reduced in anthers of the A3Tx398 male sterile line of S. bicolor. atp6 transcripts of wheat and selected plastid transcripts in S. bicolor showed normal RNA editing, indicating that loss of atp6 RNA editing is specific for cytoplasmic male sterility S. bicolor mitochondria. Restoration of fertility in F1 and F2 lines correlated with an increase in RNA editing of atp6 transcripts. Our data suggest that loss of atp6 RNA editing contributes to or causes cytoplasmic male sterility in S. bicolor. Further analysis of the mechanism of cell type-specific loss of atp6 RNA editing activity may advance our understanding of the mechanism of RNA editing.
Collapse
Affiliation(s)
- W Howad
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
65
|
Gallet PF, Petit JM, Maftah A, Zachowski A, Julien R. Asymmetrical distribution of cardiolipin in yeast inner mitochondrial membrane triggered by carbon catabolite repression. Biochem J 1997; 324 ( Pt 2):627-34. [PMID: 9182727 PMCID: PMC1218475 DOI: 10.1042/bj3240627] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmembrane asymmetry of cardiolipin in yeast was monitored during the switch from fermentative to gluconeogenic growth and the reverse. As soon as cells used ethanol as an electron donor to produce ATP by oxidative phosphorylation, rapid and abundant cardiolipin synthesis was observed on the matrix side of the inner mitochondrial membrane followed by a transverse rearrangement between the two leaflets. The cardiolipin distribution changed from about 20:80 (in/out) to 70:30 (in/out), and after translocation towards the outer leaflet it finally became 37:63 (in/out). At the same time, cytochrome c oxidase activity remained stable, then increased as a possible result of the topographical rearrangement. During the reverse process from gluconeogenic to fermentative growth, the amount of cardiolipin rapidly decreased by half, its bilayer distribution apparently changing to a monolayer organization before the 20:80 (in/out) asymmetry of repressed cells was re-established. Experimental impairment of cardiolipin topography by antibiotic inhibition of gene expression or in situ dissipation of mitochondrial membrane potential produced data that prove that the amount and transmembrane distribution of the phospholipid are two specific parameters of the mitochondrial inner membrane organization in both fermentative (2.2 fmol/cell and 20:80, in/out) and gluconeogenic (4.2 fmol/cell and 37:63, in/out) growing yeast cells. Finally, the inner mitochondrial membrane topography of cardiolipin appeared to be closely associated with the transmembrane redox potential.
Collapse
Affiliation(s)
- P F Gallet
- Institut de Biotechnologie, Université de Limoges, F-87060 Limoges, France
| | | | | | | | | |
Collapse
|
66
|
Kanno A, Kanzaki H, Kameya T. Detailed analyses of chloroplast and mitochondrial DNAs from the hybrid plant generated by asymmetric protoplast fusion between radish and cabbage. PLANT CELL REPORTS 1997; 16:479-484. [PMID: 30727636 DOI: 10.1007/bf01092770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/1996] [Revised: 09/06/1996] [Accepted: 10/12/1996] [Indexed: 06/09/2023]
Abstract
In a previous report, intergeneric somatic hybrids between red cabbage (Brassica oleracea L. var.capitata) and radish (Raphanus sativus L. cv. Shougoin) were produced by protoplast fusion. Plant morphology, chromosome number, isozyme patterns, andSma1 cleavage pattern of chloroplast DNA indicated that the hybrid plants have the red cabbage nucleus and the radish chloroplasts. In this report, we analyzed the organization of chloroplast and mitochondrial DNAs from this hybrid using Southern hybridization. The restriction patterns of almost all regions of the chloroplast DNA from the hybrid were similar to that of radish, except for one region near therps16 gene, which encodes the chloroplast ribosomal protein S16. In contrast to chloroplast DNA, the restriction pattern of mitochondrial DNA from the hybrid was quite different from that of the parents.
Collapse
Affiliation(s)
- A Kanno
- Institute of Genetic Ecology, Tohoku University, 980-77, Sendai, Japan
| | - H Kanzaki
- Iwate Biotechnology Institute, 024, Kitakami, Iwate, Japan
| | - T Kameya
- Institute of Genetic Ecology, Tohoku University, 980-77, Sendai, Japan
| |
Collapse
|
67
|
Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 1997; 15:57-61. [PMID: 8988169 DOI: 10.1038/ng0197-57] [Citation(s) in RCA: 584] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have determined the complete sequence of the mitochondrial DNA in the model plant species Arabidopsis thaliana, affording access to the first of its three genomes. The 366,924 nucleotides code for 57 identified genes, which cover only 10% of the genome. Introns in these genes add about 8%, open reading frames larger than 100 amino acids represent 10% of the genome, duplications account for 7%, remnants of retrotransposons of nuclear origin contribute 4% and integrated plastid sequences amount to 1%-leaving 60% of the genome unaccounted for. With the significant contribution of duplications, imported foreign DNA and the extensive background of apparently functionless sequences, the mosaic structure of the Arabidopsis thaliana mitochondrial genome features many aspects of size-relaxed nuclear genomes.
Collapse
Affiliation(s)
- M Unseld
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | |
Collapse
|
68
|
Kojima T, Tsujimoto H, Ogihara Y. High-resolution RFLP mapping of the fertility restoration (Rf3) gene against Triticum timopheevi cytoplasm located on chromosome 1BS of common wheat. Genes Genet Syst 1997. [DOI: 10.1266/ggs.72.353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toshio Kojima
- Kihara Institute for Biological Research, Yokohama City University
| | | | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University
| |
Collapse
|
69
|
Zabaleta E, Mouras A, Hernould M, Suharsono, Araya A. Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA. Proc Natl Acad Sci U S A 1996; 93:11259-63. [PMID: 8855343 PMCID: PMC38317 DOI: 10.1073/pnas.93.20.11259] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the expression of an unedited atp9 chimeric gene correlated with male-sterile phenotype in transgenic tobacco plant. To study the relationship between the expression of chimeric gene and the male-sterile trait, hemizygous and homozygous transgenic tobacco lines expressing the antisense atp9 RNA were constructed. The antisense producing plants were crossed with a homozygous male-sterile line, and the F1 progeny was analyzed. The offspring from crosses between homozygous lines produced only male-fertile plants, suggesting that the expression antisense atp9 RNA abolishes the effect of the unedited chimeric gene. In fact, the plants restored to male fertility showed a dramatic reduction of the unedited atp9 transcript levels, resulting in normal flower development and seed production. These results support our previous observation that the expression of unedited atp9 gene can induce male sterility.
Collapse
Affiliation(s)
- E Zabaleta
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique, Bordeaux, France
| | | | | | | | | |
Collapse
|
70
|
Binder S, Marchfelder A, Brennicke A. Regulation of gene expression in plant mitochondria. PLANT MOLECULAR BIOLOGY 1996; 32:303-314. [PMID: 8980484 DOI: 10.1007/bf00039387] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many genes is plant mitochondria have been analyzed in the past 15 years and regulatory processes controlling gene expression can now be investigated. In vitro systems capable of initiating transcription faithfully at promoter sites have been developed for both monocot and dicot plants and will allow the identification of the interacting nucleic acid elements and proteins which specify and guide transcriptional activities. Mitochondrial activity, although required in all plant tissues, is capable of adapting to specific requirements by regulated gene expression. Investigation of the factors governing the quality and quantity of distinct RNAs will define the extent of interorganelle regulatory interference in mitochondrial gene expression.
Collapse
Affiliation(s)
- S Binder
- Allgemeine Botanik, Universität Ulm, Germany
| | | | | |
Collapse
|
71
|
|
72
|
Affiliation(s)
- C S Levings
- Department of Genetics, North Carolina State University, Raleigh 27695-7614, USA
| |
Collapse
|
73
|
Rhoads DM, Griffin HC, Neuenschwander BB, Levings CS, Siedow JN. Assays for characterizing URF13, the pathotoxin and methomyl receptor of cms-T maize. Methods Enzymol 1996; 264:566-81. [PMID: 8965727 DOI: 10.1016/s0076-6879(96)64049-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- D M Rhoads
- Department of Botany/Developmental, Cellular, and Molecular Biology Group, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
74
|
Rhoads DM, Levings CS, Siedow JN. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J Bioenerg Biomembr 1995; 27:437-45. [PMID: 8595979 DOI: 10.1007/bf02110006] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
URF13 is the product of a mitochondrial-encoded gene (T-urf13) found only in maize plants containing the Texas male-sterile cytoplasm (cms-T), and it is thought to be responsible for both cytoplasmic male sterility and the susceptibility of cms-T maize to the fungal pathogens Bipolaris maydis race T and Phyllosticata maydis. Mitochondria isolated from cms-T maize are uniquely sensitive to pathotoxins (T-toxin) produced by these fungi and to methomyl (a commercial insecticide). URF13 acts as a receptor that specifically binds T-toxin to produce hydrophilic pores in the inner mitochondrial membrane. When expressed in Escherichia coli cells, URF13 also forms hydrophilic pores in the plasma membrane if exposed to T-toxin or methomyl. Topological studies established that URF13 contains three membrane-spanning alpha-helices, two of which are amphipathic and can contribute to pore formation. Chemical cross-linking of URF13 was used to demonstrate the existence of URF13 oligomers in cms-T mitochondria and E. coli cells. The ability of the carboxylate-specific reagent, N,N'-dicyclohexycarbodiimide, to cross-link URF13 was used in conjunction with site-directed mutagenesis to establish that the URF13 tetramer has a central core consisting of a four-alpha-helical bundle which undergoes a conformational change after interaction with T-toxin or methomyl. Overall, the experimental evidence indicates that URF13 functions as a ligand-gated, pore-forming T-toxin receptor in cms-T mitochondria.
Collapse
Affiliation(s)
- D M Rhoads
- Department of Botany/Developmental, Cell, and Molecular Biology Group, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
75
|
Muise RC, Hauswirth WW. Selective DNA amplification regulates transcript levels in plant mitochondria. Curr Genet 1995; 28:113-21. [PMID: 8590461 DOI: 10.1007/bf00315776] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most plant mitochondrial genomes exist as subgenomic-size fragments apparently due to recombination between repetitive sequences. This leads to the possibility that independently replicating subgenomic domains could result in mitochondrial gene copy number variation. We show, through Southern-blot analysis of both restricted and intact mtDNA, that there are gene-specific copy number differences in the monocot Zea mays. Comparison of two different maize genotypes, B37(N) and B37(T), a cytoplasmic male-sterile strain, reveal fewer gene copy number differences for B37(T) than for B37(N). In contrast to maize, significant gene copy number differences are not detected in the dicot Brassica hirta. We also demonstrate that mitochondrial transcriptional rates in both species are apparently dependent on gene copy number since relative rates determined by run-on analysis are proportional to relative gene copy numbers. Thus a direct relationship exists between plant mitochondrial gene copy number and transcriptional rate.
Collapse
Affiliation(s)
- R C Muise
- Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | |
Collapse
|
76
|
Siedow JN, Rhoads DM, Ward GC, Levings CS. The relationship between the mitochondrial gene T-urf13 and fungal pathotoxin sensitivity in maize. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:235-40. [PMID: 7599214 DOI: 10.1016/0925-4439(95)00033-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondria isolated from maize containing cms-T cytoplasm are specifically sensitive to pathotoxins (T-toxins) produced by the fungi Bipolaris maydis race T and Phyllosticta maydis. T-toxins interact with a 13 kDa membrane-bound toxin receptor protein, URF13, to produce hydrophillic pores in the membrane. Expression of URF13 in Escherichia coli produces bacterial cells that form hydrophillic pores in the plasma membrane when exposed to T-toxin or methomyl. Topological studies have established that URF13 contains three membrane-spanning alpha-helices, two of which are amphipathic and may contribute to pore formation. URF13 specifically binds T-toxin in a cooperative manner. Oligonucleotide-directed mutagenesis of URF13 led to the isolation of methomyl/T-toxin-resistant mutations at 39 separate positions throughout the URF13 primary sequence. Chemical cross-linking of URF13 demonstrated the presence of URF13 oligomers and established that the pore-forming species is oligomeric. The ability of the carboxylate-specific reagent, dicyclohexycarbodiimide to cross-link URF13 has been used in conjunction with site-directed mutagenesis to establish that the URF13 tetramer has a central core consisting of a four-alpha-helical bundle that may undergo a conformational change after T-toxin or methomyl binding. Experimental evidence indicates that URF13 acts as a ligand-gated, pore-forming T-toxin receptor.
Collapse
Affiliation(s)
- J N Siedow
- Duke University, Durham, NC 27708-1000, USA
| | | | | | | |
Collapse
|
77
|
Wintz H, Chen HC, Sutton CA, Conley CA, Cobb A, Ruth D, Hanson MR. Expression of the CMS-associated urfS sequence in transgenic petunia and tobacco. PLANT MOLECULAR BIOLOGY 1995; 28:83-92. [PMID: 7787190 DOI: 10.1007/bf00042040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The expression of a 25 kDa protein, encoded by the fused mitochondrial pcf gene, is associated with cytoplasmic male sterility (CMS) in petunia. To investigate the role of the 25 kDa protein in CMS we have transformed petunia and tobacco plants with constructs expressing a portion of the urfS sequence of the pcf cDNA which encodes the 25 kDa protein. The urfS sequence was fused with two different mitochondrial targeting sequences. The chimeric gene coding region was placed under the control of the CaMV 35S promoter or a tapetum-specific promoter. Expression of the PCF protein was obtained in mitochondria of transgenic petunia and tobacco plants, yet fertility of the plants was not affected. Analysis of the location of the urfS-encoded protein revealed that it fractionates primarily into the soluble fraction in the transgenic plants whereas the genuine 25 kDa protein is found primarily in the soluble fraction but also in the membrane portion of immature buds from CMS petunia plants. Fertile transgenic plants were obtained which expressed the 25 kDa protein in the tapetal layer of post-meiotic anthers, while CMS plants express the endogenous 25 kDa protein in both the tapetal layer and sporogenous tissue of pre-meiotic anthers.
Collapse
Affiliation(s)
- H Wintz
- Section of Genetics and Development, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Chaumont F, Bernier B, Buxant R, Williams ME, Levings CS, Boutry M. Targeting the maize T-urf13 product into tobacco mitochondria confers methomyl sensitivity to mitochondrial respiration. Proc Natl Acad Sci U S A 1995; 92:1167-71. [PMID: 7862654 PMCID: PMC42659 DOI: 10.1073/pnas.92.4.1167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The URF13 protein, which is encoded by the maize mitochondrial T-urf13 gene, is thought to be responsible for pathotoxin and methomyl sensitivity and male sterility. We have investigated whether T-urf13 confers toxin sensitivity and male sterility when expressed in another plant species. The coding sequence of T-urf13 was fused to a mitochondrial targeting presequence, placed under the control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Plants expressing high levels of URF13 were methomyl sensitive. Subcellular analysis indicated that URF13 is mainly associated with the mitochondria. Adding methomyl to isolated mitochondria stimulated NADH-linked respiration and uncoupled oxidative phosphorylation, indicating that URF13 was imported into the mitochondria, and conferred toxin sensitivity. Most control plants, which expressed the T-urf13c construct lacking the mitochondrial presequence, were methomyl sensitive and contained URF13 in a membrane fraction. Subcellular fractionation by sucrose gradient centrifugation showed that URF13 sedimented at several positions, suggesting the protein is associated with various organelles, including mitochondria. No methomyl effect was observed in isolated mitochondria, however, indicating that URF13 was not imported and did not confer toxin sensitivity to the mitochondria. Thus, URF13 confers toxin sensitivity to transgenic tobacco with or without import into the mitochondria. There was no correlation between the expression of URF13 and male sterility, suggesting either that URF13 does not cause male sterility in transgenic tobacco or that URF13 is not expressed in sufficient amounts in the appropriate anther cells.
Collapse
Affiliation(s)
- F Chaumont
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Belgium
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
A problem originating in forest tree breeding concerns the number of clones needed in clonally propagated plantings to manage risk of failure due to an unforeseen catastrophic event. In this paper, we present a model for and analysis of time to failure for clonally propagated populations, assuming that in each year there is a chance for attack by an insect or pathogen. We develop the probability distribution of the number of years until population failure, T. A surprising finding is that in some circumstances increasing the number of clones can increase, rather than decrease, the chance of population failure. This suggests that laws, such as those current in the European Community, mandating minimum numbers of clones to be used in reforestation, may not achieve their intended effects, and that further investigation is needed to clarify the situation.
Collapse
Affiliation(s)
- J Bishir
- Department of Mathematics, North Carolina State University, Raleigh 27695
| | | |
Collapse
|
80
|
|
81
|
|
82
|
Abstract
C to U transitions in plant mitochondrial mRNA (RNA editing) lead to amino acid changes as well as to the creation of new initiation or termination codons. We established an in vitro system to assay and to dissect the process of wheat mitochondrial mRNA editing. A deamination mechanism explains most easily the observed C to U transitions. Several fractions of organellar protein participate in the editing machinery. Some of these proteins presumably carry the catalytic activity while others are typical RNA binding proteins and may confer specificity to the 'editosome' complex. To investigate the functional properties of protein products synthesized from unedited mRNAs, we constructed transgenic tobacco plants carrying an unedited gene coding for subunit 9 (ATP9) of the ATP synthase complex. The nuclear encoded 'unedited' protein product is targeted to the mitochondria with a heterologous presequence. A significant number of male sterile tobacco plants were obtained suggesting that at least the functional ATP9 protein requires RNA editing. This result suggests a novel approach to obtain artificial male sterile plants by using a physiological effect resulting in CMS which mimics the situation found in many natural populations.
Collapse
Affiliation(s)
- A Araya
- Institut de Biochimie et Génétique Cellulaires, IBGC-CNRS, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Rhoads DM, Kaspi CI, Levings CS, Siedow JN. N,N'-dicyclohexylcarbodiimide cross-linking suggests a central core of helices II in oligomers of URF13, the pore-forming T-toxin receptor of cms-T maize mitochondria. Proc Natl Acad Sci U S A 1994; 91:8253-7. [PMID: 8058790 PMCID: PMC44584 DOI: 10.1073/pnas.91.17.8253] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
URF13 is a mitochondrially encoded, integral membrane protein found only in maize carrying the cms-T cytoplasm. URF13 is associated with cytoplasmic male sterility, Texas type, and causes susceptibility to the fungal pathogens Bipolaris maydis race T and Phyllosticta maydis. URF13 is predicted to contain three transmembrane alpha-helices and is a receptor for the pathotoxins (T-toxins) produced by B. maydis race T and P. maydis. Binding of T-toxin to URF13 leads to membrane permeability. Cross-linking of URF13 oligomers with N,N'-dicyclohexylcarbodiimide (DCCD) protects Escherichia coli cells expressing URF13 and cms-T mitochondria from the permeability caused by T-toxin or methomyl. Using mutated forms of URF13 expressed in E. coli cells, we determined the molecular mechanism of DCCD protection. We separately changed Lys-37 in helix II to isoleucine (K37I-URF13) and Lys-32 in the helix I/helix II loop region to alanine (K32A-URF13). DCCD treatment of K37I-URF13-expressing cells did not protect the cells from permeability caused by T-toxin or methomyl. DCCD cross-linking was greatly reduced in K37I-URF13 and in D39V-URF13-expressing cells, but it was unaffected in K32A-URF13-expressing cells. Binding of methomyl or T-toxin decreases DCCD cross-linking of URF13 oligomers expressed in either E. coli or cms-T mitochondria. We conclude that Asp-39 in helix II is cross-linked by DCCD to Lys-37 in helix II of an adjacent URF13 molecule and that this cross-linking protects against toxin-mediated permeabilization. Our results also indicate that helices II form a central core in URF13 oligomers.
Collapse
Affiliation(s)
- D M Rhoads
- Department of Botany, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
85
|
Moore AL, Leach G, Whitehouse DG, van den Bergen CW, Wagner AM, Krab K. Control of oxidative phosphorylation in plant mitochondria: The role of non-phosphorylating pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90101-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
86
|
Callis J, Bedinger P. Developmentally regulated loss of ubiquitin and ubiquitinated proteins during pollen maturation in maize. Proc Natl Acad Sci U S A 1994; 91:6074-7. [PMID: 7517039 PMCID: PMC44140 DOI: 10.1073/pnas.91.13.6074] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells typically contain 0.2-1.0% of their total protein as the highly conserved protein ubiquitin, which exists both free and covalently attached to cellular proteins. The attachment of ubiquitin to cellular proteins occurs posttranslationally by a three-enzyme pathway and results in a peptide linkage of the C terminus of ubiquitin either to a lysyl epsilon-amino group of a substrate protein or to a lysyl epsilon-amino group of a previously linked ubiquitin molecule. The multiple conjugation of ubiquitin to substrate proteins via ubiquitin-ubiquitin linkages is thought to be necessary, but not sufficient, for recognition and degradation by a ubiquitin-dependent protease. In higher plant cells the steady-state level of ubiquitinated proteins is generally constant and can be readily detected in all somatic tissues. In contrast, we have found that a developmentally regulated loss of free ubiquitin and ubiquitinated proteins occurs during maize (Zea mays L.) pollen maturation. This dramatic loss of ubiquitin correlates temporally with commitment to the gametophytic developmental program. Northern blot analysis indicates that the loss of ubiquitin is not due to low levels of ubiquitin mRNA, suggesting that a posttranscriptional regulatory mechanism is responsible.
Collapse
Affiliation(s)
- J Callis
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | |
Collapse
|
87
|
Chase CD. Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr Genet 1994; 25:245-51. [PMID: 7923411 DOI: 10.1007/bf00357169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of mitochondrial DNA sequences unique to a cytoplasmically male-sterile (CMS) line of Phaseolus vulgaris was investigated. RNA-blot hybridizations with strand-specific probes demonstrated CMS-unique transcripts (7.0, 6.8, 4.7, 3.3 and 2.8 kb) to be in the sense orientation with respect to the longest open reading frames within the CMS-unique region. Hybridizations revealed co-transcription of CMS-unique and upstream, atpA-coding sequences to generate the 6.8-kb RNA. However, hybridizations with CMS-unique and flanking DNA probes accounted for only 4.9 kb of the longest and most abundant (7.0 kb) CMS-unique transcript, providing indirect evidence for the involvement of a splicing process in the generation of this transcript. Sedimentation experiments demonstrated the association of 7.0- and 6.8-kb CMS-unique transcripts with polyribosomes in seedlings and floral buds of a CMS line and a line restored to fertility by the nuclear gene Fr2. However, steady-state levels of the 7.0- and 6.8-kb transcripts were decreased in the restored line relative to the CMS line.
Collapse
Affiliation(s)
- C D Chase
- Horticultural Sciences Department, University of Florida, Gainesville 32611
| |
Collapse
|
88
|
Krishnasamy S, Grant RA, Makaroff CA. Subunit 6 of the Fo-ATP synthase complex from cytoplasmic male-sterile radish: RNA editing and NH2-terminal protein sequencing. PLANT MOLECULAR BIOLOGY 1994; 24:129-141. [PMID: 8111012 DOI: 10.1007/bf00040580] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA editing and NH2-terminal processing of subunit 6 (atp6) of the mitochondrial Fo-ATPase complex has been investigated for the normal (fertile) and Ogura (male-sterile) radish cytoplasms to determine if previously identified differences between the Ogura atp6 locus and its normal radish counterpart are associated with cytoplasmic male sterility. Analysis of cDNA clones from five different sterile and fertile radish lines identified one C-to-U transition, which results in the replacement of a proline with a serine, in several of the lines. No editing of atp6 transcripts was observed in two lines, Scarlet Knight (normal radish) and sterile CrGC15 (Ogura radish). This is the first example of a naturally occurring plant mitochondrial gene that is not edited. The Ogura atp6 polypeptide is synthesized with a predicted NH2-terminal extension of 174 amino acids in contrast to the nine amino acid extension found in normal radish. In spite of the lack of similarity between the two extensions, NH2-terminal sequence analysis indicates that both polypeptides are processed to yield identical core proteins with a serine as the NH2-terminal residue. These results indicate that ATPase subunit 6 is synthesized normally in Ogura radish, and that it is unlikely that the atp6 locus is associated with Ogura cytoplasmic male sterility.
Collapse
Affiliation(s)
- S Krishnasamy
- Department of Chemistry, Miami University, Oxford, OH 45056
| | | | | |
Collapse
|
89
|
Singh M, Brown GG. Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS: developmental influences. Curr Genet 1993; 24:316-22. [PMID: 8252642 DOI: 10.1007/bf00336783] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mitochondrial genome of the Polima (pol) male-sterile cytoplasm of Brassica napus contains a chimeric 224-codon open reading frame (orf224) that is located upstream of, and co-transcribed with, the atp6 gene. The N-terminal coding region of orf224 is derived from a conventional mitochondrial gene, orfB, while the origin of the remainder of the sequence is unknown. We show that an apparently functional copy of orfB is present in the pol mitochondrial genome, indicating that the pol CMS is not caused by the absence of an intact, expressed orfB gene. The 5' termini of orf224/atp6 transcripts present in both sterile and fertility-restored (Rf) pol cytoplasm plants are shown to map to sequences resembling mitochondrial transcription-initiation sites, whereas the 5' termini of two transcripts specific to restored lines map to sequences which resemble neither one another nor mitochondrial promoter motifs. It is suggested that the complex orf224/atp6 transcript pattern of Rf plants is generated by a combination of multiple transcription initiation and processing events and that the nuclear restorer gene acts to specifically alter orf224/atp6 transcripts by affecting RNA processing. Northern analyses demonstrate that the effect of the restorer gene on orf224/atp6 transcripts is not tissue or developmental-stage specific. However, the expression of the atp6 region is developmentally regulated in pol plants, resulting in decreased levels of monocistronic atp6 transcripts in floral tissue relative to seedlings. It is suggested that this developmental regulation may be related to the absence of overt phenotypic effects of the CMS mutation in vegetative tissues.
Collapse
Affiliation(s)
- M Singh
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
90
|
Abstract
Several new technologies will be used to produce continued genetic change in dairy cattle. These technologies are categorized broadly as 1) improved modeling, selection, and evaluation methods; 2) use of new and improved reproductive technologies; 3) new developments in molecular genetics; and 4) new developments in immunogenetics. Improvements in evaluation will continue as computers become faster and have more storage capabilities. Improved mathematical models that more nearly describe the biology of lactation will maximize estimation of genetic differences and reduce residuals. New reproductive technology could allow reduction of generation intervals two- to fivefold compared with present generation intervals and, combined with genetic markers, could markedly accelerate progress. Health problems in dairy cattle are expected to increase as production increases. Thus, selection for decreased incidences of health disorders will be needed, probably by selection of sires with improved general immunocompetence. Research is in the early stages of application of techniques of molecular genetics to animal breeding. Early uses will allow detection and alleviation of genetic defects. Eventually, marker genes that directly affect production and metabolic pathways that also affect production will be subjected to selection. The ability to foresee new and potentially useful techniques will be determined by scientific advancement of areas in which researchers are engaged; thus, accurate prediction far into the future cannot be expected.
Collapse
Affiliation(s)
- A E Freeman
- Department of Animal Science, Iowa State University, Ames 50011
| | | |
Collapse
|
91
|
Prioli LM, Huang J, Levings CS. The plant mitochondrial open reading frame orf221 encodes a membrane-bound protein. PLANT MOLECULAR BIOLOGY 1993; 23:287-295. [PMID: 8219065 DOI: 10.1007/bf00029005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have shown that the open reading frame orf221 is an active mitochondrial gene which encodes a novel mitochondrial polypeptide. The orf221 sequence is common to higher plants but absent in animal and fungal mitochondria. A mitochondrial polypeptide with an apparent molecular weight of 21,000 was detected with a polyclonal antibody raised against an ORF221 fusion protein. In organello translation followed by immunoprecipitation with the anti-ORF221 antibody demonstrated that this polypeptide is encoded by the orf221 gene in plant mitochondria. The ORF221 was found to be a mitochondrial membrane protein in normal (N), cms-T, and cms-C cytoplasms of several inbred lines of maize (Zea mays L.) and in other plant species.
Collapse
Affiliation(s)
- L M Prioli
- Departamento de Genética e Evolução, Universidade Estadual de Campinas (UNICAMP), SP, Brasil
| | | | | |
Collapse
|
92
|
|
93
|
L'Homme Y, Brown GG. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucleic Acids Res 1993; 21:1903-9. [PMID: 8388101 PMCID: PMC309431 DOI: 10.1093/nar/21.8.1903] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Comparison of the physical maps of male fertile (cam) and male sterile (pol) mitochondrial genomes of Brassica napus indicates that structural differences between the two mtDNAs are confined to a region immediately upstream of the atp6 gene. Relative to cam mtDNA, pol mtDNA possesses a 4.5 kb segment at this locus that includes a chimeric gene that is cotranscribed with atp6 and lacks an approximately 1kb region located upstream of the cam atp6 gene. The 4.5 kb pol segment is present and similarly organized in the mitochondrial genome of the common nap B.napus cytoplasm; however, the nap and pol DNA regions flanking this segment are different and the nap sequences are not expressed. The 4.5 kb CMS-associated pol segment has thus apparently undergone transposition during the evolution of the nap and pol cytoplasms and has been lost in the cam genome subsequent to the pol-cam divergence. This 4.5 kb segment comprises the single DNA region that is expressed differently in fertile, pol CMS and fertility restored pol cytoplasm plants. The finding that this locus is part of the single mtDNA region organized differently in the fertile and male sterile mitochondrial genomes provides strong support for the view that it specifies the pol CMS trait.
Collapse
Affiliation(s)
- Y L'Homme
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
94
|
Korth KL, Levings CS. Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci U S A 1993; 90:3388-92. [PMID: 8475086 PMCID: PMC46305 DOI: 10.1073/pnas.90.8.3388] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The URF13 protein, which is encoded by the mitochondrial gene T-urf13, is responsible for cytoplasmic male sterility and pathotoxin sensitivity in the Texas male-sterile cytoplasm (cms-T) of maize. Mitochondrial sensitivity to two host-specific fungal toxins (T toxins) is mediated by the interaction of URF13 and T toxins to form pores in the inner mitochondrial membrane. A carbamate insecticide, methomyl, mimics the effects of T toxins on isolated cms-T mitochondria. URF13 was expressed in Spodoptera frugiperda (fall army-worm) cells (Sf9) in culture and in Trichoplusia ni (cabbage looper) larvae with a baculovirus vector. In insect cells, URF13 forms oligomeric structures in the membrane and confers T toxin or methomyl sensitivity. Adding T toxin or methomyl to Sf9 cells producing URF13 causes permeabilization of plasma membranes. In addition, URF13 is toxic to insect cells grown in culture without T toxins or methomyl; even a T-toxin-insensitive mutant form of URF13 is lethal to cell cultures. Baculoviruses expressing URF13 are lethal to T. ni larvae, at times postinjection comparable to those obtained by injecting a baculovirus expressing an insect neurotoxin. This result suggests that URF13 could be useful as a biological control agent for insect pests. Our data indicate that URF13 has two independent mechanisms for toxicity, one that is mediated by T toxin and methomyl and one that is independent of these toxins. Similarly, male sterility and toxin sensitivity in cms-T maize may be due to independent mechanisms.
Collapse
Affiliation(s)
- K L Korth
- Department of Genetics, North Carolina State University, Raleigh 27695-7614
| | | |
Collapse
|
95
|
Abstract
Several times in this century, new and sometimes devastating diseases of cereal crops, caused by fungi in the genus Cochliobolus, have suddenly appeared. In many fungal diseases of plants the factors required for pathogenicity are unknown; in contrast, the key elements in each of several Cochliobolus diseases are known to be host-selective toxins. Recent research on these systems has given surprising insights into the genetic basis of fungal pathogenicity and plant susceptibility to disease.
Collapse
Affiliation(s)
- D G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown 26506-6057
| |
Collapse
|
96
|
Mohr S, Schulte-Kappert E, Odenbach W, Oettler G, Kück U. Mitochondrial DNA of cytoplasmic male-sterile Triticum timopheevi: rearrangement of upstream sequences of the atp6 and orf25 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:259-268. [PMID: 24193468 DOI: 10.1007/bf00222087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/1992] [Accepted: 09/28/1992] [Indexed: 06/02/2023]
Abstract
The organization of mitochondrial DNA (mtDNA) and transcript patterns of the atp6 and orf25 genes were examined in cytoplasmic male-sterile (CMS) and fertile Triticum lines. Major differences are observed between CMS T. timopheevi and fertile T. aestivum for both mitochondrial genes. The T. aestivum mt genome carries two atp6 gene copies, whereas only a single copy of the atp6 gene is present in T. timopheevi mtDNA. Sequence data suggest that identical sequences upstream of the atp6 gene and the orf25 gene are involved in homologous recombination in both cytoplasms. The differences in the upstream sequences of the atp6 or the orf25 genes affect transcript sizes in both cytoplasms. Transcription initiation may occur at conserved promoter elements located at variable distances upstream of the aminoacid coding sequences. The correlation between the gene rearrangements and the CMS phenomenon in T. timopheevi is discussed.
Collapse
Affiliation(s)
- S Mohr
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Postfach 10 21 48, D-4630, Bochum, Germany
| | | | | | | | | |
Collapse
|
97
|
Kaspi C, Siedow J. Cross-linking of the cms-T maize mitochondrial pore-forming protein URF13 by N,N'-dicyclohexylcarbodiimide and its effect on URF13 sensitivity to fungal toxins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53394-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
98
|
Saumitou-Laprade P, Rouwendal GJ, Cuguen J, Krens FA, Michaelis G. Different CMS sources found in Beta vulgaris ssp maritima: mitochondrial variability in wild populations revealed by a rapid screening procedure. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 85:529-535. [PMID: 24195925 DOI: 10.1007/bf00220909] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/1992] [Accepted: 09/21/1992] [Indexed: 06/02/2023]
Abstract
Mitochondrial DNA (mtDNA) variation in natural Beta maritima populations has been characterized by way of Southern blot hybridizations of total DNA using non-radioactive probes and chemiluminescent detection. It was found that the previously described N ("normal") mitochondrial type could be subdivided into three subtypes. A new mitochondrial genotype (type R) was distinguished in addition to the previously described type S. Both are male-sterile cytoplasms and can produce a. segregation of sexual phenotypes in their progenies depending on the nuclear background. The populations contained at least two to four different mitochondrial genotypes.
Collapse
Affiliation(s)
- P Saumitou-Laprade
- Laboratory of Genetics and Evolution of Plant Populations, URA CNRS 1185, Scientific and Technical University of Lille, F-59655, Villeneuve d'Ascq CEDEX, France
| | | | | | | | | |
Collapse
|
99
|
Chen Z, Muthukrishnan S, Liang GH, Schertz KF, Hart GE. A chloroplast DNA deletion located in RNA polymerase gene rpoC2 in CMS lines of sorghum. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:251-9. [PMID: 8437572 DOI: 10.1007/bf00277120] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fertile lines of sorghum (Sorghum bicolor) were shown to differ from cytoplasmic male sterile (CMS) lines by the presence of a 3.8 kb HindIII chloroplast DNA fragment in the former and a smaller (3.7 kb) fragment in the latter. DNA/DNA hybridization studies showed that these two fragments are homologous. Fertile plants from S. versicolor, S. almum, S. halepense, and Sorghastrum nutans (Yellow Indiangrass) also have the 3.8 kb fragment, and CMS lines studied containing A1, A2 and A3 cytoplasms have the 3.7 kb fragment. The size difference between the two fragments was localized to a 1.0 kb SacI-HindIII fragment by restriction mapping. A 165 bp deletion, which is flanked by a 51 bp tandem repeat, was identified in the CMS lines by sequencing the clones. Comparison of the two sequences with those from maize, rice, tobacco, spinach, pea, and liverwort revealed that the deleted sequence is located in the middle of the RNA polymerase beta" subunit encoded by the gene rpoC2. The amino acid sequence deleted in the CMS lines is in a monocot-specific region which contains two protein motifs that are characteristic of several transcriptional activation factors, namely, a leucine zipper motif and an acidic domain capable of forming an amphipathic alpha-helix. Further studies designed to determine whether or not the deletion is involved in CMS of sorghum are underway.
Collapse
Affiliation(s)
- Z Chen
- Department of Soil and Crop Sciences, Texas A&M University, College Station 77843-2474
| | | | | | | | | |
Collapse
|
100
|
Glab N, Petit PX, Slonimski PP. Mitochondrial dysfunction in yeast expressing the cytoplasmic male sterility T-urf13 gene from maize: analysis at the population and individual cell level. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:299-308. [PMID: 7679774 DOI: 10.1007/bf00277126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The urf13TW gene, which is derived from the mitochondrial T-urf13 gene responsible for Texas cytoplasmic male sterility in maize, was expressed in Saccharomyces cerevisiae by targeting its translation product into mitochondria. Analysis by oxygraphy at the population level revealed that in the presence of methomyl the oxygen uptake of intact yeast cells carrying the targeted protein is strongly stimulated only with ethanol as respiratory substrate and not with glycerol, lactate, pyruvate, or acetate. When malate is the substrate oxidized by isolated mitochondria, interaction between the targeted protein and methomyl results in significant inhibition of oxygen uptake. This inhibition is eliminated and oxygen uptake is stimulated by subsequent addition of NAD+. Using 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)] as probe, interactive laser scanning and flow cytometry, which permit analysis at the individual cell level, demonstrated that specific staining of the mitochondrial compartment is obtained and that DiOC6(3) fluorescence serves as a measure of the membrane potential. Finally, it was shown that, as in T cytoplasm maize mitochondria, HmT toxin and methomyl dissipate the membrane potential of yeast mitochondria that carry the foreign protein. Furthermore, the results suggest that the HmT toxin and methomyl response is related to the plasmid copy number per cell and that the deleterious effect induced by HmT toxin is stronger than that of methomyl.
Collapse
Affiliation(s)
- N Glab
- Centre de Génétique Moléculaire, C.N.R.S. UPR 2420, associé à l'Université Pierre et Marie Curie, Gif sur Yvette, France
| | | | | |
Collapse
|